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A B S T R A C T

Pine wilt disease, caused by the pinewood nematode, Bursaphelenchus xylophilus, is a major phytosanitary 
concern to pine forests worldwide. Managing pine wilt disease involves a complex logistical undertaking, with 
limited effectiveness and significant ecological repercussions. An increasing demand for biosolutions has sparked 
an interest in microbial antagonists capable of controlling the nematode. Esteya spp. are promising fungal 
biocontrol agents of the pinewood nematode. Here, we carry out an integrative characterization of Esteya ver-
micola and Esteya floridanum isolates, through biological, biochemical, and molecular methods, and provide 
insights into the selection of these isolates for the biological control of the pinewood nematode. Dual culture 
assays revealed that Esteya spp. can compete with ophiostomatoid fungi (Leptographium terebrantis and Ophios-
toma ips) occurring in the pathosystem of pine wilt disease, an often-neglected ecological perspective that could 
hinder their success as biocontrol agents. Moreover, E. vermicola can metabolize more carbon sources than 
E. floridanum, which can have implications on their successful establishment in pine trees. Our experimental 
approach further shows that both Esteya spp. are equally competent in suppressing the pinewood nematode in 
vitro. Overall, our results suggest that a prophylactic application of Esteya in pine trees may be preferable for 
optimal bioprotective effects against the pinewood nematode and fungal pathogens.

1. Introduction

The pinewood nematode (PWN), Bursaphelenchus xylophilus (Steiner 
and Bührer, 1934; Nickle, 1970), is the causal agent of pine wilt disease 
(PWD), a major phytosanitary concern that have ravaged autochthonous 
pine forests in Asia and Europe’s Iberian Peninsula (Futai, 2013; Mota 
et al., 1999; Back et al., 2024). The PWN is native to North America and 
ranks among the most economically and scientifically relevant 
plant-parasitic nematodes (Tares et al., 1994; Jones et al., 2013; Kantor 
et al., 2022). The PWN is carried and transmitted by pine sawyer beetles 
from the Monochamus genus upon feeding and/or ovipositioning in pine 
trees, thus completing the disease triangle (Mamiya 1983; Jones et al., 
2008). PWD jeopardizes biodiversity, fragments forest ecosystems, and 
hinders resilience to climate change (Kiyohara and Bolla 1990; Suzuki 
2002). Current management of PWD is a complex logistical undertaking, 
with limited effectiveness and significant ecological repercussions 

(Robinet et al., 2020). Regular monitoring of the PWN and its insect 
vector remain the most common strategies to prevent PWD outbreaks, 
although introduction and dissemination of the nematode can eventu-
ally occur. Beyond the ecological drawbacks, current management 
practices also have a negative economic impact, as they impede the 
commercialization of untreated wood (Soliman et al., 2012; Carnegie 
et al., 2018). Moreover, climate change is expected to foster broader 
dispersal corridors for the PWN and the spread of PWD to areas previ-
ously unaffected (Hirata et al., 2017; de la Fuente et al., 2018; An et al., 
2019; Tang et al., 2021). The increasing demand for biosolutions has 
sparked an interest in antagonists capable of controlling the PWN (Pires 
et al., 2022). Fungi of the Esteya genus have been identified as natural 
enemies of the PWN, with two currently described species, and some 
isolates have been patented (Liou et al., 1999; Tzean et al., 2001; Fang 
et al., 2010; Li et al., 2021). Esteya vermicola has shown to suppress the 
PWN under controlled and natural conditions (Wang et al., 2011, 2018). 
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Contrastingly, Esteya floridanum is lagging behind, despite encouraging 
results (Li et al., 2021). Using a polyphasic approach, we carry out a 
comprehensive characterization of three isolates of E. vermicola from the 
Czech Republic and one of E. floridanum from the United States of 
America. We provide insights into Esteya isolate selection for the bio-
logical control of the PWN. Lastly, we explore and report for the first 
time Esteya’s ability to compete with naturally occurring ophiostoma-
toid fungi in the pathosystem of PWD, that could hinder the success of 
biocontrol strategies.

