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Abstract. In this paper, we investigate a class of non-invertible piecewise isome-
tries on the upper half-plane known as Translated Cone Exchanges. We provide
a geometric construction for the first return map to the middle cone for a broad
class of parameters, then we show a recurrence in the first return map tied to
the diophantine properties of the parameters, and subsequently prove the infinite
renormalizability of the first return map for these parameters.

1. Introduction

Piecewise isometries (PWIs) a class of maps that can be generally described as
a “cutting-and-shuffling” action of a metric space, specifically a partitioning of the
phase space into at most countably many convex pieces called atoms, which are each
moved according to an isometry. The phase space of these maps can be partitioned
into two (or three) subsets based on the dynamics – a polygon or disc packing of
periodic islands known as the regular set, and its complement, the set of points whose
orbit either lands on, or accumulates on, the discontinuity set. Some authors choose
to further distinguish those points in the pre-images of the discontinuity and those
points which accumulate on it. The most well-known and well-understood examples
of such maps are the interval exchange transformations (IETs), which arise as return
maps to cross-sections of some measured foliations [49] and also as generalisations
of circle rotations [50, 51, 52] and their encoding spaces generalise sturmian shifts
[53]. Furthermore, interval exchanges which aren’t irrational rotations are known
to be almost always weakly mixing [54] but never strongly mixing [55]. Piecewise
isometries in general, however, are not as well-known and as a subset of this class,
interval exchanges are in many ways exceptional, due in part to being one-dimensional,
as well as the invariance of Lebesgue measure.

In the more general setting, although the inherent lack of hyperbolicity restricts
the variety of possible behaviours, for example it is known that all piecewise isome-
tries have zero topological entropy [56], piecewise isometries are still capable of quite
complex behaviour; many examples show the presence of unbounded periodicity and
an underlying renormalizability which structures the dynamics near the discontinu-
ities [57, 58, 59, 60, 61, 62, 63]; numerical evidence suggests the existence of invariant
curves in the exceptional set which seem fractal-like and form barriers to ergodic-
ity [61, 62, 64, 65]; there are conjectured conditions for piecewise isometries to have
sensitive dependence on initial conditions [66].

Renormalization in theoretical physics and nonlinear dynamical systems has a long-
standing history, see for example [67, 68, 69, 70, 71, 72, 73], driven by the problem
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of understanding phenomena that occur at many spatial and temporal scales, partic-
ularly near phase transitions, periodic points, or in the case of piecewise isometries,
the discontinuity set.

In this paper, we investigate the renormalizability of a class of piecewise isometries
called Translated Cone Exchanges on the closure of the upper half-plane H. In par-
ticular, we use a geometric construction to describe the action of a first return map
to a subset containing the origin, and show that this map displays renormalizable
behaviour locally to the origin in accordance with diophantine approximation of one
of its parameters.

This paper is organized as follows. In Section 2, we introduce the family of maps
we will investigate, namely, Translated Cone Exchange transformations. In Section 3
we will develop some tools that will be useful in the next section. Section 4 contains
the main result of this paper, concerning renormalization around ) for our class of
maps. Finally, in Section 5 we present an example for fixed values of the parameters.

2. Translated Cone Exchange transformations

Let H ⊂ C denote the upper half plane, and let H be its closure in C, that is

H = {z ∈ C : Im(z) ≥ 0}.
A Translated Cone Exchange transformation (TCE) is a PWI (P , F ) defined on

the closed upper half plane H. Let B be the set

B =
{
α ∈ (0, π)d+2 : ‖α‖`1 = π

}
,

and let A be a subset of B defined by

A = {α = (α0, ..., αd+1) ∈ B : α0 = αd+1} .
Typically, when α ∈ A, we denote β = α0 = αd+1. Next, for some α = (α0, ..., αd+1) ∈

B, partition the interval [0, π] by subintervals

Wj =


[0, α0) if j = 0

[α0, α0 + α1] if j = 1(
j−1∑
k=0

αk,
∑j

k=0 αk

]
if j ∈ {2, ..., d+ 1}

.

We then define the partition P as

P = {Pj : j ∈ {0, ..., d+ 1}} ,
where

P1 = {0} ∪ {z ∈ H : Arg z ∈ W1}

and

Pj = {z ∈ H : Arg z ∈ Wj} for j 6= 1.

The mapping F is defined as a composition
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Figure 1. An example of a partition of the closed upper half plane H
into 6 cones.

(2.1) F (z) = G ◦ E(z),

where E is a permutation of the cones P1, ..., Pd, and G is a piecewise horizon-
tal translation. Formally, let Sym(d) denote the group of permutations on the set
{1, ..., d}, τ ∈ Sym(d), and let

θj(α, τ) =
∑

τ(k)<τ(j)

αk −
∑
k<j

αk.

When α and τ are unambiguous, we may refer to θj(α, τ) simply as θj. The map

E : H→ H is then defined as

E(z) =

{
z if z ∈ P0 ∪ Pd+1

zeiθj if z ∈ Pj, j ∈ {1, ..., d}
.

Note that E is invertible Lebesgue-almost everywhere in H. We define the middle
cone Pc of F as

Pc =
d⋃
j=1

Pj = H \ (P0 ∪ Pd+1).

The map G : H→ H is defined as

(2.2) G(z) =


z − ρ if z ∈ P0,

z − η if z ∈ Pc,
z + λ if z ∈ Pd+1,

where ρ, λ ∈ (0,∞) are rationally independent and 0 < η < λ.

Simulations of the orbits of points under some TCEs appears to reveal self-similarity
as one zooms in towards the real line, such as in figure 2. One way to investigate
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Figure 2. A plot of the first 10000 elements of the forward orbits
of 200 randomly chosen points under a TCE with parameters α =
(0.5, π−2.5), τ = (1 0), λ = Φ, and η = Φ2. Each orbit is given a (non-
unique) colour to illustrate the trajectories. Note the appearance of
renormalizable behaviour as features such as patterns of periodic disks
appear to repeat closer to the real line, but scaled down.

this behaviour is by applying renormalization techniques. In particular, let h : Pc →
N \ {0} denote the first return time of z ∈ Pc to Pc under F , that is

(2.3) h(z) = inf {n > 0 : F n(z) ∈ Pc} .
The first return map R : Pc → Pc of F to Pc is then defined as

(2.4) R(z) = F h(z)(z).

Observe that for all z ∈ Pc, R(z) = F h(z)(z) = Gh(z) ◦E(z), since E is the identity
outside of Pc.

3. Tools

In this section we prove some preliminary results that will serve as tools for more
detailed investigation of the renormalization of TCEs.

Let A : H→ {−1, 0, 1} denote the address of a point in H, defined by

A(z) =


1 if z ∈ P0

0 if z ∈ Pc
−1 if z ∈ Pd+1

and define the itinerary of a point z ∈ H as the sequence ι(z) = (ιn(z))n∈N, where
ιn(z) = A(F n(z)).
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We bgin by proving a simple lemma regarding the dynamics of the point 0 (as it is
far easier to understand than that of an arbitrary point z ∈ Pc).

Lemma 3.1. Let α ∈ B, τ ∈ Sym(d), λ, ρ ∈ R such that λ/ρ /∈ Q, and 0 < η < λ. If
z ∈ Pc, then for all 1 ≤ j ≤ h(z),

F j(z) = E(z) + F j(0).

Proof. Suppose not, for a contradiction. Then there is some n with 0 ≤ n ≤ h(z)
such that F n(z) 6= E(z) + F n(0), and without loss of generality assume that n is the
smallest such integer. Clearly n > 1, so for all 0 ≤ j ≤ n− 1, F j(z)−E(z) = F j(0),
and therefore ιj(z) = ιj(0) for all 0 ≤ j ≤ n − 2, but ιn−1(z) 6= ιn−1(0). Since
n ≤ h(z), we cannot have F j(z) ∈ Pc for all 1 ≤ j ≤ n − 1. Hence for addresses of
the (n− 1)th iterates of z and 0 to disagree, one of two cases must occur:

1. F n−1(z) ∈ Pd+1 and F n−1(0) ∈ Pc ∪ P0; or

2. F n−1(z) ∈ P0 and F n−1(0) ∈ Pc ∪ Pd+1.

Since the orbit of 0 is restricted to R and since E(0) = 0, the second parts of each
case become Gn−1(0) ≥ 0 and Gn−1(0) ≤ 0, respectively.

