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Existence, non existence and multiplicity of
solutions for higher order boundary value problems

Abstract

This thesis deals with boundary value problems composed by coupled systems with dif-
ferent types of differential equations: with parameters, strongly nonlinear, of second and
higher-order equations; with discontinuous nonlinearities, in regular and singular cases,...

This diversity can also be seen in various types of boundary conditions: Sturm-Liouville
type boundary conditions, classical Dirichlet and two-point boundary conditions,

There are several results: sufficient conditions for the existence, non-existence and
multiplicity of solutions (via Ambrosetti-Prodi alternative ); existence and location of a
solution for impulsive problems, and numerical results related to a new three-dimensional
non-Newtonian incompressible fluid model, where the viscosity and elasticity vary depend-
ing on the shear rate, this variation is of the power law type.

The most used tool is the method of lower and upper solutions, along with the prop-
erties of the Leray-Schauder topological degree and Schauder’s fixed-point theorem.

Keywords: Coupled systems; Ambrosetti-Prodi alternative; Regular and singular phi-
Laplacian equations; Generalized impulsive conditions; Generalized third-grade fluid.
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Existência, não existência e multiplicidade de
soluções para problemas de valor de contorno de

ordem superior
Sumário

Esta tese trata de problemas de valores de contorno compostos por sistemas acoplados
com diferentes tipos de equações diferenciais: com parâmetros, fortemente não lineares,
de equações de segunda ordem e de ordem superior; com não linearidades descontínuas,
em casos regulares e singulares,...

Esta diversidade também pode ser vista em vários tipos de condições de contorno:
condições de contorno do tipo Sturm-Liouville, Dirichlet clássica e condições de contorno
de dois pontos,

Os resultados são vários: condições suficientes para a existência, inexistência e multi-
plicidade de soluções (via alternativa Ambrosetti-Prodi); existência e localização de uma
solução para problemas impulsivos,e resultados numéricos relacionados com um novo mod-
elo tridimensional de fluido incompressível não-Newtoniano, onde a viscosidade e a elasti-
cidade variam em função da taxa de cisalhamento, esta variação é do tipo lei de potência.

A ferramenta mais utilizada é o método das soluções inferiores e superiores, juntamente
com as propriedades do grau topológico de Leray-Schauder e o teorema do ponto fixo de
Schauder.

Keywords: Sistemas acoplados; Alternativa Ambrosetti-Prodi; Equações phi-Laplacianas
regulares e singulares; Condições impulsivas generalizadas; Fluido Generalizado de ordem
3.
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Chapter 1

Introduction

The type of solution, the existence, non-existence and/or multiplicity of solution, the qual-
itative structure of the solutions of non-linear Boundary Value Problems (BVP) depends
both on the functional context of the non-linearities involved, and on the type of boundary
conditions considered. Thus, the study of the solvency of systems of higher order nonlin-
ear differential equations has considered these two variables: nonlinearity and boundary
conditions.

Motivation

The discussion of the existence and multiplicity of solutions as a function of parameters
has been little considered in the literature on differential equations, and rarely applied to
coupled systems of differential equations. The first part of this thesis aims to contribute
to filling this gap. Coupled systems of second-order differential equations, where there is
dependence between the various unknown variables, are frequently used in the modeling
of phenomena in the physical, biological (see [2, 7, 100]), and social sciences, example in
[48, 97]. They relate variables and parameters, with the aim of making predictions about
the behavior of these problems.

In the context of differential equations, we have some phenomena that do not behave
continuously; therefore, their characteristic is the abrupt change of state at certain mo-
ments in their development. Such changes result from disturbances whose duration is
insignificant compared to the duration of the phenomenon as a whole. Thus, these distur-
bances can be understood as instantaneous, causing effects called impulses [58]. Impulsive
differential equations can model many real phenomena with sudden and discontinuous
jumps. These events can occur in many fields, such as population dynamics, control and
optimization theory, chemistry, biology, and biotechnology, economics, pharmacokinetics,
and other areas of physics and mechanical problems, as in [12, 41, 57].

To show the relevance of the three-dimensional model to be proposed, it is worth
highlighting that in recent decades, the study of phenomena associated with fluids has
attracted a large number of researchers from diverse areas such as mechanical engineering,
biology, medicine, biomedical engineering, physics and mathematics.

State of the art

The discussion of the existence and multiplicity of solutions as a function of parameters
has been little considered in the literature on differential equations and rarely applied
to coupled systems of differential equations. These types of equations were introduced
in [5] and have since been studied by several authors in the context of different types of
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2 Introduction

boundary value problems. As examples, we refer to [37, 109] for three- and two-point limit
value problems; [86, 90] for Neumann-type boundary conditions; [32, 34, 65, 74, 104] for
periodic problems; [82] for parametric problems with (p, q)-Laplacian equations; [30] with
asymptotic conditions; [91] under conditions of coercion.

Coupled systems of second-order differential equations, where there is dependence
between several unknown variables, have been studied in a huge variety of theoretical
and applied situations, involving different types of boundary conditions, such as: [76,
67, 89, 98]. Furthermore, there are many real phenomena modeled by coupled systems,
particularly in problems related to population dynamics, as in [3, 4, 9, 60]. For the classical
approach to impulsive differential equations, we can refer, for example, to [58] for a general
theory; [52] applying fixed point index; [61, 78, 85] for impulsive functional problems;
[108] for a monotonous iterative technique to approximate the solution. The study of
ϕ-Laplacian impulsive problems can be seen, for example, in: [49] with periodic boundary
conditions via a continuation theorem; [72, 73] for limited and unlimited intervals; [101]
for fractional equations with p-Laplacian.

In the literature ϕ and ψ are known as ϕ, ψ-one-dimensional Laplacians, as they gen-
eralize the classical Laplacian and the more common p-Laplacian, and can be applied to
many types of problems and model many real phenomena. As examples, we can men-
tion: [102] proving the existence of a positive periodic solution for a φ-Laplacian Liénard
equation with a singularity; [56] for multiple solutions of the p-Laplacian Dirichlet prob-
lem with discontinuities; [103] showing the existence of three positive solutions to the
one-dimensional p-Laplacian problem; [28, 95] to obtain positive solutions to a super-
linear p-Laplacian problem; [93] applying Krasnosel’skii’s cone theory of expansion and
compression to non-negative nonlinearities.

In recent years, some authors have studied the ϕ-Laplacian singular homeomorphisms
ϕ : (−r, r) → R with 0 < r < +∞. For example: [46, 47] for the p-Laplacian Operator;
[10, 11, 84] obtaining results of existence and multiplicity; [14] proving the existence of
heteroclinic solutions; [38] in the half-line along with the functional boundary conditions.

Based on the work of Lan et al. (see [59]) the equations relating to the ϕ-Laplacians
problems of one or higher-dimensional are a generalization of the p-Laplacians problems.
It is known that p-Laplacian equations with one or more dimensions arise in the study of
Newtonian fluids and non-Newtonian fluids, particularly in shear-thickening (or dilatant)
fluids and shear-thinning (or pseudoplastic) fluids. Therefore, we intend to present numer-
ical results relating with one specific shear-dependent viscoelastic third-grade fluid model
to be proposed in this work. The work presented regarding fluids is based on the work of
Caulk and Naghdi [26] and, also based, on the work of Carapau et al. [18, 19, 20, 17], but
applied to a new three-dimensional model for a non-Newtonian fluid with shear-dependent
viscoelasticity.

Specific objectives

The objectives of this thesis are divided into three groups:
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• For problems involving differential equations with parameters defined in limited
domains, the aim is to obtain sufficient conditions to guarantee the existence, non-
existence and multiplicity of solutions in 2nd order coupled systems of the Ambrosetti-
Prodi type with values at two points.

• Define conditions sufficient to guarantee the existence and localization of solutions
to impulsive problems with functional boundary conditions and generalized impulse
functions and with finite impulse moments.

• Present numerical results to the unsteady volume flow rate, to the unsteady three-
dimensional velocity field and including an analysis on perturbed flows, for a new
three-dimensional non-Newtonian fluid model to be proposed in this work.

Methodology

To obtain sufficient conditions to guarantee the existence, non-existence, and multiplicity
of solutions in 2nd-order coupled systems, the arguments apply the method of lower and
upper solutions. By defining a suitable auxiliary, homotopic, and truncated problem, it
is possible to apply degree theory topological methods as a tool to prove the existence
and nonexistence of a solution. In short, it is predicted that for parameter values such
that there are lower and upper solutions, then there is also at least one solution, and this
solution is located in an interval delimited by lower and upper solutions. The multiplicity
discussion is carried out for particular cases of the boundary conditions considered at [69].

In the development of the mathematical tool to guarantee the existence and location
of solutions in systems of coupled impulsive differential equations of second order, third
order, and higher order, the first existing result is obtained from Schauder’s fixed point
theorem. The second also provides the location of a solution through the technique of
lower and upper solutions.

Models associated with fluid flow generally involve coupled systems of time-dependent
nonlinear partial differential (or ordinary) equations and algebraic equations. Its analytical
and numerical treatment is complex and requires the use of sophisticated arguments. To
overcome this computational problem, we use an alternative theory, the Cosserat theory
associated with fluid dynamics (see [26, 42, 43, 44]), which allows us to approximate the
three-dimensional model using simplified one-dimensional models. Based on this theoreti-
cal approach, we reduce the nonlinear three-dimensional equations governing the unsteady
axisymmetric motion of a non-Newtonian incompressible fluid (or Newtonian fluid) to a
one-dimensional system of ordinary (or partial) differential equations depending on time
and a single spatial variable. From this new system, we obtain the unsteady equation for
the mean pressure gradient and the wall shear stress, both depending on the unsteady
volume flow rate, Womersley number, viscosity and viscoelastic parameters in a finite
section of a straight tube with constant circular cross-section.



4 Introduction

Organization of the Thesis

In Chapter 2, we considered some boundary value problems composed of coupled systems
of second-order differential equations with complete nonlinearities and general functional
boundary conditions, verifying some monotonous assumptions. Chapter 3 deals with two
particular cases of the problem presented in Chapter 2, systems of second-order differential
equations with parameters: a coupled system with boundary conditions of the Sturm-
Liouville type and a classical system with Dirichlet boundary conditions, and for each an
Ambosetti-Prodi alternative is discussed. In the first we present sufficient conditions for
the existence and non-existence of solutions and, in the second, for multiplicity.

The Chapter 4 presents sufficient conditions for the solvability of a second-order cou-
pled system, composed of two differential equations involving different laplacians applied
to fully discontinuous nonlinearities, two-point boundary conditions, and generalized im-
pulsive effects. Applying the lower and upper solutions technique and Schauder’s fixed
point theorem, it is obtained an existence and localization theorem, based on local mono-
tone properties on the nonlinearities and the impulsive functions.

In Chapter 5, a methodology is developed with sufficient conditions for the solubility
of a third-order coupled system. It includes two differential equations involving different
Laplacians, totally discontinuous nonlinearities, two-point boundary conditions, and gen-
eralized impulse conditions. We emphasize that this is the first time impulsive coupled
systems with strongly nonlinear fully differential equations and generalized impulse ef-
fects are considered simultaneously. Furthermore, the singular case is applied to a special
relativity model in classical electrodynamics.

As a consequence of the techniques developed in Chapters 4 and Chapter 5 and fol-
lowing constant advances in this work, Chapter 6 generalizes the solvability conditions
and solution location for a coupled impulsive system of higher order, with the possibility
of equations of different orders, with fully differential equations including different regu-
lar and singular Laplacians and generalized impulsive effects, dependent on variables and
some derivatives. As in previous chapters, an application of our theory to the bending
vibration of a single-span suspension bridge is presented.

The equations related to ϕ-Laplacian problems of one dimension or higher are a gen-
eralization of p-Laplacian problems. It is known that p-Laplacian equations with one
or more dimensions arise in the study of Newtonian fluids and non-Newtonian fluids, in
particular in shear-thickening (or dilatant) fluids and shear-thinning (or pseudoplastic)
fluids. In this sense, Chapter 7 aims to present numerical results to the unsteady volume
flow rate, to the unsteady three-dimensional velocity field and including an analysis on
perturbed flows, for a new three-dimensional non-Newtonian fluid model.



Chapter 2

Coupled systems with
Ambrosetti-Prodi-type differential
equations

This chapter, based on the paper [69], focuses on the search for sufficient conditions to
require nonlinearities in order to be able to discuss, depending on the parameters, the
existence of solutions for coupled systems of nonlinear second-order differential equations,
of the type {

u′′(x) + f(x, u(x), v(x), u′(x), v′(x)) = µ m(x),
v′′(x) + h(x, u(x), v(x), u′(x), v′(x)) = λ n(x), (2.1)

for x ∈ [0, 1], with f, h : [0, 1] ×R4 → R , m,n : [0, 1] → R+ continuous functions and µ, λ
are real parameter, along with boundary conditions

a1u(0) − b1u
′(0) = A1,

c1u(1) + d1 u
′(1) = B1,

a2v(0) − b2v
′(0) = A2,

c2v(1) + d2v
′(1) = B2,

(2.2)

where ai, bi, ci, di, Ai, Bi ∈ R, i = 1, 2, such that a2
i + bi > 0, c2

i + di > 0, for i fixed, and
bi, di ≥ 0.

Coupled systems of second-order differential equations were studied by many authors,
not only from a mathematical point of view, as in, for example, [76, 67, 89, 98], but also
to model some real phenomena, as, for instance, Lokta-Volterra models, reaction diffusion
processes, prey-predator systems, Sturm-Liouville problems, mathematical biology, chem-
ical systems, as in [3, 4, 8, 9, 60]. Moreover, in the last few years, fractional calculus has
had an increasing application to several real processes, as in [1, 51, 79].

Ambrosetti-Prodi-type problems, introduced in [5, 66], have been applied to several
types of boundary conditions, as it can be seen in, for example: [37, 109], to separated
two-point and three-point boundary value problems; [86, 90], for Neumann boundary
conditions; [32, 34, 65, 74, 104] to periodic solutions; [82], for parametric problems with
(p, q)-Laplace operator; [30], with asymptotic assumptions; [6], for fractional Laplacian;
[81], with asymptotic sign-changed nonlinearities, among others.

Motivated by these works, we consider for the first time, as far as we know, a cou-
pled second-order system composed of two Ambrosetti-Prodi-type differential equations
together with two-point boundary conditions. The arguments are based on the lower
and upper solutions method [32, 33, 36, 68, 91], which requires a new definition of lower
and upper functions to overcome the couple variation on the nonlinearities (see Definition
2.1.1). A Nagumo condition (see, for example, [31, 53, 80]) plays an important role to
control the first derivatives variation, and the theory of the topological degree (see, for
instance, [39, 63]) is the main tool to prove the existence of solution for the parameters’
values such that there are lower and upper solutions for (2.1), (2.2). Therefore, the main

5
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result is an existence and localization theorem, as it provides not only the existence of a
solution, but also a range where the solution varies.

The chapter is organized as follows: Section 2.1 contains the functional framework,
a definition of upper-lower solutions, the Nagumo conditions and “a priori" estimates of
the first derivative of the unknown functions. In Section 2.2 we present an existence and
location result and an example to show the applicability of the main theorem. Section
2.3 applies our main result to a stationary version of the model presented in [48, 97]
for complex interactions in social media, the mechanisms and dynamics of information
diffusion in online social networks.

2.1 Definitions and auxiliary results

In this section, some definitions and lemmas will be introduced for the subsequent analysis,
we consider the following functional framework.

Let X = C1[0, 1] be the usual Banach space equipped with the norm ∥ · ∥C1 , defined
by

∥ w∥C1 := max{∥ w∥, ∥ w′∥},

where
∥y1∥ := max

x∈[0,1]
|y1(x)|,

and X2 = C1[0, 1] × C1[0, 1] with the norm

∥ (u, v)∥X2 = max{∥ u∥C1 , ∥ v∥C1}.

To apply the lower and upper solutions method, depending on the values of the pa-
rameters µ and λ, we introduce a new type of lower and upper definition:

Definition 2.1.1. Let ai, bi, ci, di, Ai, Bi ∈ R, such that a2
i + bi > 0, c2

i + di > 0 and
bi, di ≥ 0, for i = 1, 2.

A pair of functions (γ1, γ2) ∈ (C2(]0, 1[) ∩ C1([0, 1]))2 is a lower solution of problem
(2.1)-(2.2) if, for all x ∈ [0, 1],

γ′′
1 (x) + f(x, γ1(x), γ2(x), γ′

1(x), z1) ≥ µ m(x),∀z1 ∈ R,

γ′′
2 (x) + h(x, γ1(x), γ2(x), y1, γ

′
2(x)) ≥ λ n(x), ∀y1 ∈ R,

(2.3)

and
a1γ1(0) − b1γ

′
1(0) ≤ A1,

c1γ1(1) + d1γ
′
1(1) ≤ B1,

a2γ2(0) − b2γ
′
2(0) ≤ A2,

c2γ2(1) + d2γ
′
2(1) ≤ B2.

(2.4)

A pair of functions is an upper solution of problem (2.1)-(2.2) if the reversed inequalities
are verified.
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The so-called Nagumo condition establishes an “a priori" estimation for the first deriva-
tives of the solutions of (2.1), provided that they satisfy adequate bounds, and is adapted
here for coupled systems.

Definition 2.1.2. Let γi(x), Γi(x), i = 1, 2, be continuous functions such that

γ1(x) ≤ Γ1(x), γ2(x) ≤ Γ2(x), ∀x ∈ [0, 1],

and consider the sets

S = {(x, y0, z0, y1, z1) ∈ [0, 1] × R4 : γ1(x) ≤ y0 ≤ Γ1(x), γ2(x) ≤ z0 ≤ Γ2(x)}. (S)

The continuous functions f, h : [0, 1]×R4 → R satisfy a Nagumo-type condition relative to
the intervals [γ1(x),Γ1(x)] and [γ2(x),Γ2(x)], for all x ∈ [0, 1] , if there are k1, k2 , such
that

k1 := max{Γ1(1) − γ1(0),Γ1(0) − γ1(1)}, (2.5)

k2 := max{Γ2(1) − γ2(0),Γ2(0) − γ2(1)}, (2.6)

and continuous positive functions φ,ψ : [0,+∞) → (0,+∞), verifying∫ +∞

k1

ds

φ(s) = +∞,

∫ +∞

k2

ds

ψ(s) = +∞. (2.7)

such that
|f(x, y0, z0, y1, z1)| ≤ φ(|y1|), ∀(x, y0, z0, y1, z1) ∈ S,
|h(x, y0, z0, y1, z1)| ≤ ψ(|z1|), ∀(x, y0, z0, y1, z1) ∈ S.

(2.8)

The priori estimates for the first derivatives are given by the next lemma.

Lemma 2.1.3. Suppose that the continuous functions f, h : [0, 1] × R4 → R satisfy a
Nagumo type condition relative to the intervals [γ1(x),Γ1(x)] and [γ2(x),Γ2(x)], for all
x ∈ [0, 1].

Then for every solution (u, v) ∈ (C2[0, 1])2 of (2.1) verifying

γ1(x) ≤ u(x) ≤ Γ1(x) and γ2(x) ≤ v(x) ≤ Γ2(x), ∀x ∈ [0, 1], (2.9)

there are N1, N2 > 0 (depending only on the parameters µ and λ and the functions m, n,
γ1, Γ1, γ2, Γ2, φ and ψ), such that

∥u′∥ ≤ N1 and ∥v′∥ ≤ N2. (2.10)

Proof. Let (u(x), v(x)) be a solution of (2.1) verifying (2.9). By the Mean Value Theorem,
there are x0, x1 ∈ [0, 1] such that

u′(x0) = u(1) − u(0) and v′(x1) = v(1) − v(0). (2.11)

If
|u′(x)| ≤ k1, ∀x ∈ [0, 1],

then it is enough to define N1 := k1 and the proof is complete.
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Moreover, the case |u′(x)| > k1, ∀x ∈ [0, 1], is not possible. In fact, if u′(x) > k1, ∀x ∈
[0, 1], we obtain, by (2.11), (2.9) and (2.5), the contradiction

u′(x0) = u(1) − u(0) ≤ Γ1(1) − γ1(0) ≤ k1.

If u′(x) < −k1, ∀x ∈ [0, 1], the contradiction is similar.

Consider Ni > ki, for each i = 1, 2, such that∫ N1

k1

ds

φ(s) + |µ|∥m∥
> 1,

∫ N2

k2

ds

ψ(s) + |λ|∥n∥
> 1, (2.12)

and assume that there are x2, x3 ∈ [0, 1] with x2 < x3, such that

u′(x2) ≤ k1 and u′(x3) > k1.

By continuity of u′(x), there exists x4 ∈ [x2, x3] such that u′(x4) = k1.

By a convenient change of variable and using (2.1) and (2.8),
∫ u′(x3)

u′(x4)

ds

φ(|s|) + |µ|∥m∥
=

∫ x3

x4

u′′(x)
φ(|u′(x)|) + |µ|∥m∥

dx

≤
∫ 1

0

|u′′(x)|
φ(|u′(x)|) + |µ|∥m∥

dx

≤
∫ 1

0

|µm(x) − f(x, u(x), v(x), u′(x), v′(x))|
φ(|u′(x)|) + |µ|∥m∥

dx,

≤
∫ 1

0

|µ|∥m∥ + |f(x, u(x), v(x), u′(x), v′(x))|
φ(|u′(x)|) + |µ|∥m∥

dx,

≤
∫ 1

0

|µ|∥m∥ + φ(|u′(x)|)
φ(|u′(x)|) + |µ|∥m∥

dx = 1,

and by (2.12) ∫ u′(x3)

u′(x4)

ds

φ(|s|) + |µ|∥m∥
≤ 1 <

∫ N1

k1

ds

φ(|s|) + |µ|∥m∥
.

Therefore u′(x3) < N1, and as x3 is taken arbitrarily, then u′(x) < N1, for the values of x
whenever u′(x) > k1.

The case for x2 > x3 follows similar arguments.

The other possible case where

u′(x2) > −k1 and u′(x3) < −k1,

can be proved by the previous techniques. Therefore ∥u′∥ ≤ N1.

By a similar method, it can be shown that ∥v′∥ ≤ N2.

Remark 2.1.4. From the previous demonstration, it follows that N1 and N2 can be con-
sidered independently of µ and λ, since µ and λ belong to a bounded set.



2.2 Main result 9

2.2 Main result

The first theorem is an existence and localization result:

Theorem 2.2.1. Let f, h : [0, 1] × R4 → R be continuous functions. If there are lower
and upper solutions of (2.1)-(2.2), (γ1, γ2) and (Γ1,Γ2), respectively, according Definition
2.1.1, such that

γi(x) ≤ Γi(x), i = 1, 2, ∀x ∈ [0, 1], (2.13)
and f and h verify Nagumo conditions as in Definition 2.1.2, relative to the intervals
[γ1(x),Γ1(x)] and [γ2(x),Γ2(x)], for all x ∈ [0, 1] , with

f(x, y0, z0, y1, z1) nondecreasing in z0, (2.14)

for x ∈ [0, 1] , ∀z1 ∈ R,

min
{

min
x∈[0,1]

γ′
1(x), min

x∈[0,1]
Γ′

1(x)
}

≤ y1 ≤ max
{

max
x∈[0,1]

γ′
1(x), max

x∈[0,1]
Γ′

1(x)
}
,

and
h(x, y0, z0, y1, z1) nondecreasing in y0,

for x ∈ [0, 1] , ∀y1 ∈ R,

min
{

min
x∈[0,1]

γ′
2(x), min

x∈[0,1]
Γ′

2(x)
}

≤ z1 ≤ max
{

max
x∈[0,1]

γ′
2(x), max

x∈[0,1]
Γ′

2(x)
}
.

Then there is at least a pair (u(x), v(x)) ∈ (C2[0, 1])2 solution of (2.1)-(2.2) and, moreover,

γ1(x) ≤ u(x) ≤ Γ1(x), γ2(x) ≤ v(x) ≤ Γ2(x), ∀x ∈ [0, 1]. (2.15)

Proof. Define the functions α, β : [0, 1] × R → R given by

α(x, y0) =


Γ1(x) if y0 > Γ1(x)

y0 if γ1(x) ≤ y0 ≤ Γ1(x)
γ1(x) if y0 < γ1(x)

(2.16)

and

β(x, z0) =


Γ2(x) if z0 > Γ2(x)

y1 if γ2(x) ≤ z0 ≤ Γ2(x)
γ2(x) if z0 < γ2(x).

(2.17)

For θ, ϑ ∈ [0, 1], consider the truncated and perturbed auxiliary problem formed by the
equations 

u′′(x) + θ f(x, α(x, u(x)), β(x, v(x)), u′(x), v′(x)) =
u(x) + θ [µ m(x) − α(x, u(x))],

v′′(x) + ϑ h(x, α(x, u(x)), β(x, v(x)), u′(x), v′(x)) =
v(x) + ϑ [λ n(x) − β(x, v(x))],

(2.18)

for x ∈]0, 1[, and the boundary conditions

u(0) = θ [A1 − a1α(0, u(0)) + b1u
′(0) + α(0, u(0))],

u(1) = θ [B1 − c1α(1, u(1)) − d1u
′(1) + α(1, u(1))],

v(0) = ϑ [A2 − a2β(0, v(0)) + b2v
′(0) + β(0, v(0))],

v(1) = ϑ [B2 − c2β(1, v(1)) − d2v
′(1) + β(1, v(1))]

(2.19)
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where ai, bi, ci, di, Ai, Bi ∈ R, i = 1, 2, such that a2
i + bi > 0, c2

i + di > 0 and bi, di ≥ 0.
Take ri > 0, i = 1, 2, such that, ∀x ∈ [0, 1],

−ri < γi(x) ≤ Γi(x) < ri,

µ m(x) − f(x, γ1(x), β(x, v(x)), 0, v′(x)) − r1 − γ1(x) < 0,
µ m(x) − f(x,Γ1(x), β(x, v(x)), 0, v′(x)) + r1 − Γ1(x) > 0, (2.20)
λ n(x) − h(x, α(x, u(x)), γ2(x), u′(x), 0) − r2 − γ2(x) < 0,
λn(x) − h(x, α(x, u(x)),Γ2(x), u′(x), 0) + r2 − Γ2(x) > 0,

and
|Ai − aiΓi(0) + Γi(0)| < ri, |Ai − aiγi(0) + γi(0)| < ri,
|Bi − ciΓi(1) + Γi(1)| < ri, |Bi − ciγi(1) + γi(1)| < ri.

(2.21)

Claim 1. Every solution (u(x), v(x)) of the problems (2.18) and (2.19) verifies

|u(x)| < r1 and |v(x)| < r2, ∀x ∈ [0, 1],

independently of θ, ϑ ∈ [0, 1].

Assume, by contradiction, that there exist θ ∈ [0, 1], (u(x), v(x)) solution of (2.18) and
(2.19) and x ∈ [0, 1] such that |u(x)| ≥ r1.If u(x) ≥ r1, define

max
x∈[0,1]

u(x) := u(x0).

For x0 ∈]0, 1[ and θ ∈]0, 1], u′(x0) = 0 and u′′(x0) ≤ 0.By (2.20), we have the following
contradiction

0 ≥ u′′(x0)
= u(x0) + θ [µ m(x0) − α(x0, u(x0))] − θf(x0, α(x0, u(x0)), β(x0, v(x0)), u′(x0), v′(x0))
= u(x0) + θ [µ m(x0) − Γ1(x0)] − θf(x0,Γ1(x0), β(x0, v(x0)), 0, v′(x0))
≥ θ [µ m(x0) − f(x0,Γ1(x0), β(x0, v(x0)), 0, v′(x0)) + u(x0) − Γ1(x0)]
≥ θ [µ m(x0) − f(x0,Γ1(x0), β(x0, v(x0)), 0, v′(x0)) + r1 − Γ1(x0)] > 0.

If θ = 0, the contradiction arises from

0 ≥ u′′(x0) = u(x0) ≥ r1 > 0.

If x0 = 0, then
max
x∈[0,1]

u(x) := u(0),

and u′(0+) = u′(0) ≤ 0. By (2.19) and (2.21), we have

r1 ≤ u(0) = θ [A1 − a1α(0, u(0)) + b1u
′(0) + α(0, u(0))]

= θ [A1 − a1Γ1(0) + b1u
′(0) + Γ1(0)] ≤ θ [A1 − a1Γ1(0) + Γ1(0)]

≤ |A1 − a1Γ1(0) + Γ1(0)| < r1.

If x0 = 1 a contradiction is obtained analogously.

Then u(x) < r1 for x ∈ [0, 1] and regardless of θ. The other possible case where

u(x) > −r1, for x ∈ [0, 1],
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can be proved by similar techniques.

Therefore |u(x)| < r1 for all x ∈ [0, 1], regardless of θ .

By a similar method, it can be proved that |v(x)| < r2 for all x ∈ [0, 1] regardless of ϑ.

Claim 2. For every solution (u(x), v(x)) of the problems (2.18) and (2.19),

|u′(x)| < N1 and |v′(x)| < N2, ∀x ∈ [0, 1],

independently of θ, ϑ ∈ [0, 1], with N1 and N2 given by Lemma 2.1.3.

Define the continuous functions Fθ, Hϑ : [0, 1] × R4 → R, by

Fθ(x, y0, z0, y1, z1) := θ f(x, α(x, y0), β(x, z0), y1, z1) − y0 + θ α(x, y0),

and
Hϑ(x, y0, z0, y1, z1) := ϑ h(x, α(x, y0), β(x, z0), y1, z1) − z0 + ϑ β(x, z0),

with y0 ∈ [−r1, r1] and z0 ∈ [−r2, r2].

As the functions f, h : [0, 1] ×R4 → R satisfy a Nagumo-type condition relative to the
intervals [γ1(x),Γ1(x)] and [γ2(x),Γ2(x)], then

|Fθ(x, y0, z0, y1, z1)| ≤ |f(x, α(x, y0), β(x, z0), y1, z1)| + |y0| + |α(x, y0)|
≤ φ(|y1|) + 2r1,

and

|Hϑ(x, y0, z0, y1, z1)| ≤ |h(x, α(x, y0), β(x, z0), y1, z1)| + |z0| + |β(x, z0)|
≤ ψ(|z1|) + 2r2.

Therefore for continuous positive functions φ∗, ψ∗ : [0,+∞) → (0,+∞), given by

φ∗(|y1|) := φ(|y1|) + 2r1 and ψ∗(|z1|) := ψ(|z1|) + 2r2,

then, clearly, Fθ and Hϑ satisfy Nagumo conditions in the sets

E = {(x, y0, z0, y1, z1) ∈ [0, 1] × R4 : |y0| ≤ r1, |z0| ≤ r2},

and, by (2.7), we have ∫ N1

k1

ds

φ∗(s) =
∫ N1

k1

ds

φ(s) + 2r1
> 1,

and ∫ N2

k2

ds

ψ∗(s) =
∫ N2

k2

ds

ψ(s) + 2r2
> 1.

Therefore, by Lemma 2.1.3,

|u′(x)| < N1 and |v′(x)| < N2, ∀x ∈ [0, 1],

independently of θ, ϑ ∈ [0, 1].
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Claim 3. The problems (2.18) and (2.19), for θ = 1 and ϑ = 1, has at least one solution
(u, v).

Define the operators

L : (C2([0, 1]))2 → (C2([0, 1]))2 × R4,

given by
L(u, v) = (u′′ − u, v′′ − v, u(0), u(1), v(0), v(1)),

and
N(θ,ϑ) : (C1([0, 1]))2 → (C2([0, 1]))2 × R4,

given by
N(θ,ϑ)(u, v) = (X,Y,Aθ, Bθ, Aϑ, Bϑ),

being

X := −θ f(x, α(x, u(x)), β(x, v(x)), u′(x), v′(x)) + θ [µ m(x) − α(x, u(x))],

Y := −ϑ h(x, α(x, u(x)), β(x, v(x)), u′(x), v′(x)) + ϑ [λ n(x) − β(x, v(x))],
Aθ := θ [A1 − a1α(0, u(0)) + b1u

′(0) + α(0, u(0))],
Bθ := θ [B1 − c1α(1, u(1)) − d1u

′(1) + α(1, u(1))],
Aϑ := ϑ [A2 − a2β(0, v(0)) + b2v

′(0) + β(0, v(0))],
and

Bϑ := ϑ [B2 − c2β(1, v(1)) − d2v
′(1) + β(1, v(1))].

Since L is invertible, we define the completely continuous operator

T : (C2([0, 1]))2 → (C2([0, 1]))2,

given by
T(θ,ϑ)(u, v) = L−1N(θ,ϑ)(u, v).

For M := max{r1, r2, N1, N2} consider the set

Ω = {(u, v) ∈ C2([0, 1]) : ∥(u, v)∥ < M}.

By Claims 1 and 2, for all θ, ϑ ∈ [0, 1], the degree d(I − T(θ,ϑ),Ω1, 0) is well defined, and,
by homotopy invariance,

d(I − T(0,0),Ω, 0) = d(I − T(1,1),Ω, 0).

As the equation (u, v) = T(0,0)(u, v) admits only the null solution, then, by degree theory,

d(I − T(0,0),Ω, 0) = ±1,

and, in particular, the equation (u, v) = T(1,1)(u, v) has at least one solution.

That is, the problem is composed of the equations

u′′(x) + f(x, α(x, u(x)), β(x, v(x)), u′(x), v′(x)) =
u(x) + µ m(x) − α(x, u(x)),

v′′(x) + h(x, α(x, u(x)), β(x, v(x)), u′(x), v′(x)) =
v(x) + λ n(x) − β(x, v(x)),

(2.22)
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and the boundary conditions

u(0) = A1 − a1α(0, u(0)) + b1u
′(0) + α(0, u(0)),

u(1) = B1 − c1α(1, u(1)) − d1u
′(1) + α(1, u(1)),

v(0) = A2 − a2β(0, v(0)) + b2v
′(0) + β(0, v(0)),

v(1) = B2 − c2β(1, v(1)) − d2v
′(1) + β(1, v(1))

(2.23)

has at least one solution (u1(x), v1(x)) in Ω1.

Claim 4. The functions u1(x) and v1(x) are a solution of the initial problem (2.1), (2.2).

In fact, if the pair (u1(x), v1(x)) ∈ (C2[0, 1])2 is a solution of (2.22) and (2.23), it will
be also a solution of the initial problems (2.1) and (2.2), provided that

γ1(x) ≤ u1(x) ≤ Γ1(x), γ2(x) ≤ v1(x) ≤ Γ2(x), ∀x ∈ [0, 1].

Suppose, by contradiction, that there exists x ∈ [0, 1] such that u1(x) > Γ1(x), and define

max
x∈[0,1]

[u1(x) − Γ1(x)] := u1(x1) − Γ1(x1) > 0.

If x1 ∈]0, 1[ then

u′
1(x1) = Γ′

1(x1) and u′′
1(x1) ≤ Γ′′

1(x1),

and we have, by Definition 2.1.1, the following contradiction

0 ≥ u′′
1(x1) − Γ′′

1(x1)
= −f(x1, α(x1, u1(x1)), β(x1, v1(x1)), u′

1(x1), v′
1(x1))

+u(x1) + µ m(x1) − α(x1, u1(x1)) − Γ′′
1(x1)

= −f(x1,Γ1(x1), β(x1, v1(x1)),Γ′
1(x1), v′

1(x1)) + u(x1) + µ m(x1) − Γ1(x1) − Γ′′
1(x1)

≥ −f(x1,Γ1(x1),Γ2(x1),Γ′
1(x1), v′

1(x1)) + u(x1) + µ m(x1) − Γ1(x1) − Γ′′
1(x1)

> −f(x1,Γ1(x1),Γ2(x1),Γ′
1(x1), v′

1(x1)) + µ m(x1) − Γ′′
1(x1) ≥ 0.

For x1 = 0,
max
x∈[0,1]

[u1(x) − Γ1(x)] := u1(0) − Γ1(0) > 0

and
u′

1(0+) − Γ′
1(0+) = u′

1(0) − Γ′
1(0) ≤ 0.

By the boundary conditions (2.23) and Definition 2.1.1, this contradiction is obtained

Γ1(0) < u1(0) = A1 − a1α(0, u(0)) + b1u
′(0) + α(0, u(0))

= A1 − a1Γ1(0) + b1u
′(0) + Γ1(0)

≤ −b1Γ′
1(0) + b1u

′(0) + Γ1(0)
= b1[u′(0) − Γ′

1(0)] + Γ1(0) ≤ Γ1(0).

So, x1 ̸= 0 and by a similar method it is shown that x1 ̸= 1. Therefore

u1(x) ≤ Γ1(x), ∀x ∈ [0, 1].
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Defining
min
x∈[0,1]

[u1(x) − γ1(x)] := u1(x2) − γ1(x2) < 0,

it can be proved that u1(x) ≥ γ1(x), for all x ∈ [0, 1], by an analogous process.

Using the same technique, it can be shown that

γ2(x) ≤ v1(x) ≤ Γ2(x), ∀x ∈ [0, 1].

So, (u1(x), v1(x)) is a solution of (2.1)-(2.2), for the values of µ, λ ∈ R, such that there
are lower and upper solutions according to Definition 2.1.1.

Example 2.2.2. Consider the system
u′′(x) − sin

(
π
2u(x)

)
+ x

2v(x) − u′(x) + 1
v′2(x) + 1

= µ

v′′(x) + eu(x)−1 − v(x) + cos
(
π
2u

′(x)
)

− v′(x) = λ,

(2.24)

for x ∈ [0, 1], and µ, λ are real parameter, along with boundary conditions

u(0) = 0,
u(1) + u′(1) = 1,

v(0) = 0,
v(1) + v′(1) = 1.

(2.25)

The functions γ1, γ2,Γ1,Γ2 : [0, 1] → R, given by

γ1(x) = −x, γ2(x) = −x− 1,
Γ1(x) = x, Γ2(x) = x+ 1,

are, respectively, lower and upper solutions of (2.24) and (2.25) for µ and λ such that

µ ∈ [0, 1] and λ ∈
[1
e

− 1, 1
e

+ 1
]
.

The functions

f(x, y0, z0, y1, z1) = − sin
(
π

2 y0

)
+ x

2 z0 − y1 + 1
z2

1 + 1

and
h(x, y0, z0, y1, z1) = ey0−1 − z0 + cos

(
π

2 y1

)
− z1

are continuous and satisfy the Nagumo conditions (2.7) and (2.8). By Theorem 2.2.1, the
problems (2.24) and (2.25) has at least one solution (u1(x), v1(x)), which verifies

−x ≤ u1(x) ≤ x and − x− 1 ≤ v1(x) ≤ x+ 1, ∀x ∈ [0, 1].

Figures 2.1 show the admissible region for solution (u1(x), v1(x)).
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Fig. 2.1: At least one solution (u1(x), v1(x)). of problem (2.24) and (2.25) is located in the colored region,
when x ∈ [0, 1].

