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Abstract
We investigate a notion of inverse for neutrices inspired by Van den Berg

and Koudjeti’s decomposition of a neutrix as the product of a real number and
an idempotent neutrix. We end up with an algebraic structure that can be
characterized axiomatically and generalizes involutive meadows. The latter are
algebraic structures where the inverse for multiplication is a total operation. As
it turns out, the structures satisfying the axioms of flexible involutive meadows
are of interest beyond nonstandard analysis.

1 Introduction
Neutrices and external numbers (which can be seen as translations of neutrices over
the hyperreal line) were introduced by Van den Berg and Koudjeti in [25] as models
of uncertainties, in the context of nonstandard analysis, and further developed in
[24, 27, 16, 19, 20]. Neutrices were named after and inspired by Van der Corput’s
groups of functions [28] in an attempt to give a mathematically rigorous formulation
to the art of neglecting small quantities – ars negligendi.

One of the long-standing open questions in the theory of external numbers is the
definition of a suitable notion of inverse of a neutrix. For zeroless external numbers,
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that is, external numbers that don’t contain 0 and therefore cannot be reduced to a
neutrix, there is a sort of inverse, defined from the Minkowski product between sets
(see Definition 3.4 below), but this cannot work as a proper inverse since in many
instances the result turns out to be the empty set.

A meadow (see Sections 2.1 and 2.2 below for further details) is a sort of commu-
tative ring with a multiplicative identity element and a total multiplicative inverse
operation. The theory of meadows allows for two main options: (i) involutive mead-
ows which define 0−1 = 0, resulting into an equational theory closer to that of the
original structure [6], (ii) common meadows which define 0−1 as a new error term
that propagates through calculations [5] (see also [7, 15, 8, 9]). For some recent
developments, see [8, 9, 12, 13, 14].

One of the motivations for the study of structures where the inverse of zero is
defined comes from equational theories [23, 26, 6]. For instance, Ono and Komori
introduced such structures motivated from the algebraic study of equational theories
and universal theories of fields, and free algebras over all fields, respectively. A
long-standing result by Birkhoff states that algebraic structures with an equational
axiomatization – namely, whose axioms only involve equality, besides the functions
and constants of the structure itself – are closed under substructures. Algebraic
structures where the inverse is defined only for nonzero elements are not equational,
since they have to use inequalities or quantifiers in their definition of a multiplicative
inverse. Instead, involutive meadows and common meadows which, as mentioned
above, define the inverse of zero as zero or a new error term, respectively, admit
equational axiomatizations.

Equational axiomatizations of meadows based on known algebraic structures,
such as Q and R, are also of interest to computer science. According to Bergstra
and Tucker [6], such equational axiomatizations allow for simple term rewriting
systems and are easier to automate in formal reasoning.

Another motivation for the study of meadows is a philosophical interest in the
definition of an inverse of zero (see e.g. [4, Section 3]), if one wants to assign a
meaning to expressions such as 0−1 or 1/0 (Bergstra and Middleburg argue that, in
principle, these two operations need to be distinguished [4]).

It turns out that external numbers are particularly suitable for expressing the
kind of concepts involved in the definition of the inverse of zero. The key insight
is that, being convex subgroups of the hyperreal numbers (i.e. the extension of the
real number system which includes nonstandard elements such as infinitesimals),
neutrices are “error” terms in the following sense:

• the sum of a neutrix with itself or with one of its elements is still the same
neutrix;
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• the product of a neutrix by an appreciable (not infinitesimal and not infinitely
large) number is still the same neutrix;

• the product of a neutrix by an external number is a neutrix.

These properties are similar to those of 0, that is neutrices are idempotent for addi-
tion and absorbent for multiplication. Therefore neutrices can be seen as generalized
zeroes and are suitable to build models of meadows.

The fact that one is using hyperreals (or other non-archimedean field extensions
of the real numbers) is crucial, because the real numbers only have two convex
subgroups: {0} and R, while in the context of the hyperreals there are countably
infinitely many, e.g. the set of all infinitesimals – denoted ⊘ – and the set of all limited
numbers – denoted £ (see the examples after Definition 3.1). In turn, external
numbers are of the form a+A, where a is an hyperreal number and A is a neutrix and
can therefore be seen as translations of neutrices. According to the interpretation of
neutrices as error terms or generalized zeroes, external numbers can be interpreted
as expressing a quantity with a degree of uncertainty.

By introducing an alternative way to define the inverse of a neutrix, inspired
by a result of Van den Berg and Koudjeti [25] stating that every neutrix can be
decomposed as the product of an hyperreal number and an idempotent neutrix,
we end up with an algebraic structure that can be characterized axiomatically and
generalizes involutive meadows. Since the new class of structures involves error
terms, we call it the class of flexible involutive meadow, in the spirit of [22].

In summary, the contributions of the paper are the following.