Similarly to the proof of Lemma ??, supposeE(z) = z′, and let ε1 = Im(z′) cot(αd+1)
and ε2 = Im(z′) cot(α0). Then z′ ∈ Pc if and only if −ε1 ≤ Re(z′) ≤ ε2. Note that
since G is a horizontal translation, F n−1(z) = Gn−1(E(z)) = Gn−1(z′) ∈ Pd+1 if and
only if Re(Gn−1(z′)) < −ε1. Similarly Gn−1(z′) ∈ P0 if and only if Re(Gn−1(z′)) > ε2.
The two above cases above can thus be reformulated as:

1. Re(Gn−1(z′)) < −ε1 and Gn−1(0) ≥ 0; or

2. Re(Gn−1(z′)) > ε2 and Gn−1(0) ≤ 0.

In case 1, we get 0 ≤ Gn−1(0) = Gn−1(z′) − z′ = Re(Gn−1(z′)) − Re(z′). Hence
Re(Gn−1(z)) ≥ Re(z′) and thus

−ε1 ≤ Re(z′) ≤ Re(Gn−1(z′)) < −ε1,

which is a contradiction. Case 2 leads to a similar contradiction. Therefore there
is no such n.

�

Recall from the theory of continued fractions that the nth convergent to an irrational
real number λ = [a0; a1, a2, ...] is a fraction pn/qn = [a0; a1, ..., an], where pn, qn are
coprime integers and qn > 0. The numbers pn, qn can be generated by the recursive
relations:

(3.1)

p0 = a0, q0 = 1,

p1 = a1a0 + 1, q1 = a1,

pn = anpn−1 + pn−2, qn = anqn−1 + qn−2.

Furthermore, the convergents to λ satisfy the property that for all positive integers
q < qn+1 and all p ∈ Z,
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|qnλ− pn| ≤ |qλ− p|,
with equality only when (p, q) = (pn, qn).

3.1. Continued Fractions. Let g : [0, 1]→ [0, 1] denote the Gauss map, given by

g(x) =
1

x
−
⌊

1

x

⌋
.

In particular, if λ = [0;λ1, λ2, λ3, ...] ∈ [0, 1], then

g(λ) =
1

λ
− λ1 = [0;λ2, λ3, ...].

Let λ = [0;λ1, λ2, ...] ∈ [0,∞) \Q. To start, let

Nλ = {(m,n) ∈ N2 : 0 ≤ n ≤ λm+1},
and define an indexing function wλ : Nλ → N by

wλ(m,n) =

{
n if m = 0,

λ1 + ...+ λm + n if m > 0.

Note that wλ is surjective and if we define the subset N<
λ ⊂ N to be

N<
λ = {(m,n) ∈ N2 : 0 ≤ n < λm+1},

then wλ �N<λ is a bijection. Furthermore,

wλ(m,λm+1) = wλ(m+ 1, 0).

From now on, we denote the jth coefficient of the continued fraction expansion of
gm(λ) by gm(λ)j. The next proposition gives us a nice property of wλ.

Proposition 3.2. Let j,m, n ∈ N. Then (m+j, n) ∈ Nλ if and only if (j, n) ∈ Ngm(λ).
In particular,

wλ(m+ j, n) = λ1 + ...+ λm + wgm(λ)(j, n).

Proof. We have that (m+ j, n) ∈ Nλ is equivalent to 0 ≤ n ≤ λm+j+1. We also have
that λm+j+1 = gm(λ)j+1, so 0 ≤ n ≤ gm(λ)j+1. This is equivalent to (j, n) ∈ Ngm(λ).

If m = j = 0, then the second part of our lemma is clearly true.
Assume j = 0 and m > 0. Then

wλ(m+ j, n) = wλ(m,n) = λ1 + ...+ λm + n = λ1 + ...+ λm + wgm(λ)(0, n),

where the final equality is true since (m,n) ∈ Nλ is equivalent to (0, n) ∈ Ngm(λ).
Finally, suppose m, j > 0. Then

wλ(m+ j, n) = λ1 + ...+ λm + λm+1 + ...+ λm+j + n

= λ1 + ...+ λm + gm(λ)1 + ...+ gm(λ)j + n.

Note that since (m+ j, n) ∈ Nλ is equivalent to (j, n) ∈ Ngm(λ), we have

wλ(m+ j, n) = λ1 + ...+ λm + wgm(λ)(j, n).

�
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We set the semiconvergents to λ as the fractions

Pwλ(m,n)(λ)

Qwλ(m,n)(λ)
=


[0;λ1, ..., λm] if n = 0,

[0;λ1, ..., λm, n] if n 6= 0.

Note that by a standard result in the theory of continued fractions, we have that

Pwλ(m,n)(λ)

Qwλ(m,n)(λ)
=


npm(λ) + pm−1(λ)

nqm(λ) + qm−1(λ)
if n 6= 0,

pm(λ)

qm(λ)
if n = 0,

so that the numerators and denominators coincide. We define the signed errors of
the semiconvergents of λ as

(3.2) ∆wλ(m,n)(λ) = Qwλ(m,n)(λ)λ− Pwλ(m,n)(λ).

Intuitively, the sequence (∆k)k∈N gives us information on how close rational approxi-
mations to λ get as the size of the denominator increases.

By expanding the definitions of Pwλ(m,n) and Qwλ(m,n), we see

(3.3)
∆wλ(m,n)(λ) = n(qmλ− pm) + qm−1λ− pm−1

= n∆wλ(m,0)(λ) + ∆wλ(m−1,0)(λ),

for (m,n) ∈ Nλ with m ≥ 1. Moreover, by expanding the recurrence relation for
pm and qm and rearranging terms, we have the additional property

∆wλ(m,0) = qmλ− pm
= λm(qm−1λ− pm−1) + qm−2λ− pm−2

= λm∆wλ(m−1,0)(λ) + ∆wλ(m−2,0)(λ),

for m ∈ N,m ≥ 2. Indeed, using these two recurrence properties, we can verify
that ∆wλ(m,0)(λ) = ∆wλ(m−1,λm)(λ).

From now on, we shall write ∆w(m,n)(x) = ∆wx(m,n)(x) to simplify our notation. A
result by Bates et al. [43] presents an interesting connection between iterates of the
Gauss map and consecutive errors in the approximation of λ by its convergents.

Lemma 3.3 (Theorem 10 of [43]). Let λ = [0;λ1, λ2, ...] ∈ [0, 1) \Q. For all m ∈ N,

(3.4) gm(λ) =
qmλ− pm

pm−1 − qm−1λ
.

Equation (3.4) can be equivalently formulated as

(3.5) gm(λ) = −
∆w(m,0)(λ)

∆w(m−1,0)(λ)
.
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Lemma 3.4. Let λ = [0;λ1, λ2, ...] ∈ [0, 1) \Q. For all (m,n) ∈ Nλ with m ≥ 1,

(3.6) ∆w(0,n)(g
m(λ)) = −

∆w(m,n)(λ)

∆w(m−1,0)(λ)
.

Proof. For n = 0, ∆w(0,0)(g
m(λ)) = gm(λ), so (3.6) holds.

Next, observe that

∆w(j,0)(g
m(λ)) = gm(λ)j∆w(j−1,0)(g

m(λ)) + ∆w(j−2,0)(g
m(λ)).

Since gm(λ)j = λm+j, this becomes

∆w(j,0)(g
m(λ)) = λm+j∆w(j−1,0)(g

m(λ)) + ∆w(j−2,0)(g
m(λ)).

We thus see that

∆w(0,n)(g
m(λ)) = n(q0g

m(λ)− p0) + q−1λ− p−1,

and by recalling p−1, q−1, p0, and q0 from (3.1), we get

∆w(0,n)(g
m(λ)) = ngm(λ)− 1.

Using (3.5), we can substitute gm(λ) and rearrange terms to get

∆w(0,n)(g
m(λ)) = −n

(
∆w(m,0)(λ)

∆w(m−1,0)(λ)
+ 1

)
= −

n∆w(m,0)(λ) + ∆w(m−1,0)(λ)

∆w(m−1,0)(λ)
.

Finally, from this and (3.3) we get (3.6). �

Corollary 3.5. For all (m+ j, n) ∈ Nλ, where m+ j ∈ N, m ≥ 1, we have

(3.7) ∆w(0,n)(g
m+j(λ)) = −

∆w(m,n)(g
j(λ))

∆w(m−1,0)(gj(λ))

Proof. This follows from Lemma 3.4 with gj(λ) instead of λ. �

Our next Lemma is an important tool for determining scaling properties of these
errors.