2.3 Application to the diffusion of information in social me-
dia

In [48, 97], the authors study the process of disseminating information in social media to
obtain, mathematical predictability in news dissemination to increase the efficiency of the
distribution of positive information and, at the same time, reduce information unwanted.
In short, it is considered a model to describe the flow of information, based on two similar
news sources, that spread with logistic growth independently together with an additional
effect one over the other.

It is addressed that, for a given piece of information initiated by two specific users
called sources, the density of influenced users in the network depends on the distance x
to any source. Based on this model we consider the following stationary system

u′′(x) + r1
d1
u(x)

(
1 − u(x)

K1

)
+ α1
d1
u(x)v(x) = µ m(x),

v′′(x) + r2
d2
v(x)

(
1 − v(x)

K2

)
+ α2
d2
u(x)v(x) = λ n(x),

(2.26)

together with the boundary conditions

u(0) − b1u
′(0) = 1,
u′(1) = 0,

v(0) − b2v
′(0) = 1,
v′(1) = 0,

(2.27)

where bi, di, ri,Ki ∈ R+ and αi ≥ 0, i = 1, 2, having the following meaning:

• u and v are the density of information from the different sources

• d1, d2 represent the popularity of the two pieces of information;

• r1, r2 are the speed with which information spreads within groups of users with the
same distance;

• K1,K2 represents the carrying capacity, which is the maximum possible density of
influenced users;
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• α1 measures the positive effect of news v on u and α2 measures the positive effect
of news u on v;

• m,n : [0, 1] → R+ are continuous functions, µ, λ real parameters, both relating with
distance of each source.

• b1, b2 are related with the initial spread of each source.

Define
m ≡ max

x∈[0,1]
m(x) and n ≡ max

x∈[0,1]
n(x),

consider K1 = 1 and K2 = 1, in the sense that the maximum load capacity is 100%, and,
as a numeric example, assume that

b1 ∈
]
0, 1

6

]
, b2 ∈

]
0, 1

2

]
,

2
3 + 11r1

144d1
+ 11(4π2 − 1)α1

48π2d1
< 1,

1
8 + (4π2 − 1)r2

16π4d2
+ 11(4π2 − 1)α2

48π2d2
<

3
2 .

Then the functions

γ1(x) = 3
4(x− 1)2, γ2(x) = 1

2(x− 1)2

Γ1(x) = 1
12x

4 − 1
6x

2 + 1, Γ2(x) = 1
4π2 cos2

(
π

2x
)

+ (4π2 − 1)
4π2

are, respectively, lower and upper solutions of problems (2.26) and (2.27) for

µ ∈
[

1
m

(
2
3 + 11r1

144d1
+ 11(4π2 − 1)α1

48π2d1

)
,

1
m

]
(2.28)

and
λ ∈

[
1
n

(
1
8 + (4π2 − 1)r2

16π4d2
+ 11(4π2 − 1)α2

48π2d2

)
,

3
2n

]
. (2.29)

Moreover, the problems (2.26) and (2.27) are particular cases of (2.1), (2.2), with

f(x, y0, z0, y1, z1) = r1
d1
y0 (1 − y0) + α1

d1
y0z0,

and
h(x, y0, z0, y1, z1) = r2

d2
z0 (1 − z0) + α2

d2
y0z0.

These functions verify the Nagumo conditions (2.7) and (2.8), relative to the intervals
y0 ∈ [γ1(x),Γ1(x)] and z0 ∈ [γ2(x),Γ2(x)], as

|f(x, y0, z0, y1, z1)| =
∣∣∣∣ r1
d1
y0 (1 − y0) + α1

d1
y0z0

∣∣∣∣
≤ r1

d1
|y0 (1 − y0)| + α1

d1
|y0z0|

≤ 1
2d1

(1
2r1 + α1

)
,
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|h(x, y0, z0, y1, z1)| =
∣∣∣∣ r2
d2
z0 (1 − z0) + α2

d2
y0z0

∣∣∣∣
≤ r2

d2
|z0 (1 − z0)| + α2

d2
|y0z0|

≤ 1
2d2

(1
2r2 + α2

)
.

and, trivially, ∫ +∞ ds
1

2di

(
1
2ri + αi

) = +∞, for i = 1, 2.

So by Theorem 2.2.1 the problems (2.26) and (2.27) have at least one solution (u(x), v(x)),
for the values of µ and λ verifying (2.28) and (2.29), such that

3
4(x− 1)2 ≤ u(x) ≤ 1

12x
4 − 1

6x
2 + 1,

and
1
2(x− 1)2 ≤ v(x) ≤ 1

4π2 cos2
(
π

2x
)

+ (4π2 − 1)
4π2 ,

for all x ∈ [0, 1].

The Figures 2.2 show the regions where this solution lies.

Fig. 2.2: At least one solution (u(x), v(x)). of problem (2.26) and (2.27) is located in the colored region,
when x ∈ [0, 1].
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Chapter 3

Ambrosetti–Prodi alternative for systems
of second-order differential equations

This chapter, based on the article [75], focuses on sufficient conditions to demand from
nonlinearities in order to be able to discuss, depending on the parameters, the existence
and non-existence of solutions for second-order systems of the type{

u′′
1(t) + f(t, u1(t), u2(t), u′

1(t)) = µ v1(t)
u′′

2(t) + g(t, u1(t), u2(t), u′
2(t)) = λ v2(t), (3.1)

for t ∈ [0, 1], with f, g : [0, 1] × R3 → R, v1, v2 : [0, 1] → R+ continuous functions and µ, λ
are real parameter, along with boundary conditions

aiui(0) − biu
′
i(0) = 0,

ciui(1) + diu
′
i(1) = 0 (3.2)

where ai, bi, ci, di ≥ 0, i = 1, 2, such that ai + bi > 0 and ci + di > 0.

The multiplicity of solutions will be obtained for a particular case of (3.1), (3.2), that
is,

{
u′′

1(t) + f(t, u1(t), u′
1(t)) = µ v1(t)

u′′
2(t) + g(t, u2(t), u′

2(t)) = λ v2(t), (3.3)

for t ∈ [0, 1], with f, g : [0, 1] × R2 → R, with boundary conditions, this is

ui(0) = ui(1) = 0, for i = 1, 2. (3.4)

Although the above system is not coupled, we decided to present it, to show the
readers how the multiplicity arguments can be used in the Ambrosetti-Prodi alternative.
This technique, for proving the existence of multiple solutions, remains an open problem
and will be the aim of future work.

Common to all of these problems is the discussion of the so-called Ambrosetti–Prodi
alternative: there are some values ξ0 and ξ1, of a parameter ξ, such that the problem has
no solution for ξ < ξ0, at least one if ξ = ξ0, or two solutions, for ξ0 < ξ < ξ1.

Recently, in [69], the authors presented a technique to discuss the existence of coupled
systems of two Ambrosetti-Prodi-type second-order fully differential equations, where it
is proved the existence of solutions for the values of the parameters for which there are
lower and upper solutions for the system.

This paper extends, for the first time, as far as we know, the Ambrosetti–Prodi al-
ternative to coupled systems of differential equations with two parameters: the existence

19
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and nonexistence of solutions is obtained for the problem (3.1), (3.2), and the multiplicity
discussion for a particular case.

The method relies on the lower and upper solutions technique together with a Nagumo
condition to estimate the values of the first derivatives. Leray-Schauder topological degree
properties play a key role to obtain the multiplicity of solutions [39]. As it usual in this
method, the results provide also a localization for such solutions in a strip bounded by
lower and upper solutions. This feature is particularly useful in practice, as we can see, in
the application of these theorems to study the population dynamics, namely to a Lotka-
Volterra steady-state system with migration, in the last section.

The chapter is organized as it follows: Section 3.1 contains definitions and some auxil-
iary results, such as the a priori Nagumo estimation for the first derivatives and a previous
result, used forward in the main results. The Section 3.2 and Sections 3.3 make the dis-
cussion on the two parameters for the existence and multiplicity of solutions, respectively.
The Section 3.4 presents an application to study the interactions between two species
under two scenarios: mutualism and neutralism.

3.1 Definitions and auxiliary results

In this section, some definitions, lemmas and theorem will be introduced for the subsequent
analysis.

Let X = C1[0, 1] be the usual Banach space equipped with the norm ∥ · ∥C1 , defined
by

∥ x∥C1 := max{∥ x∥, ∥ x′∥},

where
∥x∥ := max

t∈[0,1]
|x(t)|,

and X2 = C1[0, 1] × C1[0, 1] with the norm

∥ (x, y)∥X2 = max{∥ x∥C1 , ∥ y∥C1} (3.5)

The so-called Nagumo condition, introduced by [80], establishes an a priori estimation
for the first derivative of the solution of the system (3.1), provided that it satisfies an
adequate framework.

Definition 3.1.1. Let αi(t), βi(t), i = 1, 2, be continuous functions such that

αi(t) ≤ βi(t), for all t ∈ [0, 1],

and consider the set

S = {(t, y1, y2, y3) ∈ [0, 1] × R3 : α1(t) ≤ y1 ≤ β1(t), α2(t) ≤ y2 ≤ β2(t)}. (S)

A continuous function h : [0, 1] × R3 → R satisfies a Nagumo-type condition in the set S,
if, there is a continuous positive function φ : [0,+∞) → (0,+∞), verifying

|h(t, y1, y2, y3)| ≤ φ(|y3|), (3.6)
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and such that ∫ +∞

0

ds

φ(s) = +∞. (3.7)

The a priori estimate for the first derivatives is given by next lemma, following the
arguments of [69].

Lemma 3.1.2. Suppose that the continuous functions f, g : [0, 1] × R3 → R satisfy a
Nagumo type condition (3.6), (3.7) in S. Then for every solution (u1, u2) ∈ (C2[0, 1])2 of
(3.1) verifying

α1(t) ≤ u1(t) ≤ β1(t) and α2(t) ≤ u2(t) ≤ β2(t), ∀t ∈ [0, 1], (3.8)

there are N1 > 0, N2 > 0, such that

∥u′
1∥ ≤ N1 and ∥u′

2∥ ≤ N2. (3.9)

Remark 3.1.3. The constant N1 depends only on the parameter µ and on the functions
v1, α1, and β1. Analogously, N2 depends only on λ, v2, α2, and β2.
However, if the parameters µ and λ, belong to bounded sets, N1 and N2 can be taken
independently of µ and λ.

To apply lower and upper solutions method, depending on the values of the parameters
µ and λ, we take the followings coupled functions:

Definition 3.1.4. Let ai, bi, ci, di ≥ 0, such that ai + bi > 0, ci + di > 0, for i = 1, 2.
A pair of functions (γ1, γ2) ∈ (C2(]0, 1[) ∩C1([0, 1]))2 is a lower solution of problem (3.1),
(3.2) if, for all t ∈ [0, 1],

γ′′
1 (t) + f(t, γ1(t), γ2(t), γ′

1(t)) ≥ µ v1(t),

γ′′
2 (t) + g(t, γ1(t), γ2(t), γ′

2(t)) ≥ λ v2(t),
(3.10)

and, for i = 1, 2,
aiγi(0) − biγ

′
i(0) ≤ 0,

ciγi(1) + diγ
′
i(1) ≤ 0. (3.11)

A pair of functions (ϕ1, ϕ2) ∈ (C2(]0, 1[) ∩ C1([0, 1]))2 is an upper solution of problem
(3.1), (3.2) if, for all t ∈ [0, 1],

ϕ′′
1(t) + f(t, ϕ1(t), ϕ2(t), ϕ′

1(t)) ≤ µ v1(t),

ϕ′′
2(t) + g(t, ϕ1(t), ϕ2(t), ϕ′

2(t)) ≤ λ v2(t),
(3.12)

and, for i = 1, 2,
aiϕi(0) − biϕ

′
i(0) ≥ 0,

ciϕi(1) + diϕ
′
i(1) ≥ 0. (3.13)

The first theorem is an existence and localization result, which is a particular case of
Theorem 3.1. of [69]. In short, it guarantees the existence of a solution for the values of
µ and λ such that there are lower and upper solutions of the problem (3.1), (3.2).
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Theorem 3.1.5. Let f, g : [0, 1] × R3 → R be continuous functions. If there are lower
and upper solutions of (3.1)-(3.2), (γ1, γ2) and (ϕ1, ϕ2), respectively, according Definition
3.1.4, such that

γi(x) ≤ ϕi(x), i = 1, 2, ∀x ∈ [0, 1], (3.14)

and f and g verify Nagumo conditions as in Definition 3.1.1, relative to the intervals
[γ1(x), ϕ1(x)] and [γ2(x), ϕ2(x)], for all x ∈ [0, 1] , with

f(x, y0, z0, y1) nondecreasing in z0, (3.15)

for x ∈ [0, 1] ,

min
{

min
x∈[0,1]

γ′
1(x), min

x∈[0,1]
ϕ′

1(x)
}

≤ y1 ≤ max
{

max
x∈[0,1]

γ′
1(x), max

x∈[0,1]
ϕ′

1(x)
}
,

and
g(x, y0, z0, z1) nondecreasing in y0,

for x ∈ [0, 1] ,

min
{

min
x∈[0,1]

γ′
2(x), min

x∈[0,1]
ϕ′

2(x)
}

≤ z1 ≤ max
{

max
x∈[0,1]

γ′
2(x), max

x∈[0,1]
ϕ′

2(x)
}
.

Then there is at least a pair (u(x), v(x)) ∈ (C2[0, 1])2 solution of (3.1)-(3.2) and, moreover,

γ1(x) ≤ u(x) ≤ ϕ1(x), γ2(x) ≤ v(x) ≤ ϕ2(x), ∀x ∈ [0, 1]. (3.16)

3.2 Existence and Non-Existence of Solution

A preliminary discussion of the values of parameters µ and λ for which it is possible to
guarantee the existence and non-existence of a solution for system (3.1) with boundary
conditions (3.2), is given by next theorem:

Theorem 3.2.1. Let f, g : [0, 1] × R3 → R be continuous functions that verify conditions
Theorem 3.1.5. If there are µ1, λ1 ∈ R, p > 0 and q > 0 that satisfy

f(t, 0, 0, 0)
v1(t) < µ1 <

f(t, y1, y2, 0)
v1(t) , (3.17)

for every t ∈ [0, 1] , y1 ≤ −p and y2 ∈ R,

g(t, 0, 0, 0)
v2(t) < λ1 <

g(t, y1, y2, 0)
v2(t) , (3.18)

for every t ∈ [0, 1] , y1 ∈ R and y2 ≤ −q, then there exist µ0 < µ1 and λ0 < λ1 (with
possibility of µ0 = −∞ and λ0 = −∞) such that:

1. if µ < µ0 or λ < λ0, (3.1), (3.2) there is no solution;

2. if µ0 < µ ≤ µ1 and λ0 < λ ≤ λ1, (3.1), (3.2) there is at least one solution.
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Proof. Claim 1: There exists µ̄ < µ1 and λ∗ < λ1 such that (3.1), (3.2) has a solution
for µ = µ̄ and λ = λ∗.

Defining

µ̄ := max
t∈[0,1]

{
f(t, 0, 0, 0)
v1(t)

}
and λ∗ := max

t∈[0,1]

{
g(t, 0, 0, 0)
v2(t)

}
,

there are t̄, t∗ ∈ [0, 1] such that

f(t, 0, 0, 0)
v1(t) ≤ µ̄ = f(t̄, 0, 0, 0)

v1(t̄) < µ1,

and
g(t, 0, 0, 0)
v2(t) ≤ λ∗ = g(t∗, 0, 0, 0)

v2(t∗) < λ1,

for all t ∈ [0, 1].

Then the functions ϕ1(t) ≡ 0 and ϕ2(t) ≡ 0 are upper solutions of problem (3.1), (3.2)
for µ = µ̄ and λ = λ∗. On the other hand, γ1(t) = −p and γ2(t) = −q are lower solution of
problem (3.1), (3.2) for µ = µ̄ and λ = λ∗, since, by (3.17), and the boundary conditions

• γ′′
1 (t) = 0 > µ1 v1(t) − f(t,−p,−q, 0) > µ̄ v1(t) − f(t,−p,−q, 0);

• γ′′
2 (t) = 0 > λ1 v2(t) − g(t,−p,−q, 0) > λ∗ v2(t) − g(t,−p,−q, 0);

• − a1p ≤ 0 and − c1p ≤ 0;

• − a2q ≤ 0 and − c2q ≤ 0.

As f and g satisfy Nagumo conditions on the set

S1 = {(t, y1, y2, y3) ∈ [0, 1] × R3 : −p ≤ y1 ≤ 0, − q ≤ y2 ≤ 0},

then, by Theorem 3.1.5, there exists at least one solution of problem (3.1), (3.2) for
µ = µ̄ < µ1 and λ = λ∗ < λ1.

Claim 2: If (3.1), (3.2) has a solution for µ = σ < µ1 and λ = ρ < λ1, then it has a
solution for µ ∈ [σ, µ1] and λ ∈ [ρ, λ1].

Let (u1σ(t), u2ρ(t)) be a solution of the problem (3.1), (3.2) for µ = σ < µ1 and
λ = ρ < λ1, that is 

u1
′′
σ(t) + f(t, u1σ(t), u2ρ(t), u1

′
σ(t)) = σ v1(t)

u2
′′
ρ(t) + g(t, u1σ(t), u2ρ(t), u2

′
ρ(t)) = ρ v2(t).

The pair of functions (u1σ(t), u2ρ(t)) is an upper solution of (3.1), (3.2), for the values
of µ and λ such that σ ≤ µ ≤ µ1 and ρ ≤ λ ≤ λ1, since

u1
′′
σ(t) = σ v1(t) − f(t, u1σ(t), u2ρ(t), u1

′
σ(t)) ≤ µ v1(t) − f(t, u1σ(t), u2ρ(t), u1

′
σ(t))
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and

u2
′′
ρ(t) = ρ v2(t) − g(t, u1σ(t), u2ρ(t), u2

′
ρ(t)) ≤ λ v2(t) − g(t, u1σ(t), u2ρ(t), u2

′
ρ(t)).

while the boundary conditions are trivially checked.

For p > 0 and q > 0, defined in (3.23) and (3.24) consider P > 0 and Q > 0 large
enough, such that

P ≥ p, Q ≥ q, u1σ(0) ≥ −P, u1σ(1) ≥ −P, u2ρ(0) ≥ −Q and u2ρ(1) ≥ −Q. (3.19)

Then (−P,−Q) is lower solution of problem (3.1), (3.2) for µ ≤ µ1 and λ ≤ λ1, since, by
(3.17) and the boundary conditions

• 0 > µ1 v1(t) − f(t,−P,−Q, 0) ≥ µ v1(t) − f(t,−P,−Q, 0);

• 0 > λ1 v2(t) − g(t,−P,−Q, 0) ≥ λ v2(t) − g(t,−P,−Q, 0);

• − a1P ≤ 0 and − c1P ≤ 0;

• − a2Q ≤ 0 and − c2Q ≤ 0.

(3.20)

To apply Theorem 3.1.5, it remains to justify that

−P ≤ u1σ(t) and −Q ≤ u2ρ(t), ∀t ∈ [0, 1].

Assume, by contradiction, that the first inequality is not verified. Then there exists
t ∈ [0, 1] such that u1σ(t) < −P and define

min
t∈[0,1]

u1σ(t) := u1σ(t0) < −P.

By (3.19), u1
′
σ(t0) = 0, u1

′′
σ(t0) ≥ 0 and, by (3.17), we obtain the contradiction

0 ≤ u1
′′
σ(t0) = σ v1(t0) − f(t0, u1σ(t0), u2ρ(t0), 0)

≤ µ v1(t0) − f(t0, u1σ(t0), u2ρ(t0), 0)
≤ µ1 v1(t0) − f(t0, u1σ(t0), u2ρ(t0), 0) < 0.

Then −P ≤ u1σ(t), for all t ∈ [0, 1].

Using a similar method, by (3.18) it can be shown that −Q ≤ u2ρ(t), for all t ∈ [0, 1].

Therefore, by Theorem 3.1.5, there exists at least one solution (u1(t), u2(t)) of the
problem (3.1), (3.2) for the values of µ and λ such that µ ∈ [σ, µ1] and λ ∈ [ρ, λ1].

Claim 3: There exist µ0 and λ0 such that:

for µ < µ0 or λ < λ0, (3.1), (3.2) has no solution;

for µ0 < µ ≤ µ1 and λ0 < λ ≤ λ1, (3.1), (3.2) has at least one solution.

Consider set
A = {(µ, λ) ∈ R2 : (3.1), (3.2) has solution}. (3.21)
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with the order relation given by

(x, y) ≤ (z, w) ⇔ x ≤ z ∧ y ≤ w.

The set A is not empty because, by Claim 1, (µ̄, λ∗) ∈ A, and define

(µ0, λ0) := inf A. (3.22)

If (3.1), (3.2) has a solution for all µ < µ1 and λ < λ1, then µ0 = −∞ and λ0 = −∞.

By Claim 1 and (3.22), µ0 ≤ µ̄ < µ1 and λ0 ≤ λ∗ < λ1. By Claim 2, (3.1), (3.2) has at
least one solution for the values of µ and λ such that µ0 < µ ≤ µ1 and λ0 < λ ≤ λ1.

Replacing, in conditions (3.17), (3.18), f , g, y1 and y2 by −f , −g, −y1 and −y2,
respectively, we obtain a dual version of the previous theorem, whose proof follows the
same type of arguments:

Theorem 3.2.2. Let f, g : [0, 1] × R3 → R be continuous functions verifying the assump-
tions of Theorem 3.1.5.
If there are µ1, λ1 ∈ R, p > 0 and q > 0 that satisfy

f(t, 0, 0, 0)
v1(t) > µ1 >

f(t, y1, y2, 0)
v1(t) , (3.23)

for every t ∈ [0, 1] , y1 ≥ p and y2 ∈ R,

g(t, 0, 0, 0)
v2(t) > λ1 >

g(t, y1, y2, 0)
v2(t) , (3.24)

for every t ∈ [0, 1] , y1 ∈ R and y2 ≥ q, then there exists µ0 > µ1 and λ0 > λ1 (with
possibility µ0 = +∞ and λ0 = +∞) such that:
1. if µ > µ0 or λ > λ0, (3.1), (3.2) has no solution;
2. if µ0 > µ ≥ µ1 and λ0 > λ ≥ λ1, (3.1), (3.2) has at least one solution.

3.3 Multiplicity of Solution

The multiplicity result is obtained for a particular case of problem (3.1), (3.2): a standard
system where the differential equations are independent, that is, with f, g : [0, 1]×R2 → R.

The arguments are based on the topological Leray-Schauder degree, along with strict
lower and upper solutions, as in the next definition:

Definition 3.3.1. i. A pair of functions (γ1, γ2) ∈ (C2(]0, 1[) ∩ C1([0, 1]))2 is a strict
lower solution of problem (3.3), (3.4) if, for all t ∈ [0, 1],

γ′′
1 (t) + f(t, γ1(t), γ′

1(t)) > µ v1(t),

γ′′
2 (t) + g(t, γ2(t), γ′

2(t)) > λ v2(t),
(3.25)
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and
γi(0) < 0, γi(1) < 0, for i = 1, 2. (3.26)

ii. A pair of functions (ϕ1, ϕ2) ∈ (C2(]0, 1[) ∩ C1([0, 1]))2 is a strict upper solution of
problem (3.3), (3.4) if, for all t ∈ [0, 1],

ϕ′′
1(t) + f(t, ϕ1(t), ϕ′

1(t)) < µ v1(t),

ϕ′′
2(t) + g(t, ϕ2(t), ϕ′

2(t)) < λ v2(t),
(3.27)

and
ϕi(0) > 0, ϕi(1) > 0, for i = 1, 2. (3.28)

For the functional framework, define the operators

L : (C2([0, 1]))2 → (C([0, 1]))2 × R4

given by
L(u1, u2) = (u′′

1, u
′′
2, u1(0), u1(1), u2(0), u2(1)) (3.29)

and
N(µ,λ) : (C1([0, 1]))2 → (C([0, 1]))2 × R4

given by
N(µ,λ)(u1, u2) = (X,Y, 0, 0, 0, 0),

being
X := −θ f(t, δ1(t, u1(t)), u1

′(t)) + u1(t) + θ [µ v1(t) − δ1(t, u1(t))],
and

Y := −ϑ g(t, δ2(t, u2(t)), u2
′(t)) + u2(t) + ϑ [λ v2(t) − δ2(t, u2(t))].

Since L is invertible, we can define the completely continuous operator

T : (C2([0, 1]))2 → (C([0, 1]))2

given by
T(θ,ϑ)(u1, u2) = L−1N(µ,λ)(u1, u2).

Clearly, the operator T is compact, and the following lemma allows to evaluate the
topological degree, d(I − T ,Ω, (0, 0)):

Lemma 3.3.2. Assume that there are strict lower and upper solutions of (3.3), (3.4),
γi(t) and ϕi(t), respectively, with

γi(t) < ϕi(t), i = 1, 2, ∀t ∈ [0, 1],

where the continuous functions f, g : [0, 1] × R2 → R verify the Nagumo conditions as in
Definition 3.1.1, relative to the intervals [γ1(t), ϕ1(t)] and [γ2(t), ϕ2(t)].
Then, there is M > 0 such that, for

Ω =
{

(u1, u2) ∈ (C2([0, 1]))2 : γi(t) < ui(t) < ϕi(t), ∥u′
i∥ < M, i = 1, 2

}
we have

d(I − T(1,1),Ω, (0, 0)) = ±1.
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Remark 3.3.3. By Remark 3.1.3, it is possible to consider the same set Ω for all equations
(3.3), regardless of µ and λ, provided that γi(t) and ϕi(t) are strict lower and upper
solutions of (3.3), (3.4) and (µ, λ) belongs to a bounded set.

Proof. Consider the truncature functions δi : [0, 1] × R → R, i = 1, 2,

δi(t, yi) :=


ϕi(t) if yi > ϕi(t)
yi if γi(t) ≤ yi ≤ ϕi(t)

γi(t) if yi < γi(t).
(3.30)

For θ, ϑ ∈ [0, 1], consider the homotopic, truncated and perturbed problem composed by
the system

u1
′′(t) + θ f(t, δ1(t, u1(t)), u1

′(t)) = u1(t) + θ [µ v1(t) − δ1(t, u1(t))]

u2
′′(t) + ϑ g(t, δ2(t, u2(t)), u2

′(t)) = u2(t) + ϑ [λ v2(t) − δ2(t, u2(t))],
(3.31)

and the boundary conditions (3.4).

With these definitions, problem (3.31), (3.4) is equivalent to the operator equation

T(θ,ϑ)(u1, u2) = (u1, u2). (3.32)

For i = 1, 2, take Ri > 0 such that, for every t ∈ [0, 1],

−Ri < γi(t) ≤ ϕi(t) < Ri,

µ v1(t) − f(t, γ1(t), 0) −R1 − γ1(t) < 0,
µ v1(t) − f(t, ϕ1(t), 0) +R1 − ϕ1(t) > 0, (3.33)
λ v2(t) − g(t, γ2(t), 0) −R2 − γ2(t) < 0,
λ v2(t) − g(t, ϕ2(t), 0) +R2 − ϕ2(t) > 0.

By Lemma 3.1.2, and applying the technique suggested in the proof of Theorem 3.1.5
(see [69], Theorem 3.1), adapted to strict lower and upper solutions γi(t) and ϕi(t), there
are positive real numbers Mi, i = 1, 2, such that

∥u′
1∥ < M1 and ∥u′

2∥ < M2,

independently of the parameters θ and ϑ.

Defining

Ω1 = {(u1, u2) ∈ (C2([0, 1]))2 : ∥ui∥ < Ri, ∥u′
i∥ < Mi, i = 1, 2},

then every solution of (3.32) belongs to Ω1, for all (θ, ϑ) ∈ [0, 1]2 , (u1, u2) /∈ ∂Ω1 and, so,
the degree d(I − T(θ,ϑ),Ω1, (0, 0)) is well defined for every (θ, ϑ) ∈ [0, 1]2 .

For (θ, ϑ) = (0, 0), the equation T(0,0)(u1, u2) = (u1, u2), that is, the homogeneous
linear problems 

ui
′′(t) − ui(t) = 0

ui(0) = 0
ui(1) = 0, for i = 1, 2,
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admits only the null solution, then, by degree theory, d(I − T(0,0),Ω1, (0, 0)) = ±1, and by
the homotopy invariance

±1 = d(I − T(0,0),Ω1, (0, 0)) = d(I − T(1,1),Ω1, (0, 0)). (3.34)

Therefore, problem (3.31), (3.4) has, at least, a solution (ũ1, ũ2) for (θ, ϑ) = (1, 1).

Let us prove that (ũ1, ũ2) ∈ Ω. Assume, by contradiction, that there is t ∈ [0, 1] such
that γ1(t) ≥ ũ1(t) and define

max
t∈[0,1]

(γ1(t) − ũ1(t)) := γ1(t0) − ũ1(t0) ≥ 0.

By (3.4) and (3.26), t0 ∈]0, 1[, γ′
1(t0) = ũ′

1(t0), and γ′′
1 (t0) − ũ′′

1(t0) ≤ 0. Therefore,by
(3.15), we have the contradiction

γ′′
1 (t0) ≤ ũ′′

1(t0) = −f(t0, δ1(t0, ũ1(t0)), ũ1
′(t0)) + ũ1(t0) + µv1(t0) − δ1(t0, ũ1(t0))

= −f(t0, γ1(t0), γ′
1(t0)) + ũ1(t0) − γ1(t0) + µv1(t0)

≤ −f(t0, γ1(t0), γ′
1(t0)) + µv1(t0) < γ′′

1 (t0).

So, γ1(t) < ũ1(t), for all t ∈ [0, 1].

As the other inequalities can be obtained by similar arguments, we have

γ1(t) < ũ1(t) < ϕ1(t), γ2(t) < ũ2(t) < ϕ2(t), ∀t ∈ [0, 1],

and, therefore, (ũ1, ũ2) ∈ Ω .

For
M := max

i=1,2
{∥γi∥C1 , ∥ϕi∥C1 ,Mi} , (3.35)

Ω ⊂ Ω1, and, by (3.34) and the excision property of the degree,

±1 = d(I − T(1,1),Ω1, (0, 0)) = d(I − T(1,1),Ω, (0, 0)).

Remark 3.3.4. Remark that, from (3.30), if (u1, u2) ∈ Ω is a solution of problem (3.31),
(3.4), then is a solution of (3.3), (3.4), too.

The multiplicity result requires extra assumptions on the nonlinearities:

Theorem 3.3.5. Let f, g : [0, 1] × R2 → R be continuous functions such that there are
µ1, λ1 ∈ R, p > 0 and q > 0 that satisfy

f(t, 0, 0)
v1(t) < µ1 <

f(t, y1, 0)
v1(t) , (3.36)

for every t ∈ [0, 1] , y1 ≤ −p,

g(t, 0, 0)
v2(t) < λ1 <

g(t, y1, 0)
v2(t) , (3.37)
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for every t ∈ [0, 1] , y2 ≤ −q,

f(t, y1, y2) and g(t, y1, y2) are nonincreasing on y1, (3.38)

for all (t, y2) ∈ [0, 1] × R.
Assume that there are ki ∈ R, i = 1, 2, with k1 ≥ −p and k2 ≥ −q, such that, every
solution (u1(t), u2(t)) of (3.3), (3.4), with µ0 < µ1 and λ0 < λ1, satisfies

ui(t) < ki, i = 1, 2, ∀ ∈ [0, 1], (3.39)

and there exist mi ∈ R, i = 1, 2, such that

f(t, y1, y2) ≥ m1v1(t) (3.40)

for (t, y1, y2) ∈ [0, 1] × [−p, k1] × R and

g(t, y1, y2) ≥ m2v2(t) (3.41)

for (t, y1, y2) ∈ [0, 1] × [−q, k2] × R.
Then numbers µ0 and λ0, given by Theorem 3.2.1, are finite and:
1. if µ < µ0 or λ < λ0, (3.3), (3.4 ) there is no solution;
2. if µ = µ0 and λ = λ0, (3.3), (3.4 ) there is at least one solution;
3.if µ0 < µ ≤ µ1 and λ0 < λ ≤ λ1, (3.3), (3.4) there are at least two solutions.

Proof. Claim 1: Every solution (u1(t), u2(t)) of the problem (3.3), (3.4), for (µ, λ) ∈
]µ0, µ1] × ]λ0, λ1], verifies

−p < u1(t) < k1 and − q < u2(t) < k2, ∀t ∈ [0, 1].

By (3.39), it will suffice to prove that any solution (u1(t), u2(t)) of (3.3), (3.4), with

(µ, λ) ∈ ]µ0, µ1] × ]λ0, λ1], satisfies

−p < u1(t) and − q < u2(t), ∀t ∈ [0, 1].

Assume, by contradiction, that there is µ ∈]µ0, µ1], such that u1(t) ≤ −p, and define

min
t∈[0,1]

u1(t) := u1(t1) ≤ −p < 0.

By (3.4), t1 ∈ ]0, 1[, and, therefore,

u′
1(t1) = 0, u′′

1(t) ≥ 0.

By (3.36), the following contradiction holds

0 ≤ u′′
1(t1) = µv1(t1) − f(t1, u1(t1), u′

1(t1))
≤ µ1v1(t1) − f(t1, u1(t1), 0) < 0.

Therefore
−p < u1(t) < k1, ∀t ∈ [0, 1],

and, by (3.37) and similar arguments, it can be proved that

−q < u2(t) < k2, ∀t ∈ [0, 1].
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Claim 2: The numbers µ0 and λ0 are finite.

If, by contradiction, µ0 = −∞ and λ0 = −∞, then, by Theorem 3.2.1, problem (3.3),
(3.4) has a solution for any values of µ and λ such that µ ≤ µ1 and λ ≤ λ1.

Let (u1(t), u2(t)) be a solution of (3.3), (3.4), for µ ≤ µ1 and λ ≤ λ1.

Then, by (3.41), we have

u′′
1(t) = µv1(t) − f(t, u1(t), u′

1(t)) ≤ µv1(t) −m1v1(t) = (µ−m1)v1(t). (3.42)

Define
v10 := min

t∈[0,1]
v1(t) > 0,

and consider µ small enough, such that

m1 − µ > 0 and (m1 − µ)v10
16 > k1.

By (3.4), there is t2 ∈]0, 1[ such that u′
1(t2) = 0.

For t < t2 by (3.42),

u′
1(t) = −

∫ t2

t
u′′

1(ζ)dζ ≥
∫ t2

t
(m1 − µ)v1(ζ)dζ ≥ (m1 − µ)(t2 − t)v10.

For t ≥ t2

u′
1(t) =

∫ t

t2
u′′

1(ζ)dζ ≤ (µ−m1)(t− t2)v10.

Choose I = [0, 1
4 ], or I = [3

4 , 1], such that |t2 − t| ≥ 1
4 , for t ∈ I.

In the first case,
u′

1(t) ≥ (m1 − µ)v10
4 , ∀t ∈ I,

and the following contradiction with (3.39) holds:

0 =
∫ 1

0
u′

1(t)dt =
∫ 1

4

0
u′

1(t)dt+
∫ 1

1
4

u′
1(t)dt

≥
∫ 1

4

0

(m1 − µ)v10
4 dt− u1

(1
4

)
= (m1 − µ)v10

16 − u1

(1
4

)
> k1 − u1

(1
4

)
.

If I = [3
4 , 1], then

u′
1(t) ≤ (µ−m1)v10

4 , ∀t ∈ I,

and, following the same technique, an analogous contradiction is obtained. So µ0 is finite.

Analogously, it can be shown that λ0 is finite.
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Claim 3: For (µ, λ) ∈ ]µ0, µ1] × ]λ0, λ1] there is a second solution of (3.3), (3.4).

As both µ0 and λ0 are finite, by Theorem 3.2.1, there exist µ−1 < µ0 or λ−1 < λ0 such
that (3.3), (3.4) has no solution for µ = µ−1 or λ = λ−1.

In the first case, by Lemma 3.1.2 and Remark 3.1.3, it is possible to consider ρ >
0, large enough, such that the estimation ∥u′

i∥ < ρ, i = 1, 2, holds for every solution
(u1(t), u2(t)) of (3.3), (3.4), with µ ∈ [µ−1, µ1] or λ ∈ [λ−1, λ1].

Consider
M∗ := max {p, q, |ki| , i = 1, 2} , (3.43)

and the set

Ω∗ = {(u1, u2) ∈ (C2([0, 1]))2 : ∥ui∥ < M∗, ∥u′
i∥ < ρ, i = 1, 2}. (3.44)

Together with the linear operator L, given by (3.29), define the nonlinear operator

N ∗
(µ,λ) : (C1([0, 1]))2 → (C([0, 1]))2 × R4

by

N ∗
(µ,λ)(u1, u2) =

 µv1(t) − f(t, u1(t), u1
′(t)),

λv2(t) − g(t, u2(t), u2
′(t)),

0, 0, 0, 0

 ,
and the completely continuous operator

T ∗ : (C2([0, 1]))2 → (C([0, 1]))2

given by
T ∗

(µ,λ)(u1, u2) = L−1N(µ,λ)(u1, u2).

By the definition of Ω∗ and Claim 1, the degree d(I − T ∗
(µ,λ),Ω∗, (0, 0)) is well defined for

every (µ, λ) ∈ [µ−1, µ1] × [λ0, λ−1] , and, by degree theory,

d(I − T ∗
(µ−1,λ−1),Ω∗, (0, 0)) = 0.

Therefore, for the homotopy H : [0, 1] → R2 on the parameters (µ, λ), given by

H(s) = ((1 − s)µ−1 + sµ1, (1 − s)λ−1 + sλ1) ,

it is clear that the degree d(I − T ∗
H(s),Ω∗, (0, 0)) is well defined for every s ∈ [0, 1] , and

(µ, λ) ∈ [µ−1, µ1] × [λ−1, λ1].

By the invariance under homotopy,

0 = d(I − T ∗
(µ−1,λ−1),Ω∗, (0, 0)) = d(I − T ∗

(µ,λ),Ω∗, (0, 0)), (3.45)

for (µ, λ) ∈ [µ−1, µ1] × [λ−1, λ1].

Take (µ∗, λ∗) ∈]µ0, µ1]×]λ0, λ1] ⊂ [µ−1, µ1] × [λ−1, λ1] and let (u∗
1(t), u∗

2(t)) be a solu-
tion of (3.3)-(3.4) with (µ, λ) = (µ∗, λ∗), which exists by Theorem 3.2.1.
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By Claim 1 and (3.43) it is possible to consider εi > 0, i = 1, 2, such that

|u∗
i (t) + εi| < M∗, i = 1, 2, for t [0, 1] . (3.46)

For the functions given by

ũ1(t) := u∗
1(t) + ε1, ũ2(t) := u∗

2(t) + ε2,

the pair (ũ1(t), ũ2(t)) is a strict upper solution of (3.3), (3.4), for µ∗ < µ ≤ µ1 and
λ∗ < λ ≤ λ1, as we have:

ũ′′
1(t) = u′′∗

1 (t) = µ∗v1(t) − f(t, u∗
1(t), u∗′

1 (t))
< µv1(t) − f(t, u∗

1(t), ũ′
1(t))

≤ µv1(t) − f(t, u∗
1(t) + ε1, ũ

′
1(t))

= µv1(t) − f(t, ũ1(t), ũ′
1(t)).