• We answer a question about the inverse of a neutrix.

• We connect the inverse of a neutrix to meadows, specifically involutive mead-
ows.

• Inspired by the properties of the inverse of a neutrix, we propose a new al-
gebraic structure that generalises involutive meadows in a simple way, called
flexible involutive meadows, and we provide an axiomatization of such struc-
tures.

• We give some models of flexible involutive meadows.

We start in Section 2 by recalling the axioms of common meadows and of involu-
tive meadows. We also recall some notions and results concerning external numbers
in Section 3. In Section 4 we introduce flexible involutive meadows and prove that
the external numbers are a flexible involutive meadow. We also derive some proper-
ties of flexible involutive meadows and relate them with varieties and von Neumann
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regular rings. Then, in Section 5, we present additional models for meadows relying
on the external numbers. Some final remarks and open questions are mentioned in
Section 6.

2 Preliminary notions

In this section we recall the axioms of common meadows and involutive meadows.
We also provide some motivation for the study of structures where division by zero
is possible.

2.1 Involutive meadows

The axioms of involutive meadows are listed in Figure 1 (see also [2, 4]).

(I1) (x + y) + z = x + (y + z)
(I2) x + y = y + x

(I3) x + 0 = x

(I4) x + (−x) = 0
(I5) (x · y) · z = x · (y · z)
(I6) x · y = y · x

(I7) 1 · x = x

(I8) x · (y + z) = x · y + x · z

(I9) (x−1)−1 = x

(I10) x · (x · x−1) = x

Figure 1: Axioms for involutive meadows

The term involutive refers to the fact that taking inverses is an involution, as
postulated by axiom (I9). With the exception of axiom (I10), the remaining axioms
are quite standard, as they postulate the existence of operations of addition +
and multiplication · which are associative, commutative, admit a neutral element
(denoted 0 and 1 respectively). Furthermore, there is an inverse for addition, and
multiplication is distributive with respect to addition. Axioms (I9) and (I10) entail
that 0−1 = 0 (see [6, Theorem 2.2]). Axiom (I10) replaces the more usual x ·x−1 = 1,
which is false for x = 0 (otherwise, 0 = 0 · 0 = 0 · 0−1 = 1). This hints at the fact
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that, in general, one should not define x−1 as the element satisfying x ·x−1 = 1. This
also ties in with rejecting division as the “inverse” of multiplication, as discussed in
[4].

2.2 Common meadows

The axioms of common meadows are listed in Figure 2 (see also [5]).

(M1) (x + y) + z = x + (y + z)
(M2) x + y = y + x

(M3) x + 0 = x

(M4) x + (−x) = 0 · x

(M5) (x · y) · z = x · (y · z)
(M6) x · y = y · x

(M7) 1 · x = x

(M8) x · (y + z) = x · y + x · z

(M9) −(−x) = x

(M10) x · x−1 = 1 + 0 · x−1

(M11) (x · y)−1 = x−1 · y−1

(M12) (1 + 0 · x)−1 = 1 + 0 · x

(M13) 0−1 = a

(M14) x + a = a

Figure 2: Axioms for common meadows

As with involutive meadows, some of the axioms are quite standard (namely
(M1) − (M3), (M5) − (M7), (M8), (M9), and (M11)), as they postulate the existence
of operations of addition + and multiplication · which are associative, commutative
and admit a neutral element (denoted 0 and 1 respectively). Note that, in involutive
meadows, the equations of axioms (M9) and (M11) can be derived from the other
axioms (as discussed in [6]). Furthermore, there is an inverse for addition, multipli-
cation is distributive with respect to addition, and the inverse of the product of two
elements is the product of the inverses.

Axiom (M4) postulates the existence of a sort of additive inverse for every element
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x but with the caveat that the result of operating an element with its inverse is not
the neutral element 0 but 0 · x.

Axioms (M10) and (M12) concern further properties of the inverse for multipli-
cation. The novelty, compared with more familiar settings, is that they have “error”
terms in the form of the product of an element x, (respectively, its inverse x−1) by 0.

Axiom (M13) defines 0−1 as an “error” term a (some authors denote this error
term by ⊥) that does not belong to the initial structure. Due to the presence of this
error term, the result of x · x−1 is defined as 1 + 0 · x−1. If x ̸= 0 and x ̸= a, then
0 · x−1 = 0 (see [5, Proposition 2.3.1]) and we recover the usual result that holds in
a field. If x = 0 or x = a, then the additional term 0 · x−1 is equal to a.

Axiom (M12) has a similar motivation: if x ̸= a, then we recover that the inverse
of 1 is 1. If x = a, then we get that the inverse of a is a itself.