Lemma 3.6. Let λ = [0;λ1, λ2, ...] ∈ [0, 1) \ Q. For all (m + j, n) ∈ Nλ such that
m, j ∈ N and m ≥ 1,

(3.8) ∆w(j,n)(g
m(λ)) = −

∆w(m+j,n)(λ)

∆w(m−1,0)(λ)
.

Proof. Let us prove first that (3.8) holds for n = 0. By multiplying and dividing by
∆w(m+k−1,0) for all 0 ≤ k ≤ j, we get

∆w(m+j,0)(λ)

∆w(m−1,0)(λ)
=

j∏
k=0

∆w(m+k,0)(λ)

∆w(m+k−1,0)(λ)
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Then, using (3.5), we get

∆w(m+j,0)(λ)

∆w(m−1,0)(λ)
=

j∏
k=0

−∆w(0,0)(g
m+k(λ)).

Rearranging this last expression and using (3.7), we get

∆w(m+j,0)(λ)

∆w(m−1,0)(λ)
= (−1)j+1∆w(0,0)(g

m(λ))

j∏
k=1

−
∆w(k,0)(g

m(λ))

∆w(k−1,0)(gm(λ))

We then simplify the product by cancelling terms in the numerator and denomina-
tor to get

∆w(m+j,0)(λ)

∆w(m−1,0)(λ)
= (−1)j+1∆w(0,0)(g

m(λ))

(
(−1)j

∆w(j,0)(g
m(λ))

∆w(0,0)(gm(λ))

)
= −∆w(j,0)(g

m(λ)).

Finally, for general (m+ j, n) ∈ Nλ, m, j ∈ N, m ≥ 1, we have

∆w(m+j,n)(λ)

∆w(m−1,0)(λ)
=

∆w(m+j,n)(λ)

∆w(m+j−1,0)(λ)

∆w(m+j−1,0)(λ)

∆w(m−1,0)(λ)

Using (3.6) and (3.8) for n = 0, we get

∆w(m+j,n)(λ)

∆w(m−1,0)(λ)
= ∆w(0,n)(g

m+j(λ))∆w(j−1,0)(g
m(λ)),

and then using (3.7) gives us

∆w(m+j,n)(λ)

∆w(m−1,0)(λ)
= −

∆w(j,n)(g
m(λ))

∆w(j−1,0)(gm(λ))
∆w(j−1,0)(g

m(λ))

= −∆w(j,n)(g
m(λ)),

as required.
�

With these properties in mind, we will now define the rhombi which will partition
a neighbourhood of the middle cone Pc. Recall that N<

λ denotes the subset of Nλ
defined by

N<
λ = {(m,n) ∈ N2 : 0 ≤ n < λm+1}.

For (m,n) ∈ N<
λ , let S ′wλ(m,n)(λ) be the set defined by

(3.9) S ′wλ(m,n)(λ) =


(P0 −∆w(m,0)(λ)) ∩ (Pc −∆w(m,n+1)(λ))

∩ Pc ∩ (Pd+1 − (n∆w(m,0)(λ) + ∆w(m−1,0)(λ))
if m is even

(P0 − (n∆w(m,0)(λ) + ∆w(m−1,0)(λ)) ∩ Pc
∩ (Pc −∆w(m,n+1)(λ)) ∩ (Pd+1 −∆w(m,0)(λ))

if m is odd

.

From now on we shall write S ′w(m,n)(x) = S ′wx(m,n)(x) for brevity. By observing that

∆w(m,n)(λ) > 0 when m is even and ∆w(m,n)(λ) < 0 when m is odd, we can clearly see
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that Sw(m,n)(λ) 6= ∅ for all (m,n) ∈ N<
λ . Additionally, since every point in S ′w(m,n)(λ)

has positive imaginary part, the boundary of S ′w(m,n)(λ) consists of segments of the
non-horizontal boundary lines of P0, Pc, and Pd+1, and all of these lines either have
angle α0 or αd+1. Thus, S ′w(m,n)(λ) is a quadrilateral, and its opposing sides must be
parallel, so it is a parallelogram.

Since opposite edges of S ′w(m,n)(λ) are parallel, the sidelengths of S ′w(m,n)(λ) are
uniquely determined by the perpendicular distances between opposing edges. In the
case that m is even, these are in turn uniquely determined by the distances between
the vertices of the pairs of cones P0 − ∆w(m+1,0)(λ) and Pc, and Pc − ∆w(m,n+1)(λ)
and Pd+1 − ∆w(m,n)(λ). In the case that m is odd, the perpendicular distances are
determined by the distances between the vertices of pairs of cones P0−∆w(m,n)(λ) and
Pc−∆w(m,n+1)(λ), and Pc and Pd+1−∆w(m+1,0)(λ). Since ∆w(m,n+1)(λ)−∆w(m,n)(λ) =
∆w(m+1,0)(λ), we know that these distances are equal. Therefore, the sidelengths of
S ′w(m,n)(λ) are all equal, so it is a rhombus for all λ ∈ [0, 1) \Q and all (m,n) ∈ N<

λ .
An interesting property of these rhombi can be found by an application of Lemma

3.6.

Theorem 3.7. Let λ ∈ [0, 1) \ Q. For all (m + j, n) ∈ N<
λ such that m, j ∈ N and

m ≥ 1 is even,

1

−∆w(m−1,0)(λ)
S ′w(m+j,n)(λ) = S ′w(j,n)(g

m(λ)).

Proof. Firstly, note that since m is even, ∆w(m−1,0)(λ) < 0. Hence −1/∆w(m−1,0)(λ) >
0. Hence,

1

−∆w(m−1,0)(λ)
(Pk + x) = Pk −

x

∆w(m−1,0)(λ)
,

for all k ∈ {1, ..., d}. Thus, we have

1

−∆w(m−1,0)(λ)
S ′w(m+j,n)(λ)

=



(
P0 +

∆w(m+j,0)(λ)

∆w(m−1,0)(λ)

)
∩
(
Pc +

∆w(m+j,n+1)(λ)

∆w(m−1,0)(λ)

)
∩ Pc ∩

(
Pd+1 +

n∆w(m+j,0)(λ) + ∆w(m+j−1,0)(λ)

∆w(m−1,0)(λ)

)
,

if m+ j is even,

(
P0 +

n∆w(m+j,0)(λ) + ∆w(m+j−1,0)(λ)

∆w(m−1,0)(λ)

)
∩ Pc

∩
(
Pc +

∆w(m+j,n+1)(λ)

∆w(m−1,0)(λ)

)
∩
(
Pd+1 +

∆w(m+j,0)(λ)

∆w(m−1,0)(λ)

)
,

if m+ j is odd.

Using (3.8) many times give us

1

−∆w(m−1,0)(λ)
S ′w(m+j,n)(λ)
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=


(P0 −∆w(j,0)(g

m(λ))) ∩ (Pc −∆w(j,n+1)(g
m(λ)))

∩ Pc ∩ (Pd+1 − (n∆w(j,0)(g
m(λ)) + ∆w(j−1,0)(g

m(λ)))), if j is even,

(P0 − (n∆w(j,0)(g
m(λ)) + ∆w(j−1,0)(g

m(λ)))) ∩ Pc
∩ (Pc −∆w(j,n+1)(g

m(λ))) ∩ (Pd+1 −∆w(j,0)(g
m(λ))), if j is odd.

Finally, comparing this with (3.9) gets

1

−∆w(m−1,0)(λ)
S ′w(m+j,n)(λ) = S ′w(j,n)(g

m(λ)).

�

This theorem seems to suggest the possibility of infinite renormalizability of the
first return maps to Pc for a whole class of TCEs. At the very least, if indeed the
first return map of a TCE to Pc is an isometry on S ′w(m,n)(λ) for (m,n) ∈ N<

λ with
m ≥ m0 and some m0 ∈ N, then at the very least the partition matches with its
potential renormalization.

3.2. Conjugacies within the class of TCEs. Let α = (α0, ..., αd+1) ∈ Bd+2,
τ ∈ Sym(d), and λ, ρ, η ∈ R, λ, ρ > 0, −ρ < η < λ, and let F be the TCE with
these parameters.

For c > 0, let

(3.10) Fc(z) = Gc ◦ E(z),

denote the TCE, where

Gc(z) =


z + λ/c, if z ∈ Pd+1,

z − η/c, if z ∈ Pc,
z − ρ/c, if z ∈ P0.

Define Sc : H→ H as uniform scaling by c about the origin

(3.11) Sc(z) = cz.