Analogously it can be proved that

ũ′′
2(t) = u′′∗

2 (t) < λv2(t) − g(t, ũ2(t), ũ′
2(t)).

Moreover, the pair (−p,−q) is a strict lower solution of (3.3), (3.4), for µ ≤ µ1 and
λ ≤ λ1, as, by (3.36) and (3.37),

0 > µ1 v1(t) − f(t,−p, 0) ≥ µ v1(t) − f(t,−p, 0),
0 > λ1 v2(t) − g(t,−q, 0) ≥ λ v2(t) − g(t,−q, 0).

By Claim 1,
−p < u∗

1(t) < u∗
1(t) + ε1 = ũ1(t),

and
−q < u∗

2(t) < u∗
2(t) + ε2 = ũ2(t), ∀t ∈ [0, 1].

By Lemma 3.1.2 and Remark 3.3.3, there is ρ0 > 0,independent of µ and λ, such that for
the set

Ωε =
{

(u1, u2) ∈ (C2([0, 1]))2 : −p < u1(t) < ũ1(t),
−q < u2(t) < ũ2(t), ∥u′

i∥ < ρ0, i = 1, 2

}
the degree

d(I − T ∗
(µ,λ),Ωε, (0, 0)) = ±1, for (µ, λ) ∈]µ0, µ1]×]λ0, λ1]. (3.47)

Assuming, in (3.44), ρ > 0 large enough such that, by (3.46), Ωε ⊂ Ω∗, then, by (3.45),
(3.47) and the additivity property of the degree,

d(I − T ∗
(µ,λ),Ω∗ − Ωε, (0, 0)) = ∓1, for (µ, λ) ∈]µ0, µ1]×]λ0, λ1].

Then, for (µ, λ) ∈]µ0, µ1]×]λ0, λ1], the problem (3.3), (3.4) has, at least two solutions:
a solution in Ωε and other one in Ω∗ − Ωε, since (µ, λ) is arbitrary in ]µ0, µ1]×]λ0, λ1].

Claim 4: For (µ, λ) = (µ0, λ0) the problem (3.3)-(3.4) has, at least, a solution.
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Consider the sequence (µn, λn) such that (µn, λn) ∈]µ0, µ1]×]λ0, λ1], lim µn = µ0, and
lim λn = λ0.

By Theorem 3.2.1, for each (µn, λn), the problem (3.3)-(3.4) has, at least, a solution
(u1n(t), u2n(t)).

From the estimations given in Claim 1, and (3.43), ∥(u1n, u2n)∥ < M∗, and by Lemma
3.1.2, there ρ > 0 sufficiently large, such that∥∥(u′

1n, u
′
2n)
∥∥ < ρ,

independently of n.Then the sequence (u′′
1n, u

′′
2n) is bounded in C([0, 1]), and,by the Arzèla-

Ascoli theorem, there is a subsequence of (u1n(t), u2n(t)) that converges in C2([0, 1]) to a
solution (u1(t), u2(t)) of (3.3)-(3.4) for (µ, λ) = (µ0, λ0).

A dual version of Theorem 3.3.5 can be given:

Theorem 3.3.6. Let f, g : [0, 1] × R2 → R be continuous functions such that there are
µ1, λ1 ∈ R, p > 0 and q > 0 that satisfy

f(t, 0, 0)
v1(t) > µ1 >

f(t, y1, 0)
v1(t) , (3.48)

for every t ∈ [0, 1] , y1 ≥ p,

g(t, 0, 0)
v2(t) > λ1 >

g(t, y1, 0)
v2(t) , (3.49)

for every t ∈ [0, 1] , y1 ≥ q,

f(t, y1, y2) and g(t, y1, y2) are nonincreasing on y1, (3.50)

for all (t, y2) ∈ [0, 1] × R.
Assume that there are ki ∈ R, i = 1, 2, with k1 ≤ p and k2 ≤ q, such that, every solution
(u1(t), u2(t)) of (3.3), (3.4), with µ0 > µ1 and λ0 > λ1, satisfies

ui(t) > ki, i = 1, 2, ∀ ∈ [0, 1], (3.51)

and there exist mi ∈ R, i = 1, 2, such that

f(t, y1, y2) ≤ m1v1(t) (3.52)

for (t, y1, y2) ∈ [0, 1] × [k1, p] × R and

g(t, y1, y2) ≤ m2v2(t) (3.53)

for (t, y1, y2) ∈ [0, 1] × [k2, q] × R.
Then numbers µ0 and λ0, given by Theorem 3.2.2, are finite and:
1. if µ > µ0 or λ > λ0, (3.3), (3.4 ) there is no solution;
2. if µ = µ0 and λ = λ0, (3.3), (3.4 ) there is at least one solution;
3. if µ0 > µ ≥ µ1 and λ0 > λ ≥ λ1, (3.3), (3.4) there are at least two solutions.
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3.4 Application in a Lotka-Volterra Steady-state System
with Migration

The Lotka-Volterra equations are often used to represent interactions between species. In
their original version they describe prey-predator competition models. However, there are
many other types of interaction occurring between species, we can cite mutualism and
neutralism as examples. The study of population dynamics between two species can be
considered the most elementary way to describe inter-specific and intra-specific interaction.

In [7], the importance of including spatial dependence in the Lotka-Volterra equations
is shown, since the models depend only on time, assume that the spatial distributions of
populations are homogeneous, but in most biological systems this assumption is not valid.

In this paper we present a steady-state model of interactive Lotka-Volterra of two
species, adapted from the works [2, 100].

Consider the system of equations
d1u

′′
1(x) + u1(x) (η1 − δ1u1(x) + ψ1u2(x)) = µ̄ v1(x)

d2u
′′
2(x) + u2(x) (η2 + ψ2u1(x) − δ2u2(x)) = λ̄ v2(x), x ∈ [0, 1],

(3.54)

with boundary conditions

aiui(0) − biu
′
i(0) = 0
u′
i(1) = 0, for i = 1, 2. (3.55)

where ai, bi, di > 0 and ηi, δi, ψi ≥ 0, for i = 1, 2, having the following meaning:

• u1 and u2 are the population density;

• first term in each equation is responsible for dispersion with species-specific diffusion
(di);

• the second term corresponds to the intrinsic growth of the species, with coefficients
ηi representing the growth rate of the species;

• δi, the intra-specific competition coefficients;

• ψi, the inter-specific interaction coefficient;

• v1(x) and v2(x) can be defined as physical and geographic conditions of the domain
region favoring, or not, the development of a species;

• the parameters µ̄ and λ̄ are the weight of attraction or repulsion of the terms v1(x)
and v2(x) for the respective populations.
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3.4.1 Interaction by mutualism

Mutualism is an example of an interspecific ecological relationship that benefits all indi-
viduals involved in the interaction. In particular, the Lotka-Volterra model of mutualism
is the case where the interaction coefficients ψ1 and ψ2 of the problem (3.54), (3.55) are
positive.

Consider a numerical example of (3.54), (3.55), with d1 = 0.1, d2 = 0.2, η1 = 0.3,
η2 = 0.2, δ1 = 0.5, δ2 = 0.8, ψ1 = 0.2, ψ2 = 0.4, µ̄

d1
= µ, λ̄

d2
= λ, v1(x) = cos2(x) and

v2(x) = e−x.

So, we have the particular problem
u′′

1(x) + u1(x) (3 − 5u1(x) + 2u2(x)) = µ cos2(x)

u′′
2(x) + u2(x) (1 + 2u1(x) − 4u2(x)) = λ e−x, x ∈ [0, 1]

(3.56)

with boundary conditions

ui(0) − u′
i(0) = 0
u′
i(1) = 0, for i = 1, 2. (3.57)

At x = 0 and x = 1 the boundary conditions of zero density can be interpreted as an
inhospitable region, which the species cannot inhabit.

The assumptions of Theorem 3.2.2 are satisfied for every x ∈ [0, 1] , and, by (3.23) and
(3.24), it is possible to give some estimations on the parameters µ1 and λ1 :

0 > µ1 > p (3 − 5p+ 2q) ,

and
0 > λ1 > q (1 + 2p− 4q) ,

for some p and q such that 
p (3 − 5p+ 2q) < 0

q (1 + 2p− 4q) < 0.
(3.58)

Figure 3.1 shows the region of points (p, q) where condition (3.58) holds.

By Definition 3.1.4 the functions

(γ1(x), γ2(x)) ≡ (0, 0)
(ϕ1(x), ϕ2(x)) ≡ (p, q)

are, respectively, lower and upper solutions of problem (3.56), (3.57) for

µ ∈ [p (3 − 5p+ 2q) , 0] and λ ∈ [q (1 + 2p− 4q) , 0] . (3.59)
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Fig. 3.1: Solution of system (3.58) and region of points (p, q).

Moreover, the problem (3.56), (3.57) is a particular case of (3.1), (3.2), with

f(x, y1, y2, y3) = y1 (3 − 5y1 + 2y2) ,

and
g(x, y1, y2, y3) = y2 (1 + 2y1 − 4y2) .

These functions verify the Nagumo conditions (3.6) and (3.7), relative to the intervals
y1 ∈ [0, p] and y2 ∈ [0, q], as

|f(x, y1, y2, y3)| = |y1 (3 − 5y1 + 2y2)|
≤ |p (3 − 5p+ 2q)| := φ1(|y3|),

|g(x, y1, y2, y3)| = |y2 (1 + 2y1 − 4y2)|
≤ |q (1 + 2p− 4q)| := φ2(|y3|).

and, trivially ∫ +∞

0

ds

φi(s)
= +∞, for i = 1, 2.

So, by Theorem 3.1.5, for the values of µ and λ verifying (3.59), the problem (3.56),
(3.57) has at least one solution (u1(x), u2(x)), such that

0 ≤ u1(x) ≤ p and 0 ≤ u2(x) ≤ q

for all x ∈ [0, 1].

Therefore, by Theorem 3.2.2 there are µ0 > µ1 and λ0 > λ1 such that problem (3.56)
and (3.57) has no solution for µ > µ0 > 0 or λ > λ0 > 0, and has at least one solution for

0 > µ ≥ µ1 > p (3 − 5p+ 2q) and 0 > λ ≥ λ1 > q (1 + 2p− 4q) .

3.4.2 Interaction by neutralism

Neutralism is an ecological relationship in which there is no interspecific interaction and
the two species evolve independently, i.e. when both interaction parameters are null.
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Consider in (3.54) ψ1 = 0 and ψ2 = 0, and the numerical problem (3.56), (3.57), with
the same values for the other parameters:

u′′
1(x) + u1(x) (3 − 5u1(x)) = µ cos2(x)

u′′
2(x) + u2(x) (1 − 4u2(x)) = λ e−x, x ∈ [0, 1]

(3.60)

with boundary conditions

ui(0) = ui(1) = 0, for i = 1, 2. (3.61)

The assumptions (3.48) and (3.49) of Theorem 3.2.2 are satisfied for every x ∈ [0, 1],
and the estimations of the parameters are given by

0 > µ1 > p (3 − 5p) , when p >
3
5 ,

and
0 > λ1 > q (1 − 4q) ,when q >

1
4 .

Let 0 > ϵ1 >
3
5 − p and 0 > ϵ2 >

1
4 − q be real numbers, then the functions

(γ1(x), γ2(x)) = (ϵ1, ϵ2)
(ϕ1(x), ϕ2(x)) = (p, q)

are, respectively, strict lower and upper solutions of problem (3.60), (3.61), according to
Definition 3.3.1, for

µ ∈ (p(3 − 5p), ϵ1(3 − 5ϵ1)) and λ ∈ (q(1 − 4q), ϵ2(1 − 4ϵ2)) . (3.62)

Moreover, the problem (3.60), (3.61) is a particular case of (3.3), (3.4), with

f(x, y1, y2) = y1 (3 − 5y1) ,

and
g(x, y1, y2) = y1 (1 − 4y1) .

These functions verify the Nagumo conditions (3.6) and (3.7), relative to the intervals
y1 ∈ [ϵ1, p] and y2 ∈ [ϵ2, q], as

|f(x, y1, y2)| = |y1 (3 − 5y1)|
≤ |p (3 − 5p)| := φ̄1(|y2|),

|g(x, y1, y2)| = |y1 (1 − 4y1)|
≤ |q (1 − 4q)| := φ̄2(|y2|).

and, trivially ∫ +∞

0

ds

φ̄i(2) = +∞, for i = 1, 2.
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So, by Theorem 3.1.5, for the values of µ and λ verifying (3.62), the problem (3.60)-
(3.61) has at least a solution (u1(x), u2(x)), such that

ϵ1 < u1(x) < p and ϵ2 < u2(x) < q, (3.63)

for all x ∈ [0, 1].

By Theorem 3.2.2 there are µ0 and λ0, such that there is no solution if µ > µ0 = 0 or
λ > λ0 = 0.



Chapter 4

Second-order strongly nonlinear
impulsive coupled systems

In this chapter, based on the paper [71], we consider the second order coupled system{
(ϕ(u′(x)))′ + f(x, u(x), u′(x), v(x), v′(x)) = 0, x ∈ M,

(ψ(v′(x)))′ + g(x, u(x), u′(x), v(x), v′(x)) = 0, x ∈ N,
(4.1)

where M = [a, b] \{x1, ..., xm} and N = [a, b] \{τ1, ..., τn}, ϕ, ψ : R → R are increasing
homeomorphisms such that ϕ(0) = ψ(0) = 0 and ϕ( R) = ψ(R) = R, f, g : [a, b]×R4 7→ R,
are L1-Carathéodory functions, together with the boundary conditions{

u(a) = A, u′(b) = B,

v(a) = C, v′(b) = D, A,B,C,D ∈ R.
(4.2)

The impulsive conditions are given by

∆u(xi) = Ii(xi, u(xi), u′(xi), v(xi)),
∆v(τj) = Jj(τj , u(τj), v(τj), v′(τj)),

(4.3)

being ∆u(xi) = u(x+
i ) − u(x−

i ), i = 1, 2, ...,m, ∆v(τj) = v(τ+
j ) − v(τ−

j ), j = 1, 2, ..., n,
Ii, Jj ∈ C([a, b] × R3,R), and xk fixed points such that a = x0 < x1 < x2 < ... < xm <
xm+1 = b, a = τ0 < τ1 < τ2 < ... < τn < τn+1 = b.

Impulsive differential equations model many real processes in which the nonlinearities
undergo periods of smooth behaviour followed by sudden discontinuous jumps in their
values. These phenomena can be found in population dynamics, control and optimiza-
tion theory, ecology, biology and biotechnology, economics, pharmacokinetics, and other
physics and mechanics problems. For the classical approach to impulsive differential equa-
tions, we can refer, for example, [58], for a general theory; [52], applying fixed point index;
[61, 78, 85], for functional impulsive problems; [108], for a monotone iterative technique
for approximating the solution. The study of ϕ−Laplacian impulsive problems can be
seen, for instance in: [49], with periodic boundary conditions via a continuation theo-
rem; [72, 73], for bounded and unbounded intervals; [101], for fractional equations with
p-Laplacian.

Nonlinear coupled systems, where there are interactions between several unknown
functions and their derivatives, have been studied in several works in recent years, such
as: [94], applying Schauder’s fixed point theorem; [35], for fractional differential equations
at resonance via coincidence degree theory; [77], including different types of differential
and integral equations.

Motivated by the above references, we apply, to the best of our knowledge, for the first
time, the methods and techniques suggested in, for example, [15, 45], to an impulsive cou-
pled system with fully differential equations including different Laplacians and generalized
impulsive conditions, which jumps depend of both variables and some of its derivatives.

39
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The chapter is organized as follows: Section 4.1 presents the definitions and some
preliminary results such as a Nagumo-type condition and a priori bounds for both first
derivatives. Section 4.2 contains the main result: an existence and localization theorem.
In the Section 4.3, an example illustrates the potential applications of this theory.

4.1 Definitions and auxiliary results

This section will introduce some preliminary results for the subsequent analysis.

To establish the functional framework, define

y(x±
k ) := lim

x→x±
k

y(x),

and consider the sets of piecewise continuous functions:

PC1[a, b] =
{
u : u ∈ C([a, b],R) continuous for x ̸= xi, u(xi) = u(x−

i ),
u(x+

i ) exists for i = 1, 2, 3, ...,m,

}

PC2[a, b] =
{
v : v ∈ C([a, b],R) continuous for x ̸= τj , v(τj) = v(τ−

j ),
v(τ+

j ) exists for j = 1, 2, 3, ..., n,

}
and PC1

k [a, b] = {y : y′ ∈ PCk[a, b], k = 1, 2}.

Let Xk := PC1
k [a, b] be the usual Banach space equipped with the norm ∥ ·∥∞, defined

by
∥y∥Xk

:= max{∥y∥∞, ∥y′∥∞},

where
∥y∥∞ := sup

a≤x≤b
|y(x)|

and X2 = PC1
1 [a, b] × PC1

2 [a, b] with the norm

∥(u, v)∥X2 = max{∥u∥X1 , ∥v∥X2}.

For (u, v) solution of problem (4.1)-(4.3), one must consider (u(x), v(x)) ∈ X2, satis-
fying (4.1), the boundary conditions (4.2) and the impulse effects (4.3).

Definition 4.1.1. A function h : [a, b] × R4 → R is L1-Carathéodory if

i. for each (y0, y1, z0, z1) ∈ R4, x 7→ h(x, y0, y1, z0, z1) is measurable on [a, b];

ii. for almost every x ∈ [a, b], (y0, y1, z0, z1) 7→ h(x, y0, y1, z0, z1) is continuous on R4;

iii. for each L > 0, there is a positive function ρL ∈ L1[a, b] such that, for a.e. x ∈ [a, b],
and (y0, y1, z0, z1) ∈ R4 with

max {|y0| , |y1| , |z0| , |z1|} < L, (4.4)

we have
|h(x, y0, y1, z0, z1)| ≤ ρL(x). (4.5)
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The next lemma gives the unique solution for a suitable homogeneous problem related
to (4.1)-(4.3).

Lemma 4.1.2. Let p, q : [a, b] −→ R be L1-Carathéodory functions. The problem com-
posed by the differential system{

(ϕ(u′(x)))′ + p(x) = 0
(ψ(v′(x)))′ + q(x) = 0

(4.6)

and conditions (4.2), (4.3), has a unique solution given by

u(x) = A+
∑

i : x>xi

Ii(xi, u(xi), u′(xi), v(xi)) +
∫ x

a
ϕ−1

(
ϕ(B) +

∫ b

s
p(ξ)dξ

)
ds

and

v(x) = C +
∑

j : x>τj

Jj(τj , u(τj), v(τj), v′(τj)) +
∫ x

a
ψ−1

(
ψ(D) +

∫ b

s
q(ξ)dξ

)
ds.

Proof. Integrating the first equation of (4.6), for x ∈ (xn, b], we have, by (4.2),

u′(x) = ϕ−1
(
ϕ(B) +

∫ b

x
p(s)ds

)
,

and, by a new integration from a to x,

u(x) = A+
∫ x

a
ϕ−1

(
ϕ(B) +

∫ b

s
p(ξ)dξ

)
ds.

For x ∈ [a, x1],

u(x) = A+
∫ x

a
ϕ−1

(
ϕ(B) +

∫ b

s
p(ξ)dξ

)
ds,

and by (4.3),

u(x) = A+
∫ x

a
ϕ−1

(
ϕ(B) +

∫ b

s
p(ξ)dξ

)
ds+ I1(x1, u(x1), u′(x1), v(x1), v′(x1)).

Therefore, by induction, it can be proved that the solution of the first equation of the
problem (4.6), (4.2), (4.3), for x ∈ [a, b], is given by

u(x) = A+
∑

i : x>xi

Ii(xi, u(xi), u′(xi), v(xi), v′(xi)) +
∫ x

a
ϕ−1

(
ϕ(B) +

∫ b

s
p(ξ)dξ

)
ds.

Likewise, for the second equation, we have

v(x) = C +
∑

j : x>τj

Jj(τj , u(τj), u′(τj), v(τj), v′(τj)) +
∫ x

a
ψ−1

(
ψ(D) +

∫ b

s
q(ξ)dξ

)
ds.
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The Nagumo condition is an important tool for controlling the first derivatives:

Definition 4.1.3. Let γk(x), Γk(x), k = 1, 2, be piecewise continuous functions such that

γ1(x) ≤ Γ1(x), γ2(x) ≤ Γ2(x), a.e. in [a, b],

and consider the set

S = {(x, y0, y1, z0, z1) ∈ [a, b] × R4 : γ1(x) ≤ y0 ≤ Γ1(x), γ2(x) ≤ z0 ≤ Γ2(x)}. (S)

The L1−Carathéodory functions f, g : [a, b]×R4 → R satisfy a Nagumo-type condition,
if, there are µk > 0, k = 1, 2, with

µ1 : = max
i=0,1,2,...,m

{∣∣∣∣Γ1(xi+1) − γ1(xi)
xi+1 − xi

∣∣∣∣ , ∣∣∣∣γ1(xi+1) − Γ1(xi)
xi+1 − xi

∣∣∣∣} ,
µ2 : = max

j=0,1,2,...,n

{∣∣∣∣∣Γ2(τj+1) − γ2(τj)
τj+1 − τj

∣∣∣∣∣ ,
∣∣∣∣∣γ2(τj+1) − Γ2(τj)

τj+1 − τj

∣∣∣∣∣
}
,

(4.7)

and continuous positive functions φk : [0,+∞) → (0,+∞), k = 1, 2, verifying∫ ϕ(+∞)

ϕ(µ1)

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds = +∞,

∫ ψ(+∞)

ψ(µ2)

|ψ−1(s)|
φ2(|ψ−1(s)|)ds = +∞, (4.8)

such that
|f(x, y0, y1, z0, z1)| ≤ φ1(|y1|), ∀(x, y0, y1, z0, z1) ∈ S,

|g(x, y0, y1, z0, z1)| ≤ φ2(|z1|), ∀(x, y0, y1, z0, z1) ∈ S.
(4.9)

This growth condition allows a priori estimations on the first derivatives.

Lemma 4.1.4. Consider γk,Γk ∈ PC1 [a, b] , k = 1, 2, such that

γk(x) ≤ Γk(x), a.e. x ∈ [a, b] ,

and let f, g : [a, b] × R4 → R be L1−Carathéodory functions satisfying a Nagumo-type
condition, according to Definition 4.1.3. Then, there exist Nk > 0, k = 1, 2, such that for
every solution (u, v) of ( 4.1) on S satisfies∥∥u′∥∥

∞ < N1 and
∥∥v′∥∥

∞ < N2.

Remark 4.1.5. Note that N1 depends only on γ1,Γ1 and φ1, and N2 on γ2,Γ2 and φ2.

Proof. Let (u(x), v(x)) ∈ S be a solution of (4.1).

By the Mean Value Theorem, there are x̄ ∈ (xi, xi+1) and x̃ ∈ (τj , τj+1) such that

u′(x̄) = u(xi+1) − u(x+
i )

xi+1 − xi
and v′(x̃) =

v(τj+1) − v(τ+
j )

τj+1 − τj
. (4.10)
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If |u′(x)| ≤ µ1, ∀x ∈ [a, b], then it is enough to define N1 := µ1 and the proof is
complete.

More the case |u′(t)| > µ1, ∀x ∈ [a, b], with µ1 defined in (4.7), is not possible. In
fact, if u′(t) > µ1, ∀x ∈ [a, b], we obtain, by (4.10) and (4.7), the contradiction

u′(x̄) = u(xi+1) − u(x+
i )

xi+1 − xi
≤ Γ1(xi+1) − γ1(xi)

xi+1 − xi
≤ µ1.

If u′(x) < −µ1, ∀x ∈ [a, b], the contradiction is similar.

We assume that there are x̆, x∗ ∈ (xi, xi+1) with x̆ < x∗, such that

u′(x̆) ≤ µ1 and u′(x∗) > µ1.

By continuity of u′(x), there exists x̂ ∈ [x̆, x∗] such that u′(x̂) = µ1.

Consider Nk > µk, k = 1, 2, such that∫ ϕ(N1)

ϕ(µ1)

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds > µ1(b− a),

∫ ψ(N2)

ψ(µ2)

|ψ−1(s)|
φ2(|ψ−1(s)|)ds > µ2(b− a), (4.11)

Making a convenient change of variable and using (4.8),∫ ϕ(u′(x∗))

ϕ(u′(x̂))

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds =

∫ x∗

x̂

|ϕ−1(ϕ(u′(x)))|
φ1(|ϕ−1(ϕ(u′(x)))|)(ϕ(u′(x)))′dx

≤
∫ b

a

|u′(x)|
φ1(|u′(x)|)(ϕ(u′(x)))′dx

≤
∫ b

a

|u′(x)| · | − f(x, u(x), u′(x), v(x), v′(x))|
φ1(|u′(x)|) dx,

≤
∫ b

a

|u′(x)| · |φ1(|u′(x)|)|
φ(|u′(t)| dx,

≤
∫ b

a
|u′(x)|dx = |u(b) − u(a)| ≤ µ1(b− a),

and by (4.11)∫ ϕ(u′(x∗))

ϕ(u′(x̂))

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds ≤ µ1(b− a) <

∫ ϕ(N1)

ϕ(µ1)

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds.

Therefore u′(x∗) < N1, and as x∗ is taken arbitrarily, then u′(x) < N1, for the values
of x whenever u′(x) > µ1.

The case for x̆ > x∗ follows similar arguments.

The other possible case where

u′(x̆) > −µ1 and u′(x∗) < −µ1.

can be proved by the previous techniques. Therefore ∥u′∥ ≤ N1.

By a similar method, it can be shown that ∥v′∥ ≤ N2.
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Lower and upper functions will be defined as follows:

Definition 4.1.6. The pair of functions (α1(x), α2(x)) ∈ X2 with (ϕ(α′
1(x)), ψ(α′

2(x))) ∈
(AC[a, b])2, is a lower solution of problem (4.1)-(4.3), if

(ϕ(α′
1(x)))′ + f(x, α1(x), α′

1(x), α2(x), w) ≥ 0, for w ∈ R
(ψ(α′

2(x)))′ + g(x, α1(x), z, α2(x), α′
2(x)) ≥ 0, for z ∈ R,

α1(a) ≤ A, α′
1(b) ≤ B,

α2(a) ≤ C, α′
2(b) ≤ D,

∆α1(xi) > Ii(xi, α1(xi), α′
1(xi), α2(xi)),

∆α2(τj) > Jj(τj , α1(τj), α2(τj), α′
2(τj)).

(4.12)

A pair of functions (β1(x), β2(x)) ∈ X2 such that (ϕ(β′
1(x)), ψ(β′

2(x))) ∈ (AC[a, b])2 is an
upper solution of problem (4.1)-(4.3) if the opposite inequalities hold.

The arguments forward will require the following lemma, of [99]:

Lemma 4.1.7. For v, w ∈ C(I) such that v(x) ≤ w(x), for every x ∈ I, define

q(x, u) = max{v,min{u,w}}.

Then, for each u ∈ C1(I) the next two properties hold:

(a) d
dxq(x, u(x)) exists for a.e. x ∈ I.

(b) If u, um ∈ C1(I) and um → u in C1(I) then

d

dx
q(x, um(x)) → d

dx
q(x, u(x)) for a.e. x ∈ I.

The Schauder’s fixed point theorem, will be the key existence tool:

Theorem 4.1.8. ([106]) Let Y be a nonempty, closed, bounded and convex subset of a
Banach space X, and suppose that P : Y → Y is a compact operator. Then P has at least
one fixed point in Y .

4.2 Existence and localization theorem

Consider the following assumptions:

(H1) ϕ, ψ : R → R are increasing homeomorphisms such that ϕ(0) = ψ(0) = 0 and
ϕ( R) = ψ(R) = R, and∣∣∣ϕ−1(w)

∣∣∣ ≤ ϕ−1(|w|), and
∣∣∣ψ−1(w)

∣∣∣ ≤ ψ−1(|w|).
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(H2) f, g : [a, b] × R4 7→ R, are L1-Carathéodory such that

f(x, y0, α
′
1(x), α2(x), z1) ≤ f(x, y0, y1, z0, z1) ≤ f(x, y0, β

′
1(x), β2(x), z1),

for α′
1(x) ≤ y1 ≤ β′

1(x), α2(x) ≤ z0 ≤ β2(x), and (x, y0, z1) ∈ [a, b] × R2, and

g(x, α1(x), y1, z0, α
′
2(x)) ≤ g(x, y0, y1, z0, z1) ≤ g(x, β1(x), y1, z0, β

′
2(x)),

for α1(x) ≤ y0 ≤ β1(x), α′
2(x) ≤ z1 ≤ β′

2(x), and (x, y1, z0) ∈ [a, b] × R2.

(H3) Ii, Jj ∈ C([a, b] × R3,R), verify

Ii(xi, y0, y1, α2(xi)) ≥ Ii(xi, y0, y1, z0) ≥ Ii(xi, y0, y1, β2(xi)),

for i = 1, 2, ...,m, α2(x) ≤ z0 ≤ β2(x), (y0, y1) ∈ R2 and

Jj(τj , α1(τj), z0, z1) ≥ Jj(τj , u(τj), z0, z1) ≥ Jj(τj , β1(τj), z0, z1).

for j = 1, 2, ..., n, α1(x) ≤ y0 ≤ β1(x), (z0, z1) ∈ R2.

The main result is an existence and localization theorem, that is, not only it guarantees
the existence of at least a solution but provides also a strip where this solution is localized.

Theorem 4.2.1. Let A,B,C,D ∈ R, and homeomorphisms ϕ and ψ verifying (H1).
Assume that there are lower and upper solutions of (4.1)-(4.3), (α1, α2) and (β1, β2),
respectively, such that

αk(x) ≤ βk(x), k = 1, 2, ∀x ∈ [a, b],

the L1−Carathéodory functions f, g : [a, b] × R4 → R satisfy Nagumo conditions as in
Definition 4.1.3, in the set

S∗ = {(x, y0, y1, z0, z1) ∈ [a, b] × R4 : α1(x) ≤ y0 ≤ β1(x), α2(x) ≤ z0 ≤ β2(x)},

and (H2) and (H3) hold.
Then, there is at least a pair (u(x), v(x)) ∈ X2 solution of (4.1)-(4.3) and, moreover,

α1(x) ≤ u(x) ≤ β1(x), α2(x) ≤ v(x) ≤ β2(x), ∀x ∈ [a, b], (4.13)

and
∥u′∥ ≤ N1 and ∥v′∥ ≤ N2,

with N1 and N2 given by Lemma 4.1.4.

Proof. Define the functions δk : [a, b] × R → R, for k = 1, 2, given by

δk(x,w) =


βk(x) if w > βk(x)
w if αk(x) ≤ w ≤ βk(x)

αk(x) if w < αk(x).
(4.14)
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Consider the following modified coupled system composed by the truncated and perturbed
differential equations

(ϕ(u′(x)))′ + f(x, δ1(x, u(x)), u′(x), δ2(x, v(x)), v′(x))

+ δ1(x, u(x)) − u(x)
1 + |δ1(x, u(x)) − u(x)| = 0,

(ψ(v′(x)))′ + g(x, δ1(x, u(x)), u′(x), δ2(x, v(x)), v′(x))

+ δ2(x, v(x)) − v(x)
1 + |δ2(x, v(x)) − v(x)| = 0,

(4.15)

with the truncated impulsive conditions

∆u(xi) = Ii(xi, δ1(xi, u(xi)), ∂δ1
∂x (xi, u(xi)), δ2(xi, v(xi))),

∆v(τj) = Jj(τj , δ1(τj , u(τj)), δ2(τj , v(τj)), ∂δ2
∂x (τj , v(τj))),

(4.16)

for i = 1, 2, ...,m, j = 1, 2, ..., n, and the boundary conditions (4.2).

The proof will follow several steps for clearness.

Step1: In the set

S∗ = {(x, y0, y1, z0, z1) ∈ [a, b] × R4 : α1(x) ≤ y0 ≤ β1(x), α2(x) ≤ z0 ≤ β2(x)}, (S*)

every solution (u(x), v(x)) of problem (4.15), (4.2) and (4.16) satisfies

∥u′∥ ≤ N1 and ∥v′∥ ≤ N2. (4.17)

The functions F e G, defined in S∗, by

F (x, u(x), u′(x), v(x), v′(x)) : = f(x, δ1(x, u(x)), u′(x), δ2(x, v(x)), v′(x))

+ δ1(x, u(x)) − u(x)
1 + |δ1(x, u(x)) − u(x)| ,

and

G(x, u(x), u′(x), v(x), v′(x)) : = g(x, δ1(x, u(x)), u′(x), δ2(x, v(x)), v′(x))

+ δ2(x, v(x)) − u(x)
1 + |δ2(x, v(x)) − u(x)|

satisfy the Nagumo type conditions, as in Definition 4.1.3, in S∗, with

|F (x, y0, y1, z0, z1)| ≤ φ1(|y1|) + 1

and
|G(x, y0, y1, z0, z1)| ≤ φ2(|y1|) + 1.

By Lemma 4.1.4, we have the a priori estimates (4.17).

Step2: The problem (4.15), (4.2) and (4.16) has at least a solution (u∗(x), v∗(x)) ∈
X2.
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Define L > 0 and M > 0, such that

L ≥ max
{
B,D, ∥αk∥Xk

, ∥βk∥Xk
, Nk, µk, k = 1, 2

}
(4.18)

and

M > max


∑
i : x>xi

∣∣∣Ii(xi, δ1(xi, u(xi)), ∂δ1
∂x (xi, u(xi)), δ2(xi, v(xi))

∣∣∣ ,
∑
j : x>τj

|Jj(τj , δ1(τj , u(τj)), δ2(τj , v(τj)), ∂δ2
∂x (τj , v(τj)))|

 . (4.19)

Since F and G are L1−Carathéodory functions, there exist nonnegative function
ρkL(x) ∈ L1([a, b]), k = 1, 2, such that, for ∥(u, v)∥X2 < L, we have∣∣F (x, δ1(x, u(x)), u′(x), δ2(x, v(x)), v′(x))

∣∣ ≤ ρ1L(x), (4.20)∣∣G(x, δ1(x, u(x)), u′(x), δ2(x, v(x)), v′(x))
∣∣ ≤ ρ2L(x), a.e.x ∈ [a, b].

Defining the operators T1 : X2 → X1 T2 : X2 → X2, and T : X2 → X2 given by

T (u, v) = (T1 (u, v) , T2 (u, v)) , (4.21)

with

(T1 (u, v)) (x) = A+
∑

i : x>xi

Ii(xi, δ1(xi, u(xi)),
∂δ1
∂x

(xi, u(xi)), δ2(xi, v(xi)))

+
∫ x

a
ϕ−1

(
ϕ(B) +

∫ b

s
F (ξ, δ1(ξ, u(ξ)), u′(ξ), δ2(ξ, v(ξ)), v′(ξ))dξ

)
ds

and

(T2 (u, v)) (x) = C +
∑

j : x>τj

Jj(τj , δ1(τj , u(τj)), δ2(τj , v(τj)),
∂δ2
∂x

(τj , v(τj))))

+
∫ x

a
ψ−1

(
ψ(D) +

∫ b

s
G(ξ, δ1(ξ, u(ξ)), u′(ξ), δ2(ξ, v(ξ)), v′(ξ))dξ

)
ds.

Claim 1: T is well defined, continuous and uniformly bounded.

By the Lebesgue dominated convergence Theorem, (4.13), (4.20), (4.19), and (4.17),

|(T1 (u, v)) (x)| ≤ |A| +
∑

i : x>xi

∣∣∣∣Ii(xi, δ1(xi, u(xi)),
∂δ1
∂x

(xi, u(xi)), δ2(xi, v(xi)))
∣∣∣∣

+
∫ x

a

∣∣∣∣∣ϕ−1
(
ϕ(B) +

∫ b

s
F (ξ, δ1(ξ, u(ξ)), u′(ξ), δ2(ξ, v(ξ)), v′(ξ))dξ

)
ds

∣∣∣∣∣
≤ |A| +

∑
i : x>xi

∣∣∣∣Ii(xi, δ1(xi, u(xi)),
∂δ1
∂x

(xi, u(xi)), δ2(xi, v(xi)))
∣∣∣∣

+
∫ x

a
ϕ−1

(∣∣∣∣∣ϕ(B) +
∫ b

s
F (ξ, δ1(ξ, u(ξ)), u′(ξ), δ2(ξ, v(ξ)), v′(ξ))dξ

∣∣∣∣∣
)
ds

≤ |A| +M +
∫ b

a
ϕ−1

(
|ϕ(B)| +

∫ b

s
ρ1L(ξ)dξ

)
ds < +∞,
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∣∣∣(T1 (u, v))′ (x)
∣∣∣ =

∣∣∣∣∣ϕ−1
(
ϕ(B) +

∫ b

x
F (ξ, δ1(ξ, u(ξ)), u′(ξ), δ2(ξ, v(ξ)), v′(ξ))dξ

)∣∣∣∣∣
≤ ϕ−1

(
|ϕ(B)| +

∫ b

a
ρ1L(ξ)dξ

)
< +∞.

Therefore (T1 (u, v)) (x) ∈ X1. The proof that (T2 (u, v)) (x) ∈ X2 is similar, and, so,
therefore T is well defined in X2.

Moreover, define B ⊆ X2 by

B ⊆ {(u, v) ∈ X2 : ∥(u, v)∥X2 ≤ L},

from the above, it clear that TB is uniformly bounded.

Claim 2: T is equicontinuous, that is, T1B is equicontinuous on each interval ]xi, xi+1],
for i = 0, 1, ...,m, with x0 = a and xm+1 = b, and T2B is equicontinuous on each interval
]τj , τj+1], for j = 0, 1, ..., n, with τ0 = a and τn+1 = b.

Consider I ⊆]xi, xi+1] and x̃, x∗ ∈ I such that, without loss of generality, x̃ ≤ x∗. For
(u, v) ∈ B, we have

lim
x̃→x∗

|(T1 (u, v)) (x∗) − (T1 (u, v)) (x̃)| ≤

lim
x̃→x∗

∣∣∣∣∣∣
∑

a<xi<x∗
Ii(xi, δ1(xi, u(xi)),

∂δ1
∂x

(xi, u(xi)), δ2(xi, v(xi)))

−
∑

a<xi<x̃

Ii(xi, δ1(xi, u(xi)),
∂δ1
∂x

(xi, u(xi)), δ2(xi, v(xi)))

∣∣∣∣∣∣
+ lim
x̃→x∗

∣∣∣∣∣
∫ x∗

xi

ϕ−1
(
ϕ(B) +

∫ b

s
F (ξ, δ1(ξ, u(ξ)), u′(ξ), δ2(ξ, v(ξ)), v′(ξ))dξ

)
ds

−
∫ x̃

xi

ϕ−1
(
ϕ(B) +

∫ b

s
F (ξ, δ1(ξ, u(ξ)), u′(ξ), δ2(ξ, v(ξ)), v′(ξ))dξ

)
ds

∣∣∣∣∣
≤ lim

x̃→x∗

∣∣∣∣∣
∫ x∗

x̃
ϕ−1

(
|ϕ(B)| +

∫ b

s
ρ1L(ξ)dξ

)
ds

∣∣∣∣∣ = 0,

and

lim
x̃→x∗

∣∣∣(T1 (u, v))′ (x∗) − (T1 (u, v))′ (x̃)
∣∣∣ =

lim
x̃→x∗

∣∣∣∣∣ϕ−1
(
ϕ(B) +

∫ b

x∗
F (ξ, δ1(ξ, u(ξ)), u′(ξ), δ2(ξ, v(ξ)), v′(ξ))dξ

)

−ϕ−1
(
ϕ(B) +

∫ b

x̃
F (ξ, δ1(ξ, u(ξ)), u′(ξ), δ2(ξ, v(ξ)), v′(ξ))dξ

)∣∣∣∣∣ = 0.