3 Hyperreal numbers and external numbers
Let us recall some definitions and results about neutrices and external numbers. We
will use ∗R to denote an elementary equivalent extension of the real number system
that includes nonstandard elements – such as infinitesimals – [21], and R to denote
the usual set of real numbers.1

A number x is infinitesimal if |x| < r for every positive r ∈ R and it is infinite if
|x| > r for every r ∈ R. We use the notation x ≃ 0 to say that x is infinitesimal. We
will also write x ≃ y, and say that x is infinitely close to y, if x − y ≃ 0. A number
is said to be finite if it is not infinite, and appreciable if it is neither infinitesimal nor
infinite.

Crucially, the hyperreals admit nontrivial convex subgroups for addition (for
instance: the set of infinitesimals ⊘, the set of finite numbers £).

This property is shared by other non-archimedean field extensions of R. We will
discuss this matter further in Section 4.4.

3.1 External numbers

Definition 3.1 (Neutrices). A neutrix is a convex subset of ∗R that is a subgroup
for addition.

Some simple examples of neutrices are:

• ⊘ = {x ∈ ∗R : x ≃ 0};

1Note that this notation differs from the usual presentations of external numbers, according to
which R already contains nonstandard elements.
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• £ = {x ∈ ∗R : x is finite};

• if ε ≃ 0, ε£ =
{
x ∈ ∗R : x

ε is finite
}
.

Definition 3.2 (External numbers). An external number α is the sum of an hyper-
real number a and a neutrix A in the following sense:

α = a + A = {a + r : r ∈ A}.

An external number α = a + A that is not reduced to a neutrix (equivalently,
such that 0 ̸∈ α) is said to be zeroless.

The sum and product of external numbers is introduced in the following defini-
tion. We refer to [25, 16, 20] for their properties.

Definition 3.3. For a, b ∈ ∗R and A, B ⊆ ∗R (not necessarily neutrices), we define
the Minkowski sum and product

(a + A) + (b + B) = (a + b) + (A + B)
(a + A) · (b + B) = ab + aB + bA + AB,

where

A + B = {x + y : x ∈ A ∧ y ∈ B}
aB = {ay : y ∈ B}
AB = {xy : x ∈ A ∧ y ∈ B}.

It is also possible to define a notion of division between subsets of hyperreal
numbers, even if they contain 0.

Definition 3.4. For A, B ⊆ ∗R (not necessarily neutrices), we define

A · B−1 = {x : xB ⊆ A}.

Usually, for neutrices, A · B−1 is written as A
B . Here we chose the inverse no-

tation since we are investigating structures related to meadows, whose axioms are
commonly stated in terms of the inverse operation. For further discussion on the
use of these operations we refer to [4].

Notice that Definition 3.4 doesn’t allow us to obtain a proper inverse of a neutrix.
In fact, if A = {1} and B is a neutrix, A · B−1 is empty, since for no x we have
0 · x ∈ A. This example motivated us to look for alternative definitions of inverses
of a neutrix.



Bottazzi and Dinis

Let us finish this section by recalling some results on external numbers which
will be useful later on.

If x = a + A is zeroless, then a−1 · A ⊆ A, and therefore a−1 · A + A = A. In
fact, a−1 · A ⊆ ⊘.

The Taylor formula for (a + A)−1 allows to obtain the following expression for
the inverse of zeroless external numbers.

Proposition 3.5 ([25, p. 151],[20, Theorem 1.4.2]). Let x = a + A be a zeroless
external number. Then

x−1 = (a + A)−1 = a−1 + a−2 · A.

We conclude with a list of basic algebraic properties of external numbers. Proper-
ties (3) and (4) are a consequence of the fact that, for a neutrix A, A+A = A−A = A.
Property (7) replaces the usual distributivity formula, taking into account how er-
ror terms propagate (for further details on the distributivity formula for external
numbers, see [16, Section 5]).

Proposition 3.6. Let x, y, z be external numbers such that x = a + A. Then

1. x + (y + z) = (x + y) + z;

2. x + y = y + x;

3. x + A = x;

4. x + (−x) = A;

5. (x · y) · z = x · (y · z);

6. x · y = y · x;

7. x · y + x · z = x · (y + z) + A · y + A · z;

8. (x−1)−1 = x.

4 Flexible involutive meadows
A neutrix I is said to be idempotent if I · I = I. As showed by Van den Berg and
Koudjeti in [25] (see also [17]) every neutrix is a multiple of an idempotent neutrix.

Theorem 4.1 ([25, Theorem 7.4.2]). Let N be a neutrix. Then, there exists an
hyperreal number r and a unique idempotent neutrix I such that N = r · I.
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We use the previous result to define inverses for neutrices.

Definition 4.2. Let x = a + A, where A = r · I, for some hyperreal number r and
idempotent neutrix I. We define the inverse of x, denoted x−1, as follows:

x−1 =
{

a−1 + a−2 · A if a ̸= 0
r−1 · I otherwise.