2. Material and methods

2.1. Maintenance and culturing conditions of fungi and nematodes

The isolates of E. vermicola CCF3117, CCF3118 and CCF3131 
(Kubátová et al., 2000) were obtained from the Culture Collection of 
Fungi (CCF) of the Department of Botany at Charles University, Czech 
Republic, and E. floridanum V14639 from the University of Florida, USA. 
Leptographium terebrantis S40.4b and Ophiostoma ips S36.1 were previ-
ously isolated at the Nematology laboratory of INIAV, Portugal, from 
PWD-symptomatic Pinus pinaster trees (Vicente et al., 2022). Tricho-
derma alni was isolated in the same laboratory from Monochamus gallo-
provincialis (unpublished). The reference isolate of B. xylophilus 
Bx013.003 from the Nematology laboratory of INIAV was used in this 
study. Nematodes were maintained and multiplied on a non-sporulating 
strain of Botrytis cinerea. All fungi were reared on potato dextrose agar 
(PDA, BD Difco™) and incubated in the dark at 25 ◦C until used.

2.2. Total DNA extraction, PCR amplification and sequencing

The mycelium of each Esteya isolate was scraped off agar plates with 
a sterile scalpel and total genomic DNA extracted using the DNeasy Plant 
Mini Kit (QIAGEN), following manufacturer’s instructions. The molec-
ular markers β-tubulin (TUB) and translation elongation factor 1-alpha 
(TEF) were amplified using the following sets of primers, respectively: 
Bt2a (5′-GGTAACCAAATCGGTGCTGCTTTC-3′) and Bt2b (5′- 
ACCCTCAGTGTAGTGACCCTTGGC-3′) (Glass and Donaldson 1995), and 
EF-728F (5′-CATCGAGAAGTTCGAGAAGG-3′) and EF-2 
(5′-GGARGTACCAGTSATCATGTT-3′) (Carbone and Kohn 1999; 
O’Donnell et al., 1998; Jacobs et al., 2004). The PCR reaction mixture 
(25 μL) contained ca. 10 ng of genomic DNA, 0.25 μM of each primer, 
12.5 μL of 0.5 U Supreme NZYTaq II (NZYTech, Portugal) and 9 μL 
dH2O. The PCR conditions for the TUB gene were: 1 cycle of initial 
denaturation at 95 ◦C for 5 min, followed by 35 cycles of denaturation at 
94 ◦C for 30 s, annealing at 52 ◦C for 30 s, elongation at 72 ◦C for 30 s, 
and a cycle of final elongation at 72 ◦C for 5 min. For the TEF gene, the 
PCR conditions were: 1 cycle of initial denaturation at 95 ◦C for 5 min, 
followed by 35 cycles of denaturation at 94 ◦C for 30 s, annealing at 
55 ◦C for 30 s for E. vermicola isolates and 47 ◦C for 30 s for E. floridanum, 
elongation at 72 ◦C for 30 s, and a cycle of final elongation at 72 ◦C for 5 
min. PCR products were cleaned-up with the QIAquick PCR Purification 
Kit (QIAGEN) prior to sequencing, following manufacturer’s in-
structions. Amplicons were sent to STABVIDA (Caparica, Portugal) for 
sequencing.

2.3. Phylogenetic analyses

The amplicon sequences were manually trimmed and compared for 
similarity to other sequences available in GenBank (NCBI) using the 
BLAST tool. Closely related sequences of TUB and TEF sequences from 
ophiostomatoid fungi were retrieved from the same database (https:// 
www.ncbi.nlm.nih.gov/genbank/). Multiple sequence alignments were 
performed in the online version of MAFFT (Katoh et al., 2019) and gaps 
were cleared with TrimAL (Grüning et al., 2018). Model testing was 
carried out in CIPRES (Miller et al., 2010) to determine the best nucle-
otide substitution model for the combined datasets of both genes. 