Therefore, T1B is equicontinuous on X1.
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Similarly, we can show that T2B is equicontinuous on X2, too. Thus, TB is equicon-
tinuous on X2.

Claim 3: TB : X2 → X2 is equiconvergent at x = xi and x = τj .

First, let us prove the equiconvergence at x = x+
i , for i = 1, 2, ...m. The proof of

equiconvergence at τ = τ+
j , for j = 1, 2, ...n, is analogous.

So, it follows∣∣∣∣∣(T1 (u, v)) (xi) − lim
x→x+

i

(T1 (u, v)) (x)
∣∣∣∣∣ ≤∣∣∣∣∣ ∑

a<xk<xi

Ik(xk, δ1(xk, u(xk)),
∂δ1
∂x

(xk, u(xk)), δ2(xk, v(xk)))

− lim
x→x+

i

∑
a<xk<x

Ik(xk, u(xk),
∂δ1
∂x

(xk, u(xk)), δ2(xk, v(xk)))
∣∣∣∣∣

+
∣∣∣∣∣
∫ xi

a
ϕ−1

(
ϕ(B) +

∫ b

s
F (ξ, δ1(ξ, u(ξ)), u′(ξ), δ2(ξ, v(ξ)), v′(ξ))dξ

)
ds

− lim
x→x+

i

∫ x

a
ϕ−1

(
ϕ(B) +

∫ b

s
F (ξ, δ1(ξ, u(ξ)), u′(ξ), δ2(ξ, v(ξ)), v′(ξ))dξ

)
ds

∣∣∣∣∣
≤

∣∣∣∣∣
∫ xi

x
ϕ−1

(
|ϕ(B)| +

∫ b

s
ρ1L(ξ)dξ

)
ds

∣∣∣∣∣ −→ 0,

uniformly on (u, v) ∈ B, as x −→ x+
i , for i = 1, 2, ...,m and∣∣∣∣∣(T1 (u, v))′ (xi) − lim

x→x+
i

(T1 (u, v))′ (x)
∣∣∣∣∣ =∣∣∣∣∣ϕ−1

(
ϕ(B) +

∫ b

xi

F (ξ, δ1(ξ, u(ξ)), u′(ξ), δ2(ξ, v(ξ)), v′(ξ))dξ
)

− lim
x→x+

i

ϕ−1
(
ϕ(B) +

∫ b

x
F (ξ, δ1(ξ, u(ξ)), u′(ξ), δ2(ξ, v(ξ)), v′(ξ))dξ

)∣∣∣∣∣ −→ 0,

uniformly on (u, v) ∈ B, as x −→ x+
i , for i = 1, 2, ...,m.

Therefore, T1B is equiconvergent at each point x = x+
i , for i = 1, 2, ...,m. Analogously,

it can be proved that T2B is equiconvergent at each point τ = τ+
j , for j = 1, 2, ..., n.

So, TB is equiconvergent at each impulsive point.

Claim 4: T : X2 → X2 has a fixed point .

Consider
Ω := {(u, v) ∈ X2 : ∥(u, v)∥X2 ≤ K},
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with K > 0 such that

K := max



L, |A| +M +
∫ b
a ϕ

−1
(
|ϕ(B)| +

∫ b
a ρ1L(ξ)dξ

)
ds,

ϕ−1
(
|ϕ(B)| +

∫ b
a ρ1L(ξ)dξ

)
,

|C| +M +
∫ b
a ψ

−1
(
|ψ(D)| +

∫ b
a ρ2L(ξ)dξ

)
ds,

ψ−1
(
|ψ(D)| +

∫ b
a ρ2L(ξ)dξ

)


,

with L > 0 and M > 0 given by (4.18) and (4.19). According to Claim 1, we have

∥T (u, v)∥X2 = ∥(T1 (u, v) , T2 (u, v))∥X2

= max{∥T1 (u, v)∥X1
, ∥T2 (u, v)∥X2

}
= max{∥T1 (u, v)∥∞ ,

∥∥T ′
1 (u, v)

∥∥
∞ , ∥T2 (u, v)∥∞ ,

∥∥T ′
2 (u, v)

∥∥
∞}

≤ K.

So, TΩ ⊂ Ω, an by Theorem 4.1.8, the operator T (u, v) = (T1 (u, v) , T2 (u, v)), has a fixed
point (u∗, v∗), which is a solution of the problem (4.15), (4.2), (4.16) .

Step 3: This pair of functions (u∗(x), v∗(x)) is a solution of (4.1), (4.2), (4.3).

To prove this claim it is enough to show that

α1(x) ≤ u∗(x) ≤ β1(x), α2(x) ≤ v∗(x) ≤ β2(x), ∀x ∈ [a, b].

For the second inequality, assume, by contradiction, that there is x ∈ [a, b] such that
u∗(x) > β1(x). Therefore,

sup
a≤x≤b

(u∗(x) − β1(x)) := u∗(x̄) − β1(x̄) > 0. (4.22)

As, by boundary conditions (4.2) and Definition 4.1.6, u∗(a) − β1(a) ≤ 0, then x̄ ̸= a.

Likewise, u∗′(b−) − β′
1(b−) ≤ 0, therefore the supx∈[a,b](u∗ − β1)(x) cannot be reached

at x = b.

Then x̄ ̸= b, and, therefore x̄ ∈]a, b[.

Two possibilities remain to be studied:

• Assume that there is p ∈ {0, 1, 2, ..., n} such that x̄ ∈ (xp, xp+1). Therefore

max
x∈(xp,xp+1)

(u∗(x) − β1(x)) := u∗(x̄) − β1(x̄) > 0,

and
u′(x̄) − β′

1(x̄) = 0. (4.23)

Choose ϵ > 0, sufficiently small, such that

u∗(x) − β1(x) > 0 and u∗′(x) − β′
1(x) ≤ 0,∀x ∈ (x̄, x̄+ ϵ). (4.24)
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By Definition 4.1.6, for all x ∈ (x̄, x̄+ ϵ),

(ϕ(u∗′(x)))′ − (ϕ(β′
1(x)))′ ≥ −f(x, δ1(x, u∗(x)), u∗′(x), δ2(x, v∗(x)), v∗′(x))

− δ1(x, u∗(x)) − u∗(x)
1 + |δ1(x, u∗(x)) − u∗(x)| − (ϕ(β′

1(x)))′

≥ −f(x, β1(x), β′
1(x), δ2(x, v∗(x)), v∗′(x))

− β1(x) − u∗(x)
1 + |β1(x) − u∗(x)| − (ϕ(β′

1(x)))′

≥ u∗(x) − β1(x)
1 + |u∗(x) − β1(x)| > 0.

So (ϕ(u∗′(x)) − ϕ(β′
1(x))) is increasing for ∀x ∈ (x̄, x̄+ ϵ), and, by (4.24), we obtain

the contradiction in (x̄, x̄+ ϵ), by (4.23):

0 = ϕ(u∗′(x̄)) − ϕ(β′
1(x̄)) < ϕ(u∗′(x)) − ϕ(β′

1(x) ≤ 0.

• Suppose, now, that there is p ∈ {1, 2, ..., n} such that, x̄ = xp. That is,

sup
x∈[a,b]

(u∗(x) − β1(x)) := u∗(xp) − β1(xp) > 0. (4.25)

By (4.16), (H3) and Definition 4.1.6, we obtain the contradiction:

∆ (u∗ − β1) (xp) ≥ Ip(xp, δ1(xp, u∗(xp)),
∂δ1
∂x

(xp, u∗(xp)), δ2(xp, v(xp))) − ∆β1(xp)

= Ip(xp, β1(xp), β′
1(xp), δ2(xp, v(xp))) − ∆β1(xp)

≥ Ip(xp, β1(xp), β′
1(xp), β2(xp)) − ∆β1(xp) > 0,

but, by the initial condition and the previous item, we have

u∗(xp) = lim
x→x−

p

u∗(x) ≤ lim
x→x−

p

β1(x) = β1(xp).

If x̄ = x+
p , then

sup
x∈[a,b]

(u∗(x) − β1(x)) := u∗(x+
p ) − β1(x+

p ) > 0,

and, for ϵ > 0, small enough,

u∗′(x) − β′
1(x) ≤ 0,∀x ∈ (x+

p , x
+
p + ϵ),

which leads to a similar contradiction with the interior case (4.24).

Therefore, u∗(x) ≤ β(x), for x ∈ [a, b].

The other inequalities follow similar arguments.
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4.3 Example

Consider the following system of coupled differential equations
(|u′(x)|p−2 u′(x))′ − (u(x))3 + u′(x) + v(x)

1 + (v′(x))2 = 0, x ∈ [0, 1] \
{

1
2

}
,

(arctan(v′(x)))′ + 3
√
u(x) + cos(u′(x))v(x) + v′(x) = 0, x ∈ [0, 1] \

{
1
2 ,

3
4

} (4.26)

where p > 1 and p ∈ Z, with the boundary conditions{
u(0) = 0, u′(1) = 0,
v(0) = 0, v′(1) = 0,

(4.27)

and impulsive conditions given by

∆u
(1

2

)
= 2u

(1
2

)
− u′

(1
2

)
− v

(1
2

)
,

∆v
(1

2

)
= −u

(1
2

)
+ 3v

(1
2

)
− v′

(1
2

)
,

∆v
(3

4

)
= −u

(3
4

)
+ v

(3
4

)
+ 4v′

(3
4

)
.

(4.28)

The system (4.26)-(4.28) is a particular case of the problem (4.1)-(4.3), with a = 0,
b = 1, A = B = C = D = 0, m = 1, n = 2,

f(x, y0, y1, z0, z1) = −y3
0 + y1 + z0

1 + z2
1
,

g(x, y0, y1, z0, z1) = 3
√
y0 + z0 cos(y1) + z1,

ϕ(y1) = |y1|p−2y1,

ψ(z1) = arctan(z1),

I1(x1, y0, y1, z0) = 2y0 − y1 − z0, x1 = 1
2 ,

J1(τ1, y0, z0, z1) = −y0 + 3z0 − z1, τ1 = 1
2 ,

J2(τ2, y0, z0, z1) = −y0 + z0 + 4z1, τ2 = 3
4 .

It is clear that the homeomorphisms ϕ, ψ : R → R satisfy (H1), and f, g are L1-
Carathéodory functions, as, for L > 0 such that

max {|y0| , |y1| , |z0| , |z1|} < L,

we have
|f(x, y0, y1, z0, z1)| ≤ L3 + 2L := ρ1L(x),
|g(x, y0, y1, z0, z1)| ≤ 3√L+ 2L := ρ2L(x).
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Moreover, f and g satisfy a Nagumo condition relative to the sets

S1 = {(x, y0, y1, z0, z1) ∈ [0, 1] × R4 : α1(x) ≤ y0 ≤ β1(x), α2(x) ≤ z0 ≤ β2(x)}.

In fact, for some constant K > 0,

K := max
x∈[0,1]

{|αk(x)| , |βk(x)| , k = 1, 2} ,

and µi defined as in (4.7), then

|f(x, y0, y1, z0, z1)| =
∣∣∣∣−y3

0 + y1 + z0
1 + z2

0

∣∣∣∣
≤ |y1| + K + K3 := φ1(|y1|),

|g(x, y0, y1, z0, z1)| = | 3
√
y0 + z0 cos(y1) + z1|

≤ |z1| + 3√K + K := φ2(|z1|),

and, by (4.8),∫ ϕ(+∞)

ϕ(µ1)

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds =

∫ ϕ(+∞)

ϕ(µ1)

|ϕ−1(s)|
|ϕ−1(s)| + K + K3ds = +∞,

and ∫ ψ(+∞)

ψ(µ2)

|ψ−1(s)|
φ2 (|ψ−1(s)|)ds =

∫ ψ(+∞)

ψ(µ2)

|ψ−1(s)|
|ψ−1(s)| + 3√K + K

ds = +∞.

The functions αk, βk : [0, 1] → R, k = 1, 2, given by

α1(x) =


1
2x if 0 ≤ x ≤ 1

2

−x+ 1 if 1
2 < x ≤ 1

, α2(x) =



0 if 0 ≤ x ≤ 1
2

−1
2x

2 + 2 if 1
2 < x ≤ 3

4

−1
2x+ 2 if 3

4 < x ≤ 1

,

and

β1(x) =


πx+ 2 if 0 ≤ x ≤ 1

2

πx+ 1 if 1
2 < x ≤ 1

, β2(x) =



1
2x+ 2 if 0 ≤ x ≤ 1

2

−x2 + 2x+ 2 if 1
2 < x ≤ 3

4

−e−x + e if 3
4 < x ≤ 1

,

are, respectively, lower and upper solutions of de problem (4.26)-(4.28), according to
Definition 4.1.6.

The four differential inequalities are verified in the interval [0, 1], as shown in Figure
4.1, the boundary conditions verify
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a b

c d
Fig. 4.1: Relationship between nonlinearities depending on the lower and upper solutions, given by
the inequalities of the Definition 4.1.6: a) substituting lower solution (α1, α2) into the first equation; b)
substituting lower solution (α1, α2) in the second equation; c) substituting upper solution (β1, β2) into the
first equation ; d) substituting upper solution (β1, β2) in the second equation.

α1(0) = 0, α′
1(1) = −1 < 0, α2(0) = 0, α′

2(1) = −1
2 < 0,

β1(0) = 2 > 0, β′
1(1) = π > 0, β2(0) = 2 > 0, β′

2(1) = 1
e
> 0,

and, for the impulsive conditions

∆α1

(1
2

)
= 1

4 > I1

(1
2 ,

1
4 ,

1
2 , 0

)
= 0,

∆α2

(1
2

)
= 15

8 > J1

(1
2 ,

1
4 , 0, 0

)
= −1

4 ,

∆α2

(3
4

)
= − 3

32 > J2

(3
4 ,

55
32 ,

1
4 ,−

3
4

)
= −49

32 ,

∆β1

(1
2

)
= −1 < I1

(1
2 ,
π + 4

2 , π,
9
4

)
= 7

4 ,

∆β2

(1
2

)
= −1

2 < J1

(1
2 ,
π + 4

2 ,
9
4 ,

1
2

)
= 17 − 2π

4 ,

∆β2

(3
4

)
= e− e− 3

4 − 47
16 < J2

(3
4 ,

3π + 4
4 ,

47
16 ,

1
2

)
= 63 − 12π

16 .

So, by Theorem 4.2.1, there is at least one pair of functions (u(x), v(x)) ∈ X2, solution
of the problem (4.26)-(4.28).

Moreover, this solution can be localized in the strips

α1(x) ≤ u(x) ≤ β1(x), α2(x) ≤ v(x) ≤ β2(x), ∀x ∈ [0, 1],
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Fig. 4.2: At least one solution (u(x), v(x)) of problem (5.19)-(5.21) is located in the cracked region, when
x ∈ [0, 1].

illustrated in Figure 4.2, and

∥u′∥∞ ≤ N1 and ∥v′∥∞ ≤ N2,

with N1 and N2 given by Lemma 4.1.4.
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Chapter 5

Impulsive coupled systems with regular
and singular ϕ-Laplacians

In this chapter, based on the article [70], we consider the third-order impulsive coupled
system{

(ϕ(u′′(x)))′ + f(x, u(x), u′(x), u′′(x), v(x), v′(x), v′′(x)) = 0, x ∈ M,

(ψ(v′′(x)))′ + g(x, u(x), u′(x), u′′(x), v(x), v′(x), v′′(x)) = 0, x ∈ N,
(5.1)

where M = [a, b] \{x1, ..., xm} and N = [a, b] \{τ1, ..., τn}, ϕ, ψ : R → R are increasing
homeomorphisms such that ϕ(0) = ψ(0) = 0 and ϕ(R) = ψ(R) = R, f, g : [a, b] ×R6 7→ R,
are L1-Carathéodory functions, together with the boundary conditions{

u(a) = A0, u
′(a) = A1, u

′′(b) = A2,

v(a) = B0, v
′(a) = B1, v

′′(b) = B2,
(5.2)

with Ak, Bk ∈ R, k = 0, 1, 2.

The impulsive conditions are given by

∆u(xi) = I0i(xi, u(xi), u′(xi), v(xi), v′(xi)),
∆u′(xi) = I1i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi)),

∆ϕ(u′′(xi)) = I2i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi), v′′(xi)),
∆v(τj) = J0j(τj , u(τj), u′(τj), v(τj), v′(τj)),
∆v′(τj) = J1j(τj , u(τj), u′(τj), v(τj), v′(τj), v′′(τj)),

∆ψ(v′′(τj)) = J2j(τj , u(τj), u′(τj), u′′(τj), v(τj), v′(τj), v′′(τj)),

(5.3)

being ∆u(xi) = u(x+
i ) − u(x−

i ), i = 1, 2, ...,m, ∆v(τj) = v(τ+
j ) − v(τ−

j ), j = 1, 2, ..., n,
I0i, J0j ∈ C([a, b] × R4,R), I1i, J1j ∈ C([a, b] × R5,R), I2i, J2j ∈ C([a, b] × R6,R), and xk
fixed points such that a = x0 < x1 < x2 < ... < xm < xm+1 = b, a = τ0 < τ1 < τ2 < ... <
τn < τn+1 = b.

For a particular case, without jumps on the ϕ, ψ−Laplacians, that is, for

∆u(xi) = I0i(xi, u(xi), u′(xi), v(xi), v′(xi)),
∆u′(xi) = I1i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi)),
∆v(τj) = J0j(τj , u(τj), u′(τj), v(τj), v′(τj)),
∆v′(τj) = J1j(τj , u(τj), u′(τj), v(τj), v′(τj), v′′(τj)),

(5.4)

it is proved an existence and localization theorem, where we present the sufficient assump-
tions to localize a solution in a strip bound by lower and upper solutions.

Usually ϕ, and ψ are known as ϕ, ψ−Laplacian as they generalize the one-dimensional
Laplacian and the p-Laplacian, and they were used by many authors in a broad range
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of problems. Some examples: [102], to obtain a positive periodic solution for a φ-
Laplacian Liénard equation with a singularity; [56], proving the multiplicity of solutions
of p-Laplacian Dirichlet boundary value problem with discontinuous nonlinearities; [103],
giving sufficient conditions for the existence of at least three positive solutions of one-
dimensional p-Laplacian boundary value problem; [28, 95], to obtain positive solutions for
some p-Laplacian problem in superlinear cases; [93], based on nonnegative nonlinearities
under a version of the Krasnosel’skii expansion and compression cone theory.

Beyond the classic regular laplacians, the singular cases, that is, homeomorphisms
ϕ : (−a, a) → R with 0 < a < +∞, have been recently studied by several authors, such
as, for example: [46, 47], for p-Laplacian; [10, 11, 84], with existence and multiplicity
results; [14], obtaining heteroclinic solutions; [38], for equations on the half-line with
functional boundary conditions.

Nonlinear coupled systems, where the unknown functions and their derivatives can in-
teract, have been considered in several works in recent years, such as, among others: [94],
via Schauder’s fixed point theorem; [35], for fractional differential equations at resonance
applying coincidence degree theory; [77], including the study of different types of differ-
ential and integral equations; [105], via lower and upper solutions technique;[50], applied
to reaction-diffusion Robin problems.

Impulsive differential equations model many real phenomena in which the nonlineari-
ties have sudden discontinuous jumps in their values. These types of events can occur in
population dynamics, control, and optimization theory, ecology, biology and biotechnol-
ogy, economics, pharmacokinetics, and other physics and mechanics problems. As some
examples of the approach to impulsive differential equations, we refer: [58], for a gen-
eral theory; [52], via fixed point index; [61, 78], applied to functional impulsive problems;
[108], with a monotone iterative technique for approximating the solution. The study of
ϕ-Laplacian impulsive problems can be seen, for instance in: [49], in periodic problems
applying a continuation theorem; [72, 73], for bounded and unbounded intervals; [101],
for fractional equations with p-Laplacian.

Combining all these areas and results, we consider, for the first time, the methods and
techniques suggested in, for example, [15, 45], to an impulsive coupled system with fully
differential equations including different regular and singular Laplacians and generalized
impulsive conditions, which jumps depend of both variables and some of its derivatives.

The chapter is organized as follows: Section 5.1 contains the functional framework and
some preliminary results, namely the explicit solution for the impulsive linear problem as-
sociated, Nagumo-type growth conditions, and a priori bounds for the second-derivatives.
In Section 5.2, we present an existence theorem for the general case. Section 5.3 contains
an existence and localization result applied to a particular case of the initial impulsive con-
ditions, and a concrete example to show the applicability of the localization tool. Section
5.4 applies our method to the singular case and to special relativity theory.
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5.1 Definitions and preliminary results

This section will introduce some preliminary results and the functional framework,

Define
y(x±

κ ) := lim
x→x±

κ

y(x),

and consider the sets of piece-wise continuous functions:

PC1 ([a, b]) :=
{
u : u ∈ C([a, b],R) continuous for x ̸= xi, u(xi) = u(x−

i ),
u(x+

i ) is finite for i = 1, 2, 3, ...,m

}
,

PC2 ([a, b]) :=
{
v : v ∈ C([a, b],R) continuous for x ̸= τj , v(τj) = v(τ−

j ),
v(τ+

j ) is finite for j = 1, 2, 3, ..., n

}
,

and
PC lk[a, b] =

{
y : y(l) ∈ PCk[a, b], l, k = 1, 2

}
.

Let Xk := PC2
k [a, b], k = 1, 2, be the usual Banach space equipped with the norm

∥ · ∥∞, defined by
∥y∥Xk

:= max{∥y∥∞, ∥y′∥∞, ∥y′′∥∞},

where
∥y∥∞ := sup

a≤x≤b
|y(x)|

and X2 := X1 ×X2 with the norm

∥(u, v)∥X2 = max{∥u∥X1 , ∥v∥X2}.

Definition 5.1.1. A function h : [a, b] × R6 → R is L1-Carathéodory if

i. for each (y0, y1, y2, z0, z1, z2) ∈ R6, x 7→ h(x, y0, y1, y2, z0, z1, z2) is measurable on
[a, b];

ii. for almost every x ∈ [a, b], (y0, y1, y2, z0, z1, z2) 7→ h(x, y0, y1, y2, z0, z1, z2) is contin-
uous on R6;

iii. for each L > 0, there is a positive function ρL ∈ L1[a, b] such that, for a.e. x ∈ [a, b],
and (y0, y1, y2, z0, z1, z2) ∈ R6 with

max {|y0| , |y1| , |y2| , |z0| , |z1| , |z2|} < L,

we have
|h(x, y0, y1, y2, z0, z1, z2)| ≤ ρL(x).

For (u, v) solution of problem (5.1)-(5.3), one must consider (u(x), v(x)) ∈ X2, satis-
fying (5.1), the boundary conditions (5.2) and the impulsive effects (5.3).

The next lemma gives the unique solution for the homogeneous problem related to
(5.1)-(5.3).
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Lemma 5.1.2. Let ϕ, ψ : R → R be increasing homeomorphisms and p, q ∈ L1 [a, b] .
The problem composed by the differential system{

(ϕ(u′′(x)))′ + p(x) = 0
(ψ(v′′(x)))′ + q(x) = 0

(5.5)

and conditions (5.2), and (5.3), has a unique solution given by

u(x) = A0 +A1(x− a) +
∑

i : xi<x

I0i(xi, u(xi), u′(xi), v(xi), v′(xi))

+ (x− a)
∑

i : xi<x

I1i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi))

+
∫ x

a

∫ r

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi), v′′(xi))

+
∫ b

s
p(ξ)dξ

)
dsdr

and
v(x) = B0 +B1(x− a) +

∑
j : τj<x

J0j(τj , u(τj), u′(τj), v(τj), v′(τj))

+ (x− a)
∑

j : τj<x

(τj , u(τj), u′(τj), v(τj), v′(τj), v′′(τj))

+
∫ x

a

∫ r

a
ψ−1

ψ(B2) −
∑

j : τj>s

J2j(τj , u(τj), u′(τj), u′′(τj), v(τj), v′(τj), v′′(τj))

+
∫ b

s
q(ξ)dξ

)
dsdr.

Proof. Integrating the first equation of (5.5), for x ∈ (xn, b], we have, by (5.2),

ϕ(u′′(x)) = ϕ(A2) +
∫ b

x
p(ξ)dξ, (5.6)

For x ∈ (xn−1, xn], integrating (5.5), by (5.3) and (5.6),

ϕ(u′′(x)) = ϕ(u′′(x−
n )) +

∫ xn

x
p(ξ)dξ

=ϕ(u′′(x+
n )) − I2n(xn, u(xn), u′(xn), u′′(xn), v(xn), v′(xn), v′′(xn)) +

∫ xn

x
p(ξ)dξ

=ϕ(A2) +
∫ b

xn

p(ξ)dξ − I2n(xn, u(xn), u′(xn), u′′(xn), v(xn), v′(xn), v′′(xn))

+
∫ xn

x
p(ξ)dξ

=ϕ(A2) − I2n(xn, u(xn), u′(xn), u′′(xn), v(xn), v′(xn), v′′(xn)) +
∫ b

x
p(ξ)dξ.

So, by mathematical induction, for x ∈ [a, b],

ϕ(u′′(x)) = ϕ(A2)

−
∑

i : xi>x

I2i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi), v′′(xi)) +
∫ b

x
p(ξ)dξ,
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and, therefore

u′′(x) = ϕ−1

ϕ(A2) −
∑

i : xi>x

I2i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi), v′′(xi))

+
∫ b

s
p(ξ)dξ

)
.

(5.7)

By a new integration of (5.7) from a to x, when x ∈ [a, x1],

u′(x) = A1

+
∫ x

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi), v′′(xi))

+
∫ b

s
p(ξ)dξ

)
ds.

(5.8)

According to (5.3), when x → x+
1 , we have

u′(x+
1 ) = u′(x−

1 ) + I11(x1, u(x1), u′(xi), u′′(x1), v(x1), v′(x1)),

by (5.8),

u′(x+
1 ) = A1

+
∫ x1

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi), v′′(xi))

+
∫ b

s
p(ξ)dξ

)
ds

+ I11(x1, u(x1), u′(xi), u′′(x1), v(x1), v′(x1)),

and, for x ∈ [a, b],

u′(x) = A1 +
∑

i : xi<x

I1i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi))

+
∫ x

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi), v′′(xi))

+
∫ b

s
p(ξ)dξ

)
ds.

Similarly,

u(x+
1 ) = A0 +A1(x1 − a) + I01(x1, u(x1), u′(x1), v(x1), v′(x1))

+ (x1 − a)
∑

i : xi<x

I1i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi))

+
∫ x1

a

∫ r

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi), v′′(xi))

+
∫ b

s
p(ξ)dξ

)
dsdr
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and, by induction, it can be proved that the solution of the first equation of the problem
(5.5), (5.2), (5.3), for x ∈ [a, b], is given by

u(x) = A0 +A1(x− a) +
∑

i : xi<x

I0i(xi, u(xi), u′(xi), v(xi), v′(xi))

+ (x− a)
∑

i : xi<x

I1i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi))

+
∫ x

a

∫ r

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi), v′′(xi))

+
∫ b

s
p(ξ)dξ

)
dsdr

Likewise, for the second equation, we have

v(x) = B0 +B1(x− a) +
∑

j : τj<x

J0j(τj , u(τj), u′(τj), v(τj), v′(τj))

+ (x− a)
∑

j : τj<x

J0j(τj , u(τj), u′(τj), v(τj), v′(τj), v′′(τj))

+
∫ x

a

∫ r

a
ψ−1

ψ(B2) −
∑

j : τj>s

J2j(τj , u(τj), u′(τj), u′′(τj), v(τj), v′(τj), v′′(τj))

+
∫ b

s
q(ξ)dξ

)
dsdr.

The Nagumo condition, introduced in [80], is an important tool for controlling the sec-
ond derivatives. We consider here a Nagumo-type condition given by the next definition:

Definition 5.1.3. Let γ(l)
k (x), Γ(l)

k (x), k = 1, 2, l = 0, 1, be piecewise continuous func-
tions such that

γ
(l)
1 (x) ≤ Γ(l)

1 (x), γ(l)
2 (x) ≤ Γ(l)

2 (x), a.e. x ∈ [a, b],

and consider the set

S =
{

(x, y0, y1, y2, z0, z1, z2) ∈ [a, b] × R6 :
γ

(l)
1 (x) ≤ yl ≤ Γ(l)

1 (x), γ(l)
2 (x) ≤ zl ≤ Γ(l)

2 (x), l = 0, 1

}
. (S)

The L1−Carathéodory functions f, g : [a, b]×R6 → R satisfy a Nagumo-type condition,
if, there are µk > 0, k = 1, 2, with

µ1 : = max
i=0,1,2,...,m

{ |Γ′
1(xi+1) − γ′

1(xi)|
xi+1 − xi

,
|γ′

1(xi+1) − Γ′
1(xi)|

xi+1 − xi

}
,

µ2 : = max
j=0,1,2,...,n

{
|Γ′

2(τj+1) − γ′
2(τj)|

τj+1 − τj
,
|γ′

2(τj+1) − Γ′
2(τj)|

τj+1 − τj

}
,

(5.9)
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and continuous positive functions φk : [0,+∞) → (0,+∞), k = 1, 2, verifying

|f(x, y0, y1, y2, z0, z1, z2)| ≤ φ1(|y2|), ∀(x, y0, y1, y2, z0, z1, z2) ∈ S,

|g(x, y0, y1, y2, z0, z1, z2)| ≤ φ2(|z2|), ∀(x, y0, y1, y2, z0, z1, z2) ∈ S,
(5.10)

with ∫ ϕ(+∞)

ϕ(µ1)

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds = +∞,

∫ ψ(+∞)

ψ(µ2)

|ψ−1(s)|
φ2(|ψ−1(s)|)ds = +∞. (5.11)

This growth condition allows a priori estimations on the second derivatives.

Lemma 5.1.4. Consider γ′
k,Γ′

k ∈ PC1 [a, b] , k = 1, 2, such that

γ′
k(x) ≤ Γ′

k(x), a.e. x ∈ [a, b] ,

and let f, g : [a, b] × R6 → R be L1−Carathéodory functions satisfying a Nagumo-type
condition, according to Definition 5.1.3. Then, there exist Nk > 0, k = 1, 2, such that for
every solution (u, v) of (5.1) on the set S satisfies∥∥u′′∥∥

∞ ≤ N1 and
∥∥v′′∥∥

∞ ≤ N2.

Remark 5.1.5. Note that N1 depends only on γ′
1,Γ′

1 and φ1, and N2 on γ′
2,Γ′

2 and φ2.

Proof. Let (u(x), v(x)) be a solution of (5.1) on the set S.

By the Mean Value Theorem, there are x̄ ∈ (xi, xi+1) and x̃ ∈ (τj , τj+1) such that

u′′(x̄) = u′(xi+1) − u′(x+
i )

xi+1 − xi
and v′′(x̃) =

v′(τj+1) − v′(τ+
j )

τj+1 − τj
. (5.12)

If |u′′(x)| ≤ µ1, ∀x ∈ [a, b], then it is enough to define N1 := µ1 and the proof is
complete.

The case |u′′(t)| > µ1, ∀x ∈ [a, b], with µ1 defined in (5.9), is not possible.

In fact, if u′′(x) > µ1, ∀x ∈ (xi, xi+1), we obtain, by (5.12), (S) and (5.9), the contra-
diction

u′′(x̄) = u′(xi+1) − u′(x+
i )

xi+1 − xi
≤ Γ′

1(xi+1) − γ′
1(xi)

xi+1 − xi
≤ µ1. (5.13)

If u′′(x) < −µ1, ∀x ∈ [a, b], the contradiction is similar.

Assume, now, that there are x̆, x∗ ∈ (xi, xi+1) with x̆ < x∗, such that

u′′(x̆) ≤ µ1 and u′′(x∗) > µ1.

By continuity of u′′(x), there exists x̂ ∈ [x̆, x∗] such that u′′(x̂) = µ1, and u′′(x) > 0, ∀x ∈
[x̆, x∗].
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Consider Nk > µk, k = 1, 2, such that∫ ϕ(N1)

ϕ(µ1)

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds > µ1(b− a) and

∫ ψ(N2)

ψ(µ2)

|ψ−1(s)|
φ2(|ψ−1(s)|)ds > µ2(b− a). (5.14)

Making a convenient change of variable and using (5.10) and (5.13),∫ ϕ(u′′(x∗))

ϕ(u′′(x̂))

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds =

∫ x∗

x̂

|ϕ−1(ϕ(u′′(x)))|
φ1(|ϕ−1(ϕ(u′′(x)))|)(ϕ(u′′(x)))′dx

≤
∫ x∗

x̂

|u′′(x)|
φ1(|u′′(x)|)(ϕ(u′′(x)))′dx

≤
∫ x∗

x̂

|u′′(x)| · | − f(x, u(x), u′(x), u′′(x), v(x), v′(x), v′′(x))|
φ1(|u′′(x)|) dx,

≤
∫ x∗

x̂

|u′′(x)| · |φ1(|u′′(x)|)|
φ(|u′′(t)|) dx,

≤
∫ x∗

x̂
u′′(x)dx = u′(x∗) − u′(x̂) ≤ µ1(b− a),

and by (5.14)∫ ϕ(u′′(x∗))

ϕ(u′′(x̂))

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds ≤ µ1(b− a) <

∫ ϕ(N1)

ϕ(µ1)

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds.

Therefore u′′(x∗) < N1, and as x∗ is taken arbitrarily, then u′′(x) < N1, for the values
of x whenever u′′(x) > µ1.

The case for x̆ > x∗ follows similar arguments.

The other possible case where

u′′(x̆) > −µ1 and u′′(x∗) < −µ1.

can be proved by the previous techniques. Therefore ∥u′′∥∞ ≤ N1.

By a similar method, it can be shown that ∥v′′∥∞ ≤ N2.

The arguments forward will require the following lemma, of [99]:

Lemma 5.1.6. For v, w ∈ C(I) such that v(x) ≤ w(x), for every x ∈ I, define

q(x, u) = max{v,min{u,w}}.

Then, for each u ∈ C1(I) the next two properties hold:

(a) d
dxq(x, u(x)) exists for a.e. x ∈ I.

(b) If u, um ∈ C1(I) and um → u in C1(I) then

d

dx
q(x, um(x)) → d

dx
q(x, u(x)) for a.e. x ∈ I.
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Schauder’s fixed point theorem will be the key existence tool:

Theorem 5.1.7. ([106]) Let Y be a nonempty, closed, bounded, and convex subset of a
Banach space X, and suppose that P : Y → Y is a compact operator. Then P has at least
one fixed point in Y .

5.2 Existence result

The next theorem will guarantee the existence of a solution of (5.1)-(5.3), through the
existence of fixed points of a convenient operator.

(H1) ϕ, ψ : R → R are increasing homeomorphisms such that ϕ(0) = ψ(0) = 0 and
ϕ( R) = ψ(R) = R, and∣∣∣ϕ−1(w)

∣∣∣ ≤ ϕ−1(|w|), and
∣∣∣ψ−1(w)

∣∣∣ ≤ ψ−1(|w|).

Theorem 5.2.1. Consider Ak, Bk ∈ R, k = 0, 1, 2, and the homeomorphisms ϕ and
ψ verifying (H1). Let f, g : [a, b] × R6 → R be L1-Carathéodory functions, satisfying
a Nagumo-type conditions as in Definition 5.1.3, and Iki, Jkj, k = 0, 1, 2, i = 1, ...,m,
j = 1, ..., n, continuous functions. Then there is at least one pair of functions (u, v) ∈ X2

solution to the problem (5.1)-(5.3).

Proof. Define the operators T1 : X2 → X1, T2 : X2 → X2, and T : X2 → X2 given by

T (u, v) = (T1 (u, v) , T2 (u, v)) , (5.15)

with

(T1 (u, v)) (x) = A0 +A1(x− a) +
∑

i : xi<x

I0i(xi, u(xi), u′(xi), v(xi), v′(xi))

+ (x− a)
∑

i : xi<x

I1i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi))

+
∫ x

a

∫ r

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i(xi, u(xi), u′(xi), u′′(xi), v(xi), v′(xi), v′′(xi))

+
∫ b

s
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

)
dsdr

and

(T2 (u, v)) (x) = B0 +B1(x− a) +
∑

j : τj<x

J0j(τj , u(τj), u′(τj), v(τj), v′(τj))

+ (x− a)
∑

j : τj<x

J1j(τj , u(τj), u′(τj), v(τj), v′(τj), v′′(τj))

+
∫ x

a

∫ r

a
ψ−1

ψ(B2) −
∑

j : τj>s

J2j(τj , u(τj), u′(τj), u′′(τj), v(τj), v′(τj), v′′(τj))

+
∫ b

s
g(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

)
dsdr.
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Define L > 0 and M > 0, such that

L > ∥(u, v)∥X2 (5.16)

and

M > max
k=0,1,2


m∑
i=1

|Iki| ,
n∑
j=1

|Jkj |

 . (5.17)

Since f and g are L1−Carathéodory functions and non-negative function ρκL(x) ∈ L1([a, b]),
κ = 1, 2, such that∣∣f(x, u(x), u′(x), u′′(x), v(x), v′(x), v′′(x))

∣∣ ≤ ρ1L(x),∣∣g(x, u(x), u′(x), u′′(x), v(x), v′(x), v′′(x))
∣∣ ≤ ρ2L(x), a.e. x ∈ [a, b].

(5.18)

The proof will follow several steps that, for clarity, are detailed for the T1(u, v) oper-
ator. The technique for the T2(u, v) operator is similar.

Step 1: T is well defined, continuous and uniformly bounded.