The idempotent neutrices I can be seen as a generalized zeroes, since they share
with 0 the properties I + I = I and I · I = I. Also, I−1 = I, similarly to 0−1 = 0 in
involutive meadows.

In the decomposition N = r · I of Theorem 4.1, the idempotent neutrix I is
uniquely determined, but the number r is not. Nevertheless, the inverse given in
Definition 4.2 is uniquely defined, as a consequence of the next proposition.

Proposition 4.3. If r, s ∈ ∗R and r ̸= s satisfy N = r · I = s · I, then also
r−1 · I = s−1 · I.

Proof. We may assume, without loss of generality that 0 < r < s, which implies
that s−1 < r−1. Suppose towards a contradiction that r−1 · I ̸= s−1 · I. By our
assumptions over r and s, this implies s−1 · I ⊊ r−1 · I. Then, there exists some
i ∈ I such that i · r−1 ̸∈ s−1 · I. If we multiply by r, we obtain

i ̸∈ s−1 · (r · I) = s−1 · (s · I) = I,

which contradicts the assumption that i ∈ I. Hence r−1 · I = s−1 · I.

We show that the external numbers equipped with the inverse defined in Def-
inition 4.2 satisfy the axioms given in Figure 3, where N(x) denotes the neutrix
part of the external number x. As such, one can also think of N(x) as an error
term, or a generalized zero, such that every x decomposes uniquely as x = r + N(x)
with N(r) = 0. We call any structure satisfying the axioms in Figure 3 a flexible
involutive meadow.
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(FI1) (x + y) + z = x + (y + z)
(FI2) x + y = y + x

(FI3) x + N(x) = x

(FI4) x + (−x) = N(x)
(FI5) (x · y) · z = x · (y · z)
(FI6) x · y = y · x

(FI7)
(
1 + N(x) · x−1)

· x = x

(FI8) x · y + x · z = x · (y + z) + N(x) · y + N(x) · z

(FI9) (x−1)−1 = x

(FI10) x · (x · x−1) = x

Figure 3: Axioms for flexible involutive meadows

The axioms of flexible involutive meadows generalize the axioms of involutive
meadows given in Figure 1 by replacing 0 with generalized zeroes N(x), 1 with
generalized ones (i.e. 1 plus an error term of the form N(x)), and distributivity by
a generalized form of distributivity which holds for the external numbers. Notice
that, in the context of the external numbers, the generalized zeroes take the form
of neutrices.

Axiom (FI7) is the flexible counterpart to (I7), but replaces 1 with 1+N(x) ·x−1,
and not simply with 1 + N(x). In the setting of external numbers, this is necessary
because if N(x) ⊇ £, then 1 + N(x) = N(x) would be a generalized zero. Axiom
(FI8) is a generalized distributivity axiom. In the setting of external numbers, the
term N(x) · y + N(x) · z is a neutrix, so the error term in (FI8) is once again a
neutrix. In fact, if one interprets N(x) as being 0 for all x, then one recovers the
axioms for involutive meadows. The proof is straightforward.

Lemma 4.4. Let M be an involutive meadow. Then, if one defines N(x) = 0 for
all x ∈ M , the resulting structure is a flexible involutive meadow.

In order to prove that the external numbers satisfy the axioms for flexible invo-
lutive meadows, we will use the following properties of the inverse of a neutrix.

Lemma 4.5. Let x = N(x) = r ·I, with r ∈ ∗R and I an idempotent neutrix. Then:

1. (1 + x · x−1) · x = x;
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2. (x−1)−1 = x;

3. x · (x · x−1) = x.

Proof. 1. We have that x · x−1 = N(x) · x−1 = I. Hence

(1 + x · x−1) · x = (1 + I) · (r · I) = r · I + r · I2 = r · I = x.

2. We have
(x−1)−1 = (r−1I)−1 = (r−1)−1I = rI = x.

3. We have

x · (x · x−1) = rI · (rI · r−1I) = rI · I = rI = x.

As proved below, the external numbers satisfy an additional property related to
the following Inverse Law of involutive meadows:

x ̸= 0 ⇒ x · x−1 = 1

Involutive meadows that satisfy the Inverse Law are called cancellation meadows and
are of particular interest. In fact, in [1] it is proved that every involutive meadow is
a subdirect product of cancellation meadows.

In the setting of flexible involutive meadows, the inverse law is more suitably
expressed by its flexible counterpart:

x ̸= N(x) ⇒ x · x−1 = 1 + e, (4.1)

where e is a generalized zero (in the sense that e + e = e) such that 1 + e is not a
generalized zero.

Moreover, by part 3 and part 4 of Proposition 3.6, the external numbers satisfy
the following properties that generalize the properties of arithmetical meadows [4]:

(A1) x + (−x) = N(x)
(A2) x + N(x) = x.

Notice that (A2) is axiom (FI3) of flexible involutive meadows.