Proposition 3.8. Let F be as in (2.1), Fc as in (3.10), and Sc as in (3.11). Then

(3.12) Fc = S−1
c ◦ F ◦ Sc.

Proof. Firstly, observe that for all j ∈ {0, ..., d+ 1},

cPj = Pj,

from which we can deduce that

(3.13) cz ∈ Pj if and only if z ∈ Pj.

Let z ∈ H. From (3.11), we get



12 PETER ASHWIN, NOAH COCKRAM AND ANA RODRIGUES

S−1
c ◦ F ◦ Sc(z) =

1

c
F (cz),

and by expanding F as in (2.1), we have

S−1
c ◦ F ◦ Sc(z) =


1
c
(cz + λ) if cz ∈ Pd+1

1
c
(eiθj(cz)− η) if cz ∈ Pj, j ∈ {1, ..., d}

1
c
(cz − ρ) if cz ∈ P0

.

Recalling (3.13), distributing the multiplication by 1/c, and comparing with (3.10),
we get

S−1
c ◦ F ◦ Sc(z) =


z + λ/c if z ∈ Pd+1

eiθjz − η/c if z ∈ Pj, j ∈ {1, ..., d}
z − ρ/c if z ∈ P0

= Fc(z).

�

A consequence of Proposition 3.8 becomes clear when we apply (3.12) when c = ρ.
In this case, we see that the TCE F is topologically conjugate to the TCE Fρ with pa-
rameters α, τ , λ/ρ, 1, and η/ρ. Therefore, when investigating the dynamics of TCEs
(at least from a topological perspective), we can normalize ρ to 1 without losing any
information.

Let α and τ denote the reverse of α and τ , respectively, in the sense that

(3.14) αj = (αd+1, αd, ..., α0),

and

(3.15) τ =

(
τ 0

τ 1

)
=

(
d d− 1 ... 1

τ(d) τ(d− 1) ... τ(1)

)
.

Let P = {Pk : k ∈ {0, ..., d+1}} denote the partition of H into d+2 cones according
to α, and let P = {P k : k ∈ {0, ..., d + 1}} denote a similar partition of H according
to α. Define the TCE

(3.16) F = G ◦ E,

where

E(z) =

{
z, if z ∈ P0 ∪ Pd+1,

eiθj(α,τ)z, if z ∈ Pj, j ∈ {1, ..., d},

and
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G(z) =


z + ρ, if z ∈ Pd+1,

z + η, if z ∈ Pc,
z − λ, if z ∈ P0.

Define R : H→ H by

(3.17) R(z) = R(x+ iy) = −x+ iy = −z,
that is, the reflection of z = x+ iy about the imaginary axis, where x, y ∈ R, y ≥ 0.

Note that R is an involution, i.e. R−1 = R. Furthermore, R is clearly additive.

Proposition 3.9. Let F be as in (2.1), F as in (3.16), and R as in (3.17). Then

(3.18) F = R ◦ F ◦ R.

Proof. Observe that by (3.14) and (3.15), we get

θj(α, τ) =
∑

τ1(k)<τ1(j)

αk −
∑

τ0(k)<τ0(j)

αk

=
∑

τ(d+1−k)>τ(d+1−j)

αd+1−k −
∑

d+1−k>d+1−j

αd+1−k.

By relabelling k to d+ 1− k, we get

θj(α, τ) =
∑

τ(k)>τ(d+1−j)

αk −
∑

k>d+1−j

αk.

Recall that

π =
d+1∑
k=0

αk.

This implies that

θj(α, τ) =

π − α0 − αd+1 −
∑

τ(k)≤τ(d+1−j)

αk

−(π − α0 − αd+1 −
∑

k≤d+1−j

αk

)

= −

 ∑
τ(k)≤τ(d+1−j)

αk −
∑

k≤d+1−j

αk

 .

Note that since τ is a permutation of a finite set, τ(x) = τ(y) if and only if x = y.
Thus, we have

(3.19) θj(α, τ) = −

 ∑
τ(k)<τ(d+1−j)

αk −
∑

k<d+1−j

αk

 = −θd+1−j(α, τ).
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Additionally, note that for all j ∈ {0, ..., d+ 1},

R(Pj) = P d+1−j.

Thus,

(3.20) R(z) ∈ Pj if and only if z ∈ P d+1−j.

By expanding the definitions of F as in (2.1), we get

R ◦ F ◦ R(z) =


R(R(z) + λ), if R(z) ∈ Pd+1,

R(eiθj(α,τ)R(z)− η), if R(z) ∈ Pj, j ∈ {1, ..., d},
R(R(z)− ρ), if R(z) ∈ P0.

Using (3.20), and the definition of R as in (3.17), we get

R ◦ F ◦ R(z) =


R(−z + λ), if z ∈ P d+1

R(−eiθj(α,τ)z − η), if z ∈ P d+1−j, j ∈ {1, ..., d},
R(−z − ρ), if z ∈ P 0.

Using the additivity of R, as well as the fact that R(x) = −x when x ∈ R, we have
that

R ◦ F ◦ R(z) =


R(−z + λ), if z ∈ P d+1,

R(−eiθj(α,τ)z − η), if z ∈ P d+1−j, j ∈ {1, ..., d},
R(−z − ρ), if z ∈ P 0,

=


z − λ, if z ∈ P d+1

e−iθj(α,τ)z + η, if z ∈ P d+1−j, j ∈ {1, ..., d}
z + ρ, if z ∈ P 0

.

Observe that

R ◦ F ◦ R(z) = e−iθjz + η when z ∈ P d+1−j,

is equivalent to

R ◦ F ◦ R(z) = e−iθd+1−jz + η when z ∈ P j.

Thus,

R ◦ F ◦ R(z) =


z + ρ, if z ∈ P 0,

e−iθd+1−j(α,τ)z + η, if z ∈ P j, j ∈ {1, ..., d},
z − λ, if z ∈ P d+1.

Finally, using (3.19) and comparing with the definition of F as in (3.16), this
becomes
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R ◦ F ◦ R(z) =


z + ρ, if z ∈ P 0,

eiθj(α,τ)z + η, if z ∈ P j, j ∈ {1, ..., d},
z − λ, if z ∈ P d+1,

= F (z).

�

4. Renormalization around zero

In this section we investigate renormalizability of TCES around the origin for a
broad range of values of λ and η.

Let λ ∈ [0, 1) \Q and η ∈ R such that 0 < η = p− qλ < λ for some p, q ∈ N. Note
that for the following we equip N<

λ with an ordering <′ which is the lexicographical
order on N×N restricted to N<

λ . Recall that the lexicographical order <N×N on N×N
(with respect to the canonical ordering < on N) is defined by

(x, y) <N×N (w, z) if and only if

{
x < w, or

x = w and y < z.

Let (m0, n0) be the smallest element of N<
λ , with respect to <′, such that

(4.1) Pw(m0,n0) ≥ p and Qw(m0,n0) ≥ q.

Let k0 = w(m0, n0), and we define the following family of sets

S(λ, η) = {Sk(λ, η) : k ∈ N},
where

(4.2) Sk(λ, η) = S ′k0+k(λ).

For brevity, we will omit the arguments from S, Sk, and S ′k when λ and η are
unambiguous.

Note that for all (m,n) ∈ N<
λ ,

∆w(m,n) = Qw(m,n)λ− Pw(m,n) = −η + (Qw(m,n) − q)λ− (Pw(m,n) − p).
We define a sequence (hw(m,n))(m,n)∈N<λ

of positive integers by

(4.3) hw(m,n) = (Qw(m,n) − q) + (Pw(m,n) − p) + 1.

We can establish some recurrence relations for the sequence hw(m,n) using those of
Pw(m,n) and Qw(m,n).

Proposition 4.1. Let (m,n) ∈ N<
λ . Then

hw(m,n+1) = (n+ 1)hw(m,0) + hw(m−1,0) + (n+ 1)(p+ q − 1).

Moreover, if (m,n) ≥′ (m0, n0), then hw(m,n) > 0.
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Proof. Recall that Qw(m,n+1) = (n + 1)Qw(m,0) + Qw(m−1,0) and Pw(m,n+1) = (n +
1)Pw(m,0) + Pw(m−1,0). Therefore,

hw(m,n+1) = (Qw(m,n+1) − q) + (Pw(m,n+1) − p) + 1

= ((n+ 1)Qw(m,0) +Qw(m−1,0) − q) + ((n+ 1)Pw(m,0) + Pw(m−1,0) − p) + 1

= (n+ 1)(Qw(m,0) + Pw(m,0)) +
(
(Qw(m−1,0) − q) + (Pw(m−1,0) − p) + 1

)
.