By the Lebesgue dominated convergence Theorem, (5.18), (5.3), (H1), and (5.17), then

|(T1 (u, v)) (x)| ≤ |A0| + |A1(x− a)| +
∑

i : xi<x

|I0i| + |(x− a)|
∑

i : xi<x

|I1i|

+

∣∣∣∣∣∣
∫ x

a

∫ r

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i

+
∫ b

s
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

)
dsdr

∣∣∣∣∣
≤ |A0| + |A1(x− a)| +M +M |(x− a)|

+
∫ x

a

∫ r

a
ϕ−1

(
|ϕ(A2)| +M +

∫ b

s

∣∣f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))
∣∣ dξ) dsdr

≤ |A0| + |A1(b− a)| +M +M |(b− a)|

+
∫ b

a

∫ r

a
ϕ−1

(
|ϕ(A2)| +M +

∫ b

s
ρ1L(ξ)dξ

)
dsdr < +∞,

∣∣∣(T1 (u, v))′ (x)
∣∣∣ ≤ |A1| +

∑
i : xi<x

|I1i|

+

∣∣∣∣∣∣
∫ x

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i

+
∫ b

s

∣∣f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))
∣∣ dξ) ds∣∣∣∣∣

≤ |A1| +M +
∫ b

a
ϕ−1

(
|ϕ(A2)| +M +

∫ b

s
ρ1L(ξ)dξ

)
ds < +∞
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and

∣∣∣(T1 (u, v))′′ (x)
∣∣∣ ≤

∣∣∣∣∣∣ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i

+
∫ b

s

∣∣f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))
∣∣ dξ)∣∣∣∣∣

≤ϕ−1
(

|ϕ(A2)| +M +
∫ b

a
ρ1L(ξ)dξ

)
< +∞

Therefore (T1 (u, v)) (x) ∈ X1. The proof that (T2 (u, v)) (x) ∈ X2 is similar, and, so,
therefore T is well defined in X2.

Moreover, defining B ⊆ X2 as

B.={(u, v) ∈ X2 : ∥(u, v)∥X2 ≤ L},

from the above, it is clear that TB is uniformly bounded.

Step 2: T is equicontinuous, that is, T1B is equicontinuous on each interval ]xi, xi+1],
for i = 0, 1, ...,m, with x0 = a and xm+1 = b, and T2B is equicontinuous on each interval
]τj , τj+1], for j = 0, 1, ..., n, with τ0 = a and τn+1 = b.

Consider I ⊆]xi, xi+1] and x̃, x∗ ∈ I such that, without loss of generality, x̃ ≤ x∗. For
(u, v) ∈ B, we have

lim
x̃→x∗

|(T1 (u, v)) (x∗) − (T1 (u, v)) (x̃)| ≤ lim
x̃→x∗

|A1(x∗ − a) −A1(x̃− a)|

+ lim
x̃→x∗

∣∣∣∣∣∣
∑

a<xi<x∗
I0i −

∑
a<xi<x̃

I0i + (x∗ − a)
∑

a<xi<x∗
I1i − (x̃− a)

∑
a<xi<x̃

I1i

∣∣∣∣∣∣
+ lim
x̃→x∗

∣∣∣∣∣∣
∫ x∗

xi

∫ r

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i

+
∫ b

s
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

)
dsdr

−
∫ x̃

xi

∫ r

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i

+
∫ b

s
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

)
dsdr

∣∣∣∣∣
≤ lim

x̃→x∗

∣∣∣∣∣∣
∫ x∗

x̃

∫ r

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i

+
∫ b

s
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

)
dsdr

∣∣∣∣∣ = 0,



68 Impulsive coupled systems with regular and singular ϕ-Laplacians

lim
x̃→x∗

∣∣∣(T1 (u, v))′ (x∗) − (T1 (u, v))′ (x̃)
∣∣∣ ≤ lim

x̃→x∗

∣∣∣∣∣∣
∑

a<xi<x∗
I1i −

∑
a<xi<x̃

I1i

∣∣∣∣∣∣
+ lim
x̃→x∗

∣∣∣∣∣∣
∫ x∗

xi

ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i

+
∫ b

s
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

)
ds

−
∫ x̃

xi

ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i +
∫ b

s
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

 ds
∣∣∣∣∣∣

≤ lim
x̃→x∗

∣∣∣∣∣∣
∫ x∗

x̃
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i

+
∫ b

s
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

)
ds

∣∣∣∣∣ = 0,

and

lim
x̃→x∗

∣∣∣(T1 (u, v))′′ (x∗) − (T1 (u, v))′′ (x̃)
∣∣∣ ≤

lim
x̃→x∗

∣∣∣∣∣∣ϕ−1

ϕ(A2) −
∑

i:xi>x∗
I2i +

∫ b

x∗
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ


−ϕ−1

ϕ(A2) −
∑

i:xi>x̃

I2i +
∫ b

x̃
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

∣∣∣∣∣∣ = 0.

Therefore, T1B is equicontinuous on X1. Similarly, we can show that T2B is equicontinuous
on X2, too. Thus, TB is equicontinuous on X2.

Step 3: TB : X2 → X2 is equiconvergent at x = xi and x = τj .

First, let us prove the equiconvergence at x = x+
i , for i = 1, 2, ...m. The proof of

equiconvergence at x = τ+
j , for j = 1, 2, ...n, is analogous.
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So, it follows, for i = 1, 2, ...,m,

∣∣∣∣∣(T1 (u, v)) (xi) − lim
x→x+

i

(T1 (u, v)) (x)
∣∣∣∣∣ ≤

∣∣∣∣∣A1(xi − a) − lim
x→x+

i

A1(x− a)
∣∣∣∣∣

+
∣∣∣∣∣ ∑
a<xλ<xi

I0λ − lim
x→x+

i

∑
a<xλ<x

I0λ + (xi − a)
∑

a<xλ<xi

I1λ − lim
x→x+

i

(x− a)
∑

a<xλ<x

I1λ

∣∣∣∣∣
+

∣∣∣∣∣∣
∫ xi

a

∫ r

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i

+
∫ b

s
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

)
dsdr

− lim
x→x+

i

∫ x

a

∫ r

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i

+
∫ b

s
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

)
dsdr

∣∣∣∣∣
≤ lim

x→x+
i

∣∣∣∣∣∣
∫ xi

x

∫ r

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i

+
∫ b

s
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

)
dsdr

∣∣∣∣∣ = 0,

∣∣∣∣∣(T1 (u, v))′ (xi) − lim
x→x+

i

(T1 (u, v))′ (x)
∣∣∣∣∣ ≤

∣∣∣∣∣ ∑
a<xλ<xi

I1λ − lim
x→x+

i

∑
a<xλ<x

I1λ

∣∣∣∣∣
+

∣∣∣∣∣∣
∫ xi

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i +
∫ b

s
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

 ds
− lim
x→x+

i

∫ x

a
ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i

+
∫ b

s
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

)
ds

∣∣∣∣∣
≤ lim

x→x+
i

∣∣∣∣∣∣
∫ x

xi

ϕ−1

ϕ(A2) −
∑

i : xi>s

I2i

+
∫ b

s
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

)
ds

∣∣∣∣∣ = 0,
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and ∣∣∣∣∣(T1 (u, v))′′ (xi) − lim
x→x+

i

(T1 (u, v))′′ (x)
∣∣∣∣∣ ≤

+
∣∣∣∣∣ϕ−1

(
ϕ(A2) −

∑
a<xλ<xi

I2λ +
∫ b

xi

f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ
)

− lim
x→x+

i

ϕ−1
(
ϕ(A2) −

∑
a<xλ<x

I2λ

+
∫ b

x
f(ξ, u(ξ), u′(ξ), u′′(ξ), v(ξ), v′(ξ), v′′(ξ))dξ

)∣∣∣∣∣ = 0.

Therefore, T1B is equiconvergent at each point x = x+
i , for i = 1, 2, ...,m.

Analogously, it can be proved that T2B is equiconvergent at each point x = τ+
j , for

j = 1, 2, ..., n.

So, TB is equiconvergent at each impulsive point.

Step 4: T : X2 → X2 has a fixed point .

Consider
Ω := {(u, v) ∈ X2 : ∥(u, v)∥X2 ≤ K},

with K > 0 such that

K := max



L, |A0| + |A1(b− a)| +M +M |(b− a)|
+
∫ b
a

∫ r
a ϕ

−1
(
|ϕ(A2)| +M +

∫ b
s ρ1L(ξ)dξ

)
dsdr,

|A1| +M +
∫ b
a ϕ

−1
(
|ϕ(A2)| +M +

∫ b
s ρ1L(ξ)dξ

)
ds,

ϕ−1
(
|ϕ(A2)| +M +

∫ b
a ρ1L(ξ)dξ

)
,

|B0| + |B1(b− a)| +M +M |(b− a)|
+
∫ b
a

∫ r
a ψ

−1
(
|ψ(B2)| +M +

∫ b
s ρ2L(ξ)dξ

)
dsdr,

|B1| +M +
∫ b
a ψ

−1
(
|ψ(B2)| +M +

∫ b
s ρ2L(ξ)dξ

)
ds,

ψ−1
(
|ψ(B2)| +M +

∫ b
a ρ2L(ξ)dξ

)



,

with L > 0 and M > 0 given by (5.16) and (5.17).

According to Step 1, we have

∥T (u, v)∥X2 = ∥(T1 (u, v) , T2 (u, v))∥X2

= max{∥T1 (u, v)∥X1
, ∥T2 (u, v)∥X2

}

= max
{

∥T1 (u, v)∥∞ , ∥T ′
1 (u, v)∥∞ , ∥T ′′

1 (u, v)∥∞ ,
∥T2 (u, v)∥∞ , ∥T ′

2 (u, v)∥∞ , ∥T ′′
2 (u, v)∥∞

}
≤ K.

So, TΩ ⊂ Ω, and by Theorem 5.1.7, the operator T (u, v) = (T1 (u, v) , T2 (u, v)), has a
fixed point (u∗, v∗).
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By standard techniques, and Lemma 5.1.2, it can be shown that this fixed point is a
solution of problems (5.1)-(5.3).

Example 5.2.2. Consider the following system of coupled differential equations

u′′′(x)√
1 + (u′′(x))2 − (u(x))3 v(x) + u′(x) arctan(v′(x)) + (u′′(x))2 − 3

√
v′′(x) = 0,

x ∈ [0, 1] \ {(xi)} ,

v′′′(x) − u(x)v′(x) + cos(u′′(x))v(x) + (u′(x))2 − v′′(x) = 0,
x ∈ [0, 1] \ {(τj)}

(5.19)
with the boundary conditions{

u(0) = 0, u′(0) = 1, u′′(1) = 0
v(0) = 0, v′(0) = −1, v′′(1) = 0,

(5.20)

and the impulsive effects given by

∆u(xi) = 2u (xi) + u′ (xi) + v (xi) ,
∆u′(xi) = (u′ (xi))2 − u′′ (xi) + v (xi) ,

∆ϕ(u′′(xi)) = sin(xi)
xi

,

∆v (τi) = u (τi) + 3v (τi) + v′ (τi) ,
∆v′ (τi) = u (τi) + v (τi) + 4 sin(v′ (τi)) − (v′′ (τi))2,

∆ψ(v′′(τj)) = e−τj

(5.21)

with xi = i

5 , for i = 1, 2, 3, 4 and τj = j2

10 , for j = 1, 2, 3.

This problem is a particular case of (5.1)-(5.3), with [a, b] = [0, 1] ,

ϕ(y2) = arcsinh y2, ψ(z2) = z2, (5.22)

f(x, y0, y1, y2, z0, z1, z2) = −y3
0 z0 + y1 arctan z1 + y2

2 − 3
√
z2,

g(x, y0, y1, y2, z0, z1, z2) = −y0 z1 + cos (y2) z0 + y2
1 − z2,

A0 = A2 = B0 = B2 = 0, A1 = 1, B1 = −1,

I0(· , y0, y1, z0, z1) = 2y0 + y1 + z0,

I1(· , y0, y1, y2, z0, z1) = y2
1 − y2 + z0,

I2(· , y0, y1, y2, z0, z1) = sin(xi)
xi

,

J0(· , y0, y1, z0, z1) = y0 + 3z0 + z1,

J1(· , y0, y1, z0, z1, z2) = y0 + z0 + 4 sin z1 − z2
2 ,

J1(· , y0, y1, z0, z1, z2) = e−τj

and m = 4, n = 3.
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It is clear that the functions in (5.22) verify assumption (H1) and f and g satisfy a
Nagumo-type condition in sets such as, for some piecewise continuous functions γ(l)

k (x),
Γ(l)
k (x), k = 1, 2, l = 0, 1,{

(x, y0, y1, y2, z0, z1, z2) ∈ [0, 1] × R6 : γ1(x) ≤ y0 ≤ Γ1(x),
γ′

1(x) ≤ y1 ≤ Γ′
1(x), γ2(x) ≤ z0 ≤ Γ2(x), γ′

2(x) ≤ z1 ≤ Γ′
2(x)

}
,

with
φ1(|y2|) := K0 + y2

2, and φ2(|z2|) := K1 + |z2| ,

being K0,K1 some real positive numbers.

Therefore by Theorem 5.2.1, the problem (5.19)-(5.21) has at least a solution.

5.3 Existence and localization results

In addition to the existence of a solution, it is possible to obtain an existence and local-
ization theorem, that is, not only it guarantees the existence of at least a solution, but
provides also a strip where this solution is localized.

However, the localization part is obtained for a particular case of the impulsive condi-
tions (5.4), applying lower and upper functions, defined as follows:

Definition 5.3.1. The pair of functions (α1(x)α2(x)) ∈ X2 such that (ϕ(α′′
1(x)), ψ(α′′

2(x))) ∈
(AC[a, b])2, is a lower solution of problem (5.1), (5.2), (5.4), if

(ϕ(α′′
1(x)))′ + f(x, α1(x), α′

1(x), α′′
1(x), α2(x), α′

2(x), z) ≥ 0, for z ∈ R
(ψ(α′′

2(x)))′ + g(x, α1(x), α′
1(x), y, α2(x), α′

2(x), α′′
2(x)) ≥ 0, for y ∈ R,

α
(l)
1 (a) ≤ Al, α

(l)
2 (a) ≤ Bl, l = 0, 1,

α′′
1(b) ≤ A2, α

′′
2(b) ≤ B2,

∆α1(xi) ≤ I0i(xi, α1(xi), α′
1(xi), α2(xi), α′

2(xi)),
∆α′

1(xi) ≤ I1i(xi, α1(xi), α′
1(xi), α′′

1(xi), α2(xi), α′
2(xi)),

∆α2(τj) ≤ J0j(τj , α1(τj), α′
1(τj), α2(τj), α′

2(τj)),
∆α′

2(τj) ≤ J1j(τj , α1(τj), α′
1(τj), α2(τj), α′

2(τj), α′′
2(τj)),

(5.23)

A pair of functions (β1(x), β2(x)) ∈ X2 such that (ϕ(β′′
1 (x)), ψ(β′′

2 (x))) ∈ (AC[a, b])2 is an
upper solution of problem (5.1), (5.2), (5.4) if the opposite inequalities hold.

To obtain this goal, we consider local monotone assumptions:

(H2) f, g : [a, b] × R4 7→ R, are L1 -Carathéodory such that

f(x, α1(x), y1, α
′′
1(x), α2(x), α′

2(x), z2) ≤ f(x, y0, y1, y2, z0, z1, z2)
≤ f(x, β1(x), y1, β

′′
1 (x), β2(x), β′

2(x), z2),
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for α1(x) ≤ y0 ≤ β1(x), α′′
1(x) ≤ y2 ≤ β′′

1 (x), α2(x) ≤ z0 ≤ β2(x), α′
2(x) ≤ z1 ≤

β′
2(x), and (x, y1, z2) ∈ [a, b] × R2, and

g(x, α1(x), α′
1(x), y2, α2(x), z1, α

′′
2(x)) ≤ g(x, y0, y1, y2, z0, z1, z2)

≤ g(x, β1(x), β′
1(x), y2, β2(x), z1, β

′′
2 (x)),

for α1(x) ≤ y0 ≤ β1(x), α′
1(x) ≤ y1 ≤ β′

1(x), α2(x) ≤ z0 ≤ β2(x), α′′
2(x) ≤ z2 ≤

β′′
2 (x), and (x, y2, z1) ∈ [a, b] × R2.

(H3) I0i, J0j ∈ C([a, b] × R4,R), verify

I0i(xi, α1(xi), α′
1(xi), α2(xi), α′

2(xi)) ≤ I0i(xi, y0, y1, z0, z1)
≤ I0i(xi, β1(xi), β′

1(xi), β2(xi), β′
2(xi)),

for i = 1, 2, ...,m, l = 0, 1, α(l)
1 (x) ≤ yl ≤ β

(l)
1 (x), α(l)

2 (x) ≤ zl ≤ β
(l)
2 (x), and

J0j(τj , α1(τj), α′
1(τj), α2(τj), α′

2(τj)) ≤ J0j(τj , y0, y1, z0, z1)
≤ J0j(τj , β1(τj), β′

1(τj), β2(τj), β′
2(τj)).

for j = 1, 2, ..., n, l = 0, 1, α(l)
1 (x) ≤ yl ≤ β

(l)
1 (x), α(l)

2 (x) ≤ zl ≤ β
(l)
2 (x),

and I1i, J1j ∈ C([a, b] × R5,R), satisfy

I1i(xi, α1(xi), y1, y2, α2(xi), α′
2(xi)) ≤ I1i(xi, y0, y1, y2, z0, z1)

≤ Ii(xi, β1(xi), y1, y2, β2(xi), β′
2(xi)),

for i = 1, 2, ...,m, l = 0, 1, α1(x) ≤ y0 ≤ β1(x), α(l)
2 (x) ≤ zl ≤ β

(l)
2 (x), ∀(y1, y2) ∈ R2

and

J1j(τj , α1(τj), α′
1(τj), α2(τj), z1, z2) ≤ J1j(τj , y0, y1, z0, z1, z2)

≤ J1j(τj , β1(τj), β′
1(τj), β2(τj), z1, z2).

for j = 1, 2, ..., n, l = 0, 1, α(l)
1 (x) ≤ yl ≤ β

(l)
1 (x), α2(x) ≤ z0 ≤ β2(x), ∀(z1, z2) ∈ R2.

The existence and localization theorem is given as follows:
Theorem 5.3.2. Let Ak, Bk ∈ R, k = 0, 1, 2, and the homeomorphisms ϕ and ψ verify
(H1). Assume that there are lower and upper solutions of (5.1), (5.2), (5.4), (α(l)

1 , α
(l)
2 )

and (β(l)
1 , β

(l)
2 ), respectively, such that

α(l)
κ (x) ≤ β(l)

κ (x), κ = 1, 2, l = 0, 1, ∀x ∈ [a, b],

the L1−Carathéodory functions f, g : [a, b] × R4 → R satisfy Nagumo conditions as in
Definition 5.1.3, in the set

S∗ =
{

(x, y0, y1, y2, z0, z1, z2) ∈ [a, b] × R6 :
α

(l)
1 (x) ≤ yl ≤ β

(l)
1 (x), α(l)

2 (x) ≤ zl ≤ β
(l)
2 (x), l = 0, 1

}
.

If assumptions (H2), and (H3) hold, then there is at least a pair (u(x), v(x)) ∈ X2 solution
of (5.1), (5.2), (5.4) and, moreover,

α
(l)
1 (x) ≤ u(l)(x) ≤ β

(l)
1 (x), α

(l)
2 (x) ≤ v(l)(x) ≤ β

(l)
2 (x), l = 0, 1, ∀x ∈ [a, b],

and
∥u′′∥ ≤ N1 and ∥v′′∥ ≤ N2,

with N1 and N2 given by Lemma 5.1.4.
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Proof. Define the truncature functions δim : [a, b] × R → R, for κ = 1, 2 and l = 0, 1,
given by

δκl(x,wl) =


β

(l)
κ (x) if wl > β

(l)
κ (x)

wl if α
(l)
κ (x) ≤ wl ≤ β

(l)
κ (x)

α
(l)
κ (x) if wl < α

(l)
κ (x).

(5.24)

Consider the following modified coupled system composed by the truncated and perturbed
differential equations

(ϕ(u′′(x)))′ + f

(
x, δ10(x, u(x)), δ11(x, u′(x)), u′′(x),
δ20(x, v(x)), δ21(x, v′(x)), v′′(x)

)

+ δ11(x, u′(x)) − u′(x)
1 + |δ11(x, u′(x)) − u′(x)| = 0,

(ψ(v′′(x)))′ + g

(
x, δ10(x, u(x)), δ11(x, u′(x)), u′′(x),
δ20(x, v(x)), δ21(x, v′(x)), v′′(x)

)

+ δ21(x, v′(x)) − v′(x)
1 + |δ21(x, v′(x)) − v′(x)| = 0,

(5.25)

with the truncated impulsive conditions

∆u(xi) = I0i(xi, δ10(xi, u(xi)), δ11(xi, u′(xi)), δ20(xi, v(xi)), δ21(xi, v′(xi))),

∆u′(xi) = I1i

 xi, δ10(xi, u(xi)), δ11(xi, u′(xi)),
d

dx
δ11(xi, u′(xi)),

δ20(xi, v(xi)), δ21(xi, v′(xi))


∆v(τj) = J0j(τj , δ10(τj , u(τj)), δ11(τj , u′(τj)), δ20(τj , v(τj)), δ21(τj , v′(τj))),

∆v′(τj) = J1j

 τj , δ10(τj , u(τj)), δ11(τj , u′(τj)), δ20(τj , v(τj)),
δ21(τj , v′(τj)),

d

dx
δ21(xi, v′(τj))

 ,
(5.26)

for i = 1, 2, ...,m, j = 1, 2, ..., n, and the boundary conditions (5.2).

It is clear that the functions F and G, given by

F (x) := f(x, δ10(x, u(x)), δ11(x, u′(x)), u′′(x), δ20(x, v(x)), δ21(x, v′(x)), v′′(x))

+ δ11(x, u′(x)) − u′(x)
1 + |δ11(x, u′(x)) − u′(x)|

and

G(x) := g(x, δ10(x, u(x)), δ11(x, u′(x)), u′′(x), δ20(x, v(x)), δ21(x, v′(x)), v′′(x))

+ δ21(x, v′(x)) − v′(x)
1 + |δ21(x, v′(x)) − v′(x)|

satisfy the Nagumo type conditions, as in Definition 5.1.3, relative to the set S∗, with

|F (x, y0, y1, y2, z0, z1, z2)| ≤ φ1(|y2|) + 1

and
|G(x, y0, y1, y2, z0, z1, z2)| ≤ φ2(|y2|) + 1.

Therefore, applying the same arguments as in the Theorem 5.2.1, it can be proved
that problem (5.25), (5.2), (5.26) has, at least a solution (u(x), v(x)),
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To prove that this solution is also a solution to the initial problem (5.1), (5.2), (5.4),
it will be enough to show that

α
(l)
1 (x) ≤ u(l)(x) ≤ β

(l)
1 (x), α

(l)
2 (x) ≤ v(l)(x) ≤ β

(l)
2 (x), l = 0, 1, ∀x ∈ [a, b].

For the second inequality, assume, by contradiction, that there is x ∈ [a, b] such that
u′(x) > β′

1(x), and define

sup
a≤x≤b

(u′(x) − β′
1(x)) := u′(x̄) − β′

1(x̄) > 0. (5.27)

As, by boundary conditions (5.2) and Definition 5.3.1, u′(a) − β′
1(a) ≤ 0, then x̄ ̸= a.

In the same way, u′′(b−) − β′′
1 (b−) ≤ 0, therefore x̄ ̸= b.

Then x̄ ∈ (a, b), two possibilities remain to be studied:

(i) Assume that there is p ∈ {0, 1, 2, ..., n} such that x̄ ∈ (xp, xp+1). Therefore

max
x∈(xp,xp+1)

(u′(x) − β′
1(x)) := u′(x̄) − β′

1(x̄) > 0,

and
u′′(x̄) − β′′

1 (x̄) = 0. (5.28)

Choose ϵ > 0, sufficiently small, such that

u′(x) − β′
1(x) > 0 and u′′(x) − β′′

1 (x) ≤ 0, ∀x ∈ (x̄, x̄+ ϵ). (5.29)

By (H2), for all x ∈ (x̄, x̄+ ϵ),

(ϕ(u′′(x)))′ − (ϕ(β′′
1 (x)))′

≥ −f(x, δ10(x, u(x)), δ11(x, u′(x)), u′′(x), δ20(x, v(x)), δ21(x, v′(x)), v′′(x))

− δ11(x, u′(x)) − u′(x)
1 + |δ11(x, u′(x)) − u′(x)| + f(x, β1(x), β′

1(x), β′′
1 (x), β2(x), β′

2(x), β′′
2 (x))

≥ −f(x, δ10(x, u(x)), β′
1(x), β′′

1 (x), δ20(x, v(x)), δ21(x, v′(x)), v′′(x))

− β′
1(x) − u′(x)

1 + |β′
1(x) − u′(x)| + f(x, β1(x), β′

1(x), β′′
1 (x), β2(x), β′

2(x), β′′
2 (x))

≥ u′(x) − β′
1(x)

1 + |u′(x) − β′
1(x)| > 0.

So (ϕ(u′′(x)) −ϕ(β′′
1 (x))) is increasing for ∀x ∈ (x̄, x̄+ ϵ), and, by (5.29 ), we obtain

the contradiction in (x̄, x̄+ ϵ), by (5.28) and (5.29):

0 = ϕ(u′′(x̄)) − ϕ(β′′
1 (x̄)) < ϕ(u′′(x)) − ϕ(β′′

1 (x) ≤ 0.

Therefore, for x ∈ (xp, xp+1), p = 0, 1, 2, ..., n,

u′(x) ≤ β′
1(x).
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(ii) Suppose, now, that there is p∗ ∈ {1, 2, ..., n} such that, x̄ = xp∗ . That is,

sup
x∈[a,b]

(u′(x) − β′
1(x)) := u′(xp∗) − β′

1(xp∗) > 0. (5.30)

As u, β1 ∈ X, by (i), we obtain the contradiction:

u′(xp∗) = lim
x→x−

p∗

u′(x) ≤ lim
x→x−

p∗

β′
1(x) = β′

1(xp∗).

If x̄ = x+
p∗ , suppose

sup
x∈[a,b]

(u′(x) − β′
1(x)) := u′(x+

p∗) − β′
1(x+

p∗) > 0,

By (5.26), (H3) and Definition 5.3.1, we obtain the contradiction:

0 < u′(x+
p∗) − β′

1(x+
p∗) = u′(xp∗)

+ I1p∗

 xp∗ , δ10(xp∗ , u(xp∗)), δ11(xp∗ , u
′(xp∗)), d

dx
δ11(xp∗ , u

′(xp∗)),
δ20(xp∗ , v(xp∗)), δ21(xp∗ , v

′(xp∗))


− β′

1(xp∗) − Ip∗(xp∗ , β1(xp∗), β′
1(xp∗), β′′

1 (xp∗), β2(xp∗), β′
2(xp∗))

≤ I1p∗(xp∗ , β1(xp∗), β′
1(xp∗), β′′

1 (xp∗), δ20(xp∗ , v(xp∗)), δ21(xp∗ , v
′(xp∗)))

− I1p∗(xp∗ , β1(xp∗), β′
1(xp∗), β′′

1 (xp∗), β2(xp∗), β′
2(xp∗)) ≤ 0.

Therefore, u′(x) ≤ β′(x), for x ∈ [a, b].

By similar arguments, it can be proved the remaining inequality and, therefore,

α′
1(x) ≤ u(x) ≤ β′

1(x), for all x ∈ [a, b]. (5.31)

The other inequalities follow similar steps.

By integration of (5.31) for x ∈ [a, x1],

α1(x) ≤ u(x) − u(a) + α1(a) ≤ u(x),

and for x ∈ (x1, x2], we have, by (H3),

α1(x) ≤ u(x) − u(x+
1 ) + α1(x+

1 )
≤ u(x) − u(x1)
− I01(x1, δ10(x1, u(x1)), δ11(x1, u

′(x1)), δ20(x1, v(x1)), δ21(x1, v
′(x1)))

+ α1(x1) + I01(xi, α1(x1), α′
1(xi), α2(xi), α′

2(xi))
≤ u(x).

By recurrence, it can be shown, analogously, that

α1(x) ≤ u(x), ∀x ∈ (xi, xi+1], for i = 1, ...,m.

Therefore, α1(x) ≤ u(x), ∀x ∈ [a, b].
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Analogously, it can be proved the remaining inequality and, therefore,

α1(x) ≤ u(x) ≤ β1(x), for all x ∈ [a, b]. (5.32)

Analogously, it can be proved that

α
(l)
2 (x) ≤ v(l)(x) ≤ β

(l)
2 (x), l = 0, 1, ∀x ∈ [a, b].

To illustrate the importance of the location arguments, we consider the following
example:

Example 5.3.3. Let be the problem composed system composed by the strongly nonlinear
ϕ−Laplacian and p−Laplacian differential equations

u′′′(x)
1 + (u′′(x))2 + u(x) − 4u′(x) + v(x) + arctan(v′′(x)) = 0,

x ∈ [0, 1] \ {(xi)} ,

(
|v′′(x)|p−2 v′′(x)

)′
+ u(x) − 2v′(x) sin2(u′′(x)) + v(x) − 2 3

√
v′(x) = 0,

x ∈ [0, 1] \ {(τj)}

(5.33)

with p > 1, the boundary conditionsu(0) = 0, u′(0) = 1
2 , u

′′(1) = 1
v(0) = 0, v′(0) = 0, v′′(1) = 1,

(5.34)

and impulsive conditions are given by

∆u(xi) = 1
30u (xi) + 1

40u
′ (xi) + 1

50v (xi) ,

∆u′(xi) = 1
2π sin(πu′ (xi)) + 1

10u
′′ (xi) + 1

10v (xi) ,

∆v (τj) = 1
50u (τj) + 1

200e2 v (τj) + 1
1000

3
√
v′ (τj),

∆v′ (τj) = 1
20u (τj) + 1

20v (τj) + 1
π

sin
(2π

5 v′ (τj)
)
,

(5.35)

with xi = i

5 , for i = 1, 2, 3, 4 and τj = j2

10 , for j = 1, 2, 3.

The system (5.33)-(5.35) is a particular case of the problem (5.1), (5.2), (5.4), with
[a, b] = [0, 1],

ϕ(y2) = arctan(y2), ψ(z2) = |z2|p−2z2, (5.36)
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f(x, y0, y1, y2, z0, z1, z2) = y0 − 4y1 + z0 + arctan z2,

g(x, y0, y1, y2, z0, z1, z2) = y0 − 2z1 sin2(y2) + z0 − 2 3
√
z1,

A0 = B0 = B1 = 0, A1 = 1
2 , A2 = B2 = 1,

I0(· , y0, y1, z0, z1) = 1
30y0 + 1

40y1 + 1
50z0,

I1(· , y0, y1, y2, z0, z1) = 1
2π sin(πy1) + 1

10y2 + 1
10z0,

J0(· , y0, y1, z0, z1) = 1
50y0 + 1

200e2 z0 + 1
1000

3
√
z1,

J1(· , y0, y1, z0, z1, z2) = 1
20y0 + 1

20z0 + 1
π

sin
(2π

5 z1

)
and m = 4, n = 3.

It is easy to see that the functions ϕ, ψ : R → R, given in (5.36), verify assumption
(H1), and are increasing homeomorphisms such that ϕ(0) = ψ(0) = 0, ϕ( R) = ψ(R) = R.

The functions ακ : [0, 1] → R, κ = 1, 2, given by

α1(x) =



−ex−1 − 1
5x if 0 ≤ x ≤ 1

5

−ex−1 − 2
5x if 1

5 < x ≤ 2
5

−ex−1 − 3
5x if 2

5 < x ≤ 3
5

−ex−1 − 4
5x if 3

5 < x ≤ 4
5

−ex−1 − x if 4
5 < x ≤ 1

, α2(x) =



−x2 − 1
10x if 0 ≤ x ≤ 1

10

−x2 − 2
5x if 1

10 < x ≤ 2
5

−x2 − 9
10x if 2

5 < x ≤ 9
10

−x2 − x if 9
10 < x ≤ 1

,

and βκ : [0, 1] → R, κ = 1, 2, given by

β1(x) =



ex−1 + 1
5x if 0 ≤ x ≤ 1

5

ex−1 + 2
5x if 1

5 < x ≤ 2
5

ex−1 + 3
5x if 2

5 < x ≤ 3
5

ex−1 + 4
5x if 3

5 < x ≤ 4
5

ex−1 + x if 4
5 < x ≤ 1

, β2(x) =



x2 + 1
10x if 0 ≤ x ≤ 1

10

x2 + 2
5x if 1

10 < x ≤ 2
5

x2 + 9
10x if 2

5 < x ≤ 9
10

x2 + x if 9
10 < x ≤ 1

,

when x5 = τ4 = 1, are, respectively, lower and upper solutions of the problem (5.33)-(5.35),
according to Definition 5.3.1. The differential inequalities are verified in the interval [0, 1],
as shown in Figure 5.1.
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a b
Fig. 5.1: Relationship between nonlinearities depending on the lower and upper solutions, given by the
inequalities: a) ; b) .

The boundary conditions

α1(0) = −1
e
< 0, α′

1(0) = −1
e

− 1
5 <

1
2 , α′′

1(1) = −1 < 1,

α2(0) = 0, α′
2(0) = − 1

10 < 0, α′′
2(1) = −2 < 1,

β1(0) = 1
e
> 0, β′

1(0) = 1
e

+ 1
5 >

1
2 , β′′

1 (1) = 1,

β2(0) = 0, β′
2(0) = 1

e
> 0, β′′

2 (1) = 2 > 1,

and impulsive conditions verify the inequalities of Definition 5.3.1, as shown in Table 5.1
and Table 5.2.

Table 5.1: Impulse conditions for functions α1 and β1.

i xi ∆α1(xi) I0i(α1) I0i(β1) ∆β1(xi) ∆α′
1(xi) I1i(α1) I1i(β1) ∆β′

1(xi)
1 0.2 -0.0400 -0.0349 0.0349 0.0400 -0.2000 -0.1989 0.1989 0.2000
2 0.4 -0.0800 -0.0537 0.0537 0.0800 -0.2000 -0.1124 0.1124 0.2000
3 0.6 -0.1200 -0.0841 0.0841 0.1200 -0.2000 -0.0375 0.0375 0.2000
4 0.8 -0.1600 -0.1163 0.1163 0.1600 -0.2000 -0.0697 0.0697 0.2000

Table 5.2: Impulse conditions for functions α2 and β2.

j τj ∆α2(τj) J0j(α2) J0j(β2) ∆β2(τj) ∆α′
2(τj) J1j(α2) J1j(β2) ∆β′

2(τj)
1 0.1 -0.0300 -0.0092 0.0092 0.0300 -0.3000 -0.1395 0.1395 0.2000
2 0.4 -0.2000 -0.0155 0.0155 0.2000 -0.5000 -0.3691 0.3691 0.5000
3 0.9 -0.0900 -0.0386 0.0386 0.0900 -0.1000 -0.0921 0.0921 0.1000

Let
L > max{∥α1(x)∥X1 , ∥β1(x)∥X1 , ∥α2(x)∥X2 , ∥β2(x)∥X2},

then f and g are L1-Carathéodory functions, with

|f(x, y0, y1, y2, z0, z1, z2)| ≤ 6L+ 1 := ρ1L(x),
|g(x, y0, y1, y2, z0, z1, z2)| ≤ 4L+ 2 3√L := ρ2L(x),
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and the sum of the jumps is bounded.

The functions f and g satisfy Nagumo condition relative to the sets

S1 =
{

(x, y0, y1, y2, z0, z1, z2) ∈ [0, 1] × R6 :
α

(l)
1 (x) ≤ yl ≤ β

(l)
1 (x), α(l)

2 (x) ≤ zl ≤ β
(l)
2 (x), l = 0, 1

}
.

Consider a constant Kk > 0, k = 1, 2, and µk as defined in (5.9), then, in S1,

|f(x, y0, y1, y2, z0, z1, z2)| = |y0 − 4y1 + z0 + arctan z2|
≤ K1 := φ1(|y2|)

and

|g(x, y0, y1, y2, z0, z1, z2)| =
∣∣∣y0 − 2z1 sin2(y2) + z0 − 2 3

√
z1
∣∣∣

≤ K2 := φ2(|z2|),

it is trivial that
∫ ϕ(+∞)

ϕ(µ1)

|ϕ−1(s)|
|ϕ−1(s)| + K1

ds = +∞ and
∫ ψ(+∞)

ψ(µ2)

|ψ−1(s)|
|ψ−1(s)| + K2

ds = +∞.

So, by Theorem 5.3.2, there is at least one pair of functions (u(x), v(x)) ∈ X2, solution
of the problem (5.33)-(5.35) and, moreover,

α1(x) ≤ u(x) ≤ β1(x), α2(x) ≤ v(x) ≤ β2(x),
α′

1(x) ≤ u′(x) ≤ β′
1(x), α′

2(x) ≤ v′(x) ≤ β′
2(x), ∀x ∈ [0, 1],

as shown in Figure 5.2 and Figure 5.3, and

∥u′′∥ ≤ N1 and ∥v′′∥ ≤ N2,

with N1 and N2 given by Lemma 5.1.4.

Fig. 5.2: At least one solution (u(x), v(x)) of problem (5.33)-(5.35) is located in the colored region, when
x ∈ [0, 1].
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Fig. 5.3: Localization for the first derivative of the solution of the problem (5.33)-(5.35), when x ∈ [0, 1].

5.4 Singular ϕ−Laplacian equations in special relativity

Relativity implies that physical laws do not depend on the chosen reference frame. In
special relativity, the speed of light c is recognized as the maximum speed with which
information can travel in free space from one frame of reference to another, [12]. Let
us consider two frames of reference P0 and P in uniform relative motion to each other,
that is, moving with relative speed v. Taking into account the upper limit c of the speed
of information propagation, the space-time coordinates of the frames P0 and P must be
related by Lorentz transformations, [41]. The Lorentz factor depends non-linearly on the
relative velocity v and is defined by

Γ ≡ 1√
1 −

(
v

c

)2
.

The theory of special relativity is fundamental in the development of the modern theory
of classical electrodynamics. The fact that an electric charge q generates an electric field
E and in motion generates a magnetic field B is intuitively compatible with the statement
that the electric and magnetic fields are covariant under a Lorentz transformation from
one inertial system to another, [54].

The study developed in this article can be adapted and applied to a system of singular
ϕ-Laplacian equations, that is, to the system of equations (5.1), with two restrictions:

• In Lemma 5.1.4, the constants N1 and N2 must be chosen such that

0 < N1 < η and 0 < N2 < γ ;

• Assumption (H1) must be replaced by

(Hs) ϕ : (−η, η) → R and ψ : (−γ, γ) → R, for some 0 < η < +∞ and 0 < γ < +∞, are
increasing homeomorphisms with ϕ(0) = ψ(0) = 0, ϕ(−η, η) = R and ψ(−γ, γ) = R,
such that ∣∣∣ϕ−1(w)

∣∣∣ ≤ ϕ−1(|w|), and
∣∣∣ψ−1(w)

∣∣∣ ≤ ψ−1(|w|).