Theorem 4.6. The external numbers with the usual addition and multiplication and
with the inverse introduced in Definition 4.2 satisfy the axioms for flexible involutive
meadows plus the Flexible Inverse Law given by (4.1) and the properties (A1) and
(A2).
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Proof. By Proposition 3.6, in order to show that the external numbers are a flexible
involutive meadow we only need to verify (FI7) and (FI10). If x is a neutrix, both
axioms hold due to Lemma 4.5. Assume that x = a + A is zeroless. Then, using the
algebraic properties of the external numbers one derives

(1 + N(x) · x−1) · x =
(
1 + A

(
a−1 + a−2 · A

))
(a + A)

=
(
1 +

(
a−1 · A + a−2 · A2

))
(a + A)

= a + A + a−1 · A2 + A + a−1 · A3

= a + A = x.

Hence (FI7) holds. As regarding (FI10) one has

x(x · x−1) = (a + A)
(
1 + a−1 · A

)
= a + A + A + a−1 · A2 = a + A = x.

Hence (FI10) also holds and therefore the external numbers are a flexible involutive
meadow.

We now show the Flexible Inverse Law. Let x = a + A be a zeroless external
number. Then

x · x−1 = 1 + a−1 · A + a−1 · A + a−2 · A2 = 1 + a−1 · A.

Since x is zeroless, a−1 · A ⊆ ⊘, so the Flexible Inverse Law is satisfied.

Corollary 4.7. The axioms for flexible involutive meadows are consistent.

4.1 Some properties of flexible involutive meadows

We now prove some basic properties of flexible involutive meadows. We start by
showing an additive cancellation law and that N(·) is idempotent for addition.

Proposition 4.8. Let M be a flexible involutive meadow and let x, y, z ∈ M . Then

1. x + y = x + z if and only if N(x) + y = N(x) + z;

2. N(x) + N(x) = N(x).

Proof. 1. Suppose firstly that x + y = x + z. Then

N(x) + y = −x + x + y = −x + x + z = N(x) + z.

Suppose secondly that N(x) + y = N(x) + z. Then

x + y = x + N(x) + y = x + N(x) + z = x + z.
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2. This follows from applying part (1) to axiom (FI3).

In order to prove other basic properties that allow one to operate with the N(·)
function and with additive inverses one needs to assume the following two extra
axioms

(N1) N(x + y) = N(x) ∨ N(x + y) = N(y);
(N2) N(−x) = N(x).

Proposition 4.9. Let M be a flexible involutive meadow satisfying also (N1) and
(N2), and let x, y, z ∈ M . Then

1. N(x + y) = N(x) + N(y);

2. N(N(x)) = N(x);

3. If x = N (y), then x = N (x);

4. −(−x) = x;

5. −(x + y) = −x − y;

6. N(x) = −N(x).

Proof. 1. One has

x + y + N(x) + N(y) = x + N(x) + y + N(y) = x + y.

Then by part (1) of Proposition 4.8

N(x + y) + N(x) + N(y) = N(x + y). (4.2)

By (N1) one has N(x + y) = N(x) or N(x + y) = N(y). Suppose that
N(x + y) = N(x). Then by (4.2) and Proposition 4.8,

N(x + y) = N(x) + N(x) + N(y) = N(x) + N(y).

If N(x + y) = N(y) the proof is analogous.

2. Using Proposition 4.8 and part 1 we have

N(N(x)) = N(x − x) = N(x) + N(−x) = N(x) + N(x) = N(x).
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3. Using part 2 we derive that N(x) = N(N(y)) = N(y) = x.

4. We have that
N(−(−x)) = N(−x) = N(x) = −x + x.

Hence

−(−x) = −(−x) + N(−(−x)) = −(−x) − x + x = N(−x) + x = N(x) + x = x.

5. By part 1

−(x+y)+x+y = N(x+y) = N(x)+N(y) = −x+x−y +y = −x−y +x+y.

Then by Proposition 4.8

−(x + y) + N(x + y) = −x − y + N(x + y).

Again using part 1 one obtains

−(x+y)+N(−(x+y)) = −x−y+N(−x)+N(−y) = −x+N(−x)−y+N(−y).

Hence −(x + y) = −x − y.

6. By part 4 we have

N(x) = −x + x = −x − (−x) = −(x − x) = −N(x).

4.2 Flexible involutive meadows are varieties

In [1], Bergstra and Bethke studied the relations between involutive meadows and
varieties. One of their results is that involutive meadows are varieties. We prove
that flexible involutive meadows are also varieties.

Let us start by recalling the definition of varieties in this context, following [10].

Definition 4.10. If F is a signature, then an algebra A of type F is defined as
an ordered pair (A, F ), where A is a nonempty set and F is a family of finitary
operations on A in the language of F such that, for each n-ary function symbol f
in F , there is an n-ary operation fA on A.

