perature and pressure, suggests it is possible to tailor this step to various implementations of the SWCNT lengthening.

Acknowledgments

Financial support for this work was provided by the Air Force Office Scientific Research (FA8650-05-D-5807), the National Science Foundation (CMMI-0653505), and the Robert A. Welch Foundation.

REFERENCES

[11] Anderson RE, Colorado Jr R, Crouse CA, Ogrin D, Maryama B, Pender MJ, et al. A study of the formation, purification, and application as a SWCNT growth catalyst of the nanocluster \[\text{[RuP}_{2}M_{8}O_{32}C_{12}H_{12}F_{4}H_{3}O_{4}Co}\text{]}\cdot\text{H}_{2}O\text{[P}_{4}O_{6}]\text{Co}_{2}]. Dalton Trans 2006;3097-107.

[12] Ogrin D, Barron AR. Coordination chemistry of the nanocluster \[\text{[RuP}_{2}M_{8}O_{32}C_{12}H_{12}F_{4}H_{3}O_{4}Co}\text{]}\cdot\text{H}_{2}O\text{[P}_{4}O_{6}]\text{Co}_{2}]. J Cluster Sci 2006;18:113-20.

In vivo adsorption study of fluoxetine using carbon materials

J.M. Valente Nabais a, M. Teresa Tinoco b, J. Cruz-Morais b

a Centro de Química de Óxida and Departamento de Química, Universidade de Évora, Rua Romão Ramalho nº 59, 7000-671 Évora, Portugal
b ICAM and Departamento de Química, Universidade de Évora, Rua Romão Ramalho nº 59, 7000-671 Évora, Portugal

ARTICLE INFO
Article history:
Received 11 July 2009
Accepted 24 September 2009
Available online 30 September 2009

ABSTRACT
The in vivo adsorption of fluoxetine by a commercial activated carbon and a laboratory prepared activated carbon fibre were studied. The results show that the carbon materials tested are not toxic to Wistar rats and both materials had a high efficacy in the in vivo adsorption of fluoxetine preventing toxicity of the drug overdose administered to the animals. © 2009 Elsevier Ltd. All rights reserved.