In this case, a solution to the problem (5.1)-(5.3) is a pair of functions (u(x), v(x)) ∈ X2

such that (u′′(x), v′′(x)) ∈ (−η, η) × (−γ, γ) for all x ∈ [a, b], satisfying (5.1)-(5.3).
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Example 5.4.1. Consider the problem

(
u′′(x)√

1 − (u′′(x))2

)′

+ 1
12u(x) − 5

2(u′(x))2 + 1
6v

′(x)|v′(x)| = 0,

x ∈ [−1, 1] \ {(xi)} ,

 v′′(x)√
1 − (v′′(x))2

9


′

+ 1
12u(x) − 5

2(v′(x))2 + 1
6u

′(x)|u′(x)| = 0,

x ∈ [−1, 1] \ {(τj)} ,

(5.37)

with the boundary conditions
u(−1) = 0, u′(−1) = 1

3 , u
′′(1) = 1

2

v(−1) = 0, v′(−1) = −1
2 , v

′′(1) = 0,

(5.38)

and impulsive conditions are given by

∆u(xi) = 1
4π arctan(u(xi) + 1),

∆u′(xi) = 1
10u(xi) − 1

10u
′(xi),

∆v (τj) = 1
100v(τj) + 1

6 ,

∆v′ (τj) = 1
3π sin2 (2πv′ (τj)) ,

(5.39)

with x1 = 0 and τ1 = −1
2 , τ2 = 0, τ3 = 1

2 .

The system (5.37)-(5.39) is a particular case of the problem (5.1), (5.2), (5.4), with
[a, b] = [−1, 1],

ϕ(y2) = y2√
1 − y2

2

, ψ(z2) = z2√
1 − z2

2
9

, (5.40)

f(x, y0, y1, y2, z0, z1, z2) = 1
12y0 − 5

2y
2
1 + 1

6z1|z1|,

g(x, y0, y1, y2, z0, z1, z2) = 1
12y0 − 5

2z
2
1 + 1

6y1|y1|,

A0 = B0 = B2 = 0, A1 = 1
3 , A2 = 1

2 , B1 = −1
2 ,
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I0(· , y0, y1, z0, z1) = 1
4π arctan(y0 + 1),

I1(· , y0, y1, y2, z0, z1) = 1
10y0 − 1

10y1,

J0(· , y0, y1, z0, z1) = 1
100z0 + 1

6 ,

J1(· , y0, y1, z0, z1, z2) = 1
3π sin2 (2πz1) ,

and m = 1, n = 3.

It is easy to see that the functions ϕ : (−1, 1) → R and ψ : (−3, 3) → R, given in
(5.40), verify assumption (Hs), are increasing homeomorphisms such that ϕ(0) = ψ(0) = 0,
ϕ(−1, 1) = R and ψ(−3, 3) = R.

The functions ακ : [−1, 1] → R, κ = 1, 2, given by

α1(x) =


1
60x

5 + 1
18x

3 + 1
20 if −1 ≤ x ≤ 0

1
60x

5 + 1
36x

3 + 1
10 if 0 < x ≤ 1

,

α2(x) =



1
2π sin(πx) if −1 ≤ x ≤ −1

2

− 1
2π (sin(πx) + 1) if −1

2 < x ≤ 0

− 1
2π sin(πx) if 0 < x ≤ 1

2

1
2π (sin(πx) − 1) if 1

2 < x ≤ 1

,

and βκ : [−1, 1] → R, κ = 1, 2, given by

β1(x) =


1
6
√

(x+ 3)3 if −1 ≤ x ≤ 0

1
4x

2 + 1
2x+ 1 if 0 < x ≤ 1

,

β2(x) =



− 1
12x

3 + 1
2x

2 + x+ 1
2 if −1 ≤ x ≤ −1

2

−1
6x

3 − x2 − 2
5x+ 9

25 if −1
2 < x ≤ 0

−1
6x

3 + x2 − 3
10x+ 3

5 if 0 < x ≤ 1
2

− 1
12x

3 + 1
3x

2 + 1
3x+ 2

3 if 1
2 < x ≤ 1

,

are, respectively, lower and upper solutions of the problem (5.37)-(5.39), according to
Definition 5.3.1. In fact, the differential inequalities are verified in the interval [−1, 1], as
shown in Figure 5.4.
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a b
Fig. 5.4: Relationship between nonlinearities depending on the lower and upper solutions, given by the
inequalities: a) substituting lower e upper solution into the first equation; b) substituting lower e upper
solution in the second equation.

The boundary conditions

α1(−1) = − 1
45 < 0, α′

1(−1) = 1
4 <

1
3 , α′′

1(1) = 1
2 ,

α2(−1) = 0, α′
2(−1) = −1

2 , α′′
2(1) = 0,

β1(−1) = 1
3

√
2 > 0, β′

1(−1) =
√

2
4 >

1
3 , β′′

1 (1) = 1
2 ,

β2(−1) = 1
12 > 0, β′

2(−1) = −1
4 > −1

2 , β′′
2 (1) = 1

6 > 0,

and impulsive conditions verify the inequalities of Definition 5.3.1, as shown in Table 5.3
and Table 5.4.

Let
L > max{∥α1(x)∥X1 , ∥β1(x)∥X1 , ∥α2(x)∥X2 , ∥β2(x)∥X2},

then f and g are L1-Carathéodory functions, with

|f(x, y0, y1, y2, z0, z1, z2)| ≤ 1
12L+ 8

3L
2 := ρ1L(x),

|g(x, y0, y1, y2, z0, z1, z2)| ≤ 1
12L+ 8

3L
2 := ρ2L(x),

Table 5.3: Impulse conditions for functions α1 and β1.

i xi ∆α1(xi) I0i(α1) I0i(β1) ∆β1(xi) ∆α′
1(xi) I1i(α1) I1i(β1) ∆β′

1(xi)
1 0.0 0.0500 0.0644 0.0859 0.1340 0.0000 0.0050 0.0433 0.0670

Table 5.4: Impulse conditions for functions α2 and β2.

j τj ∆α2(τj) J0j(α2) J0j(β2) ∆β2(τj) ∆α′
2(τj) J1j(α2) J1j(β2) ∆β′

2(τj)
1 -0.5 0.1592 0.1651 0.1680 0.1954 0.0000 0.0000 0.0155 0.0375
2 0.0 0.1592 0.1651 0.1703 0.2400 0.0000 0.0000 0.0367 0.1000
3 0.5 0.1592 0.1651 0.1735 0.2271 0.0000 0.0000 0.0219 0.0292
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Fig. 5.5: At least one solution (u(x), v(x)) of problem (5.37)-(5.39) is located in the colored region, when
x ∈ [−1, 1].

Fig. 5.6: Localization for the first derivative of the solution of the problem (5.37)-(5.39), when x ∈ [−1, 1].

and the sum of the jumps is bounded.

The functions f and g satisfy Nagumo condition relative to the sets

S2 =


(x, y0, y1, y2, z0, z1, z2) ∈ [−1, 1] × R6 :

α
(l)
1 (x) ≤ yl ≤ β

(l)
1 (x), α(l)

2 (x) ≤ zl ≤ β
(l)
2 (x), l = 0, 1

 .
Consider a constant Kk > 0, k = 1, 2, and µk as defined in (5.9), then, in S2,

|f(x, y0, y1, y2, z0, z1, z2)| =
∣∣∣∣ 1
12y0 − 5

2y
2
1 + 1

6z1|z1|
∣∣∣∣

≤ K1 := φ1(|y2|)

and

|g(x, y0, y1, y2, z0, z1, z2)| =
∣∣∣∣ 1
12y0 − 5

2z
2
1 + 1

6y1|y1|
∣∣∣∣

≤ K2 := φ2(|z2|),

it is trivial that ∫ +∞

ϕ(µ1)

|ϕ−1(s)|
|ϕ−1(s)| + K1

ds = +∞

and ∫ +∞

ψ(µ2)

|ψ−1(s)|
|ψ−1(s)| + K2

ds = +∞.
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So, by Theorem 5.3.2, there is at least one pair of functions (u(x), v(x)) ∈ X2, solution
of the problem (5.37)-(5.39) and, moreover,

α1(x) ≤ u(x) ≤ β1(x), α2(x) ≤ v(x) ≤ β2(x),
α′

1(x) ≤ u′(x) ≤ β′
1(x), α′

2(x) ≤ v′(x) ≤ β′
2(x), ∀x ∈ [−1, 1],

as shown in Figure 5.2 and Figure 5.3, and

∥u′′∥ ≤ N1 < 1 and ∥v′′∥ ≤ N2 < 3,

with N1 and N2 given by Lemma 5.1.4.



Chapter 6

Higher-order impulsive coupled systems
with ϕ-Laplacian

In this chapter we consider the higher order impulsive coupled system with ϕ-Laplacian{
(ϕ(u(η−1)(t)))′ + f(t, u(t), ..., u(η−1)(t), v(t), ..., v(η−1)(t)) = 0, t ∈ M,

(ψ(v(ξ−1)(t)))′ + g(t, u(t), ..., u(ξ−1)(t), v(t), ..., v(ξ−1)(t)) = 0, t ∈ N,
(6.1)

where η, ξ ≥ 2, M = [a, b] \{t1, ..., tm} and N = [a, b]\{τ1, ..., τn}, ϕ, ψ : R → R are
increasing homeomorphisms such that ϕ(0) = ψ(0) = 0 and ϕ(R) = ψ(R) = R, f :
[a, b] × R2η 7→ R, g : [a, b] × R2ξ 7→ R,are L1-Carathéodory functions and m,n ∈ N,
together with the boundary conditions{

u(l)(a) = Al, u
(η−1)(b) = Aη−1,

v(k)(a) = Bk, v
(ξ−1)(b) = Bξ−1,

(6.2)

with Al, Aη−1, Bk, Bξ−1 ∈ R, l = 0, 1, ..., η − 2, k = 0, 1, ..., ξ − 2.

The impulsive conditions are given by

∆u(l)(ti) = Il,i(ti, u(ti), ..., u(η−1)(ti), v(ti), ..., v(ξ−1)(ti)),
∆ϕ(u(η−1)(ti)) = Iη−1,i(ti, u(ti), ..., u(η−1)(ti), v(ti), ..., v(ξ−1)(ti)),

∆v(k)(τj) = Jk,j(τj , u(τj), ..., u(η−1)(τj), v(τj), ..., v(ξ−1)(τj)),
∆ψ(v(ξ−1)(τj)) = Jξ−1,j(τj , u(τj), ..., u(η−1)(τj), v(τj), ..., v(ξ−1)(τj)),

(6.3)

being ∆u(ti) = u(t+i ) − u(t−i ), i = 1, 2, ...,m, ∆v(τj) = v(τ+
j ) − v(τ−

j ), j = 1, 2, ..., n,
Il,i, Jkj ∈ C([a, b] ×Rη+ξ,R), l = 0, 1, ..., η− 1, k = 0, 1, ..., ξ− 1, and ti,τj are fixed points
such that a = t0 < t1 < t2 < ... < tm < tm+1 = b, a = τ0 < τ1 < τ2 < ... < τn < τn+1 = b.

In addition to the existence of a solution, it is possible to obtain an existence and
location theorem, that is, it not only guarantees the existence of at least one solution, but
also provides an interval where this solution is located.

The location of the solution is obtained for a particular case of the impulsive conditions
(6.3), that is, for Il,i, Jkj ∈ C([a, b] × Rη+ξ−2,R), l = 0, 1, ..., η − 3, k = 0, 1, ..., ξ −
3, Iη−2,i, Jξ−2,j ∈ C([a, b] × Rη+ξ−1,R), and

∆u(l)(ti) = Il,i(ti, u(ti), ..., u(η−2)(ti), v(ti), ..., v(ξ−2)(ti)), l = 0, 1, ..., η − 3,
∆u(η−2)(ti) = Iη−2,i(ti, u(ti), ..., u(η−1)(ti), v(ti), ..., v(ξ−2)(ti))

∆v(k)(τj) = Jk,j(τj , u(τj), ..., u(η−2)(τj), v(τj), ..., v(ξ−2)(τj)), k = 0, 1, ..., ξ − 3,
∆v(ξ−2)(τj) = Jξ−2,j(τj , u(τj), ..., u(η−2)(τj), v(τj), ..., v(ξ−1)(τj)),

(6.4)

87
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for i = 1, 2, ...,m, j = 1, 2, ..., n.

Nonlinear coupled systems, meaning that the unknown functions and some of their
derivatives interact, have been considered recently, such as, among others: [94], applying
Schauder’s fixed point theorem; [35], in fractional order at resonance via coincidence degree
theory; [77], for different types of differential and integral equations; [105], using lower and
upper solutions method; [50], related to reaction-diffusion Robin problems.

For the first time, this work contains, a general theory that allows coupled systems,
with regular and singular semi-linear differential equations of a different order. For exam-
ple, it can be applied to nonlinear coupled systems combining a fourth-order differential
equation with a second-order one, as it is commonly used in elasticity theory.

Impulsive differential equations can model many real phenomena, with sudden dis-
continuous jumps. These events can occur in many fields, such as population dynamics,
control, and optimization theory, chemistry, biology and biotechnology, economics, phar-
macokinetics, and other physics and mechanics problems. A classical work in impulsive
differential equations, is the book [58], but, for example, we can mention: [52], applying
fixed point index; [61, 78], dealing with functional impulsive problems; [108], for approx-
imation of solution via a monotone iterative technique. Impulsive problems containing
ϕ-Laplacians can be found, for instance in: [49], for periodic problems and a continua-
tion theorem; [72, 73], applied to bounded and unbounded intervals; [101], for fractional
p-Laplacian.

To the best of our knowledge, this is the first work combining the method suggested
in, for example, [15, 45], to an impulsive coupled system, with the possibility of equations
of different order, with fully differential equations including different regular and singu-
lar Laplacians and generalized impulsive effects, depending on both variables and some
derivatives.

The Chapter is organized as follows: In Section 6.1 we have definitions, the functional
framework, the explicit solution for the impulsive linear problem associated, Nagumo-type
growth conditions, some a priori bounds for the highest order in the nonlinearities, and
classical results. Section 6.2, contains an existence result for the more general case. Section
6.3 presents an existence and localization result applied to a particular case of the initial
impulsive conditions, applying the lower and upper solutions method. In Section 6.4 we
present an application of our theory to the flexural vibration of a single-span suspension
bridge. Section 6.5 shows how to adapt this technique to singular ϕ−Laplacians and
illustrates it with an example.

6.1 Definitions and preliminary results

This section will introduce some preliminary results and the functional framework,

Define
x(t±κ ) := lim

t→t±κ

x(t),
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and consider the sets of piecewise continuous functions:

PCη−1
1 ([a, b]) :=

{
u : u ∈ Cη−1([a, b],R) continuous for t ̸= ti, u

(l)(ti) = u(l)(t−i ),
u(l)(t+i ) is finite for i = 1, 2, 3, ...,m and l = 0, 1, ..., η − 1

}

and

PCξ−1
2 ([a, b]) :=

{
v : v ∈ Cξ−1([a, b],R) continuous for τ ̸= τj , v

(k)(τj) = v(k)(τ−
j ),

v(k)(τ+
j ) is finite for j = 1, 2, 3, ..., n and k = 0, 1, ..., V − 1

}
.

Let X1 := PCη−1
1 [a, b], and X2 := PCξ−1

1 [a, b] be the usual Banach space equipped
with the norms defined by

∥x∥X1 : = max{∥x(l)∥∞, l = 0, 1, ..., η − 1},
∥x∥X2 : = max{∥x(k)∥∞, k = 0, 1, ..., ξ − 1},

where
∥x∥∞ := sup

a≤t≤b
|x(t)|

and X2 := X1 ×X2 with the norm

∥(u, v)∥X2 = max{∥u∥X1 , ∥v∥X2}.

The ordered pair (u, v) is a solution to problem (6.1)-(6.3) when (u(t), v(t)) ∈ X2.

Definition 6.1.1. A function h : [a, b] × Rp+q → R is L1-Carathéodory if

i. for each (x0, ..., xp−1, y0, ..., yq−1) ∈ Rp+q, t 7→ h(t, x0, ..., xp−1, y0, ..., yq−1) is mea-
surable on [a, b];

ii. for almost every t ∈ [a, b], (x0, ..., xp−1, y0, ..., yq−1) 7→ h(t, x0, ..., xp−1, y0, ..., yq−1)
is continuous on Rp+q;

iii. for each K > 0, there is a positive function ρK ∈ L1[a, b] such that, for a.e. t ∈ [a, b],
and (x0, ..., xp−1, y0, ..., yq−1) ∈ Rp+q with

max {|xl|, |yk| , l = 0, 1, ..., p− 1, k = 0, 1, ..., q − 1} < K,

we have
|h(t, x0, ..., xp−1, y0, ..., yq−1)| ≤ ρK(t).

Forward, where there are no doubts, we write the nonlinearities in a short way

f(U (·) , V (·)) : = f(t, u(·), ..., u(η−1)(·), v(·), ..., v(η−1)(·)),
g(U (·) , V (·)) : = g(t, u(·), ..., u(ξ−1)(·), v(·), ..., v(ξ−1)(·)),

and the impulsive conditions as

Il,i(·) := Il,i(ti, u(ti), ..., u(η−1)(ti), v(ti), ..., v(ξ−1)(ti)),
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for l = 0, 1, ..., η − 1, i = 1, 2, ...,m, and

Jk,j(·) := Jk,j(τj , u(τj), ..., u(η−1)(τj), v(τj), ..., v(ξ−1)(τj)),

for k = 0, 1, ..., ξ − 1, and j = 1, 2, ..., n.

Next lemma provides a uniqueness result for a linear problem related to (6.1)-(6.3).

Lemma 6.1.2. Let ϕ, ψ : R → R be increasing homeomorphisms and p, q ∈ L1 [a, b] .
The problem composed by the differential system{

(ϕ(u(η−1)(t)))′ + p(t) = 0
(ψ(v(ξ−1)(t)))′ + q(t) = 0

(6.5)

and conditions (6.2), and (6.3), has a unique solution given by

u(t) =
η−2∑
l=0

Al +
∑

i : ti<t
Il,i(·)

 (t− a)l
l!


+
∫ t

a

(t− s)η−2

(η − 2)! ϕ
−1

ϕ(Aη−1) −
∑

i : ti>s
Iη−1,i(·) +

∫ b

s
p(σ)dσ

 ds
and

v(t) =
ξ−2∑
k=0

Bk +
∑

j : τj<t

Jk,j(·)

 (t− a)k
k!


+
∫ t

a

(t− s)ξ−2

(ξ − 2)! ψ
−1

ψ(Bξ−1) −
∑

j : τj>s

Jξ−1,j(·) +
∫ b

s
q(σ)dσ

 ds.

Proof. Integrating the first equation of (6.5), for t ∈ (tm, b], we have, by (6.2),

ϕ(u(η−1)(t)) = ϕ(Aη−1) +
∫ b

t
p(sη)dsη, (6.6)

For t ∈ (tm−1, tm], integrating (6.5), by (6.3) and (6.6),

ϕ(u(η−1)(t)) =ϕ(u(η−1)(t−m)) +
∫ tm

t
p(sη)dsη

=ϕ(u(η−1)(t+m)) − Iη−1,m(·) +
∫ tm

t
p(sη)dsη,

=ϕ(Aη−1) +
∫ b

tn
p(sη)dsη − Iη−1,m(·) +

∫ tm

t
p(sη)dsη,

=ϕ(Aη−1) − Iη−1,m(·) +
∫ b

t
p(sη)dsη.

So, by mathematical induction, for t ∈ [a, b],

ϕ(u(η−1)(t)) = ϕ(Aη−1) −
∑

i : ti>t
Iη−1,i(·) +

∫ b

t
p(sη)dsη,
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and, therefore

u(η−1)(t) = ϕ−1

ϕ(Aη−1) −
∑

i : ti>t
Iη−1,i(·) +

∫ b

t
p(sη)dsη

 . (6.7)

By a new integration of (6.7) from a to t, by (6.3) and by mathematical induction, when
t ∈ [a, b],

u(η−2)(t) =Aη−2 +
∑

i : ti<t
Iη−2,i(·)

+
∫ t

a
ϕ−1

ϕ(Aη−1) −
∑

i : ti>sη−1

Iη−1,i(·) +
∫ b

sη−1
p(sη)dsη

 dsη−1.

By iterative integrations, of (6.6), we obtain for t ∈ [a, b],

u(t) =
η−2∑
l=0

Al +
∑

i : ti<t
Il,i(·)

 (t− a)l
l!


+
∫ t

a

(t− s)η−2

(η − 2)! ϕ
−1

ϕ(Aη−1) −
∑

i : ti>s
Iη−1,i(·) +

∫ b

s
p(σ)dσ

 ds.
Likewise, for the second equation, we have

v(t) =
ξ−2∑
k=0

Bk +
∑

j : τj<t

Jk,,j(·)

 (t− a)k
k!


+
∫ t

a

(t− s)ξ−2

(ξ − 2)! ψ
−1

ψ(Bξ−1) −
∑

i : τj>s

Jξ−1,j(·) +
∫ b

s
q(σ)dσ

 ds.

The Nagumo condition, introduced in [80], is an important tool for controlling the
derivatives u(η−1)(t) and v(ξ−1)(t):

Definition 6.1.3. Let γ(l)
1 (t), Γ(l)

1 (t) ∈ X1, l = 0, 1, ..., η − 2, γ(k)
2 (t), Γ(k)

2 (t) ∈ X2,
k = 0, 1, ..., ξ − 2, be L1-Carathéodory functions such that

γ
(l)
1 (t) ≤ Γ(l)

1 (t), γ(k)
2 (t) ≤ Γ(k)

2 (t), a.e. t ∈ [a, b],

and consider the sets

S1 =
{

(t, x0, x1, ..., xη−1, y0, y1, ..., yη−1) ∈ [a, b] × R2η :
γ

(l)
1 (t) ≤ xl ≤ Γ(l)

1 (t), γ(l)
2 (t) ≤ yl ≤ Γ(l)

2 (t), l = 0, 1, ..., η − 2

}
, (S1)

and

S2 =
{

(t, x0, x1, ..., xξ−1, y0, y1, ..., yξ−1) ∈ [a, b] × R2ξ :
γ

(k)
1 (t) ≤ xk ≤ Γ(k)

1 (t), γ(k)
2 (t) ≤ yk ≤ Γ(k)

2 (t), k = 0, 1, ..., ξ − 2

}
, (S2)
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The L1−Carathéodory functions f : [a, b]×R2η → R satisfies a Nagumo-type condition
in S1, and g : [a, b] × R2ξ → R in S2, if, there are µ1, µ2 > 0, with

µ1 := max
i=0,1,2,...,m

{∣∣∣∣∣Γ
(η−2)
1 (xi+1) − γ

(η−2)
1 (xi)

xi+1 − xi

∣∣∣∣∣ ,
∣∣∣∣∣γ

(η−2)
1 (xi+1) − Γ(η−2)

1 (xi)
xi+1 − xi

∣∣∣∣∣
}
,

µ2 := max
j=0,1,2,...,n

{∣∣∣∣∣Γ
(ξ−2)
2 (τj+1) − γ

(ξ−2)
2 (τj)

τj+1 − τj

∣∣∣∣∣ ,
∣∣∣∣∣γ

(ξ−2)
2 (τj+1) − Γ(ξ−2)

2 (τj)
τj+1 − τj

∣∣∣∣∣
}
,

(6.8)

and continuous positive functions φk : [0,+∞) → (0,+∞), k = 1, 2, verifying

|f(t, x0, ..., xη−1, y0, ..., yη−1)| ≤ φ1(|xη−1|), ∀(t, x0, ..., xη−1, y0, ..., yη−1) ∈ S1,

|g(t, x0, ..., xξ−1, y0, ..., yξ−1)| ≤ φ2(|yξ−1|), ∀(t, x0, ..., xξ−1, y0, ..., yξ−1) ∈ S2,
(6.9)

with ∫ ϕ(+∞)

ϕ(µ1)

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds = +∞,

∫ ψ(+∞)

ψ(µ2)

|ψ−1(s)|
φ2(|ψ−1(s)|)ds = +∞. (6.10)

This growth condition allows a priori estimations on the derivatives u(η−1)(t) and
v(ξ−1)(t).

Lemma 6.1.4. Consider γ1,Γ1 ∈ PCη−1
1 [a, b] , and γ2,Γ2 ∈ PCξ−1

2 [a, b] , such that

γ
(l)
1 (t) ≤ Γ(l)

1 (t), for l = 0, 1, ..., η − 2,
γ

(k)
2 (t) ≤ Γ(k)

2 (t), for k = 0, 1, ..., ξ − 2, and a.e. t ∈ [a, b] .

Let f : [a, b] × R2η → R , and g : [a, b] × R2ξ → R be L1−Carathéodory functions
satisfying a Nagumo-type condition, according to Definition 6.1.3. Then, there exist N1 ≥
µ1, and N2 ≥ µ2, such that for every solution (u, v) of (6.1) on set S1 and S2 satisfies

∥u(η−1)∥∞ < N1 and ∥v(ξ−1)∥∞ < N2.

Remark 6.1.5. Note that N1 depends only on γ(η−2)
1 ,Γ(η−2)

1 and φ1, and N2 on γ(ξ−2)
2 ,Γ(ξ−2)

2
and φ2.

Proof. Let (u(t), v(t)) ∈ S1 × S2 be a solution of (6.1).

By the Mean Value Theorem, there are λ0 ∈ (ti, ti+1) and λ1 ∈ (τj , τj+1) such that

u(η−1)(λ0) = u(η−2)(ti+1) − u(η−2)(t+i )
ti+1 − ti

(6.11)

and

v(ξ−1)(λ1) =
v(ξ−2)(τj+1) − v(ξ−2)(τ+

j )
τj+1 − τj

. (6.12)

If |u(η−1)(t)| ≤ µ1, ∀t ∈ [a, b], then it is enough to define N1 := µ1 and the proof is
complete.
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The case |u(η−1)(t)| > µ1, ∀t ∈ [a, b] , with µ1 defined in (6.8), is not possible.

In fact, if u(η−1)(t) > µ1, ∀t ∈ (ti, ti+1), we obtain, by (6.11), (S1) and (6.8), the
contradiction

u(η−1)(λ0) = u(η−2)(ti+1) − u(η−2)(t+i )
ti+1 − ti

≤ Γ(η−2)
1 (ti+1) − γ

(η−2)
1 (ti)

ti+1 − ti
≤ µ1. (6.13)

If u(η−1)(t) < −µ1, ∀t ∈ [a, b], the contradiction is similar.

Assume, now, that there are λ2, λ3 ∈ (ti, ti+1) with, without loss of generality, λ2 < λ3,
such that

u(η−1)(λ2) ≤ µ1 and u(η−1)(λ3) > µ1.

By continuity of u(η−1)(t), there exists λ4 ∈ [λ2, λ3] such that u(η−1)(λ4) = µ1, and
u(η−1)(t) > 0, ∀t ∈ [λ4, λ3].

Consider Nk > µk, k = 1, 2, such that∫ ϕ(N1)

ϕ(µ1)

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds > µ1(b− a) and

∫ ψ(N2)

ψ(µ2)

|ψ−1(s)|
φ2(|ψ−1(s)|)ds > µ2(b− a). (6.14)

Making a convenient change of variable and using (6.9) and (6.13),∫ ϕ(u(η−1)(λ3))

ϕ(u(η−1)(λ4))

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds =

∫ λ3

λ4

|ϕ−1(ϕ(u(η−1)(t)))|
φ1(|ϕ−1(ϕ(u(η−1)(t)))|)

(ϕ(u(η−1)(t)))′dt

≤
∫ λ3

λ4

|u(η−1)(t)|
φ1(|u(η−1)(t)|)

(ϕ(u(η−1)(t)))′dt

≤
∫ λ3

λ4

|u(η−1)(t)| |f(t, x0, ..., xη−1, y0, ..., yη−1)|
φ1(|u(η−1)(t)|)

dt,

≤
∫ λ3

λ4

|u(η−1)(t)| |φ1(|u(η−1)(t)|)|
φ(|u(η−1)(t)|)

dt,

≤
∫ λ3

λ4
u(η−1)(t)dt = u(η−2)(λ3) − u(η−2)(λ4) ≤ µ1(b− a),

and by (6.14)∫ ϕ(u(η−1)(λ3))

ϕ(u(η−1)(λ4))

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds ≤ µ1(b− a) <

∫ ϕ(N1)

ϕ(µ1)

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds.

Therefore u(η−1)(λ3) < N1, and as λ3 is taken arbitrarily, then u(η−1)(t) < N1, for the
values of t whenever u(η−1)(t) > µ1.

The case for λ2 > λ3 follows similar arguments.

The other possible case where

u(η−1)(λ2) ≥ −µ1 and u(η−1)(λ3) < −µ1.
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can be proved by the previous techniques. Therefore ∥u(η−1)∥∞ ≤ N1.

By a similar method, it can be shown that ∥v(ξ−1)∥∞ ≤ N2.

The arguments forward will require the following lemma, of [99]:

Lemma 6.1.6. For v, w ∈ C(I) such that v(x) ≤ w(x), for every x ∈ I, define

q(x, u) = max{v,min{u,w}}.

Then, for each u ∈ C1(I) the next two properties hold:

(a) d
dxq(x, u(x)) exists for a.e. x ∈ I.

(b) If u, um ∈ C1(I) and um → u in C1(I) then

d

dx
q(x, um(x)) → d

dx
q(x, u(x)) for a.e. x ∈ I.

The Schauder’s fixed point theorem, will be the key existence tool:

Theorem 6.1.7. ([106]) Let Y be a nonempty, closed, bounded and convex subset of a
Banach space X, and suppose that P : Y → Y is a compact operator. Then P has at least
one fixed point in Y .

6.2 Existence result

The next theorem will guarantee the existence of a solution of (6.1)-(6.3), through the
existence of fixed points of a convenient operator.

(H1) ϕ, ψ : R → R are increasing homeomorphisms such that ϕ(0) = ψ(0) = 0 and
ϕ( R) = ψ(R) = R, and∣∣∣ϕ−1(w)

∣∣∣ ≤ ϕ−1(|w|), and
∣∣∣ψ−1(w)

∣∣∣ ≤ ψ−1(|w|).

Theorem 6.2.1. Consider Al, Bk ∈ R, l = 0, 1, .., η − 1, k = 0, 1, ..., ξ − 1, and the
homeomorphisms ϕ and ψ verifying (H1). Let f : [a, b]×R2η → R , and g : [a, b]×R2ξ → R
be L1-Carathéodory functions, satisfying a Nagumo-type conditions as in Definition 6.1.3,
and Il,i, Jk,j ∈ C([a, b] × Rη+ξ,R), l = 0, 1, ..., η − 1, k = 0, 1, ..., ξ − 1, i = 1, ...,m,
j = 1, ..., n.
Then there is at least one pair of functions (u, v) ∈ X2 solution to the problem (6.1)-(6.3).

Proof. Define the operators T1 : X2 → X1, T2 : X2 → X2, and T : X2 → X2 given by

T (u, v) = (T1 (u, v) , T2 (u, v)) , (6.15)



6.2 Existence result 95

with

(T1 (u, v)) (t) =
η−2∑
l=0

Al +
∑

i : ti<t
Il,i(·)

 (t− a)l
l!


+
∫ t

a

(t− s)η−2

(η − 2)! ϕ
−1

ϕ(Aη−1) −
∑

i : ti>s
Iη−1,i(·) +

∫ b

s
f(U(σ), V (σ))dσ

 ds
and

(T2 (u, v)) (t) =
ξ−2∑
k=0

Bk +
∑

j : τj<t

Jk,,j(·)

 (t− a)k
k!


+
∫ t

a

(t− s)ξ−2

(ξ − 2)! ψ
−1

ψ(Bξ−1) −
∑

j : τj>s

Jξ−1,j(·) +
∫ b

s
g(U(σ), V (σ))dσ

 ds.

Define K > 0 and M > 0, such that

K > ∥(u, v)∥X2 (6.16)

and

M > max
l=0,1,...,η−1,
k=0,1,...,ξ−1


m∑
i=1

|Il,i(·)| ,
n∑
j=1

|Jk,j(·)|

 . (6.17)

Since f and g are L1−Carathéodory functions and non-negative functions ρ1K(t), ρ2K(t) ∈
L1([a, b]), such that

∣∣∣f(t, u(t), ..., u(η−1)(t), v(t), ..., v(η−1)(t))
∣∣∣ ≤ ρ1K(t),∣∣∣g(t, u(t), ..., u(ξ−1)(t), v(t), ..., v(ξ−1)(t))
∣∣∣ ≤ ρ2K(t), a.e.t ∈ [a, b].

(6.18)

The proof will follow several steps that, for clarity, which are detailed for the T1(u, v)
operator. For the operator T2(u, v) the technique is similar.

Step 1: T is well defined, continuous and uniformly bounded.

By the Lebesgue dominated convergence Theorem, (6.3), (H1), (6.17) and (6.18), then,
for p = 0, 1, ..., η − 2,
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∣∣∣(T1 (u, v))(p) (t)
∣∣∣ ≤

∣∣∣∣∣∣
η−2∑
l=p

Al +
∑

i : ti<t
Il,i(·)

 (t− a)l−p
(l − p)!

∣∣∣∣∣∣
+

∣∣∣∣∣∣
∫ t

a

(t− s)η−2−p

(η − 2 − p)! ϕ
−1

ϕ(Aη−1) −
∑

i : ti>s
Iη−1,i(·) +

∫ b

s
f(U(σ), V (σ))dσ

 ds
∣∣∣∣∣∣

≤
η−2∑
l=p

(
(|Al| +M) (t− a)l−p

(l − p)!

)

+
∫ t

a

(t− s)η−2−p

(η − 2 − p)! ϕ
−1
(

|ϕ(Aη−1)| +M +
∫ b

s
|f(U(σ), V (σ)| dσ

)
ds

≤
η−2∑
l=p

(
(|Al| +M) (b− a)l−p

(l − p)!

)

+
∫ b

a

(b− s)η−2−p

(η − 2 − p)! ϕ
−1
(

|ϕ(Aη−1)| +M +
∫ b

s
ρ1K(σ)dσ

)
ds < +∞,

and

∣∣∣(T1 (u, v))(η−1) (t)
∣∣∣ =

∣∣∣∣∣∣ϕ−1

ϕ(Aη−1) −
∑

i : ti>s
Iη−1,i(·) +

∫ b

s
f(U(σ), V (σ))dσ

∣∣∣∣∣∣
≤ϕ−1

(
|ϕ(Aη−1)| +M +

∫ b

a
ρ1K(σ)dσ

)
< +∞

Therefore, (T1 (u, v)) (t) ∈ X1.

The proof that (T2 (u, v)) (t) ∈ X2 is similar, and, so, T is well defined in X2.

Define B ⊆ X2 as
B={(u, v) ∈ X2 : ∥(u, v)∥X2 ≤ K},

with K > 0 such that

K := max



K,
∑η−2
l=p

(
(|Al| +M) (b− a)l−p

(l − p)!

)
+
∫ b
a

(b− s)η−2−p

(η − 2 − p)! ϕ
−1
(
|ϕ(Aη−1)| +M +

∫ b
s ρ1K(σ)dσ

)
ds,

for p = 0, 1, ..., η − 2,
ϕ−1

(
|ϕ(Aη−1)| +M +

∫ b
a ρ1K(σ)dσ

)
,∑ξ−2

k=q

(
(|Bk| +M) (b− a)l−q

(l − q)!

)
+
∫ b
a

(b− s)ξ−2−q

(ξ − 2 − q)! ψ
−1
(
|ψ(Bξ−1)| +M +

∫ b
s ρ2K(σ)dσ

)
ds,

for q = 0, 1, ..., ξ − 2,
ψ−1

(
|ψ(Bξ−1)| +M +

∫ b
a ρ2K(σ)dσ

)



, (6.19)
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with K > 0 and M > 0 given by (6.16) and (6.17).

From the above, it is clear that TB is uniformly bounded.

Step 2: T is equicontinuous, that is, T1B is equicontinuous on each interval (ti, ti+1],
for i = 0, 1, ...,m, with t0 = a and tm+1 = b, and T2B is equicontinuous on each interval
(τj , τj+1], for j = 0, 1, ..., n, with τ0 = a and τn+1 = b.

Consider I ⊆ (ti, ti+1] and λ0, λ1 ∈ I such that, without loss of generality, λ0 ≤ λ1.
For (u, v) ∈ B, we have, for p = 0, 1, ..., η − 2,

lim
λ0→λ1

∣∣∣(T1 (u, v))(p) (λ1) − (T1 (u, v))(p) (λ0)
∣∣∣ ≤ lim

λ0→λ1

∣∣∣∣∣∣
η−2∑
l=p

Al +
∑

i : ti<λ1

Il,i(·)

 (λ1 − a)l−p
(l − p)!


−
η−2∑
l=p

Al +
∑

i : ti<λ0

Il,i(·)

 (λ0 − a)l−p
(l − p)!

∣∣∣∣∣∣
+ lim
λ0→λ1

∣∣∣∣∣∣
∫ λ1

a

(λ1 − s)η−2−p

(η − 2 − p)! ϕ
−1

ϕ(Aη−1) −
∑

i : ti>s
Iη−1,i(·) +

∫ b

s
f(U(σ), V (σ))dσ

 ds
−
∫ λ0

a

(λ0 − s)η−2−p

(η − 2 − p)! ϕ
−1

ϕ(Aη−1) −
∑

i : ti>s
Iη−1,i(·) +

∫ b

s
f(U(σ), V (σ))dσ

 ds
∣∣∣∣∣∣ = 0,

and

lim
λ0→λ1

∣∣∣(T1 (u, v))(η−1) (λ1) − (T1 (u, v))(η−1) (λ0)
∣∣∣ =

lim
λ0→λ1

∣∣∣∣∣∣ϕ−1

ϕ(Aη−1) −
∑

i : ti>λ1

Iη−1,i (·) +
∫ b

λ1
f(U(σ), V (σ))dσ


−ϕ−1

ϕ(Aη−1) −
∑

i : ti>λ0

Iη−1,i (·) +
∫ b

λ0
f(U(σ), V (σ))dσ

∣∣∣∣∣∣ = 0.

Therefore, T1B is equicontinuous on X1.

Similarly, it can be shown that T2B is equicontinuous on X2, too. Thus, TB is equicon-
tinuous on X2.

Step 3: TB : X2 → X2 is equiconvergent at t = ti and t = τj .

First, let us prove the equiconvergence at t = t+i , for i = 1, 2, ...m. The proof of
equiconvergence at t = τ+

j , for j = 1, 2, ...n, is analogous.
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So, for ti < t < ti+1, and p = 0, 1, ...η − 2,∣∣∣∣∣(T1 (u, v))(p) (ti) − lim
t→t+i

(T1 (u, v))(p) (t)
∣∣∣∣∣ ≤

∣∣∣∣∣∣
η−2∑
l=p

Al +
∑

k : tk<t
Il,k(·)

 (ti − a)l−p
(l − p)!


− lim
t→t+i

η−2∑
l=p


Al +

∑
k : tk<t+i

Il,k(·)

 (t− a)l−p
(l − p)!