Phylogenetic trees were inferred by maximum likelihood (ML) in QIA-
GEN CLC Main Workbench 21.0.5. TUB and TEF sequences from nem-
atode antagonistic fungus Trichoderma harzianum (LT707601.1 and 
LT707593.1, respectively) were used as outgroups. The best ML gener-
ated trees were edited in Adobe Photoshop CC (https://www.adobe. 
com). The new sequences generated in this study were deposited in 
GenBank, under the accession numbers: PP480645, PP480646, 
PP480647, PP480648, PP531526, PP531527, PP531528 and PP531529.

2.4. Growth rate

The growth rate of E. vermicola CCF3117, CCF3118 and CCF3131 and 
E. floridanum V14639 was compared on PDA, by placing a mycelial plug 
from actively growing colonies at the center of agar plates and incu-
bating them in the dark at 25 ◦C for 15 days. Radial growth was recorded 
at different time points (1, 3, 7, 10 and 15 days), by measuring two 
perpendicular radiuses from the periphery of the agar plug to the edge of 
the colony. The assay was repeated three times, with six replicates per 
isolate.

2.5. Dual culture assays

To explore fungal compatibility, Esteya isolates were paired against 
one another in dual cultures. Two mycelial plugs from different isolates 
were excised from the periphery of actively growing colonies, placed 3 
cm away from the edge of the plate and 3 cm apart on PDA plates (9 cm 
⌀), and incubated in the dark at 25 ◦C. In positive controls, a single 
mycelial plug was placed at the center of each plate. The assay ended 
after 3 weeks of interaction. All Esteya pairing combinations were 
considered, with six replicates per dual culture, and the assay was per-
formed three times independently. To determine Esteya’s ability to 
compete with and dominate fungi occurring in the pathosystem of PWD, 
a similar assay was carried out with L. terebrantis S40.4b, O. ips S36.1 
and T. alni, with slight modifications. A plug of one of four Esteya isolates 
was placed at the center of a PDA plate, and a plug of either L. terebrantis 
S40.4b, O. ips S36.1 or T. alni was placed at the edge of the plate, due to 
their faster growth rate. Plates were incubated in the dark at 25 ◦C, and 
visually examined after 3 weeks to determine the type of mycelial 
interaction (Esser and Meinhardt 1984; Mohammad et al., 2011; Pepori 
et al., 2018). Each assay was performed in triplicate independently, with 
six replicates per combination.

2.6. Antifungal bioassays

To screen candidate compounds to develop a semi-selective medium 
tailored for Esteya bioprospection from field samples, the minimum 
inhibitory concentration (MIC) of different antifungals were included in 
bioassays against E. vermicola CCF3117, CCF3118, CCF3131 and 
E. floridanum V14639. The antifungal compounds used were ampho-
tericin B (Sigma–Aldrich), benzoic acid (≥99.5 %; Sigma–Aldrich), 
cycloheximide (≥90 %; Sigma–Aldrich), dodin (100 %; Sigma–Aldrich), 
itraconazole (≥98 %; Sigma–Aldrich), miconazole (Sigma–Aldrich), 
sinefungin (≥95 %; Sigma–Aldrich) and voriconazole (100 %; Sigma-
–Aldrich). All compounds were dissolved in methanol (MeOH, 99.8 %; 
Sigma–Aldrich) to prepare stock solutions from initial concentrations of 
0.25, 1, 1.5 or 30 mg mL− 1. Each compound was then diluted in yeast 
malt broth (YMB: 10 g L− 1 malt extract, 4 g L− 1 D-glucose and 4 g L− 1 

yeast extract), and inoculated with one of four Esteya conidial suspen-
sions, previously propagated in YMB and incubated in the dark for 5 
days at 25 ◦C, with constant shaking. The bioassays were performed in 
96-well microtiter plates, and all compounds were serially diluted, with 
MeOH and amphotericin B serving as negative and positive controls, 
respectively. The 96-well plates were sealed with parafilm and incu-
bated in the dark at 25 ◦C for 5 days, with constant shaking. Fungal 
growth was visually assessed, and MIC was recorded as the lowest 
concentration of each compound inhibiting visible growth of the test 
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organism. Each treatment was performed in duplicate, and the bioassay 
repeated twice independently.