Using (4.3), we get

hw(m,n+1) = (n+ 1)((Qw(m,0 − q) + (Pw(m,0) − p) + 1 + (p+ q − 1)) + hw(m−1,0)

= (n+ 1)hw(m,0) + hw(m−1,0) + (n+ 1)(p+ q − 1).

Also, note that (m0, n0) is the smallest pair in N<
λ such that Qw(m,n) ≥ q and

Pw(m,n) ≥ p. Thus, it is simple to deduce that hw(m,n) > 0 if (m,n) ≥′ (m0, n0). �

We won’t attempt to find recursive relations for all iterates of F at 0, but we will
at least calculate the orbit of 0 at iterates given by the sequence (hw(m,n)).

Lemma 4.2. Let (m,n) ∈ N<
λ such that (m,n) ≥′ (m0, n0). Then

F hw(m,n)(0) = ∆w(m,n).

Proof. Suppose, for a contradiction, that F hw(m,n)(0) 6= ∆w(m,n). Let (at)t∈N and
(bt)n∈N denote the sequences defined by

(4.4) F t(0) = −η + btλ− at.
Note that since η = p− qλ, we have

F t(0) = qλ− p+ btλ− at = (bt + q)λ− (at + p),

which is never equal to 0 since λ is irrational and bt+q and at+p are both positive.
Observe that (at)t and (bt)t are both non-decreasing and obey the following rule:

(at+1, bt+1) =

{
(at, bt + 1) if F t(0) < 0

(at + 1, bt) if F t(0) > 0
.

Given that a0 = a1 = b0 = b1 = 0, we can deduce that the sequences (at)t and (bt)t
achieve every non-negative integer value, that is, for any N ∈ N, there is some t ∈ N
such that at = N , and similarly there is some t′ ∈ N such that bt′ = N . Moreover, a
simple inductive argument shows that for all integers t ≥ 1,

at + bt + 1 = t.

Next, observe that F hw(m,n)(0) 6= ∆w(m,n) is equivalent to the statement that
ahw(m,n)

6= Pw(m,n) and bhw(m,n)
6= Qw(m,n). However, notice that

(Qw(m,n) − q) + (Pw(m,n) − p) + 1 = hw(m,n) = ahw(m,n)
+ bhw(m,n)

+ 1.

This implies one of two cases.
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(1) ahw(m,n)
< Pw(m,n) − p and bhw(m,n)

> Qw(m,n) − q; or

(2) ahw(m,n)
> Pw(m,n) − p and bhw(m,n)

< Qw(m,n) − q.
Suppose case (1). Since (bt)t is non-decreasing and takes every non-negative integer

value, we know that there is some non-negative integer t∗ < hw(m,n) such that bt∗ =
Qw(m,n) − q. Thus,

F t∗(0) = −η + (Qw(m,n) − q)λ− at∗ .
Note that at∗ < at < Pw(m,n) − p. Now, suppose ∆w(m,n) > 0. Then for any

0 ≤ j ≤ Pw(m,n) − p− at∗ , we have

F t∗(0)−j = −η+(Qw(m,n)−q)λ−(at∗+j) > (Qw(m,n)−q)λ−(Pw(m,n)−p) = ∆w(m,n) > 0.

Thus, F t∗+j(0) = F t∗(0)− j for 0 ≤ j ≤ Pw(m,n) − p− at∗ . In particular,

F t∗+Pw(m,n)−p−at∗ (0) = −η + (Qw(m,n) − q)λ− (Pw(m,n) − p).
But then

t∗ + Pw(m,n) − p− at∗ = (Qw(m,n) − q) + (Pw(m,n) − p) + 1

= hw(m,n).

And this implies that

F hw(m,n)(0) = F t∗+Pw(m,n)−p−at∗ (0)

= −η + (Qw(m,n) − q)λ− (Pw(m,n) − p)
= ∆w(m,n).

But this contradicts our assumption that F hw(m,n)(0) 6= ∆w(m,n).

Now suppose that ∆w(m,n) < 0. Let 0 ≤ j < Pw(m,n) − p − at∗ . Then either
F t∗(0)− j > 0 or ∆w(m,n) < F t∗(0)− j < 0. But ∆w(m,n) < F t∗(0)− j < 0 implies

|(Qw(m,n)λ− (at∗ + j + p)| < |∆w(m,n)| = |Qw(m,n)λ− Pw(m,n)|,
and at∗ + j + p < Pw(m,n). This contradicts the ’best approximate’ property of the

semiconvergent Pw(m,n)/Qw(m,n). Thus F t∗(0)− j > 0 for all 0 ≤ j < Pw(m,n)−p−at∗ .
Thus, by a similar argument to before, we reach the contradiction that F hw(m,n)(0) =
∆w(m,n).

In case (2), ahw(m,n)
> Pw(m,n)−p and bhw(m,n)

< Qw(m,n)−q. We can reach a similar

contradiction as above, by using a similar argument where the roles of (at)t and (bt)t
are interchanged.

This exhausts all cases, so our assumption that F hw(m,n)(0) 6= ∆w(m,n) must be
false. �

Lemma 4.3. Let m ∈ N such that (m, 0) ≥′ (m0, n0). Then, for all 1 ≤ t < hw(m+1,0),

|F t(0)| ≥ |∆w(m,0)|.
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Proof. recall that F t(0) = −η+ btλ− at, for some at, bt ∈ N. Since (at)t and (bt)t are
non-decreasing and t < hw(m+1,0), we have that bt ≤ qm+1 − q and at ≤ pm+1 − p, not
both equal. Hence either bt + q < qm+1 or at + p < pm+1 and bt + q ≤ qm+1. In either
case, by the best approximate property of convergents

|F t(0)| = |(bt + q)λ− (at + p)| ≥ |qmλ− pm| = |∆w(m,0)|.
�

Lemma 4.4. Let (m,n) ∈ N<
λ . Then for all 1 ≤ t < hw(m,n+1),

F t(0) ≥ ∆w(m,0) or F t(0) ≤ n∆w(m,0) + ∆w(m−1,0) if m is even,

F t(0) ≤ ∆w(m,0) or F t(0) ≥ n∆w(m,0) + ∆w(m−1,0) if m is odd.

Proof. From (??), recall that if m is even and n > 0, then Pw(m,n)/Qw(m,n) > λ is a
best approximate from above, which implies

(4.5) bλ− a ≤ Qw(m,n)λ− Pw(m,n) < 0,

for all a, b ∈ Z with 0 < b < Qw(m,n+1) such that Pw(m,n)/Qw(m,n) 6= a/b > λ.
Let (at)t∈N and (bt)t∈N be the sequences described by (4.4). Suppose that 1 ≤ t ≤

hw(m,n) with F t(0) < 0. Then

bt ≤ Qw(m,n+1) − q and at ≤ Pw(m,n+1) − p,
since (at)t and (bt)t are non-decreasing. Thus,

(4.6) bt + q ≤ Qw(m,n+1) and at + p ≤ Pw(m,n+1),

not both equal. Therefore, from (4.4) we know that

F t(0) = (bt + q)λ− (at + p),

and by (4.5) with (4.6), we have

F t(0) ≤

{
Qw(m,n)λ− Pw(m,n), if n 6= 0,

qm−1λ− pm−1, if n = 0.

Recalling the definition of ∆w(m,n) as in (3.2), we get

F t(0) ≤

{
∆w(m,n), if n 6= 0,

∆w(m−1,0), if n = 0.

Finally, by using (3.3), we have

F t(0) ≤ n∆w(m,0) + ∆w(m−1,0).

If F t(0) > 0, then by Lemma 4, we have

F t(0) ≥ ∆w(m,0).
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From (??), recall that if m is off and n > 0, then Pw(m,n)/Qw(m,n) < λ is a best
approximate from below, that is

bλ− a ≥ Qw(m,n)λ− Pw(m,n) > 0,

for all a, b ∈ Z with 0 < b < Qw(m,n+1) such that Pw(m,n)/Qw(m,n) 6= a/b < λ. Thus,
in the case that m is odd and F t(0) > 0, then

bt + q ≤ Qw(m,n+1) and at + p ≤ Pw(m,n+1),

not both equal. Thus, similarly to the above case where m is even, we have

F t(0) = (bt + q)λ− (at + p)

≥

{
Qw(m,n)λ− Pw(m,n) if n 6= 0

qm−1λ− pm−1 if n = 0

= n∆w(m,0) + ∆w(m−1,0).