∣∣∣∣∣∣∣

+

∣∣∣∣∣∣
∫ ti

a

(ti − s)η−2−p

(η − 2 − p)! ϕ
−1

ϕ(Aη−1) −
∑

i : ti>s
Iη−1,i(·) +

∫ b

s
f(U(σ), V (σ))dσ

 ds
− lim
t→t+i

∫ t

a

(λ0 − s)η−2−p

(η − 2 − p)! ϕ
−1

ϕ(Aη−1) −
∑

i : ti>s
Iη−1,i(·) +

∫ b

s
f(U(σ), V (σ))dσ

 ds
∣∣∣∣∣∣ −→ 0

uniformly, when t −→ t+i , and∣∣∣∣∣(T1 (u, v))(η−1) (ti) − lim
t→t+i

(T1 (u, v))(η−1) (t)
∣∣∣∣∣ =∣∣∣∣∣∣ϕ−1

ϕ(Aη−1) −
∑

k : tk>ti
Iη−1,k(·) +

∫ b

ti

f(U(σ), V (σ))dσ


−ϕ−1

ϕ(Aη−1) − lim
t→t+i

∑
i : tk>t

Iη−1,k(·) +
∫ b

t
f(U(σ), V (σ))dσ

∣∣∣∣∣∣ −→ 0

uniformly when t −→ t+i , is valid for all η ≥ 2. Therefore, T1B is equiconvergent at each
point t = t+i , for i = 1, 2, ...,m.

Analogously, it can be proved that T2B is equiconvergent at each point t = τ+
j , for

j = 1, 2, ..., n.

So, TB is equiconvergent at each impulsive point.

Step 4: T : X2 → X2 has a fixed point .

Consider
Ω := {(u, v) ∈ X2 : ∥(u, v)∥X2 ≤ K},

with K > 0 such that with K > 0 and M > 0 given by (6.16) and (6.17). According to
Step 1, we have

∥T (u, v)∥X2 = ∥(T1 (u, v) , T2 (u, v))∥X2

= max{∥T1 (u, v)∥X1
, ∥T2 (u, v)∥X2

}

= max{∥T1 (u, v)∥∞ , ..., ∥T (η−1)
1 (u, v) ∥∞, ∥T2 (u, v)∥∞ , ..., ∥T (η−1)

2 (u, v) ∥∞}
≤ K.

So, TΩ ⊂ Ω, and by Theorem 6.1.7, the operator T (u, v) = (T1 (u, v) , T2 (u, v)), has a
fixed point (u∗, v∗).

By Lemma 6.1.2, this fixed point is a solution of problem (6.1)-(6.3).
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6.3 Existence and localization results

The localization of the solution is obtained for a particular case of the impulsive conditions
(6.3), that is, for (6.4).

The lower and upper solutions will play a key role in determining the location of the
solution and are defined, in this particular case, as follows:

Definition 6.3.1. The pair of functions (α1(t), α2(t)) ∈ X2 with (ϕ(α(η−1)
1 (t)), ψ(α(ξ−1)

2 (t))) ∈(
PC1[a, b]

)2, is a lower solution of problem (6.1), (6.2), (6.4), if

(ϕ(α(η−1)
1 (t)))′ + f(t, α1(t), ..., α(η−1)

1 (t), α2(t), ..., α(η−2)
2 (t), z) ≥ 0,

for z ∈ R,
(ψ(α(ξ−1)

2 (t)))′ + g(t, α1(t), ..., α(ξ−2)
1 (t), y, α2(t), ..., α(ξ−1)

2 (t)) ≥ 0,
for y ∈ R,
α

(l)
1 (a) ≤ Al, l = 0, 1, ..., η − 2, α(η−1)

1 (b) ≤ Aη−1,

α
(k)
2 (a) ≤ Bk, k = 0, 1, ..., ξ − 2, α(ξ−1)

2 (b) ≤ Bξ−1,

∆α(l)
1 (ti) ≤ Il,i(ti, α1(ti), ..., α(η−2)

1 (ti), α2(ti), ..., α(ξ−2)
2 (ti)),

l = 0, 1, ..., η − 3,
∆α(η−2)

1 (ti) ≤ Iη−2,i(ti, α1(ti), ..., α(η−1)
1 (ti), α2(ti), ..., α(ξ−2)

2 (ti))
∆α(k)

2 (τj) ≤ Jk,j(τj , α1(τj), ..., α(η−2)
1 (τj), α2(τj), ..., α(ξ−2)

2 (τj)),
k = 0, 1, ..., ξ − 3,
∆α(ξ−2)

2 (τj) ≤ Jξ−2,j(τj , α1(τj), ..., α(η−2)
1 (τj), α2(τj), ..., α(ξ−1)

2 (τj)),

(6.20)

for i = 1, 2, ...,m, j = 1, 2, ..., n.

A pair of functions (β1(t), β2(t)) ∈ X2 such that (ϕ(β(η−1)
1 (t)), ψ(β(ξ−1)

2 (t))) ∈
(
PC1[a, b]

)2
is an upper solution of problem (6.1)-(6.3) if the opposite inequalities hold.

The nonlinearities and the impulsive functions must satisfy local monotone assump-
tions:

(H2) f : [a, b] × R2η 7→ R, g : [a, b] × R2ξ 7→ R are L1-Carathéodory such that

f(t, α1(t), ..., α(η−3)
1 (t), xη−2,xη−1, α2(t), ..., α(η−2)

2 (t), yη−1) ≤ f(t, x0, ..., xη−1, y0, ..., yη−1)

≤ f(t, β1(t), ..., β(η−3)
1 (t), xη−2, xη−1, β2(t), ..., β(η−2)

2 (t), yη−1),

for α(l)
1 (t) ≤ xl ≤ β

(l)
1 (t), when l = 0, 1, ..., η − 3, α(q)

2 (t) ≤ yq ≤ β
(q)
2 (t), q =

0, 1, ..., η − 2, for fixed (t, xη−2, xη−1, yη−1) ∈ [a, b] × R3;

g(t, α1(t), ..., α(ξ−2)
1 (t), xξ−1,α2(t), ..., α(ξ−3)

2 (t), yξ−2, yξ−1) ≤ g(t, x0, ..., xξ−1, y0, ..., yξ−1)

≤ g(t, β1(t), ..., β(ξ−2)
1 (t), xξ−1, β2(t), ..., β(ξ−3)

2 (t), yξ−2, yξ−1),

for α(k)
1 (t) ≤ xk ≤ β

(k)
1 (t), when k = 0, 1, ..., ξ − 2, α(q)

2 (t) ≤ yq ≤ β
(q)
2 (t), when

q = 0, 1, ..., ξ − 3, fixed (t, xξ−1, yξ−2, yξ−1) ∈ [a, b] × R3.
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(H3) Il,i, Jkj ∈ C([a, b] × Rη+ξ−2,R), l = 0, 1, ..., η − 3, k = 0, 1, ..., ξ − 3, Iη−2,i, Jξ−2,j ∈
C([a, b] × Rη+ξ−1,R), verify

Il,i(ti, α1(ti), ..., α(η−2)
1 (ti), α2(ti), ..., α(ξ−2)

2 (ti)) ≤ Il,i(ti, x0, ..., xη−2, y0, ..., yη−2)

≤ Il,i(ti, β1(ti), ..., β(η−2)
1 (ti), β2(ti), ..., β(ξ−2)

2 (ti)),

for i = 1, 2, ...,m, and

Jk,j(τj , α1(τj), ..., α(η−2)
1 (τj), α2(τj), ...,α(ξ−2)

2 (τj)) ≤ Jl,j(τj , x0, ..., xη−2, y0, ..., yξ−2)

≤ Jk,j(τj , β1(τj), ..., β(η−2)
1 (τj), β2(τj), ..., β(ξ−2)

2 (τj)),

for j = 1, 2, ..., n;

Iη−2,i(ti, α1(ti), ..., α(η−3)
1 (ti), xη−2, xη−1, α2(ti), ..., α(ξ−2)

2 (ti))
≤ Iη−2,i(ti, x0, ..., xη−1, y0, ..., yξ−2)

≤ Iη−2,i(ti, β1(ti), ..., β(η−3)
1 (ti), xη−2, xη−1, β2(ti), ..., β(ξ−2)

2 (ti)),

for i = 1, 2, ...,m, α(l)
1 (ti) ≤ xl ≤ β

(l)
1 (ti), l = 0, 1, ..., η − 3, (xη−2, xη−1) ∈ R2, and

Jξ−2,j(τj , α1(τj), ..., α(η−2)
1 (τj), α2(τj), ..., α(ξ−3)

2 (τj), yξ−2, yξ−1)
≤ Jη−2,j(τj , x0, ..., xη−2, y0, ..., yξ−1)

≤ Jη−2,j(τj , β1(τj), ..., β(η−2)
1 (τj), β2(τj), ..., β(η−3)

2 (τj), yη−2, yη−1).

for j = 1, 2, ..., n, α(k)
2 (τj) ≤ yk ≤ β

(k)
2 (τj), k = 0, 1, ..., η − 3, (yη−2, yη−1) ∈ R2.

The existence and localization theorem is given as follows:

Theorem 6.3.2. Let Al, Bk ∈ R, l = 0, 1, ..., η− 1, k = 0, 1, ..., ξ− 1, and the homeomor-
phisms ϕ and ψ verify (H1).
Assume that there are lower and upper solutions of (6.1), (6.2), (6.4), (α(l)

1 , α
(k)
2 ) and

(β(l)
1 , β

(k)
2 ), respectively, such that

α
(l)
1 (t) ≤ β

(l)
1 (t), l = 0, 1, ..., η − 2,

α
(k)
2 (t) ≤ β

(k)
2 (t), k = 0, 1, ..., ξ − 2 ∀t ∈ [a, b],

L1−Carathéodory functions f : [a, b] × R2η → R , and g : [a, b] × R2ξ → R, satisfying a
Nagumo-type conditions, as in Definition 6.1.3, in the sets

S∗
1 =

{
(t, x0, ..., xη−1, y0, ..., yη−1) ∈ [a, b] × R2η :

α
(l)
1 (t) ≤ xl ≤ β

(l)
1 (t), α(l)

2 (t) ≤ yl ≤ β
(l)
2 (t), l = 0, 1, ..., η − 2

}
,

S∗
2 =

{
(t, x0, ..., xξ−1, y0, ..., yξ−1) ∈ [a, b] × R2ξ :

α
(k)
1 (t) ≤ xk ≤ β

(k)
1 (t), α(k)

2 (t) ≤ yk ≤ β
(k)
2 (t), k = 0, 1, ..., ξ − 2

}
,

and (H2).
If the impulsive functions Il,i, Jkj ∈ C([a, b]×Rη+ξ−2,R), l = 0, 1, ..., η−3, k = 0, 1, ..., ξ−3,
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Iη−2,i, Jξ−2,j ∈ C([a, b]×Rη+ξ−1,R), verify (H3), then there is at least a pair (u(t), v(t)) ∈
X2 solution of (6.1), (6.2), (6.4), and, moreover,

α
(l)
1 (t) ≤ u(l)(t) ≤ β

(l)
1 (t), l = 0, 1, ..., η − 2,

α
(k)
2 (t) ≤ v(k)(t) ≤ β

(k)
2 (t), k = 0, 1, ..., ξ − 2, ∀t ∈ [a, b],

∥u(η−1)∥ ≤ N1 and ∥v(ξ−1)∥ ≤ N2,

with N1 and N2 given by Lemma 6.1.4.

Proof. Define the truncature functions δ1,l, δ2,k : [a, b] ×R → R, for l = 0, 1, ..., η− 2, and
k = 0, 1, ..., ξ − 2, given by

δ1,l(t, xl) =


β

(l)
1 (t) if xl > β

(l)
1 (t)

xl if α
(l)
1 (t) ≤ xl ≤ β

(l)
1 (t)

α
(l)
1 (t) if xl < α

(l)
1 (t),

(6.21)

δ2,k(t, yk) =


β

(k)
2 (t) if yk > β

(k)
2 (t)

yk if α
(k)
2 (t) ≤ yk ≤ β

(k)
2 (t)

α
(k)
2 (t) if yk < α

(k)
2 (t),

(6.22)

and the truncated and perturbed functions

F (t) := f


t, δ1,0(t, u(t)), ..., δ1,η−2(t, u(η−2)(t)),

d

dt

(
δ1,η−2(t, u(η−2)(t))

)
,

δ2,0(t, v(t)), ..., δ2,η−2(t, v(η−2)(t)),
d

dt

(
δ2,η−2(t, v(η−2)(t))

)

+ δ1,η−2(t, u(η−2)(t)) − u(η−2)(t)
1 + |δ1,η−2(t, u(η−2)(t)) − u(η−2)(t)|

,

and

G(t) := g


t, δ1,0(t, u(t)), ..., δ1,ξ−2(t, u(ξ−2)(t)),

d

dt

(
δ1,ξ−2(t, u(ξ−2)(t))

)
,

δ2,0(t, v(t)), ..., δ2,ξ−2(t, v(ξ−2)(t)),
d

dt

(
δ2,ξ−2(t, v(ξ−2)(t))

)

+ δ2,ξ−2(t, v(ξ−2)(t)) − v(ξ−2)(t)
1 + |δ2,ξ−2(t, v(ξ−2)(t)) − v(ξ−2)(t)|

.

Consider the following modified coupled system composed by differential equations
(ϕ(u(η−1)(t)))′ + F (t) = 0, t ∈ [a, b] \{t1, ..., tm},

(ψ(v(ξ−1)(t)))′ +G(t) = 0, t ∈ [a, b] \{τ1, ..., τn},
(6.23)
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with the truncated impulsive conditions for i = 1, 2, ...,m, l = 1, 2, ..., η − 3,

∆u(l)(ti) = Il,i

 ti, δ1,0(ti, u(ti)), ..., δ1,η−2(ti, u(η−2)(ti)),

δ2,0(ti, v(ti)), ..., δ2,ξ−2(ti, v(ξ−2)(ti))

 ,

∆u(η−2)(ti) = Iη−2,i



ti, δ1,0(ti, u(ti)), ..., δ1,η−2(ti, u(η−2)(ti)),

d

dt

(
δ1,η−2(ti, u(η−2)(ti))

)
,

δ2,0(ti, v(ti)), ..., δ2,ξ−2(ti, v(ξ−2)(ti))


,

(6.24)

and, for j = 1, 2, ..., n, k = 1, 2, ..., ξ − 3,

∆v(k)(τj) = Jk,j

 τj , δ1,0(τj , u(τj)), ..., δ1,η−2(τj , u(η−2)(τj)),

δ2,0(τj , v(τj)), ..., δ2,ξ−2(τj , v(ξ−2)(τj))

 ,

∆v(ξ−2)(τj) = Jξ−2,j



τj , δ2,0(τj , u(τj)), ..., δ2,η−2(τj , u(η−2)(τj)),

δ2,0(τj , v(τj)), ..., δ2,ξ−2(τj , v(ξ−2)(τj)),

d

dt

(
δ2,ξ−2(τj , v(ξ−2)(τj))

)


,

(6.25)

and the boundary conditions (6.2).

It is clear that the functions F and G satisfy the Nagumo type conditions, as in
Definition 6.1.3, relative to the sets S∗

1 and S∗
2 , with

|F (t, x0, ..., xη−1, y0, ..., yη−1)| ≤ φ1(|xη−1|) + 1,

and
|G(t, x0, ..., xξ−1, y0, ..., yξ−1)| ≤ φ2(|yξ−1|) + 1,

and are L1-Carathéodory, when

max
{

|α(l)
k |, |β(l)

k |, Nk, k = 1, 2, l = 0, 1, ..., p− 2
}
< K,

we have
|F (t, x0, ..., xη−1, y0, ..., yη−1)| ≤ ρ1K(t) + 1

and
|G(t, x0, ..., xξ−1, y0, ..., yξ−1)| ≤ ρ2K(t) + 1.

Therefore, applying the same arguments as in the Theorem 6.2.1, it can be proved that
problem (6.23), (6.2), (6.24), (6.25) has, at least a solution (u∗(t), v∗(t)).

To prove that the solution of (6.23), (6.2), (6.24), (6.25), are solutions of the initial
problem (6.1), (6.2), (6.4), it will be enough to show that

α
(l)
1 (t) ≤ u(l)(t) ≤ β

(l)
1 (t), α

(k)
2 (t) ≤ v(k)(t) ≤ β

(k)
2 (t),
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for l = 0, 1, ..., η − 2, k = 0, 1, ..., ξ − 2, and t ∈ [a, b].

For l = η−2, suppose, by contradiction, that there exists t ∈ [a, b] such that u(η−2)(t) <
α

(η−2)
1 (t), and define

inf
a≤t≤b

(u(η−2)(t) − α
(η−2)
1 (t)) := u(η−2)(λ) − α

(η−2)
1 (λ) < 0. (6.26)

As, by boundary conditions (6.2) and Definition 6.3.1, u(η−2)(a) −α
(η−2)
1 (a) ≥ 0, then

λ ̸= a. In the same way, u(η−1)(b−) − α
(η−1)
1 (b−) > 0, therefore λ ̸= b.

Then λ ∈ (a, b), two possibilities remain to be studied:

(i) Assume that there is p ∈ {0, 1, 2, ...,m} such that λ ∈ (tp, tp+1). Therefore

min
t∈(tp,tp+1)

(u(η−2)(t) − α
(η−2)
1 (x)) := u(η−2)(λ) − α

(η−2)
1 (λ) < 0.

and
u(η−1)(λ) − α

(η−1)
1 (λ) = 0. (6.27)

Choose ϵ > 0, sufficiently small, such that

u(η−2)(t) − α
(η−2)
2 (t) < 0 and u(η−1)(t) − α

(η−1)
1 (t) ≥ 0,∀t ∈ (λ, λ+ ϵ). (6.28)

By (H2) and (6.28), for all t ∈ (λ, λ+ ϵ),

(ϕ(u(η−1)(t)))′ − (ϕ(α(η−1)
1 (t)))′

≤ −f

 t, δ1,0(t, u(t)), ..., δ1,η−2(t, u(η−2)(t)), d
dt

(
δ1,η−2(t, u(η−2)(t))

)
,

δ2,0(t, v(t)), ..., δ2,η−2(t, v(η−2)(t)), d
dt

(
δ2,η−2(t, v(η−2)(t))

)


− δ1,η−2(t, u(η−2)(t)) − u(η−2)(t)
1 + |δ1,η−2(t, u(η−2)(t)) − u(η−2)(t)|

+ f(t, α1(t), ..., α(η−1)
1 (t), α2(t), ..., α(η−1)

2 (t))

= −f

 t, δ1,0(t, u(t)), ..., δ1,η−3(t, u(η−3)(t)), α(η−2)
1 (t), α(η−1)

1 (t),
δ2,0(t, v(t)), ..., δ2,η−2(t, v(η−2)(t)), d

dt

(
δ2,η−2(t, v(η−2)(t))

) 
− α

(η−2)
1 (t) − u(η−2)(t)

1 + |α(η−2)
1 (t) − u(η−2)(t)|

+ f(t, α1(t), ..., α(η−1)
1 (t), α2(t), ..., α(η−1)

2 (t))

≤ u(η−2)(t) − α
(η−2)
1 (t)

1 + |u(η−2)(t) − α
(η−2)
1 (t)|

< 0.

So (ϕ(u(η−1)(t)) − ϕ(α(η−1)
1 (t))) is strictly decreasing for ∀t ∈ (λ, λ + ϵ), and, by

(6.27) and (6.28), in [λ, λ+ ϵ), we obtain the contradiction:

0 = ϕ(u(η−1)(λ)) − ϕ(α(η−1)
1 (λ)) > ϕ(u(η−1)(t)) − ϕ(α(η−1)

1 (t)) ≥ 0.

Therefore, for t ∈ (tp, tp+1), p = 0, 1, 2, ...,m,

u(η−2)(t) ≥ α
(η−2)
1 (t). (6.29)
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(ii) Suppose, now, that there is p∗ ∈ {1, 2, ..., n} such that, λ = tp∗ . That is,

inf
t∈[a,b]

(u(η−2)(t) − α
(η−2)
1 (t)) := u(η−2)(tp∗) − α

(η−2)
1 (tp∗) < 0. (6.30)

As u, α1 ∈ X1, by (6.29), we obtain the contradiction with (6.30):

u(η−2)(tp∗) = lim
x→t−

p∗

u(η−2)(t) ≥ lim
x→t−

p∗

α
(η−2)
1 (t) = α

(η−2)
1 (tp∗). (6.31)

If λ = t+p∗ , suppose

inf
t∈[a,b]

(u(η−2)(t) − α
(η−2)
1 (t)) := u(η−2)(t+p∗) − α

(η−2)
1 (t+p∗) < 0,

By (6.24), (6.31), (H3) and Definition 6.3.1, we obtain the contradiction:

0 > u(η−2)(t+p∗) − α
(η−2)
1 (t+p∗)

= u(η−2)(tp∗) + Iη−2,p∗


tp∗ , δ1,0(tp∗ , u(tp∗)), ..., δ1,η−2(tp∗ , u(η−2)(tp∗)),

d

dt

(
δ1,η−2(tp∗ , u(η−2)(tp∗))

)
,

δ2,0(tp∗ , v(tp∗)), ..., δ2,ξ−2(tp∗ , v(ξ−2)(tp∗))


− α

(η−2)
1 (tp∗) − Iη−2,p∗(tp∗ , α1(tp∗), ..., α(η−1)

1 (tp∗), α2(tp∗), ..., α(ξ−2)
2 (tp∗))

≥ Iη−2,p∗

 tp∗ , δ1,0(tp∗ , u(tp∗)), ..., δ1,η−2(tp∗ , u(η−3)(tp∗)),
α

(η−2)
1 (tp∗), α(η−1)

1 (tp∗),
δ2,0(tp∗ , v(tp∗)), ..., δ2,η−2(tp∗ , v(ξ−2)(tp∗))


− Iη−2,p∗(tp∗ , α1(tp∗), ..., α(η−1)

1 (tp∗), α2(tp∗), ..., α(ξ−2)
2 (tp∗) ≥ 0.

Therefore, u(η−2)(t) ≥ α(η−2)(t), for t ∈ [a, b].

By similar arguments, it can be proved the remaining inequality and, therefore,

α
(η−2)
1 (t) ≤ u(η−2)(t) ≤ β

(η−2)
1 (t), for all t ∈ [a, b]. (6.32)

By integration of (6.32) for t ∈ [a, t1],

α(η−3)(t) ≤ u(η−3)(t) − u(η−3)(a) + α
(η−3)
1 (a) ≤ u(η−3)(t),

and for t ∈ (t1, t2], we have, by (H3),

α(η−3)(t) ≤ u(η−3)(t) − u(η−3)(t+1 ) + α
(η−3)
1 (t+1 )

≤ u(η−3)(t) − u(η−3)(t1) − Iη−3,1

(
t1, δ1,0(t1, u(t1)), ..., δ1,η−2(t1, u(η−2)(t1)),
δ2,0(t1, v(t1)), ..., δ2,ξ−2(t1, v(ξ−2)(t1))

)
+ α

(η−3)
1 (t1) + Iη−3,1(t1, α1(t1), ..., α(η−2)

1 (t1), α2(t1), ..., α(ξ−2)
2 (t1)

≤ u(η−3)(t).

Applying this method for each interval (ti, ti+1], i = 2, ...,m, we obtain

α
(η−3)
1 (t) ≤ u(η−3)(t), for all t ∈ [a, b],
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and, by the same technique,

u(η−3)(t) ≤ β
(η−3)
1 (t), for all t ∈ [a, b].

By iteration of these arguments, we conclude

α
(l)
1 (t) ≤ u(l)(t) ≤ β

(l)
1 (t), l = 0, 1, ..., η − 2, ∀t ∈ [a, b].

Analogously, it can be proved that

α
(k)
2 (t) ≤ v(k)(t) ≤ β

(k)
2 (t), k = 0, 1, ..., ξ − 2, ∀t ∈ [a, b].

The estimates ∥u(η−1)(t)∥ ≤ N1 and ∥v(ξ−1)(t)∥ ≤ N2 are trivial consequences do Lemma
(6.1.4).

6.4 Flexural vibration of a single-span suspension bridge

Problems related to suspension bridge structures, which are typically designed as flexible
structures with long spans, are part of a vast field of investigation due to their vulnerability
to external loads and large deformations, see, for example, [55, 62, 92, 107].

In this application, we consider a model, based on the works [55, 107], to describe
the deflection curves u(x) and v(x) of the girder and cable, respectively, of a suspension
bridge of single span with length L > 1, given by the system of fourth order equations

EcIcu
(4)(x) −H(u′′(x) + u′′′(x)) + EcAc(v(x))2u′′(x) = 0,

x ∈
[
0, L2

]
\ {(xi)} ,

EgIgv
(4)(x) − EgAg(v′′(x))2v′′′(x) + γ(u(x) + v(x)) = 0,

x ∈
[
0, L2

]
\ {(τj)} ,

(6.33)

where Ec, Eg is the Young’s modulus, Ic, Ig the moment of inertia of the mass, Ac, Ag the
cross-sectional area, with c for the cable and g for the girder; γ > 0 is the tension of a
spring force applied vertically to the assembly and H > 0 is the horizontal tension of the
main cable under permanent loads.

At the ends, the behavior of the cable and beam assembly is given by the following
boundary conditions

u(0) = 0, u′(0) = 0, u′′(0) = 0, u′′′
(
L

2

)
= 1,

v(0) = 0, v′(0) = 0, v′′(0) = 0, v′′′
(
L

2

)
= 1.

(6.34)

For simplicity, we only consider the impulse moment that occurs at i = 1, 2 and
j = 1, 2, 3. The impulsive effects are given by generalized functions with dependence on



106 Higher-order impulsive coupled systems with ϕ-Laplacian

the unknown function itself and its derivatives,



∆u(xi) = 1
20u(xi) + 1

25v(xi), ∆u′(xi) = 1
30u

′(xi) + 1
40v

′(xi),

∆u′′(xi) = −1
6u

′′′(xi) + 1
5v

′′(xi), ∆v (τj) = 1
10u(τj) + 1

5v(τj),

∆v′ (τj) = 1
5u

′(τj) + 1
10v

′(τj), ∆v′′ (τj) = −xi + u′′(τj) − v′′′(τj),

(6.35)

with x1 = L

8 , x2 = L

4 , x3 = 3L
8 , τ1 = L

6 and τ3 = 2L
6 .

The system (6.33)-(6.35) is a particular case of the problem (6.1), (6.2), (6.4), with
[a, b] =

[
0, L2

]
,

ϕ(w3) = EcIcw3, ψ(z3) = EgIgz3, (6.36)

f(x,w0, w1, w2, w3, z0, z1, z2, z3) = −H(w2 + w3) + EcAcz
2
0w2,

g(x,w0, w1, w2, w3, z0, z1, z2, z3) = −EgAgz2
2z3 + γ(w0 + z0),

A0 = A1 = A2 = B0 = B1 = B2 = 0, A3 = B3 = 1,

I0,i(xi, w0, w1, w2, z0, z1, z2) = 1
20w0 + 1

25z0,

I1,i(xi, w0, w1, w2, z0, z1, z2) = 1
30w1 + 1

40z1,

I2,i(xi, w0, w1, w2, w3, z0, z1, z2) = −1
6w3 + 1

5z2,

J0,j(τj , w0, w1, w2, z0, z1, z2) = 1
10w0 + 1

5z0,

J1,j(τj , w0, w1, w2, z0, z1, z2) = 1
5w1 + 1

10z1,

J2,j(τj , w0, w1, w2, z0, z1, z2, z3) = −xi + z2 − z3,

and m = 3, n = 2.

It is easy to see that the functions ϕ : R → R and ψ : R → R, given in (6.36), verify
assumption (H1), are increasing homeomorphisms such that ϕ(0) = ψ(0) = 0, ϕ(R) = R
and ψ(R) = R.

As a numerical example we can consider EcIc = 1, EgIg = 1, EcAc = 1, EgAg = 2,
H = 2, L = 2 and γ = 2. The functions ακ : [0, 1] → R, κ = 1, 2, given by α1(x) ≡ 0,
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α1(x) ≡ 0 and βκ : [0, 1] → R, κ = 1, 2, given by

β1(x) =



ex − 1
4x

2 − x− 1 if 0 ≤ x ≤ 1
4

2
3e

x − 1
2x− 1

2 if 1
4 < x ≤ 1

2

3
4e

x − 1
2 if 3

4 < x ≤ 1

4
5e

x − 1
2 if 1

2 < x ≤ 3
4

,

β2(x) =



1
6x

3 + 1
2x

2 if π

2 < t ≤ π

1
6x

3 + 1
2x

2 + 1
2x if π

2 < t ≤ π

1
6x

3 + 1
2x

2 + x if π

2 < t ≤ π

,

are, respectively, lower and upper solutions of the problem (6.33)-(6.35), according to
Definition 6.3.1. In fact, the differential inequalities are verified in the interval [0, 1], as
shown in Figure 6.1.

a b
Fig. 6.1: Relationship between nonlinearities as a function of the lower and upper solutions, given by the
inequalities of the Definition 5.3.1: a) first equation of the system; b) second equation of the system.

The boundary conditions

α1(0) = 0, α′
1(0) = 0, α′′

1(0) = 0, α′′′
1 (1) = 0 < 1,

α2(0) = 0, α′
2(0) = 0, α′′

2(0) = 0, α′′′
2 (1) = 0 < 1,

β1(0) = 0, β′
1(0) = 0, β′′

1 (0) = 1
2 > 0, β′′′

1 (1) = 4e
5 > 1,

β2(0) = 0, β′
2(0) = 0, β′′

2 (0) = 1 > 0, β′′′
2 (1) = 1,

and impulsive conditions verify the inequalities of Definition 6.3.1, as shown in Table 6.1
and Table 6.2.

Let

max
{

|α(l)
1 |, |α(k)

2 |, |β(l)
1 |, |β(k)

2 |, N1, N2, l = 0, 1, 2, k = 0, 1, 2
}
< K,
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Table 6.1: Impulse conditions for functions α1 and β1.

l i ti ∆α(l)
1 (ti) ≤ Il,i(α1) ≤ Il,i(β1) ≤ ∆β(l)

1 (ti)
0 1 0.2500 0.0000 0.0000 0.0023 0.2126
0 2 0.5000 0.0000 0.0000 0.0333 0.3874
0 3 0.7500 0.0000 0.0000 0.0985 0.1059
1 1 0.2500 0.0000 0.0000 0.0123 0.1970
1 2 0.5000 0.0000 0.0000 0.0481 0.6374
1 3 0.7500 0.0000 0.0000 0.1037 0.1059
2 1 0.2500 0.0000 0.0000 0.0360 0.0720
2 2 0.5000 0.0000 0.0000 0.1168 0.1374
2 3 0.7500 0.0000 0.0000 0.0854 0.1059

Table 6.2: Impulse conditions for functions α2 and β2.

k j τj ∆α(k)
2 (τj) ≤ Jk,j(α2) ≤ Jk,j(β2) ≤ ∆β(k)

2 (τj)
0 1 0.3333 0.0000 0.0000 0.0387 0.1667
0 2 0.6667 0.0000 0.0000 0.2171 0.3333
1 1 0.3333 0.0000 0.0000 0.1250 0.5000
1 2 0.6667 0.0000 0.0000 0.4310 0.5000
2 1 0.3333 0.0000 0.0000 0.0000 0.0000
2 2 0.6667 0.0000 0.0000 0.0000 0.0000

then f and g are L1-Carathéodory functions, with

|f(x,w0, w1, w2, w3, z0, z1, z2, z3)| ≤ 4K +K3 := ρ1K(x),

|g(x,w0, w1, w2, w3, z0, z1, z2, z3)| ≤ 4K + 2K3 := ρ2K(x),

and the sum of the jumps is bounded.

The functions f and g satisfy Nagumo’s condition relating to sets

S0
1 =

{
(x,w0, w1, w2, w3, z0, z1, z2, z3) ∈ [0, 1] × R8 :

α
(l)
1 (t) ≤ wl ≤ β

(l)
1 (t), α(l)

2 (t) ≤ zl ≤ β
(l)
2 (t), l = 0, 1, 2

}

and

S0
2 =

{
(x,w0, w1, w2, w3, z0, z1, z2, z3) ∈ [0, 1] × R8 :

α
(k)
1 (t) ≤ xk ≤ β

(k)
1 (t), α(k)

2 (t) ≤ yk ≤ β
(k)
2 (t), k = 0, 1, 2

}
.

Consider a constant Kk > 0, k = 1, 2, and µk as defined in (6.8), then, in S0
1 and S0

2 ,

|f(x,w0, w1, w2, w3, z0, z1, z2, z3)| =
∣∣∣−2(w2 + w3) + z2

0w2
∣∣∣

≤ K1 + 2w3 := φ1(|w3|)

and

|g(x,w0, w1, w2, w3, z0, z1, z2, z3)| =
∣∣∣−2z2

2z3 + 2(w0 + z0)
∣∣∣

≤ K2z3 + K2 := φ2(|z3|),
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it is trivial that∫ ϕ(+∞)

ϕ(µ1)

|ϕ−1(s)|
2|ϕ−1(s)| + K1

ds = +∞ and
∫ ψ(+∞)

ψ(µ2)

|ψ−1(s)|
K2|ψ−1(s)| + K2

ds = +∞.

So, by Theorem 6.3.2, there is at least one pair of functions (u(x), v(x)) ∈ X2, solution
of the problem (6.33)–(6.35) and, moreover,

α
(l)
1 (x) ≤ u(l)(x) ≤ β

(l)
1 (x), l = 0, 1, 2,

α
(k)
2 (x) ≤ v(k)(x) ≤ β

(k)
2 (x), k = 0, 1, 2, ∀x ∈ [0, 1],

and
∥u′′′∥ ≤ N1 and ∥v′′′∥ ≤ N2,

with N1 and N2 given by Lemma 6.1.4.

The colored regions in the Figure 6.2 show the locations of the solution (u(x), v(x)) of
problem (6.33)–(6.35).

Fig. 6.2: At least one solution (u(x), v(x)) of problem (6.33)-(6.35) is located in the colored region, when
x ∈ [0, 1].

6.5 Singular ϕ-Laplacian equations

The study developed in this chapter can be adapted and applied to a system of singular ϕ-
Laplacian equations, that is, to the system of equations (6.1). To do this, two assumptions
are necessary:

(Hs) ϕ : (−c, c) → R and ψ : (−d, d) → R, for some 0 < c < +∞ and 0 < d < +∞, are
increasing homeomorphisms with ϕ(0) = ψ(0) = 0, ϕ(−c, c) = R and ψ(−d, d) = R,
such that ∣∣∣ϕ−1(w)

∣∣∣ ≤ ϕ−1(|w|), and
∣∣∣ψ−1(w)

∣∣∣ ≤ ψ−1(|w|).

(H4) In the Nagumo-type condition of the Definition 6.1.3, let us consider the modifica-
tion: ∫ ϕ(<c)

ϕ(µ1)

|ϕ−1(s)|
φ1(|ϕ−1(s)|)ds = +∞ and

∫ ψ(<d)

ψ(µ2)

|ψ−1(s)|
φ2(|ψ−1(s)|)ds = +∞,

therefore 0 < µ1 ≤ N1 < c and 0 < µ2 ≤ N2 < d.
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In this case, a solution to the problem (6.1)-(6.3) is a pair of functions (u(t), v(t)) ∈
X2 such that (u(η−1)(t), v(ξ−1)(t)) ∈ (−c, c) × (−d, d) for all t ∈ [a, b], satisfying (6.1)-
(6.3). The theory for singular ϕ-Laplacian equations is analogous to Theorems 6.2.1 and
Theorems 6.3.2, replacing the assumption (H1) by (Hs) and adding (H4).

Example 6.5.1. Consider the coupled nonlinear system
(arctanh(u′′(t)))′ − 5u′(t) + v(t)(u′(t))2 = 0, t ∈ [0, π] \ {(ti)} ,

(tan(v′′′(t)))′ + u(t) − 3v′′(t) − sin(v′′(t)) = 0, t ∈ [0, π] \ {(τj)} ,
(6.37)

with the boundary conditions
u(0) = − 1

π
, u′(0) = 0, u′′(π) = 0

v(0) = 0, v′(0) = 0, v′′(0) = 0, v′′′(π) = 1,

(6.38)

and impulsive conditions are given by

∆u(ti) = sin(πti), ∆u′(ti) = 1
2 cos(πu′(ti)),

∆v (τj) = 1
4v

′′(τj), ∆v′ (τj) = cos (τj) ,

∆v′′ (τj) = 1
3π sin2 (2πv′′′ (τj)) ,

(6.39)

with t1 = 1, t2 = 2 and τ1 = −π

2 .

The system (6.37)-(6.39) is a particular case of the problem (6.1), (6.2), (6.4), with
[a, b] = [0, π],

ϕ(x2) = arctanh(x2), ψ(y3) = tan(y3), (6.40)

f(t, x0, x1, x2, y0, y1, y2) = −5x1 + y0(x1)2,

g(t, x0, x1, x2, x3, y0, y1, y2, y3) = x0 − 3y2 − sin(y2),

A0 = − 1
π
, A1 = A2 = B0 = B1 = B2 = 0, B3 = 1,

I0,i(t1, x0, x1, y0, y1, y2) = sin(πti),

I1,i(ti, x0, x1, x2, y0, y1, y2) = 1
2 cos(πx1),

J0,j(τj , x0, x1, y0, y1, y2) = 1
4y2,

J1,j(τj , x0, x1, y0, y1, y2) = cos (τj) ,

J2,j(τj , x0, x1, y0, y1, y2, y3) = 1
3π sin2 (2πy3) ,

and m = 2, n = 1.
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It is easy to see that the functions ϕ : (−1, 1) → R and ψ : (−π
2 ,

π
2 ) → R, given in

(6.40), verify assumption (Hs), are increasing homeomorphisms such that ϕ(0) = ψ(0) = 0,
ϕ(−1, 1) = R and ψ(−π

2 ,
π
2 ) = R.

The functions ακ : [0, π] → R, κ = 1, 2, given by

α1(t) =



− 1
π

(t+ 1) if 0 ≤ t ≤ 1

− 2
π
t if 1 < t ≤ 2

− 3
π
t if 2 < t ≤ π

, α2(t) =


− 1
π

(
t4

24 + t2
)

if 0 ≤ t ≤ π

2

− 1
π

(
t4

24 + t2 + 1
)

if π

2 < t ≤ π

,

and βκ : [0, π] → R, κ = 1, 2, given by

β1(x) =



1
π

(t+ 1) if 0 ≤ t ≤ 1

2
π
t if 1 < t ≤ 2

3
π
t if 2 < t ≤ π

, β2(x) =



1
π

(
t4

24 + t2
)

if 0 ≤ t ≤ π

2

1
π

(
t4

24 + t2 + 1
)

if π

2 < t ≤ π

,

are, respectively, lower and upper solutions of the problem (6.37)-(6.39), according to
Definition 6.3.1. In fact, the differential inequalities are verified in the interval [0, π], as
shown in Figure 6.3.

a b
Fig. 6.3: Relationship between nonlinearities as a function of the lower and upper solutions, given by the
inequalities of the Definition 6.3.1: a) first equation of the system; b) second equation of the system.