Definition 4.11. A nonempty class K of algebras of the same signature is called a
variety if it is closed under subalgebras, homomorphic images, and direct products.

A result by Birkhoff entails that K is a variety if and only if it can be axiomatized
by identities.
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Definition 4.12. Let Σ be a set of identities over the signature F ; and define M(Σ)
to be the class of algebras A satisfying Σ. A class K of algebras is an equational
class if there is a set of identities Σ such that K = M(Σ). In this case we say that
K is defined, or axiomatized, by Σ.

Theorem 4.13. K is a variety if and only if it is an equational class.

The class K of flexible involutive meadows is axiomatized by the identities in
Figure 3 over the signature Σ = {+, ·, −, −1, 0, 1, N(·)}, where N is a unary function
that, when interpreted with the external numbers, corresponds to the neutrix part
of a number x. As a consequence of Birkhoff’s theorem, we have the following result.

Corollary 4.14. Flexible involutive meadows are varieties.

4.3 Flexible involutive meadows and commutative von Neumann
regular rings

In the investigation of meadows, the relation with commutative von Neumann reg-
ular rings with a multiplicative identity element seems to be of particular interest
[3, 4].

We recall that a semigroup (S, ·) is said to be Von Neumann regular if

∀x ∈ S ∃y ∈ S (x · x · y = x) .

A commutative von Neumann regular ring with a multiplicative identity is a Von
Neumann regular commutative semigroup for both addition and multiplication.

Flexible involutive meadows are also commutative von Neumann regular rings
with a multiplicative identity element.

Proposition 4.15. Let M be a flexible involutive meadow. Then M is a Von
Neumann regular commutative semigroup for both addition and multiplication.

Proof. This is a simple consequence of associativity together with axioms (FI4) and
(FI10).

In [3, Lemma 2.11] it was shown that commutative von Neumann regular rings
can be expanded in a unique way to an involutive meadow. Since involutive meadows
are also flexible involutive meadows, von Neumann regular rings can be expanded
to flexible involutive meadows. The expansion to flexible involutive meadows might
not be unique, though, due to the presence of different error terms.

Further research on the connection between commutative von Neumann regular
rings and flexible involutive meadows goes beyond the scope of this paper.
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4.4 Solids are flexible involutive meadows

We finish this section by showing that instead of working with the external numbers,
one can use a purely algebraic approach by working with a structure called a solid.
A solid is a generalization of the notion of field in which there are generalized neutral
elements for both addition and multiplication (e and u, respectively), and generalized
inverses (s and d). For a full list of the solid axioms and for the definitions of the
functions e, u, s and d we refer to the appendix in [18] or [19].

The following proposition compiles some results from [19, Propositions 2.12, 4.8
and Theorem 2.16] and [16, Proposition 4.12], which we use to show that solids are
flexible involutive meadows.

Proposition 4.16. Let S be a solid and let x, y, z ∈ S.

1. If x = e(x), then e(xy) = e(x)y;

2. If x ̸= e(x), then u(x)e(x) = xe(u(x)) = e(x);

3. x(z + e(y)) = xz + xe(y);

4. If x ̸= e(x), then d(d(x)) = x.

Theorem 4.17. Every solid is a flexible involutive meadow.

Proof. Let S be a solid. Most of the axioms of flexible involutive meadows are also
axioms of solids, by considering N(x) = e(x), −x = s(x), x−1 = d(x), and 1 = u.
The only non-obvious cases are the cases of axioms (FI7), (FI9) and (FI10).

For axiom (FI7), if x ̸= e(x), using the solid axioms and Proposition 4.16 we
obtain

(1 + N(x) · x−1) · x = x + e(x)d(x)x = x + e(x)u(x) = x + e(x) = x.

If x = e(x), the result follows from Lemma 4.5(1).
Axiom (FI9) follows from Lemma 4.5(2), if x = e(x) and from Proposition

4.16(4).
Finally, axiom (FI10) follows easily from the solid axioms if x ̸= e(x) and from

Lemma 4.5(3) if x = e(x).

As it turns out, and as mentioned above, one is not forced to work in a nonstan-
dard setting. Indeed, any non-archimedean ordered field yields a model of flexible
involutive meadows.

Let F be a non-archimedean ordered field. Let C be the set of all convex sub-
groups for addition of F and Q be the set of all cosets with respect to the elements
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of C. In [18] the elements of C were called magnitudes and Q was called the quotient
class of F with respect to C. In the same paper it was also shown that the quotient
class of a non-archimedean field is a solid. Hence we have following corollary.

Corollary 4.18. The quotient class of a non-archimedean ordered field is a flexible
involutive meadow.

5 Further models for meadows using external numbers

In the introduction we claimed that the external numbers are particularly suitable
for expressing the kind of concepts involved in the definition of the inverse of zero.
In order to support that claim, we explore further models for meadows inspired by
the external numbers. We start by building a model for flexible involutive meadows
over a finite field F and proceed by constructing a model for common meadows over
∗R.