Two further experiments were performed on agar plates to determine 
inhibitory concentrations of cycloheximide (≥90 %; Sigma–Aldrich) and 
rose bengal (Liofilchem®) on Esteya isolates: i) 0.1 g L− 1; ii) 0.5 g L− 1; 
and iii) 1 g L− 1. E. vermicola CCF3117, CCF3118, CCF3131 and 
E. floridanum V14639 were used. Fungi growing on PDA served as pos-
itive controls. Plates were observed every other day over 15 days, with 
ten replicates per treatment, and the assay was conducted three times 
independently.

2.7. Pinewood nematode mortality bioassays

Freshly grown fungal mats of E. vermicola CCF3117, CCF3118 and 
CCF3131, and E. floridanum V14639 were inoculated with 500 mixed 
developmental stages of B. xylophilus per milliliter and incubated in the 
aforementioned conditions for 7 days. B. cinerea served as positive 
control, as it is routinely used to feed and maintain the PWN under 
laboratory conditions. Considering our experimental design, a non- 
treated control was not included, because it could lead to nematode 
mortality due to starvation, thus preventing us from drawing any 
conclusion on the suppressive effects of different Esteya isolates. Nem-
atodes were extracted using the tray method (Whitehead and Hemming 
1965), and the living PWN counted to determine the survival rate (%): 
(no. nematodes before treatment/no. living nematodes after treatment) 
× 100. Nematodes were considered dead if not moving or not reacting to 
physical stimulus. The assay included six replicates per fungus and was 
repeated three times independently.

2.8. Carbon assimilation profile

The commercial kit API® 50 CH (bioMérieux, Inc.) was used to assess 
the assimilation profiles of 49 carbon sources by Esteya spp., according 
to Alvarez et al. (2010). To prepare the fungal inoculum of each isolate, 
a final spore concentration of 5 × 105 CFU mL− 1 was prepared in 20 mL 
of yeast nitrogen base (Difco™). Each well of the API® 50 CH strips was 
then inoculated with 300 μL of the fungal suspension, and the viability of 
conidia was verified by plating 100 μL of each inoculum onto PDA and 
incubating at 25 ◦C for 7 days. Inoculated API® 50 CH strips were 
incubated in the same conditions, and color change in each well moni-
tored at 24 h intervals. Weak growth of the test organism was still 
considered a positive result. The API® 50 CH test was repeated two 
times independently for each isolate.

2.9. Data analysis

Data analysis was performed using R in Jamovi 2.3 (R Core Team 
2020; The Jamovi Project 2023). Normal distribution was checked using 
the Shapiro–Wilk test. The growth rate of Esteya isolates on PDA at 
different time points was compared by ANOVA. The non-parametric 
Kruskal–Wallis test was used to infer differences in the survival rate of 
the PWN interacting with Esteya isolates. Multiple mean comparisons 
were performed using Dwass-Steel-Critchlow-Fligner pairwise compar-
ison (p < 0.05).

3. Results

3.1. Molecular characterization of Esteya spp.

The partial sequences of the TUB and TEF genes for all four Esteya 
isolates were determined, and our phylogenetic analyses revealed that 
both E. vermicola and E. floridanum are supported in a large mono-
phyletic clade (Fig. 1), closely related to ambrosial fungi of the Raffaelea 
sulphurea complex, recently reclassified as Dryadomyces (de Beer et al., 
2022), and grouping with other ophiostomatoid fungi. For the TUB 
gene, E. vermicola CCF3117, CCF3131 and CCF3118 clustered with other 
E. vermicola isolates from China, Czech Republic and South Korea, with 
100 % bootstrap, while E. floridanum V14639 clustered with the same 
isolate from the United States, also with 100 % bootstrap. As for the 
TEFgene, E. vermicola isolates formed a single sub-clade, clustered with 
E. floridanum, all with good bootstrap support.