On the other hand, if F t(0) < 0, then by Lemma 4,

F t(0) ≤ ∆w(m,0).

�

In order to prove the next theorem, we will distinguish between the following two
cases and we will prove them separately. We will first prove that if

z ∈ E−1(Sw(m,n)),

then
h(z) = hw(m,n+1).

and then we will prove that if

h(z) = hw(m,n+1),

then
F h(z)(z) = E(z) + ∆w(m,n+1).

Theorem 4.5. Let α ∈ B, τ ∈ Sym(d), λ ∈ [0, 1) \ Q, and 0 < η = p − qλ < λ
for some p, q ∈ N. Let R(z) be as in (2.4), h(z) as in (2.3), S ′w(m,n) as in (3.9), and

hw(m,n) as in (4.3). For all (m,n) ∈ N<
λ with (m,n) ≥′ (m0, n0), h(E−1(S ′w(m,n)))

exists and is equal to hw(m,n+1). Moreover, let z ∈ E−1(S ′w(m,n)). Then

(4.7) R(z) = E(z) + ∆w(m,n+1).

Proof. Let z ∈ Pc.
Assume z ∈ E−1(S ′w(m,n)). Observe that E(z) + F hw(m,n+1)(0) ∈ Pc, so h(z) ≤

hw(m,n+1). By Lemma 3.1, we know that

F h(z)(z) = E(z) + F h(z)(0).

Suppose, for a contradiction, that h(z) < hw(m,n+1). We will prove the contradiction
for even and odd m separately, starting with the case that m is even. By Lemma 4.4,
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we know that either F h(z)(0) ≥ ∆w(m,0) or F h(z)(0) ≤ n∆w(m,0) + ∆w(m−1,0). Since m
is even, recall that

S ′w(m,n) = (P0 −∆w(m,0)) ∩ (Pc −∆w(m,n+1)) ∩ Pc ∩ (Pd+1 − (n∆w(m,0) + ∆w(m−1,0))).

Observe that

F h(z)(z) ∈ S ′w(m,n) + F h(z)(0)

⊂ (P0 + (F h(z)(0)−∆w(m,0))) ∩ (Pd+1 + (F h(z)(0)− (n∆w(m,0) + ∆w(m−1,0)))).

Therefore, if F h(z)(0) ≥ ∆w(m,0), then

F h(z)(z) ∈ P0 + (F h(z)(0)−∆w(m,0)) ⊂ P0.

But by the definition of h(z) as in (2.3), we have

F h(z)(z) = R(z) ∈ Pc,
a contradiction. Similarly, if F h(z)(0) ≤ n∆w(m,0) + ∆w(m−1,0), then

F h(z)(z) ∈ Pd+1 + (F h(z)(0)− (n∆w(m,0) + ∆w(m−1,0))) ⊂ Pd+1,

which also contradicts F h(z)(z) ∈ Pc.

Now suppose m is odd. Then

S ′w(m,n) = (P0 − (n∆w(m,0) + ∆w(m−1,0))) ∩ Pc ∩ (Pc −∆w(m,n+1))) ∩ (Pd+1 −∆w(m,0)).

By Lemma 4.4, we know that either

F h(z)(0) ≥ n∆w(m,0) + ∆w(m−1,0) or F h(z)(0) ≤ ∆w(m,n).

Clearly, either of these cases give similar contradictions as before. Therefore our
assumption that h(z) < hw(m,n+1) must be false, so in fact h(z) = hw(m,n+1).

(??). Suppose h(z) = hw(m,n+1). By Lemma 3.1,

F h(z)(z) = E(z) + F h(z)(0),

and by Lemma 4.2 we know that

F hw(m,n+1)(0) = ∆w(m,n+1).

Combining these two with our assumption gives us that if h(z) = hw(m,n+1), then

F h(z)(z) = E(z) + ∆w(m,n+1). �

With this Theorem, as well as Theorem 3.7, we can prove the existence of a renor-
malization scheme around the point 0. First, we will find the definition of the first
return map R on the rest of Pc.
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Lemma 4.6. Let Sk be as in (4.2), and (m0, n0) ∈ N<
λ as in (4.1). Let

U = {0} ∪
∞⋃
k=0

Sk.

Then

U =

{
(P0 −∆w(m0,0)) ∩ Pc ∩ (Pd+1 − (n0∆w(m0,0) + ∆w(m0−1,0)), if m0 is even,

(P0 − (n0∆w(m0,0) + ∆w(m0−1,0)) ∩ Pc ∩ (Pd+1 −∆w(m0,0)), if m0 is odd,

and U is convex.

Proof. We will first prove the equality

U =

{
(P0 −∆w(m0,0)) ∩ Pc ∩ (Pd+1 − (n0∆w(m0,0) + ∆w(m0−1,0))), if m0 is even,

(P0 − (n0∆w(m0,0) + ∆w(m0−1,0))) ∩ Pc ∩ (Pd+1 −∆w(m0,0)), if m0 is odd.
.

Observe that for all k ∈ N,

Sk ⊂ Pc.

Additionally, if (m,n) ∈ N<
λ such that w(m,n) = k + k0, then

Sk ⊂

{⋃∞
m=m0

(P0 −∆w(m,0)) ∪
⋃

(m,n)≥(m0+1,0)(P0 − (n∆w(m,0) + ∆w(m−1,0))), if m0 is even,⋃∞
m=m0+1(P0 −∆w(m,0)) ∪

⋃
(m,n)≥(m0,n0)(P0 − (n∆w(m,0) + ∆w(m−1,0))), if m0 is odd.

Note that P0 − (n∆w(m+1,0) + ∆w(m,0)) ⊂ P0 − ∆w(m,0) for all (m + 1, n) ∈ N<
λ .

Thus, we have

Sk ⊂

{
P0 −∆w(m0,0), if m0 is even,

P0 − (n0∆w(m0,0) + ∆w(m0−1,0)), if m0 is odd.
.

With a similar argument, we can show that

Sk ⊂

{
Pd+1 − (n0∆w(m0,0) + ∆w(m0−1,0)), if m0 is even,

Pd+1 −∆w(m0,0), if m0 is odd.
,

Altogether, we deduce that

U ⊆

{
(P0 −∆w(m0,0)) ∩ Pc ∩ (Pd+1 − (n0∆w(m0,0) + ∆w(m0−1,0))), if m0 is even,

(P0 − (n0∆w(m0,0) + ∆w(m0−1,0))) ∩ Pc ∩ (Pd+1 −∆w(m0,0)), if m0 is odd.
.

Suppose m0 is even, and let

z ∈ (P0 −∆w(m0,0)) ∩ Pc ∩ (Pd+1 − (n0∆w(m0,0) + ∆w(m0−1,0))),

with z 6= 0. Then there is some (m,n) ∈ N<
λ with m is odd and (m,n) ≥′ (m0, n0)

such that

z ∈ P0 − (n∆w(m,0) + ∆w(m−1,0)),
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and there is some (m′, n′) ∈ N<
λ with m′ even and (m′, n′) ≥′ (m0, n0) such that

z ∈ Pd+1 − (n∆w(m,0) + ∆w(m−1,0)).

Suppose that (m,n) and (m′, n′) are the largest such pairs, which is well-defined
since z 6= 0. Since m is odd and m′ is even, we either have m < m′ or m′ < m.
Suppose m < m′. Then

z ∈ (P0 − (n∆w(m,0) + ∆w(m−1,0))) ∩ Pc ∩ (Pd+1 −∆w(m,0)).

Since (m,n) is the largest pair such that z ∈ P0 − (n∆w(m,0) + ∆w(m−1,0)), and
noting that (n+ 1)∆w(m,0) + ∆w(m−1,0) = ∆w(m,n+1) since n+ 1 > 0, we have that

z ∈ (Pc −∆w(m,n+1)) or z ∈ (Pd+1 −∆w(m,n+1)).