5.1 Finite models of flexible involutive meadows

In this subsection we show that any finite field can be extended to a finite model of
a flexible involutive meadow.

Recall that a finite field is isomorphic to Fpm , with p a prime number and m
a positive integer. As a consequence, without loss of generality we assume that
elements of the finite field, which we will simply denote F from here on, are of the
form a mod pm with a ∈ N, so we can identify elements of F with natural numbers
between 0 and pm − 1.

Definition 5.1. Let (F, +, ·) be a finite field. Without loss of generality, we may
think that the elements of F are natural numbers between 0 and |F| − 1. We define
(F̂, ⊕, ⊙) as follows.

• For every a ∈ F, we define the external number â = a+⊘ and F̂ = {â : a ∈ F}.

• For every nonzero a ∈ F, we set (â)−1 = â−1.

• (0̂)−1 = 0̂ (this definition is motivated by, and indeed coincides with the one
in Definition 4.2).

• The sum ⊕ and product ⊙ over F̂ are defined as:

â ⊕ b̂ = â + b
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and
â ⊙ b̂ = âb

where sums and product on the right hand side are the sums and product in F.

Theorem 5.2. Let F be a finite field. Then F̂ satisfies the axioms for flexible
involutive meadows.

Proof. If x ̸= 0̂, the axioms are satisfied since F is a field and the operations in F̂
are compatible with the ones in F.

If x = 0̂, axioms (I1) − (I8) follow from the fact that F is a field.
As for axiom (I9), if x = 0̂, then 0̂ −1 = 0̂, so that (0̂ −1)−1 = 0̂ −1 = 0̂.
Finally, for axiom (I10), if x = 0̂, then 0̂ · 0̂ −1 = 0.

Remark 5.3. Similar models for involutive meadows can be obtained without recur-
ring to infinitesimals, as one could define the alternative model F̃ by requiring the
existence of an element E /∈ F and defining, for each a ∈ F the element ã = a + E
and the set F̃ := {ã : a ∈ F} with the operations

ã ⊕ b̃ = (a + E) + (b + E) = (a + b) + E,

(note that, in particular E ⊕ E = (0 + E) + (0 + E) = (0 + 0) + E = 0 + E = E),

ã ⊙ b̃ = (a + E) · (b + E) = (a · b) + E

and

ã−1 = a−1 + E

and, finally,

0̃−1 = 0 + E = 0̃.

5.2 A model for common meadows based on R

In this section we introduce a model R̂ for the axioms of common meadows given
in Figure 2. In our model, we consider the elements of R plus an error term in the
form of a neutrix. In order to make things concrete, we choose to use the neutrix ⊘
but, in principle, any neutrix included in ⊘ can be used.

Elements of R will be represented by external numbers of the form r + ⊘ with
r ∈ R, while ∗R will act as an inverse of the neutrix ⊘, which is the representative
of 0. We can interpret ⊘−1 = ∗R as the smallest neutrix collecting all the inverses
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of the elements of ⊘. The fact that the inverse of 0 has, in a sense, the maximum
possible uncertainty is in good accord with both the intuition that division by 0
introduces an error term, and to the common practice of having the inverse of 0 not
being a member of the original field [5].

The inverse of ∗R is again ∗R. This choice can be justified in two ways. We
can again interpret ∗R−1 as the smallest neutrix collecting all the inverses of the
elements of ∗R or, alternatively, since ⊘ ⊂ ∗R, the inverse of ∗R should also be
maximal.

Definition 5.4. We define the set R̂ as follows:

• For every r ∈ R, we set r̂ = r + ⊘ ∈ R̂.

• ∗R ∈ R̂.

• For every nonzero r ∈ R, we set r̂−1, with the quotient introduced in Definition
3.4 (see also Proposition 3.5).

• We define (0̂)−1 = ∗R and ∗R−1 = ∗R (so ∗R acts like the error term a in the
definition of common meadow).

• The sum and product over R̂ are the Minkowski operations introduced in
Definition 3.3.

In the definition of real numbers as limits of Cauchy sequences, real numbers can
be seen as being determined up to “infinitesimals”, which have an interpretation in
terms of sequences converging to 0. In the model of common meadows introduced in
the previous definition, this idea is expressed by the representation of r as r̂ = r+⊘.

An immediate consequence of the previous definition is that for every x ∈ R̂ we
have

x + (0̂)−1 = (0̂)−1 + x = x · (0̂)−1 = (0̂)−1 · x = ∗R. (5.1)

In the next lemma, we establish that the operations in R̂ are compatible with
those in R.

Lemma 5.5. For every r, s ∈ R,

• r̂ + s = r̂ + ŝ;

• r̂ · s = r̂ · ŝ.

