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Abstract. Prostate cancer (PCa) is among the most frequent
cancers worldwide. Nowadays, several therapeutic strategies are
available for PCa treatment, namely chemotherapy,
immunotherapy, radiotherapy, and hormonal therapy. Despite
existing therapeutic approaches, in vitro and in vivo models are
essential to better understand cancer development and search
for more effective therapies, with a positive impact in cancer
patient survival and quality of life. Among several models
available, the rat model is the one most frequently used, since it
shares anatomical, physiological, pathological, and behavioral
features with humans. Animal models can be classified as:
spontaneous, chemically-induced; hormonally-induced;
implantation of cancer cell lines obtained from humans or from
the same species, in the place of disease development or in a
different place; and genetically-modified models. The
chemically-induced models are among the most frequently used
for PCa research. This manuscript provides a comprehensive
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overview of PCa models, presenting their application,
advantages, and disadvantages, and their importance for the
development of current therapies for prostate cancer.

Prostate cancer (PCa) is among the most common cancers in
men. In 2020, PCa was the third most diagnosed neoplasia,
with 1,414,259 new cases (7.3% of all cancer cases) and
375,304 deaths (1).

During the last decades, PCa therapy has seen a remarkable
evolution in many sectors, namely chemotherapy,
immunotherapy, radiotherapy, and hormonal therapy. New
precision medicine strategies and treatments are also suffering
massive developments nowadays, also for PCa management,
namely new proteomic and genomic technologies, non-coding
RNA therapeutics or gene editing technologies (2).

Over the decades, different animal and non-animal models
have been used to describe PCa morphologically, evaluate its
development, set up prognostics, and develop more
successful and globally used treatments.

This work aimed to review the different models used in
PCa research among the decades and highlight their
significant contribution to the discovery of various therapies
regularly used nowadays to treat men with PCa and
significantly improve their lives.

Prostate Cancer: An Overview
PCa is a neoplasia that results from the uncontrolled growth of
the prostatic gland cells. Almost all PCas are adenocarcinomas.

However, histologically, two types can be considered: acinar
adenocarcinoma and non-acinar carcinoma. PCa acinar
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adenocarcinomas include atrophic, colloid, pseudohyperplastic,
signet ring, and oncocytic carcinomas, among others. Non-
acinar carcinoma only includes 5-10% of PCas, as the ductal
adenocarcinoma, urothelial carcinoma, sarcomatoid carcinoma,
squamous, basal cell carcinoma, or the small-cell carcinoma (3).

PCa is usually asymptomatic at the early stages with an
average age of diagnosis at 66 years old. The most reported
symptoms include dysuria, pollakiuria, and nocturia, which also
occur in patients with prostatic hypertrophy. At an advanced
stage, urinary retention is common, as well as back pain, since
the axis skeleton is the most usual site of metastasis (4).
Detection of elevated levels of prostate-specific antigen (PSA >4
ng/ml) is the first suspicion for the presence of PCa. However,
tissue biopsy is necessary to confirm the diagnosis, since PSA
levels may be found elevated in men with normal prostate (4).
The growing incidence of PCa can be attributed to the increased
awareness of PCa and routine use of the PSA analysis (5). It was
found that a single PSA measurement between 44 and 50 years-
old could predict PCa up to 25 years later (6).

Risk factors of PCa have been widely studied and discussed
over the last decades. The factors most frequently mentioned are
age, ethnicity, genetic, inflammation and infection, lifestyle, and
androgen-related (5). The incidence of PCa is variable between
countries and ethnic groups: in Asia (India, China, and Japan),
the annual incidence is 1.9 new cases per 100,000 people. In the
US, it is 161 per 100,000. However, if only the African
American ethnicity is considered, this number rises to 272 new
cases per 100,000 people. Hereditary PCa represents 43% of all
men that had PCa before 55 years-old (7). PCa is also related to
prostatitis (odds ratio=1.6) and the presence of sexually
transmitted diseases (relative risk=1.4), like gonorrhea, syphilis,
and human papillomavirus (5, 8). Even though others did not
confirm this hypothesis, and one study demonstrated that high
serum testosterone levels in men increased the risk of PCa (5).

What Constitutes a Disease Model?

Models of disease display some of the pathological processes
observed in both humans and animals. They are essential for
understanding how the disease develops, evaluate new
diagnostic tools and testing potential treatments (9).

Animal models have been used in biomedical research with
a perspective of comparative medicine, since the foundation of
anatomy and physiology, in ancient Greece, more than 2,000
years ago (10). Animal species share anatomical, physiological,
pathological, and behavioral features with humans. Mice and
rats are the most commonly used species, representing
approximately 95% of all animals used in laboratory research
(11). Animal models of disease can be classified according to
the mode of action: the spontaneous models (those that
spontaneously develop the disease to be studied), genetically-
engineered models (basically a mutant, i.e., a natural organism
with a genetic alteration), the induced model (when a condition
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is experimentally induced through exposition to biological,
physical or chemical agents); the implantation of cell lines
(xenograft when cells are derived from a different species,
syngeneic when the cells are derived from an animal
genetically similar, orthotopic in which the cells are implanted
in the place of origin of the neoplasia, or heterotopic when the
cells are implanted in a place different from origin, like
subcutaneous, intraperitoneal or intramuscular); the negative
model (when studied condition/ agent is innocuous to the
model); and the orphan model (when the situation has not yet
been described in humans) (12-14). Moreover, models can also
be categorized regarding their genetics (inbred or outbred), as
well as their microecology (gnotobiotic, germ free, specific
germ free, or conventional) (15, 16).