3.2. Growth rate

To determine the fastest growing isolates, growth trials were per-
formed on PDA. All Esteya isolates had comparable growth rates during 
the first 3 days (p > 0.05), but this trend shifted from the 7th day onward 
(Fig. 2). By the end of the trials, E. floridanum V14639 and E. vermicola 
CCF3118 outgrew other isolates (p < 0.001), with colony radiuses 
reaching 2.2 and 2.05 cm, respectively, and the difference among these 
two is statistically significant (p < 0.05) (Fig. 3). Contrastingly, 
E. vermicola CCF3117 and CCF3131 growth rates were comparable after 
15 days (p > 0.05) (Fig. 3).

3.3. Dual culture assays

A mycelial barrage along the junction line between opposing Esteya 
isolates was visible in all dual cultures, suggesting incompatibility 
among isolates (Fig. 3A).

Fig. 1. Maximum likelihood phylogenetic trees of Esteya isolates based on β-tubulin (TUB) and elongation factor 1-α (TEF) DNA sequences, with Trichoderma 
harzianum T-KN2 as the outgroup. Novel sequences obtained in this study are presented in bold. Bootstrap values are presented above the respective branch. Bold 
branches indicate bootstrap values ≥ 0.95 %. Scale bars refer to the phylogenetic distance of the number of substitutions per site.
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In the second assay, mutual inhibition on contact was apparent when 
fungi were co-cultured on the same day, with L. terebrantis S40.4b and 
O. ips S36.1 growing around Esteya in all cases (Fig. 3B). Demarcation 
zones between opposing colonies were clearer when Esteya isolates were 
paired against L. terebrantis S40.4b and T. alni, and a more diffuse 
confrontation zone when paired against O. ips S36.1, with a change in 
pigmentation along the junction line. Surprisingly, T. alni seemed to 
avoid direct contact with E. vermicola’s hyphae in some cases, with a 
tenuous halo around the plug in the interactions T. alni × E. vermicola 
CCF3117 and T. alni × E. vermicola CCF3131 (Fig. 3B–i and Fig. 3B–k). 
Nevertheless, T. alni’s spores were observed spreading over E. vermicola 
CCF3118 and E. floridanum V14639 (Fig. 3B–j and Fig. 3B-l). Small 
mycelial growth was visible in pairings against T. alni, but all Esteya 
isolates ceased growing when surrounded by their competitor.

3.4. Pinewood nematode mortality bioassays

The highest PWN mortality rates were recorded in the interaction 
with E. vermicola CCF3117, with a survival rate of 0 % (Table 1). 

Conversely, the lowest mortality rate was observed in E. vermicola 
CCF3118 after 7 days of interaction, with a survival rate of 18 %. 
Nevertheless, all Esteya isolates significantly suppressed the initial 
population of the PWN compared to the control (p < 0.001).

3.5. Antifungal assays

Among antifungal compounds tested in microplate bioassays, Esteya 
isolates grew in all tested concentrations of CHX and MeOH (Table 2). 
Likewise, no inhibition was observed for sinefungin at tested concen-
trations, except for E. vermicola CCF3131. All the other compounds 
inhibited the growth of Esteya isolates.

In the case of PDA plates supplemented with antifungal compounds, 
none of the Esteya isolates was inhibited by either CHX or RB, even at the 
highest concentration (1 g L− 1). However, all isolates visibly grew faster 
at the lowest RB concentration (0.1 g L− 1).