The boundary conditions

α1(0) = − 1
π
, α′

1(0) = − 1
π
< 0, α′′

1(π) = 0,

α2(0) = 0, α′
2(0) = 0, α′′

2(0) = − 2
π
< 0, α′′′

2 (π) = −1 < 1,

β1(0) = 1
π
> − 1

π
, β′

1(0) = 1
π
> 0, β′′

1 (1) = 0,

β2(0) = 0, β′
2(0) = 0, β′′

2 (0) = 1
π
> 0, β′′′

2 (π) = 1,
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and impulsive conditions verify the inequalities of Definition 6.3.1, as shown in Table 6.3
and Table 6.4.

Table 6.3: Impulse conditions for functions α1 and β1.

l i ti ∆α(l)
1 (ti) ≤ Il,i(α1) ≤ Il,i(β1) ≤ ∆β(l)

1 (ti)
0 1 1.0000 0.0000 0.0000 0.0000 0.0000
0 2 2.0000 -0.6366 0.0000 0.0000 0.6366
1 1 1.0000 -0.3183 0.2702 0.2702 0.3183
1 2 2.0000 -0.3183 -0.2081 -0.2081 0.3183

Table 6.4: Impulse conditions for functions α2 and β2.

k j τj ∆α(k)
2 (τj) ≤ Jk,j(α2) ≤ Jk,j(β2) ≤ ∆β(k)

2 (τj)
0 1 1.5708 -0.3183 -0.2573 0.2573 0.3183
1 1 1.5708 0.0000 0.0000 0.0000 0.0000
2 1 1.5708 0.0000 0.0000 0.0000 0.0000

Let
max

{
|α(l)

1 |, |α(k)
2 |, |β(l)

1 |, |β(k)
2 |, N1, N2, l = 0, 1, k = 0, 1, 2

}
< K,

then f and g are L1-Carathéodory functions, with

|f(t, x0, x1, x2, y0, y1, y2)| ≤ 5K +K3 := ρ1K(t),

|g(t, x0, x1, x2, x3, y0, y1, y2, y3)| ≤ 4K + 1 := ρ2K(t),

and the sum of the jumps is bounded.

The functions f and g satisfy Nagumo’s condition relating to sets

S1
1 =

{
(t, x0, x1, x2, y0, y1, y2) ∈ [0, π] × R6 :

α
(l)
1 (t) ≤ xl ≤ β

(l)
1 (t), α(l)

2 (t) ≤ yl ≤ β
(l)
2 (t), l = 0, 1

}

and
S1

2 =
{

(t, x0, x1, x2, x3, y0, y1, y2, y3) ∈ [0, π] × R8 :
α

(k)
1 (t) ≤ xk ≤ β

(k)
1 (t), α(k)

2 (t) ≤ yk ≤ β
(k)
2 (t), k = 0, 1, 2

}
.

Consider a constant Kk > 0, k = 1, 2, and µk as defined in (6.8), then, in S1
1 and S1

2 ,

|f(t, x0, x1, x2, y0, y1, y2)| =
∣∣∣−5x1 + y0(x1)2

∣∣∣
≤ K1 := φ1(|x2|)

and

|g(t, x0, x1, x2, x3, y0, y1, y2, y3)| = |x0 − 3y2 − sin(y2)|
≤ K2 := φ2(|y3|),

it is trivial that∫ +∞

ϕ(µ1)

|ϕ−1(s)|
|ϕ−1(s)| + K1

ds = +∞ and
∫ +∞

ψ(µ2)

|ψ−1(s)|
|ψ−1(s)| + K2

ds = +∞.
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So, by Theorem 6.3.2, there is at least one pair of functions (u(t), v(t)) ∈ X2, solution
of the problem (6.37)–(6.39) and, moreover,

α
(l)
1 (t) ≤ u(l)(t) ≤ β

(l)
1 (t), l = 0, 1,

α
(k)
2 (t) ≤ v(k)(t) ≤ β

(k)
2 (t), k = 0, 1, 2, ∀t ∈ [a, b],

and
∥u′′′∥ ≤ N1 < 1 and ∥v′′′∥ ≤ N2 <

π

2 ,

with N1 and N2 given by Lemma 6.1.4.

The colored regions in the Figure 6.4 show the locations of the solution (u(t), v(t)) of
problem (6.37)–(6.39).

Fig. 6.4: At least one solution (u(t), v(t)) of problem (6.37)-(6.39) is located in the colored region, when
x ∈ [0, π].
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Chapter 7

Three-dimensional velocity field related
to a generalized third-grade fluid model

Based on the work of Lan et al. (see [59]) the equations relating to the ϕ-Laplacians
problems of one or higher-dimensional are a generalization of the p-Laplacians problems.
It is known that p-Laplacian equations with one or more dimensions arise in the study of
Newtonian fluids and non-Newtonian fluids, particularly in shear-thickening (or dilatant)
fluids and shear-thinning (or pseudoplastic) fluids. Therefore, this chapter follows the
previous chapters and aims to present numerical results to the unsteady volume flow rate,
to the unsteady three-dimensional velocity field and including an analysis on perturbed
flows, for a new three-dimensional non-Newtonian fluid model, where the viscosity and
the viscoelasticity terms dependent on the shear rate.

The following results obtained for the new three-dimensional proposed model for a non-
Newtonian fluid with shear-dependent viscoelasticity have been published in a specialist
journal in the field of mathematics related with the fluid dynamics, see [21].

Considering the work of Truesdell and Noll [83], we consider the constitutive equation
for viscoelastic fluids of differential type (Rivlin-Ericksen fluids) with complexity 3, i.e.,
fluids of third-grade, given by

T = −pI + µA1 + α1A2 + α2A2
1 + β1A3 + β2(A1A2 + A2A1) + β3(tr(A2

1))A1 (7.1)

where p is the pressure, −pI is the spherical part of the stress due to incompressibility, µ
is the constant viscosity of the fluid, ”tr” denotes the trace operator and α1, α2, β1, β2, β3
are the normal stress coefficients - also called viscoelastic parameters. The first three
Rivlin-Ericksen kinematic tensors A1, A2 and A3 are defined through (see Rivlin and
Ericksen [87])

A1 = ∇ϑ +
(
∇ϑ

)T (7.2)

A2 = d

dt

(
A1
)

+ A1∇ϑ +
(
∇ϑ

)T
A1 (7.3)

and
A3 = d

dt

(
A2
)

+ A2∇ϑ +
(
∇ϑ

)T
A2 (7.4)

where1 ϑ = ϑ(x, t) is the three-dimensional velocity field of the fluid, ∇ϑ is the spacial
velocity gradient,

(
∇ϑ

)T is the transpose of ∇ϑ and d

dt
(·) denotes the material time

derivative, determined by:
d

dt

(
·
)

= ∂

∂t

(
·
)

+ ϑ · ∇(·). (7.5)

1Let x = (x1, x2, x3) be the rectangular space Cartesian coordinates (for convenience we set x3 = z)
and t is the time variable.

115
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The thermodynamics and stability of the fluids related with the constitutive equation
(7.1) have been studied in detail by Fosdick and Rajagopal [40], who showed that if the
fluid is to be compatible with thermodynamics in the sense that all motions of the fluid
meet the Clausius-Duhem inequality and the assumption that the specific Helmholtz free
energy of the fluid is a minimum in equilibrium, then

µ ⩾ 0, α1 ⩾ 0, | α1 + α2 |⩽
√

24µβ3, β1 = 0, β2 = 0, β3 ⩾ 0. (7.6)

Now, taking into account the thermodynamically condition (7.6), the constitutive equation
(7.1) can be rewritten as

T = −pI + µA1 + α1A2 + α2A2
1 + β3(tr(A2

1))A1. (7.7)

Considering the work of Truesdell and Noll [83] the material parameters µ, α1, α2
and β3 may depend on several factors. Then, with this assumption, we will consider in
this work that the viscosity (µ) and the viscoelastic terms (α1, α2, β3) dependent on the
shear rate. Therefore, using this assumption, we propose the following new constitutive
equation:

T = −pI + Υ(|γ̇|)
(
µA1 + α1A2 + α2A2

1 + β3(tr(A2
1))A1

)
(7.8)

where
Υ(|γ̇|) : R+ → R+ (7.9)

is the shear-dependent viscoelastic function, γ̇ is a scalar measure of the rate of shear
defined by |γ̇| =

√
2D : D with

D := 1
2
(
∇ϑ +

(
∇ϑ

)T )
being the rate of deformation tensor.

Experimental studies with polymers (see Beracea et al. [13]), suspensions (see Mall-
Gleissle et al. [64]) and liquid crystals (see Tao et al. [96]) indicate that for several fluids,
one observes a significant variation in the viscoelastic effects with the shear rate of the
power-law type. Taking into account the above experimental studies, we consider the
shear-dependent viscoelastic power-law type function (7.9) at equation (7.8), given by

Υ(|γ̇|) = |γ̇|n−1 (7.10)

where the positive parameter n is the flow index. If, in condition (7.10), n < 1, then

lim
|γ̇|→+∞

Υ(|γ̇|) = 0, lim
|γ̇|→0

Υ(|γ̇|) = +∞,

and we have a shear-thinning (or pseudoplastic) viscoelastic fluid, i.e., viscoelasticity de-
creases with increasing shear rate, see Figure 7.1(a). For n > 1, the result is

lim
|γ̇|→+∞

Υ(|γ̇|) = +∞, lim
|γ̇|→0

Υ(|γ̇|) = 0,

and the viscoelastic fluid is shear-thickening (or dilatant), i.e., viscoelasticity increases
with shear rate, see Figure 7.1(b).
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Υ

|γ̇|

n = 0.1

n = 0.9
n = 0.5

(a) Shear-thinning viscoelastic
fluid

Υ

|γ̇|

n = 1.5

n = 3
n = 5

(b) Shear-thickening viscoelastic
fluid

Fig. 7.1: Power-Law model: (a) shear-thinning viscoelastic fluid and (b) shear-thickening viscoelastic
fluid, for different values of flow index.

Finally, considering n = 1 in condition (7.10) applied to equation (7.8), we recover
the constitutive equation (7.7) for a third-grade non-Newtonian fluid with stability con-
dition (7.6). Furthermore, considering β3 = 0 the equation (7.7) becames the standard
constitutive equation for a second-grade non-Newtonian fluid, see Coleman and Noll [29].
Also if α1 = α2 = 0 and β3 = 0 the equation (7.7) becames the constitutive equation for
Newtonian fluid.

The condition (7.10) has limited applications to real fluids due to the unboundedness of
the viscoelastic asymptotic limits, but is widely used and can be accurate for some specific
flow regimes. The present investigation can be relevant in several physical, biological and
engineering applications. In particular, the constitutive equation (7.8), with condition
(7.10) for n < 1 (shear-thinning viscoelastic fluid), may be pertinent in the study of blood
flow in small vessels where viscoelastic effects are taken into account because phenomena
like aggregation and deformability of red blood cells (see Chien et al. [27]). The case
of n = 1 at the viscoelastic power-law function (7.10) on equation (7.8) was studied by
Carapau and Correia [17] for a straight tube with constant circular cross-section and the
case of a straight tube with variable circular cross-section was studied, also by Carapau
and Correia [18].

The three-dimensional numerical study of the flow associated with an incompressible
fluid that follows from the constitutive equation (7.8) in a circular cross-section tube with
variable radius is in fact a challenging and complex study in terms of computational effort
and infeasible in many relevant issues. In this sense, we will only study the simplest case,
that is, the flow of an incompressible fluid that follows the equation (7.8) in a tube with
a circular cross-section and constant radius. To get around the difficulty related to the
dimensions of space (x1, x2, x3) and time t, we will use the director approach (also called
Cosserat Theory) developed by Caulk and Naghdi [26]. This theory (see [42, 26, 43, 44])
includes an additional structure of directors (deformable vectors) assigned to each point
on a space curve (Cosserat curve), where a 3D system of equations is replaced by a 1D
system depending on time and on a single spatial variable, which is the axis of the symmet-
rical flow. Our one-dimensional approach is obtained by integrating the linear momentum
equation over the cross-section of the tube, taking the velocity field approximation pro-
vided by the nine-directors theory. This velocity field approximation satisfies exactly both
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the incompressibility condition and the kinematic boundary condition. Finally, based on
the work of Caulk and Naghdi [26], we consider the three-dimensional velocity field2

ϑ(x, t) = ϑi(x, t)ei

approximated by:

ϑ(x, t) = v +
k∑

N=1
xθ1 . . . xθN

W θ1...θN
, (7.11)

with
v = vi(z, t) ei, W θ1...θN

= W i
θ1...θN

(z, t) ei. (7.12)

In condition (7.11), v denotes the velocity along the axis of symmetry z at time t,
xθ1 . . . xθN

are the polynomial weighting functions with order k, the vectors W θ1...θN
are

the director velocities which are symmetric with respect to their indices and ei are the
associated unit basis vectors. We remark that the number k identifies the order in the
hierarchical theory and is related to the number of directors. In applications these director
velocities are associated to physical characteristics of the fluid. Considering the velocity
field approximation (7.11) with nine-directors (see [26]), i.e., k = 3 in (7.11), and using
the propose constitutive equation (7.8) with conditions (7.10) we obtain the unsteady
equation for mean pressure gradient and wall shear stress both depending on the volume
flow rate, Womersley number, viscosity and viscoelastic coefficients over a finite section
of a straight, rigid and impermeable tube with constant circular cross-section. Some
numerical simulations are provided by using a Runge-Kutta method for unsteady flow
regimes, including an analysis on perturbed flows.

Remark 7.0.1. This approach one-dimensional Cosserat theory, related to fluid dynam-
ics, has already been applied for second-grade fluids, i.e., considering β3 = 0 into equation
(7.7), in different concepts and perspectives, see e.g. [23, 24, 25, 29].

7.1 Equations of motion

Let us consider a homogeneous fluid moving within a circular straight and impermeable
tube, the domain Ω (see Figure 7.2) contained in R3. Also, let us consider the general
scalar function ϕ(z, t) (meridian radius), that is related to the circular cross-section of the
tube by

ϕ2(z, t) = x2
1 + x2

2. (7.13)

The boundary ∂Ω consists of the proximal cross-section Γ1, the distal cross-section Γ2,
and the lateral wall of the tube denoted by Γw. Now, let us consider the motion of an in-
compressible fluid inside a straight tube with circular cross-section, without external body
forces. Therefore, the equations of motion stating the conservation of linear momentum

2In the sequel, latin indices take the values 1, 2, 3, greek indices 1, 2 and we use the convention of
summing over repeated indices.



7.1 Equations of motion 119

Γ2

x2

x1

Γ1

z

ΩΓw

pe

τ1τ2

ϕ(z, t)

Fig. 7.2: General fluid domain Ω ⊂ R3 with normal and tangential components of the surface traction
vector pe, τ1, τ2, where ϕ(z, t) denotes the radius of the domain surface along the axis of symmetry z at
time t. In particular τ1 is the wall shear stress.

and mass are given, in Ω × (0, T ), by

ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
= ∇ · T ,

∇ · ϑ = 0,

T = −pI + Υ(|γ̇|)
(
µA1 + α1A2 + α2A2

1 + β3(tr(A2
1))A1

)
, tw = T · η,

(7.14)

where ϑ = ϑiei is the three-dimensional velocity field and ρ is the constant fluid density.
Equation (7.14)1 represents the balance of linear momentum and (7.14)2 is the incom-
pressibility condition. In equation (7.14)3, T is the constitutive equation proposed in
(7.8) with condition (7.10), and tw denotes the stress vector on the surface whose outward
unit normal vector is η = ηiei. The components of the outward unit normal vector to the
meridian radius ϕ(z, t) are given by

η1 = x1

ϕ
√

1 + ϕ2
z

, η2 = x2

ϕ
√

1 + ϕ2
z

, η3 = − ϕz√
1 + ϕ2

z

, (7.15)

where the subscripted variable denotes partial differentiation. Since equation (7.13) de-
fines a material surface, the three-dimensional velocity field ϑ must satisfy the kinematic
condition (see condition (7.5))

d

dt

(
ϕ2(z, t) − x2

1 − x2
2
)

= 0,

i.e.,
ϕϕt + ϕϕzϑ3 − x1ϑ1 − x2ϑ2 = 0, (7.16)

on the boundary (7.13).

Aiming to obtain a one-dimensional model by approach Cosserat theory, we present
averaged quantities such as volume flow rate and average pressure. Consider S(z, t) as a
generic axial cross-section of the tube geometry at time t defined by the spatial variable
z and bounded by the circle defined in (7.13) and let A(z, t) be the area of this section
S(z, t). Then, the volume flow rate Q is defined by

Q(z, t) =
∫
S(z,t)

ϑ3(x1, x2, z, t)da, (7.17)

and the average pressure p̄, by

p̄(z, t) = 1
A(z, t)

∫
S(z,t)

p(x1, x2, z, t)da. (7.18)
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Using the hierarchical theory approach (7.11) with k = 3, it follows (see Caulk and
Naghdi [26]) that the approximation of the three-dimensional velocity field ϑ(x, t) = ϑiei,
with nine directors, is given by

ϑ(x, t) =
[
x1(ξ + σ(x2

1 + x2
2)) − x2(ω + ψ(x2

1 + x2
2))

]
e1

+
[
x1(ω + ψ(x2

1 + x2
2)) + x2(ξ + σ(x2

1 + x2
2))

]
e2

+
[
v3 + γ(x2

1 + x2
2)
]
e3 (7.19)

where ξ(z, t), ω(z, t), γ(z, t), σ(z, t) and ψ(z, t) are scalar functions related to the director
velocities (see [26]). The physical significance of these scalar functions in (7.19) is the
following: γ is related to transverse shearing motion, ω and ψ are related to rotational
motion (also called swirling motion) about e3, while ξ and σ are related to transverse
elongation.

Considering the velocity equation (7.19), the kinematic condition (7.16) on the lateral
boundary reduces to

ϕt +
(
v3 + ϕ2γ

)
ϕz −

(
ξ + ϕ2σ

)
ϕ = 0 (7.20)

and the incompressibility condition (7.14)2, is specialized as

(v3)z + 2ξ +
(
x2

1 + x2
2
)(
γz + 4σ

)
= 0. (7.21)

For equation (7.21) to hold at every point in the fluid, the velocity coefficients must satisfy
both conditions

(v3)z + 2ξ = 0 and γz + 4σ = 0. (7.22)
Therefore, the kinematic condition (7.16) and the incompressibility condition (7.14)2 are
exactly satisfied by the velocity field (7.19), provided conditions (7.20) and (7.22).

Now, let us consider flow in a rigid walled tube, i.e.,

ϕ = ϕ(z). (7.23)

On the boundary of a rigid straight tube, we impose a no-slip condition and require that
the assumed velocity (7.19) vanishes identically on the surface (7.13). It follows that

ξ + ϕ2σ = 0, ω + ϕ2ψ = 0, v3 + ϕ2γ = 0. (7.24)

Moreover, taking into account (7.23), equation (7.20) is satisfied identically and the two
independent incompressibility conditions (7.22) reduce to

(v3)z + 2ξ = 0,
(
ϕ2v3

)
z

= 0. (7.25)

Conditions (7.17), (7.19), (7.24)3 and (7.25)2 imply that the volume flow rate Q is function
of time t only, given by

Q(t) = π

2 ϕ2(z)v3(z, t). (7.26)

As an alternative to the pointwise satisfying of the momentum equation (7.14)1, we
impose the following integral conditions∫

S(z,t)

[
∇ · T − ρ

(∂ϑ

∂t
+ ϑ · ∇ϑ

)]
da = 0, (7.27)



7.1 Equations of motion 121

∫
S(z,t)

[
∇ · T − ρ

(∂ϑ

∂t
+ ϑ · ∇ϑ

)]
xθ1 . . . xθN

da = 0, (7.28)

where N = 1, 2, 3. Using the divergence theorem and integration by parts, equations
(7.27) − (7.28) for nine directors, can be reduced to four vector equations:

∂n

∂z
+ f = a, (7.29)

∂mθ1...θN

∂z
+ lθ1...θN = hθ1...θN + bθ1...θN , (7.30)

where n, hθ1...θN , mθ1...θN are resultant forces defined by

n =
∫
S

T 3da, hα =
∫
S

T αda, (7.31)

hαβ =
∫
S

(
T αxβ + T βxα

)
da, (7.32)

hαβγ =
∫
S

(
T αxβxγ + T βxαxγ + T γxαxβ

)
da, (7.33)

and
mθ1...θN =

∫
S

T 3xθ1 . . . xθN
da. (7.34)

The quantities a and bθ1...θN are inertia terms defined by

a =
∫
S
ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
da, (7.35)

bθ1...θN =
∫
S
ρ
(∂ϑ

∂t
+ ϑ · ∇ϑ

)
xθ1 . . . xθN

da, (7.36)

and f , lθ1...θN , which arise due to surface traction on the lateral boundary, are defined by

f =
∫
∂S

√
1 + ϕ2

z twds, (7.37)

lθ1...θN =
∫
∂S

√
1 + ϕ2

z twxθ1 . . . xθN
ds. (7.38)

Also, from Caulk and Naghdi [26] the stress vector tw on the lateral surface Γw (see
(7.14)3) in terms of its outward unit normal vector η and normal and tangential compo-
nents pe, τ1, τ2 (see Figure 7.1), is given by

tw =
[ 1
ϕ(1 + ϕ2

z)1/2

(
τ1x1ϕz − pex1 − τ2x2(1 + ϕ2

z)1/2
)]

e1

+
[ 1
ϕ(1 + ϕ2

z)1/2

(
τ1x2ϕz − pex2 + τ2x1(1 + ϕ2

z)1/2
)]

e2

+
[ 1
(1 + ϕ2

z)1/2

(
τ1 + peϕz

)]
e3, (7.39)

where τ1 is the scalar function for the wall shear stress. In equations (7.37) − (7.38), we
will apply the stress vector tw given by (7.39). Considering a flow in a rigid tube (7.23)
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without rotation (i.e., ψ = ω = 0) with volume flow rate (7.26), conditions (7.24)1,3 and
(7.25)1, then the three-dimensional velocity field (7.19) becomes

ϑ(x, t) =
[
x1
(
1 − x2

1 + x2
2

ϕ2

)2ϕzQ(t)
πϕ3

]
e1 +

[
x2
(
1 − x2

1 + x2
2

ϕ2

)2ϕzQ(t)
πϕ3

]
e2

+
[2Q(t)
πϕ2

(
1 − x2

1 + x2
2

ϕ2

)]
e3. (7.40)

Remark 7.1.1. This approach one-dimensional Cosserat theory has been validated in the
works [26, 88, 22, 16, 23] and in this sense it is relevant to the study of physical problems
involving the flow of Newtonian and non-Newtonian fluids under different geometries and
perspectives, being a valid alternative to the classics one-dimensional models.

7.2 One-dimensional results

Due to the complexity of the model under study, we will only present results for the
simplest case. Therefore, we consider the specific case of a straight rigid tube with uniform
circular cross-section, i.e., ϕ is constant. Consequently, the three-dimensional velocity field
(7.40) can be written as

ϑ(x, t) =
[2Q(t)
πϕ2

(
1 − x2

1 + x2
2

ϕ2

)]
e3 (7.41)

and the stress vector (7.39) by

tw = 1
ϕ

(
− pex1 − τ2x2

)
e1 + 1

ϕ

(
− pex2 + τ2x1

)
e2 + τ1e3. (7.42)

Now, under the conditions of the system (7.14) and replacing the velocity field (7.41)
and the stress vector (7.42) in equations (7.31) − (7.38), we can calculate explicitly the
forces n, kα1...αn , mα1...αn , the inertia terms a, bα1...αN and the surface traction f , lα1...αN

which arise from nine-directors theory. Hence, plugging the solutions of equations (7.31)−
(7.38) into equations (7.29) − (7.30) and using (7.18), we get the equation for the average
pressure

p̄z(z, t) = −8µ(32)n/2−1/2

πnϕ3n+1 Qn(t) − 512(32)n/2−1/2β3
3πn+2ϕ3n+7 Qn+2(t)

− 4ρ
3ϕ2π

(
1 + 6α1(32)n/2−1/2

ρπn−1ϕ3n−1 Qn−1(t)
)
Qt(t) (7.43)

and, the equation to the wall shear stress

τ1(z, t) = 4µ(32)n/2−1/2

πnϕ3n Qn(t) + 256(32)n/2−1/2β3
πn+2ϕ3n+6 Qn+2(t)

+ ρ

6πϕ
(
1 + 24α1(32)n/2−1/2

ρπn−1ϕ3n−1 Qn−1(t)
)
Qt(t). (7.44)
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Integrating the condition (7.43) over a finite section of the tube with z1 < z2, we
obtain the mean pressure gradient, given by

G(t) = p̄(z1, t) − p̄(z2, t)
z2 − z1

= 8µ(32)n/2−1/2

πnϕ3n+1 Qn(t) + 512(32)n/2−1/2β3
3πn+2ϕ3n+7 Qn+2(t)

+ 4ρ
3ϕ2π

(
1 + 6α1(32)n/2−1/2

ρπn−1ϕ3n−1 Qn−1(t)
)
Qt(t). (7.45)

Considering the following dimensionless variables (here ω0 is the characteristic fre-
quency for unsteady flow)

t̂ = ω0t, Q̂ = 2ρ
πϕµ

Q, β̂3 = µ

ϕ4ρ2β3, α̂1 = µn−1(32)n/2−1/2

ϕ2n2n−1ρn
α1

Ĝ = ρnϕ2n+1

(32)n/2−1/2µn+1G, τ̂1 = ρnϕ2n

(32)n/2−1/2µn+1 τ1

and, substituting this new variables into equations (7.45) and (7.44), we obtain the nondi-
mensional mean pressure gradient

Ĝ(t̂) = 8
2n Q̂

n(t̂) + 512
3

1
2n+2 β̂3Q̂

n+2(t̂) + 2
3W2

0

(
1 + 6α̂1Q̂

n−1(t̂)
)
Q̂t̂(t̂) (7.46)

and, the nondimensional wall shear stress

τ̂1(ẑ, t̂) = 4
2n Q̂

n(t̂) + 256
2n+2

β̂3
3 Q̂

n+2(t̂) + 1
12W2

0

(
1 + 24α̂1Q̂

n−1(t̂)
)
Q̂t̂(t̂) (7.47)

where α̂1, β̂3 are viscoelastic coefficients and W0 is the Womersley number, given by

W0 = ϕn
√

ωoρn

(32)n/2−1/2µn
,

this nondimensional number is related with the pulsatility of the flow. Finally, using the
dimensionless variables

x̂1 = x1
ϕ
, x̂2 = x2

ϕ
, ϑ̂ = ϕρ

µ
ϑ

at the equation (7.41), we obtain the nondimensional three-dimensional velocity field

ϑ̂(x̂, t̂) = Q̂(t̂)
(
1 − (x̂2

1 + x̂2
2)
)
e3. (7.48)

Considering the flow index n = 1 at equations (7.46) and (7.47) we recovered the results
obtained by Carapau and Correia [17]. Next, we provide numerical simulations by using
a Runge-Kutta method for specific unsteady flow regimes relating with shear-thinning
viscoelastic and shear-thickening viscoelastic fluids.
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Q̂

t̂

(a) Flow index n = 0.5

Q̂

t̂

(b) Flow index n = 0.8

Fig. 7.3: Unsteady volume flow rate (7.46) with constant men pressure gradient Ĝ(t̂) = 1, where Q̂(0) = 1,
α̂1 = 1, β̂3 = 1 and W0 = (0.2, 0.4, 0.6, 0.8) for shear-thinning viscoelastic fluid.

7.3 Numerical simulations

For specific flow regimes, we could obtain numerical results for both equation (7.46) and
(7.47), but as we intend to present results for the three-dimensional velocity (7.48), we will
only focus on equation (7.46). Therefore, considering the equation (7.46) with constant
and non-constant mean pressure gradient Ĝ for specific flow regimes then, we will obtain
the solution for the unsteady volume flow rate Q̂ by using a Runge-Kutta method and
with this volume flow rate data, we can present the three-dimensional velocity (7.48) in
the circular cross-section of the tube in the cases of shear-thinning and shear-thickening
viscoelastic fluids.

7.3.1 Flow under constant mean pressure gradient

Considering Ĝ = 1 at equation (7.46), with Q̂(0) = 1, α̂1 = 1 and β̂3 = 1, we obtain using
a Runge-Kutta method the behavior of the unsteady solution of the volume flow rate Q̂
for various values of the Womersley number and power index n. The Figure 7.3 is related
with shear-thinning viscoelastic fluid and, the Figure 7.4 is related with shear-thickening
viscoelastic fluid. The Figure 7.3 and Figure 7.4 show as the behavior of the unsteady
volume flow rate given by equation (7.46) considering shear-thinning and shear-thickening
viscoelastic fluids, respectively. In this case, after the transient phase the system converges
toward a steady state solution. This steady state volume flow rate is obtained solving the
time dependent problem but, if we are not interested in the behavior during the initial
transient phase, the steady (asymptotic) value of the volume flow rate can be obtained
directly from (7.46) setting Q̂t̂(t̂) = 0, since at constant mean pressure gradient Q̂t̂(t̂)
converges to zero as t → +∞.

Finally, using the unsteady volume flow rate solution obtained by (7.46) with constant
mean pressure gradient Ĝ(t̂) = 1, we illustrate in Figure 7.5 and Figure 7.6 the behavior
of the three-dimensional velocity field (7.48) on the tube cross-section in time for specific
parameters, in both situations of shear-thinning and shear-thickening viscoelastic fluids.
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Q̂

t̂

(a) Flow index n = 1.2

Q̂

t̂

(b) Flow index n = 1.8

Fig. 7.4: Unsteady volume flow rate (7.46) with constant men pressure gradient Ĝ(t̂) = 1, where Q̂(0) = 1,
α̂1 = 1, β̂3 = 1 and W0 = (0.2, 0.4, 0.6, 0.8) for shear-thickening viscoelastic fluid.

Fig. 7.5: Three-dimensional velocity field (7.48) at the circular constant cross-section of the tube, where
the volume flow rate is obtained by (7.46) with constant mean pressure gradient Ĝ = 1 and, Q̂(0) = 1,
W0 = 0.8, α̂1 = 1, β̂3 = 1 to shear-thinning fluid with n = 0.75. Time parameters: t̂ = 0.2, t̂ = 0.5, t̂ = 1,
t̂ = 2.

7.3.2 Flow under non-constant mean pressure gradient

Now, let us considering a non-constant mean pressure gradient, given by

Ĝ(t̂) = 1 + sin2(t̂2)
et̂

, (7.49)

which shows an interesting behavior after the initial transient phase. Specifically, it shows
a strong variation in the initial stage followed by smaller fluctuations, which tend to
decrease with time, see Figure 7.7.

In Figure 7.8 and Figure 7.9, we can observe the behavior of the unsteady volume
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Fig. 7.6: Three-dimensional velocity field (7.48) at the circular constant cross-section of the tube, where
the volume flow rate is obtained by (7.46) with constant mean pressure gradient Ĝ = 1 and, Q̂(0) = 1,
W0 = 0.8, α̂1 = 1, β̂3 = 1 to shear-thickening fluid with n = 1.75. Time parameters: t̂ = 0.2, t̂ = 0.5,
t̂ = 1, t̂ = 2.

Fig. 7.7: Mean pressure gradient dependent on time given by (7.49).

Q̂

t̂

(a) Flow index n = 0.5

Q̂

t̂

(b) Flow index n = 0.8

Fig. 7.8: Unsteady volume flow rate (7.46) with non-constant men pressure gradient (7.49), where Q̂(0) =
1, α̂1 = 1, β̂3 = 1 and W0 = (0.2, 0.4, 0.6, 0.8) for shear-thinning viscoelastic fluid.

flow rate Q̂ with non-constant mean pressure gradient (7.49). Again we use a Runge-
Kutta method for solving the ordinary differential equation (7.46) for specific flow regimes,
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Q̂

t̂

(a) Flow index n = 1.2

Q̂

t̂

(b) Flow index n = 1.8

Fig. 7.9: Unsteady volume flow rate (7.46) with non-constant men pressure gradient (7.49), where Q̂(0) =
1, α̂1 = 1, β̂3 = 1 and W0 = (0.2, 0.4, 0.6, 0.8) for shear-thickening viscoelastic fluid.

Fig. 7.10: Three-dimensional velocity field (7.48) at the circular constant cross-section of the tube, where
the volume flow rate is obtained by (7.46) with non-constant mean pressure gradient (7.49) and, Q̂(0) = 1,
W0 = 0.8, α̂1 = 1, β̂3 = 1 to shear-thinning fluid with n = 0.75. Time parameters: t̂ = 0.1, t̂ = 0.2,
t̂ = 0.6, t̂ = 1.

considering shear-thinning and shear-thickening viscoelastic fluids, respectively. Like for
constant mean pressure gradient, after the transient phase the system converges toward a
steady state solution.

Finally, considering the data solution for the unsteady volume flow rate Q̂ on equation
(7.48), we illustrate the behavior of the three-dimensional velocity field (7.48) at the
constant circular cross-section of the tube, in both situations of shear-thinning and shear-
thickening viscoelastic fluids, see Figure 7.10 and Figure 7.11, respectively.
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Fig. 7.11: Three-dimensional velocity field (7.48) at the circular constant cross-section of the tube, where
the volume flow rate is obtained by (7.46) with non-constant mean pressure gradient (7.49) and, Q̂(0) = 1,
W0 = 0.8, α̂1 = 1, β̂3 = 1 to shear-thickening fluid with n = 1.75. Time parameters: t̂ = 0.1, t̂ = 0.2,
t̂ = 0.6, t̂ = 1.

7.4 Perburbed flows

When we consider the new constitutive equation (7.8), we lose the guarantee of stability
for the solution mentioned in condition (7.6). In this sense, here we intend to take a first
approach to the study of the stability of the solution for unsteady volume flow rate Q̂,
obtained by the proposed model (7.8) with condition (7.10). In this sense, we only study,
for specific cases, the stability of the solution for the volume flow rate with Q̂(0) = 1 here
parameters W0 = 0.8, α̂1 = 1 and β̂3 = 1 are fixed, in both situations of shear-thinning
and shear-thickening viscoelastic fluids. Therefore, let us consider the perturbation of
magnitude ϵ > 0, given by

Ĝ±
ϵ = (1 ± ϵ)Ĝ (7.50)

and, denote by Q̂±
ϵ the perturbed volume flow rate related with the perturbation Ĝ±

ϵ .
Considering constant (or non-constant) mean pressure gradient, for sufficiently large t̂
(after the transient period), the unsteady volume flow rate converge to the steady solu-
tion (see Section 7.3). Therefore, assuming Q̂t̂(t̂) = 0 in equation (7.46) is not possible
calculate explicitly the exact expression to the perturbed volume flow rate. However, we
can compute the time evolution of the perturbation by the amplitude

|Q̂+
ϵ − Q̂−

ϵ | (7.51)

for specific magnitude ϵ > 0.

Consequently, Figure 7.12 show us the perturbation of the unsteady volume flow rate
given by (7.51) with magnitude ϵ = 0.1 for some power index values. Therefore, for the
data associated with the solutions, we provide a first step towards stability analysis of the
model and, we can conclude that after the transition phase, the unsteady volume flow rate
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(a) Contant mean pressure gra-
dient Ĝ(t̂) = 1

(b) Non-contant mean pressure
gradient (7.49)

Fig. 7.12: Time evolution of perturbation (7.51) with magnitude ϵ = 0.1 in both situations of shear-
thinning and shear-thickening viscoelastic fluids with constant and non-constant mean pressure gradient.

behavior is stable in both situations of shear-thinning and shear-thickening viscoelastic
fluids, for constant and non-constant mean pressure gradient (7.49).
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Chapter 8

Conclusion

The Ambrosetti-Prodi differential equations are considered, for the first time, in coupled
systems with different parameters. The main result allows evaluating some parameter
values for which there are lower and upper solutions and, therefore, shows that, for these
values, there is also at least one solution, and this solution is located in a range delimited
by lower and upper solutions. The existence and non-existence of solutions are obtained
for coupled systems, i.e., for cases in which there are strong relationships between the two
unknown functions. However, the existence of multiple solutions was predicted only for
independent systems, i.e., without the interaction of both variables.

We emphasize that the assumptions are based only on local monotonous assumptions
about the nonlinearities and the existence of a kind of bifurcation values for the parame-
ters.

We highlight two aspects in this work:

• A new type of definition of lower and upper solutions for coupled systems (see
Definition 2.1.1), which overcomes the non-linear dependence of the two unknown
functions and will be crucial for future work;

• In the presence of such lower and upper solutions, the parameters always belong to
bounded sets, as illustrated in Example 2.2.2 and in the application.

The method of lower and upper solutions appears to be a powerful tool for dealing
with these Ambrosetti-Prodi type problems, as it allows not only some estimates on both
parameters for which there are solutions of the coupled systems but also because it provides
ranges for the location of such solutions. Indeed, this localization tool, in our opinion,
has been undervalued, as it is perhaps very useful to know some qualitative properties of
unknown functions.

Several questions still remain open, justifying future work. For example:

• In coupled systems, what are the assumptions to allow nonlinearities to depend on
the first derivatives of both variables?

• How to obtain the multiplicity result for the case of the coupled system?

In the chapters dealing with fully-coupled systems of impulsive differential equations,
fully discontinuous nonlinearities, and generalized impulse effects are considered simulta-
neously. This work mainly shows that local monotonies in nonlinearities and impulsive
functions are sufficient conditions for the solubility of an impulsive coupled system, with
two differential equations involving different Laplacians, totally discontinuous nonlineari-
ties, and two-point boundary conditions.

131
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Following the natural flow, we generalize the results obtained in the previous chapters
to a coupled impulsive system of the highest order, with the possibility of equations of
different order, with fully differential equations including different regular and singular
Laplacians and generalized impulsive effects, dependent on variables and of some deriva-
tives.

The location information provided by the lower and upper solutions was underutilized
to obtain qualitative data about the solutions, such as growth type, sign, and estimation
of the unknown function and its derivatives, as illustrated in the examples in this work.

The arguments and techniques to be used to obtain the localization part for coupled
systems with jumps in the Laplacians remain open.

Relating to the fluids chapter, we present a new three-dimensional model for an incom-
pressible fluid where the parameters related to viscosity and viscoelasticity depend on the
shear rate, by a power-law function. This model is relevant for studying the behavior of
various non-Newtonian fluids, in particular for blood flow in small vessels. Using an alter-
native approximation theory, i.e., the Cosserat theory, it was possible for certain specific
flow regimes data to present the behavior of the unsteady volume flow rate and, conse-
quently, the behavior of the unsteady three-dimensional velocity field. Also, we present a
preliminary study regarding the perturbation of the unsteady volume flow rate solution,
this study should be considered as a preliminary study for the solution stability. Finally,
for future work, we intend to use this Cosserat theory related to fluid dynamics, to inves-
tigate open problems for non-Newtonian fluids, namely, situations associated with curved
tubes and fluid-structure interaction.
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