However, Pd+1 − ∆w(m,n+1) ⊂ Pd+1 since m is odd and so ∆w(m,n+1) > 0. Impor-
tantly,

Pc ∩ (Pd+1 −∆w(m,n+1)) = ∅,
and thus z ∈ Pc −∆w(m,n+1). Therefore,

z ∈ (P0− (n∆w(m,0) +∆w(m−1,0)))∩ (Pc−∆w(m,n+1))∩Pc∩ (Pd+1−∆w(m,0)) = S ′w(m,n),

so clearly z ∈ U . In the case that m′ < m we can use a similar argument to prove
that

z ∈ (P0−∆w(m′,0))∩Pc∩(Pc−∆w(m′,n′+1))∩(Pd+1−(n′∆w(m′,0)+∆w(m′−1,0))) = S ′w(m′,n′),

so that z ∈ U . If m0 is odd and

z ∈ (P0 − (n0∆w(m0,0) + ∆w(m0−1,0))) ∩ Pc ∩ (Pd+1 −∆w(m0,0)),

with z 6= 0, then we can use a similar argument to prove that z ∈ U . Hence, we
have

U =

{
(P0 −∆w(m0,0)) ∩ Pc ∩ (Pd+1 − (n0∆w(m0,0) + ∆w(m0−1,0))) if m0 is even

(P0 − (n0∆w(m0,0) + ∆w(m0−1,0))) ∩ Pc ∩ (Pd+1 −∆w(m0,0)) if m0 is odd
.

To show that U is convex, one must note that the cones P0, Pc, and Pd+1 and
all their translates are convex sets, and that the intersection of convex sets is also
convex. �

Recall that for any given 0 < η = p− qλ < λ, (m0, n0) is the minimum element of
N<
λ such that Pw(m0,n0) ≥ p and Qw(m0,n0) ≥ q. Observe that for any (m,n) ∈ N<

λ , if
0 < η < p− qλ is chosen such that (m0, n0) ≤′ (m,n), then

Sw(m,n)−w(m0,n0) = S ′w(m,n),

is such that R(z) = E(z) + ∆w(m,n) for all z ∈ Sw(m,n)−w(m0,n0). Define Uk(λ, η) =⋃∞
j=k Sj for k ≥ w(m0, n0) (omitting the arguments where unambiguous), and let R′

be the first return map to Pc of the TCE defined by
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F ′(z) = G′ ◦ E(z),

where

G′(z) =


z + λ, if z ∈ Pd+1,

z − η′, if z ∈ Pc,
z − 1, if z ∈ P0.

α, τ , λ, and η′, where 0 < η′ = p′ − q′λ < λ is such that p′ ≤ p and q′ ≤ q. If
(m′0, n

′
0) the the minimal element of N<

λ such that Pw(m′0,n
′
0) ≥ p′ and Qw(m′0,n

′
0) ≥ q′,

then (m′0, n
′
0) ≤′ (m0, n0). Furthermore,

R �Uw(m0,n0)
= R′ �Uw(m0,n0)

.

Let R′ : Pc → Pc be the first return map of F ′ to Pc, where F ′ is the TCE defined
by

F ′(z) = G′ ◦ E(z),

where

G′(z) =


z + g2(λ), if z ∈ Pd+1,

z − η′, if z ∈ Pc,
z − 1, if z ∈ P0.

We now proof our main result on this paper.

Theorem 4.7. Let α ∈ B, τ ∈ Sym(d), λ ∈ [0, 1) \Q, 0 < η = p− qλ < λ.
Let R be as in (2.4), and let

(m0, n0) = min{(m,n) ∈ N<
λ : Pw(m,n)(λ) ≥ p and Qw(m,n)(λ) ≥ q}

Let 0 < η′ = p′ − q′g2(λ) < g2(λ) such that the pair (m′0, n
′
0) defined by

(m′0, n
′
0) = min{(m,n) ∈ N<

g2(λ) : Pw(m,n)(g
2(λ)) ≥ p′ and Qw(m,n)(g

2(λ)) ≥ q′},

satisfies (m′0 + 2, n′0) ≤′ (m0 + 2, 0) (within the set N<
λ .)

Then for all z ∈ Uw(m0,0)(g
2(λ), η′), the following holds:

R′(z) =
1

−∆w(1,0)(λ)
R((−∆w(1,0)(λ))z).

Proof. Recall that by Theorem 3.7, we have

1

−∆w(1,0)(λ)
S ′w(j+2,n)(λ) = S ′w(j,n)(g

2(λ)),

for all (j + 2, n) ∈ N<
λ with (j + 2, n) ≥′ (m0 + 2, 0), i.e. j ≥ m0. Note that by

Proposition 3.2,

(m′0 + 2, n′0) ≤′ (m0 + 2, 0) in N<
λ ,

is equivalent to the statement that
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(m′0, n
′
0) ≤′ (m0, 0) in N<

g2(λ).

Hence,

1

−∆w(1,0)(λ)
Uw(m0+2,0)(λ) = Uw(m0,0)(g

2(λ)).

Let z ∈ Sk(λ, η) = S ′w(m+2,n)(λ) for some k = wλ(m + 2, n) − wλ(m0 + 2, 0). Also
note that since cPj = Pj for all c > 0 and E consists of rotations about 0, we have

(4.8) E(cz) = cE(z),

for c > 0. Therefore z ∈ S ′w(m,n)(g
2(λ, η′)), and by expanding R as in (4.7) we get

1

−∆w(1,0)(λ)
R
(
(−∆w(1,0)(λ))z

)
=

1

−∆w(1,0)(λ)

(
E((−∆w(1,0)(λ))z) + ∆w(m+2,n+1)(λ)

)
.

Using 4.8, we get

1

−∆w(1,0)(λ)
R
(
(−∆w(1,0)(λ))z

)
=

1

−∆w(1,0)(λ)

(
(−∆w(1,0)(λ))E(z) + ∆w(m+2,n+1)(λ)

)
= E(z) +

(
−

∆w(m+2,n+1)(λ)

∆w(1,0)(λ)

)
.

Now, using (3.8) and comparing with the formula for R′ as in (4.7), we see

1

−∆w(1,0)(λ)
R
(
(−∆w(1,0)(λ))z

)
= E(z) + ∆w(m,n+1)(g

2(λ))

= R′(z).

�

The immediate consequence of Theorem 4.7 is the infinite renormalizability towards
0 of TCEs for which λ ∈ [0, 1) \Q and 0 < η = p− qλ < λ.

5. Return maps

As an example, we will set α ∈ B, λ = Φ, ρ = 1, and η = Φ2, where

(5.1) Φ =

√
5− 1

2
.

In this case the the space N<
λ = N × {0} ∼= N since λ = [0; 1̄] and so λk = 1

for all k ∈ N. Thus, w(m,n) = w(m) = m. Also due to λk = 1 for each k ∈ N,
the semiconvergents Pm/Qm simply coincide with the convergents pm/qm, and the
convergents are in this case defined by

p0 = 0, q0 = 1,

p1 = 1, q1 = 1,

pn = pn−1 + pn−2, qn = qn−1 + qn−2.
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Figure 3. A plot of 1500 iterates of 500 uniformly chosen points
within the box [−1, λ] × [0, 1.1] under the TCE with parameters
α = (π/2− 0.6, 0.5, 0.7, π − 0.6), τ = (1 0), λ = Φ, ρ = 1, and η = Φ2.
The first 400 points of each orbit are omitted to remove transients.

It is thus clear that pn = Fn and qn = Fn+1, where (Fn)n∈N is the Fibonacci sequence
with F0 = 0 and F1 = 1.

The first return times (hm)m∈N in the case of λ = Φ are given by

hm = (qm − 1) + (pm − 1) + 1 = Fm+1 + Fm − 1 = Fm+2 − 1

for all n ∈ N, where Fn is the n-th Fibonacci number, with initial values F0 = 0,
F1 = 1. Observe that hn = hn−1 + hn−2 + 1 for all n ≥ 2, and h0 = 2, h1 = 4. Now
note that η = Φ2 = 1− Φ = 1− λ, and thus we have

m0 = min{m ∈ N : pm ≥ 1, qm ≥ 1} = 1.

The errors of the convergents are given by

(5.2) ∆m(Φ) = qmλ− pm = Fm+1Φ− Fm.

Proposition 5.1. We have

∆m(Φ) = −(−Φ)m+1

Proof. Observe that
∆m(Φ) = Fm+1Φ− Fm

= FmΦ + Fm−1Φ− Fm
= Fm−1Φ− (1− Φ)Fm

= −Φ(FmΦ− Fm−1)

= −Φ∆m−1(Φ).
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Figure 4. A partition of Pc in the case where α = (1, 0.5, π − 2.5, 1),
τ = (1 0), λ = Φ, ρ = 1, and η = Φ2. A cascading pattern towards the
origin can be seen, but its geometric structure becomes clearer after we
apply the cone exchange E.