3.6. Carbon assimilation profile

The API® 50 CH test revealed that E. vermicola CCF3117 and 
CCF3118 metabolized 46 and 45 carbohydrates 7 days after inoculation, 

Fig. 2. Colony radius of Esteya isolates growing on potato dextrose agar, 15 
days after incubation at 25 ◦C. Values represent the mean ± SE (F = 3.44, df =
19, p < 0.001).

Fig. 3. Fungal co-culture assays on PDA, three weeks after inoculation: A – interactions among Esteya isolates: a) E. vermicola CCF3117 × CCF3118; b) E. vermicola 
CCF3117 × CCF3131; c) E. vermicola CCF3117 × E. floridanum V14639; d) E. vermicola CCF3118 × CCF3131; e) E. vermicola CCF3118 × E. floridanum V14639; f) 
E. vermicola CCF3131 × E. floridanum V14639; B – interactions between Esteya isolates (inoculated in the middle of the plates) and three potential competitors 
(Leptographium terebrantis S40.4b, Ophiostoma ips S36.1 and Trichoderma alni, inoculated on the left side and at the edge of the plates): a) E. vermicola CCF3117 ×
L. terebrantis; b) E. vermicola CCF3118 × L. terebrantis; c) E. vermicola CCF3131 × L. terebrantis; d) E. floridanum V14639 × L. terebrantis; e) E. vermicola CCF3117 ×
O. ips; f) E. vermicola CCF3118 × O. ips; g) E. vermicola CCF3131 × O. ips; h) E. floridanum V14639 × O. ips; i) E. vermicola CCF3117 × T. alni; j) E. vermicola CCF3118 
× T. alni; k) E. vermicola CCF3131 × T. alni; l) E. floridanum V14639 × T. alni.

Table 1 
Survival rate of Bursaphelenchus xylophilus on fungal mats of Esteya spp., 7 days 
after inoculation. Values represent the mean ± SE. Values in the same column 
followed by the same letter are not statistically different (p < 0.001).

Fungal treatment No. nematodes 
before treatment

No. living nematodes 
after treatment

Survival 
rate (%)

Esteya vermicola 
CCF3117

500 1 ± 1a 0 ± 0.15a

E. vermicola 
CCF3118

88 ± 47a 18 ± 9.31a

E. vermicola 
CCF3131

10 ± 7a 2 ± 1.47a

E. floridanum 
V14639

29 ± 24a 6 ± 4.89a

Botrytis cinerea 
(control)

2189 ± 124b 438 ± 24.7b
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respectively, whereas E. vermicola CCF3131 and E. floridanum V14639 
only assimilated 6 and 5 carbon sources, respectively (Fig. 4; Supple-
mentary Table 1). Indeed, all isolates assimilated D-glucose, esculin, D- 
maltose, glycogen, and potassium 5-keto-gluconate. Contrastingly, none 
of the tested isolates was able to metabolize amygdalin, potassium 
gluconate or potassium 2-keto-gluconate as a sole carbon source.

4. Discussion

The economic value of biological control is not always easy to esti-
mate, but it potentially provides one of the highest returns on invest-
ment within the framework of integrated pest management (Naranjo 
et al., 2015; van Wilgen et al., 2020). Biopesticides are increasingly 
gaining attention worldwide and the bioprotection market is anticipated 
to soar within the coming decade (Desaeger et al., 2020). The use of 
single microorganisms in bioformulations has been widely studied but 
does not necessarily warrant consistent results over time in natural 
conditions, and single microorganisms can be outperformed by indige-
nous microbes in the system they are intended for, which are major 
constraints for their wider adoption (Trivedi et al., 2017, 2020; Mitter 
et al., 2019). Furthermore, loss of virulence under laboratory conditions 
has been known for a long time and it is another downside of microbial 
biocontrol agents (LaRue 1925; Zuckerman et al., 1989; Krokene and 
Solheim 2001; Butt et al., 2006). Nevertheless, microbial consortia can 
improve efficiency and consistency by enhancing the suppressiveness of 
biocontrol agents through synergistic effects, by targeting alternative 
metabolic pathways or employing distinct control strategies (Faust 
2019; Mitter et al., 2019). For fungal biocontrol agents to thrive in their 
environment, a successful and rapid colonization ability, coupled with a 
high sporulation rate, are desirable fungal traits (Garbelotto et al., 
2015). However, such characteristics are rarely found in a single isolate. 
In this sense, exploring compatibility among microbial agents is essen-
tial (Ram et al., 2022; Nunes et al., 2024).