Moreover, for every nonzero r ∈ R, r̂−1 = r̂−1.
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Proof. The first two properties are a consequence of the following equalities

r̂ + s = r + s + ⊘ = (r + ⊘) + (s + ⊘) = r̂ + ŝ.

and, taking into account that r and s are real numbers,

r̂ · s = r · s + ⊘ = (r + ⊘) · (s + ⊘) = r̂ · ŝ.

As for the inverse, if r ̸= 0, r̂−1 = 1
r + ⊘, whereas, by Proposition 3.5,

r̂−1 = (r + ⊘)−1 = r−1 + r−2 · ⊘ = 1
r

+ ⊘.

Corollary 5.6. For every r ∈ R,

1. if r ̸= 0, then r̂ · r̂−1 = 1̂;

2. if r ̸= 0, then 0̂ · r̂−1 = 0̂;

3. 1̂ = 1̂ + 0̂ · r̂;

4. r̂ + ∗R = ∗R + r̂ = ∗R and r̂ · ∗R = ∗R · r̂ = ∗R;

5. ∗R + ∗R = ∗R − ∗R = ∗R · ∗R = ∗R.

Equalities (1)–(3) in Corollary 5.6 can be obtained from the corresponding equal-
ities for real numbers by repeated use of Lemma 5.5.

Theorem 5.7. R̂ is a model of axioms (M1)–(M14) of common meadows.

Proof. We start by showing that axiom (M1) is satisfied. If x, y and z are different
from ∗R, then this is a consequence of Lemma 5.5. If at least one of x, y and z is
equal to ∗R, then both sides of the equality evaluate to ∗R by Corollary 5.6. The
proof follows similar steps for axioms (M2) − (M9). Note that, for axiom (M8), we
use also the fact that we have only one order of magnitude besides ∗R.

Let us show that axiom (M10) is satisfied. If x = 0̂:

0̂ · (0̂)−1 = ∗R = 1̂ + 0̂ · ∗R.

If x = ∗R: as a consequence of the definition of ∗R−1, we have
∗R · ∗R−1 = ∗R = 1̂ + 0̂ · ∗R = 1̂ + 0̂ · ∗R−1.

We now turn to axiom (M11). If x, y are not equal to 0 nor to ∗R, the axiom
holds as a consequence of Lemma 5.5. Otherwise, due to the definition of the inverse,
both sides are equal to ∗R.
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For axiom (M12), if x = r̂ for some r ∈ R, the axiom holds as a consequence of
Corollary 5.6 (3). If x = ∗R, then

(1̂ + 0̂ · ∗R)−1 = (1 + ∗R)−1 = ∗R−1 = ∗R = 1̂ + ∗R = 1̂ + 0̂ · ∗R.

Axiom (M13) is satisfied as a consequence of the definition of (0̂)−1. Finally,
axiom (M14) is satisfied as a consequence of (5.1).

6 Final remarks and open questions
In this paper we have introduced the notion of flexible involutive meadow, by means
of an equational axiomatization, and constructed some models based on the external
numbers and non-archimedean fields. We have also shown a model for common
meadows based on the real numbers and of involutive meadows based on finite
fields. We would like to point out that, with similar techniques, one could also
obtain meadows based on rational numbers.

The model for common meadows developed in Section 5.2 suggests that it is
possible to study a flexible version of common meadows, in the spirit of what has
been done in Section 4 for involutive meadows. In order to do so, it is possible to
adapt the axioms by replacing 0 with N(x), where N(x) is an error term analogous
to that of flexible involutive meadows.

In the context of external numbers, where N(x) is the neutrix part of x, and
for zeroless x, one has the inclusion N(x) ⊆ x · ⊘. This grounds the interpretation
of the flexible counterparts of axioms (M4), (M10) and (M12). Moreover, as in the
model discussed in Section 5.2, the element a can be taken as ∗R.

Section 4.4 unveils a connection between the two apparently very different alge-
braic structures of solids and flexible involutive meadows. This connection is in line
with other works connecting algebraic structures related with meadows and struc-
tures arising in the context of nonstandard analysis (see [11, 15]). We believe that
this line of research is worth exploring in future work.

To conclude, we mention some other possible directions of future work.
We would like to study related variants of meadows as well as their algebraic

properties. For example, the study of flexible cancellation meadows, i.e. meadows in
which the multiplicative cancellation axiom

x ̸= 0 ∧ x · y = x · z ⇒ y = z

or its flexible counterpart (where we substitute 0 by an error term e) holds; or flexible
arithmetical meadows in the sense of [4]; or flexible meadows of rational numbers
(see e.g. [6]). Are flexible arithmetical meadows, i.e. flexible meadows satisfying
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(A1) and (A2) (necessarily) connected with nonstandard models of arithmetic? As
for the flexible meadows of rational numbers, are they a minimal algebra? If so,
that might provide a connection with data types.
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