Recall that p0 = 0 and q0 = 1. Then a simple inductive argument shows us that

∆m(Φ) = (−Φ)m∆0(Φ) = (−Φ)m(q0Φ− p0) = −(−Φ)m+1

�

Noting that the recurrence relations for pm and qm give us p−1 = 1 and q−1 = 0
and so we can set ∆−1 = −1 = −(−Φ)0, which remains consistent with (5.2). With
this proposition in mind, we can define the partition S = {Sm : m ∈ N} by

Sm =

{
(P0 −∆m) ∩ Pc ∩ (Pc −∆m+1) ∩ (Pd+1 −∆m−1), if m is even,

(P0 −∆m−1) ∩ (Pc −∆m+1) ∩ Pc ∩ (Pd+1 −∆m), if m is odd.

=

{
(P0 + (−Φ)m+1) ∩ Pc ∩ (Pc + (−Φ)m+2) ∩ (Pd+1 + (−Φ)m), if m is even,

(P0 + (−Φ)m) ∩ (Pc + (−Φ)m+2) ∩ Pc ∩ (Pd+1 + (−Φ)m+1), if m is odd.

These are rhombi, as can be seen in figure 5. It is also clear to see that for all m ∈ N.

(5.3) Sm+2 = Φ2Sm.

The ribbon in figure 5, including the similarly coloured rhombus adjacent to it, is the
set

(5.4) X = Pc ∩ (Pc − (λ− η)) ∩ (Pd+1 + η) = Pc ∩ (Pc − Φ3) ∩ (Pd+1 + Φ2),

and the cone in the same figure is the set

(5.5) Y = Pc ∩ (Pc + η) = Pc ∩ (Pc + Φ2).
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Figure 5. The same partition as in 4, but after an application of E,
which reveals an alternating pattern of rhombi.

We are interested in the pre-image of these sets under E. In particular, define the
partition

P ′ =
{
E−1(S) ∩ Pj : j ∈ {1, ..., d}, S ∈ {Y,X, S2, S3, ..., }

}
.

This partition can be seen in figure 4. As a consequence of the next theorem, (P ′, R)
is a PWI with a countably infinite number of atoms. We also define a separate family
of sets

Q =
{
Qn,j = E−1(Sn) ∩ Pj : n ∈ N, j ∈ {1, ..., d}

}
,

which includes only the rhombi, and thus forms a partition of only a subset of the
middle cone. Note that since λm = 1 for all m ∈ N and m0 = 1, m∗ = 0. We see that
the set U from Lemma ??is given by

U = {0} ∪
∞⋃
m=0

Sm

= (P0 −∆0) ∩ Pc ∩ (Pd+1 −∆−1)

= (P0 − Φ) ∩ Pc ∩ (Pd+1 + 1).

Also observe that by removing S0 and S1 we get

U2 = {0} ∪
∞⋃
m=2

Sm = (P0 − Φ3) ∩ Pc ∩ (Pd+1 + Φ2).

From this, we notice that

U2 ∪X = Pc ∩ (Pd+1 + Φ2) ∩
(
(Pc − Φ3) ∪ (P0 − Φ3)

)
,
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but since Pd+1 − Φ3 ⊂ Pd+1, we know that Pc ∩ (Pd+1 − Φ3) = ∅, so

U2 ∪X = Pc ∩ (Pd+1 + Φ2) ∩
(
(Pd+1 − Φ3) ∪ (Pc − Φ3) ∪ (P0 − Φ3)

)
= Pc ∩ (Pd+1 + Φ2) ∩H
= Pc ∩ (Pd+1 + Φ2).

Therefore, we can see that

U2 ∪X ∪ Y = Pc ∩
(
(Pc + Φ2) ∪ (Pd+1 + Φ2)

)
,

and a similar argument tells us that Pc ∩ (P0 + Φ2) = ∅ and so finally we get,

U2 ∪X ∪ Y = Pc ∩
(
(P0 + Φ2) ∪ (Pc + Φ2) ∪ (Pd+1 + Φ2)

)
= Pc ∩H = Pc.

Therefore, P ′ is a partition of Pc up to a set of Lebesgue measure 0, namely it is a
partition of Pc \ {0}.

Note that for all (m,n) ∈ N<
Φ , w(m, 1) = w(m + 1, 0), and so by recalling that

w(m, 0) = w(m) = m, the condition that w(m, 1) ≥ w(m0, 0) is equivalent to the
condition that

w(m+ 1, 0) ≥ w(m0, 0),

which is itself equivalent to

m ≥ m0 − 1 = 0.

With this in mind, Theorem ?? tells us that for all m ∈ N, if z ∈ E−1(Sm), then

h(z) = hw(m,1) = hw(m+1,0) = hm+1 = Fm+3 − 1,

and

R(z) = E(z) + ∆m+1 = E(z)− (−Φ)m+2,

Observe that λ = Φ is a special case of irrational number within [0, 1] in the sense
that it is a fixed point of the Gauss map g. Thus, g2(Φ) = Φ and thus we can choose
η′ = η = 1 − Φ = Φ2 and Theorem 4.7 tells us that the first return map R exhibits
exact self-similarity within U . In particular, for all z ∈ Uw(0,0) = U0 = U , we have
the following conjugacy

R(z) =
1

−∆1

R((−∆1)z) =
1

Φ2
R(Φ2z).

One consequence of this is that if there exists a periodic point z ∈ Sm and the period
of z is k, then z is a periodic point of R with period k/hm+1. The self-similarity shows
that for all n ∈ Z such that 2n ≥ −m, Φ2nz is a periodic point of R, thus also a
periodic point of F whose period is an integer multiple of hm+2n+1. In particular,
there is a sequence (zn)n∈N given by

(5.6) zn = Φ2n−mz,

so that for all n ∈ N, zn ∈ S2n+m̃ and the period of zn is an integer multiple of
h2n+m̃+1, where {0, 1} 3 m̃ ∼= m (mod 2).

Given a map f : X → X, let O+
f (x) denote the forward orbit of x ∈ X under f ,

that is

O+
f (x) = {fn(x) : n ∈ N}.
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Figure 6. The same partition of Pc as in figure 4, after an application
of R, which has shifted the rhombi alternately.

Proposition 5.2. Suppose there exists a periodic point z ∈ Sm for some m ∈ N,
and let (zn)n∈N be the sequence of periodic points given by (5.6). Then the sequence(
O+
F (zn)

)
n∈N of periodic orbits accumulates on the interval [−1,Φ].

Proof. Let n ∈ N. Note that

(5.7) {F j(zn) : 1 ≤ j ≤ h(z)} ⊂ O+
F (zn).

Lemma 3.1 tells us that for all 1 ≤ j ≤ h(zn),

F j(zn) = E(zn) + F j(0).

Therefore,

(5.8) |F j(zn)− F j(0)| = |E(zn)| = |zn|.
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Let H ∈ N. Then there exists an N ∈ N such that h(zn) ≥ H for all n ≥ N , and thus
(5.8) holds for all 1 ≤ j ≤ H. Now let ε > 0 be small. Then there exists an N ′ ∈ N
such that for all integers n ≥ N ′ such that

(5.9) |zn′ | < ε.

Set N∗ = max{N,N ′}. Then for all integers n ≥ N∗, both (5.8) holds for all 1 ≤ j ≤
H and (5.9) holds. Hence, for all n ≥ N∗ we have

|F j(z)− F j(0)| < ε,

for all 1 ≤ j ≤ H. Since H and ε are independent and arbitrary, we conclude that
the sequence

(
O+
F (zn)

)
n∈N accumulates on the set O+

F (0).

By Proposition ??, F is a 2-IET everywhere on the interval [−1, λ] except on the
preimages of 0, since F (0) = −η = 1 − λ, contrary to F (x) = x + λ for x ∈ [−1, 0)
and F (x) = x− 1 for x ∈ (0, λ).

Therefore F is conjugate to an irrational rotation almost everywhere, since λ = Φ
is irrational. In particular, since λ is irrational and η = 1 − λ, we know that by for
example Lemma 4 that F j(0) = F j−1(−η) is bounded away from 0 for all integers
j > 0, so F j(0) 6= 0 for all j > 0.

Hence, the orbit of F (0) = −η under F is also the orbit under an irrational rotation,
and thus the orbit of 0 is dense in the interval [−1, λ], i.e.

O+
F (0) = [−1, λ].

Therefore, the sequence
(
O+
F (zn)

)
n∈N accumulates on the interval [−1, λ]. �
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