Here, a comprehensive approach to assess the compatibility of four 
Esteya isolates and their ability to compete with and dominate other 
fungi in the pathosystem of PWD was explored for the first time. This 
work revealed an incompatibility among Esteya isolates, even within the 
same species, under controlled conditions. Our results further showed 
that while they were outgrown by their competitors in vitro, Esteya iso-
lates were markedly antagonistic to L. terebrantis S40.4b and O. ips 
S36.1, with both fungi avoiding Esteya’s hyphae. More importantly, 
Esteya isolates were observed to spread over the mycelium of 
L. terebrantis S40.4b in our experiments. Vicente et al. (2022) also noted 
that Leptographium sp. T3.6 inhibited the growth of both L. terebrantis 
S40.4b and O. ips S36.1 on artificial substrate, revealing fungal antag-
onism within the same order. T. alni appeared to avoid direct contact 
with Esteya’s hyphae in some cases, but ended up colonizing the entire 
plate over the course of the experiment. Whether the suppression of 
Esteya’s growth when interacting with T. alni was due to competitive 
exclusion, antibiosis or mycoparasitism is unclear. Nevertheless, Tri-
choderma is known to be an aggressive colonizer, either by producing 
antagonistic compounds such as chitin and glucan degrading enzymes, 
by direct competition for space and nutrients, or both (Dutta et al., 
2023). Since Esteya spp. are slow-growing fungi, T. alni quickly colo-
nized the culture medium and most likely depleted resources, thereby 
preventing Esteya from growing. Although it was not investigated in this 
work, another plausible cause is that secondary metabolites may have 
been produced, as none of the Esteya isolates was able to grow in the 
presence of T. alni (Oszust et al., 2020). Indeed, coexisting microor-
ganisms often dispute access to resources in order to survive, and 
catabolite repression is a crucial strategy to accommodate changes in 
resource-depleted environments, or to outcompete others under 
nutrient-limiting conditions (Nair and Sarma 2021; Guzmán-Guzmán 
et al., 2023), an aspect of microbial biocontrol agent ecology that is 
often neglected.

Carbon and nitrogen sources were shown to have positive effects on 
conidiogenesis and pathogenicity in E. vermicola (Wang et al., 2011, 
2016; Zhu et al., 2021; Chen et al., 2023). In this work, we investigated 
the nutritional demands of four isolates of Esteya to identify a potential 
niche overlap for specific carbon substrates. Our results show that iso-
lates from the same geographic origin have contrasting nutritional re-
quirements, which may have implications for their successful 
establishment in pine tree tissues and, consequently, their ability to 
suppress the PWN under natural conditions. Indeed, two Czech isolates 
of E. vermicola (CCF3117 and CCF3118) were able to metabolize more 
carbohydrates than the rest. As significant differences were observed 
among these two isolates in terms of growth rate but not pathogenicity 
to the PWN, we hypothesize that carbon metabolism is more correlated 
with biomass production than with pathogenicity in Esteya. Contrast-
ingly, Vieira Dos Santos et al. (2019) found that isolate original sub-
strate, pathogenicity, and rhizosphere colonization ability were 
significantly correlated with carbon metabolism in Pochonia chlamydo-
sporia, irrespective of geographical origin. Frascella et al. (2023) re-
ported a contrasting range of monosaccharide assimilation in 
cosmopolitan fungi from the Trichoderma genus, regardless of species or 
forest soil they were isolated from.

Table 2 
Minimum inhibitory concentration of antifungal compounds on different isolates of Esteya, after 5 days of incubation at 25 ◦C.

Fungal treatment Minimum inhibitory concentration (μg mL− 1),

5 days after inoculation

SIN MIZ DOD CHX ITZ VRZ BA AmB MeOH

E. vermicola CCF3117 NI <0.52 16.65 NI <0.52 3.125 500 0.26 NI
E. vermicola CCF3118 NI <0.52 16.65 NI <0.52 6.25 500 0.26 NI
E. vermicola CCF3131 66.6 <0.52 8.325 NI <0.52 6.25 250 0.26 NI
E. floridanum V14639 NI <0.52 4.1625 NI <0.52 3.125 250 0.26 NI

Sinefungin (SIN), miconazole (MIZ), dodine (DOD), cycloheximide (CHX), itraconazole (ITZ), voriconazole (VRZ), benzoic acid (BA), amphotericin B (AmB) and 
methanol (MeOH). NI = no inhibition.

Fig. 4. Total carbon sources assimilated by Esteya isolates (CCF3117, CCF3118, 
CCF3131 and V14639), assessed through color development 7 days after 
inoculation, using the API® 50 CH test.
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Prospecting new Esteya isolates from environmental samples is 
difficult due to their slow growing nature, but it is paramount that we 
expand our biological arsenal against the PWN. A semi-selective me-
dium tailored for Esteya would make this task easier. Here, we screened 
several antifungal compounds to maximize the probability of detection 
of Esteya from environmental substrates. Taking into consideration cost- 
benefit of all tested compounds, cycloheximide and rose bengal have 
proven the most promising, and can be included in a semi-selective 
medium with PDA at the concentration of 0.1 g L− 1. The high toler-
ance to cycloheximide among ophiostomatoid fungi was first reported 
by Fergus (1956), later expanded upon by Harrington (1981), and the 
molecular basis behind it was clarified by Wingfield et al. (2022).

Previous phylogenetic data suggests that Esteya diverged indepen-
dently from many ophiostomatoid fungi, with the Ophiostomatales 
order having undergone considerable revisions in recent years and the 
status of Esteya remaining somewhat unresolved (Lehenberger et al., 
2021; de Beer et al., 2022). Our phylogenetic analyses based on the TUB 
and TEF genes revealed that both E. vermicola and E. floridanum are 
supported in a large monophyletic clade, closely related to ambrosial 
fungi of the R. sulphurea complex, reclassified as Dryadomyces (de Beer 
et al., 2022), and grouping with other ophiostomatoid fungi, thus 
corroborating previous studies (Li et al., 2021; Araújo et al., 2022; de 
Beer et al., 2022).

Overall, our results suggest that a prophylactic application of Esteya 
to asymptomatic pine trees in intervention zones may be preferable for 
optimal bioprotective effects against the PWN and fungal pathogens. 
Furthermore, the carbohydrate metabolic profiles of Esteya isolates are 
asymmetric. In this sense, E. vermicola CCF3117 and CCF3118 could be 
the best suited candidates for biocontrol of the PWN, given their ca-
pacity to assimilate more carbon sources in their environment, their 
comparable antagonistic nature towards the PWN and their comple-
mentary growth rates. Further experiments are needed to verify this 
assumption in vivo and in a broader ecological context. Moreover, these 
results should be compared to Esteya’s ability to colonize pine tissues 
(Supplementary Fig. 1) in order to identify potential correlations. This 
knowledge could prove useful in the future to speed up screening isolate 
colonization ability and predict their success as biocontrol agents, based 
on their metabolic profiles. Lastly, although carbon catabolite repression 
was not studied here, it should also be the object of future research to 
unravel its role in the infective cycle of Esteya.

CRediT authorship contribution statement

David Pires: Writing – original draft, Visualization, Validation, 
Methodology, Investigation, Formal analysis, Data curation, Conceptu-
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