Other disease models are becoming popular in clinical
research, providing an alternative to animal models in
scientific projects. The 3 R’s principle (Reduction,
Replacement and Refinement) launched in the early 1960s
by Russel and Burch have encouraged the substitution of
mammals by simpler organisms (as invertebrates) or even
non-living organisms. These alternatives include cell cultures
and ex vivo models, such as computer modelling (17, 18).

A variety of in vitro cell lines, tissues or even organ cultures
(3D models, organ-on-a-chip models) are available to study
different conditions. This involves growth of cells outside the
body in a controlled environment. Cells and tissues (from skin,
liver, brain etc.) that are obtained from a donor and can be kept
for a few days to a few years. In general, such research
techniques are easy to perform and inexpensive. They are widely
used in preliminary drug or cosmetic screening to test for
potential toxicity and efficacy as, for instance, in eye irritancy
tests (18). When compared with 2D models, the 3D cell culture
model allows a better cell-cell and cell-extracellular matrix
interaction, mimicking the complexity of tumor architecture and
physiology. These 3D models are promising tools for PCa
diagnosis, and drug discovery (19). Organ-on-chip model arose
as a great technological advance, reforming biomedical research
and drug discovery, by mimicking the structure and functionality
of organs in vitro. Regarding oncology research, organ-on-a-chip
is able to replicate key aspects of the tumor microenvironment,
like biochemical gradients and niche factors, cell-cell and cell-
matrix interactions, and complex tissue structures composed of
tumor and stromal cells (20).

Computer modelling is widely used in certain medical areas,
such as epidemiology. In this case, they help predict and
characterize an infectious agent's behavior in a population,
becoming crucial to decide possible mitigation strategies or
vaccination policies (21). Moreover, such models can help
understand biology responses based on recognized principles
and patterns. For instance, they can help predict possible
biological or toxic effects of a drug candidate as primary
screening, before in vivo experimentation, helping reduce and
refine animal experimentation (18).
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Which Models Are Available for
Studying Prostate Cancer?

According to the World Health Organization (WHO), cancer
is a leading cause of death worldwide, accounting for nearly
one in six deaths, with a total of approximately 10 million
deaths in 2020 (22). Considering this, and the great diversity
of cancers, in terms of their location, histological type,
progression, and response to therapy, researchers and funding
agencies are continuously investing in projects for cancer
research, looking for strategies towards an early diagnosis
and better treatment, with a positive impact in the quality of
life and survival of cancer patients.

In vitro and in vivo models. Several in vitro assays using cell
lines have been formulated to study this PCa. Although this
model allows understanding of several biological features of
the disease, it is not able to mimic the complex cell-to—cell
interactions occurring in the tumor microenvironment. To
overtake this limitation, scientists were forced to develop
animal models of PCa. Moore and Melchionna were pioneers
in this field, with the induction of prostate carcinoma in the
anterior lobe of prostate of rats, in 1937, through injection of
1:2 benzpyrene into prostate (23). This model was not able to
develop metastasis, which constituted a limitation, and lead
researchers to the development of other in vivo models of PCa.
In 1945, Dunning et al. (24) induced the development of PCa
able to metastasize in Fisher and Irish AxC 9935 rats, trough
implantation of methylcholanthrene crystal into the prostate.
Since the development of the first models of PCa, and with the
discovery of chemical carcinogens with tropism for prostate,
other models were arising. Some examples of these
carcinogens are the N-nitrosobis (2-oxopropyl) amine (BOP)
discovered by Pour in 1981 (25), the N-methyl-N-nitrosourea
(MNU) discovered by Pollard in 1986 (26), the 3,2’-dimethyl-
4-aminobiphenyl (DMAB) discovered by Katayama in 1986
(27) and the 2-amino-1-methyl-6-phe-nylimidazol[4,5-
b]pyridine (PhiP) discovered by Shirai in 1997 (28). Beyond
these, other chemical or natural agents may be used for the
chemical induction of PCa development, namely:
dehydroepiandrosterone (DHEA), cadmium, celecoxib (29),
cholesterol, fluasterone, flutamide, lycopene, pioglitazone,
pomegranate, quercetin, selenium, vitamin E, and zinc (30).
These induced models are easy to obtain and allow to assess
the effects of natural biological and synthetic agents.
Although the rat model of PCa may mimic human male
prostate tumors, and they are able to metastasize to bones, it
is worth noting that there are several differences in prostate
anatomy between these species that should not be neglected.
The human male prostate is a non-lobulated gland, appearing
as a compact solitary structure below the bladder in front of
rectum, like dogs’ prostate. Differently, the rat prostate
consists of four distinct lobes, named according to their

relative position to urinary bladder as: ventral, lateral, dorsal,
and anterior lobes (26, 31). The lobes are morphologically
different, and some authors consider only dorsal and lateral
lobes homologous to human prostate (32). Despite these
anatomical disparities, humans and rats present many
similarities in the molecular mechanisms underlying PCa
development, validating the rat as a model for PCa study. A
proper rat model of PCa should be able to develop androgen-
dependent adenocarcinomas within a short latency period,
mimic the physiology and characteristics of man tumors, and
the tumors must metastasize, preferably to bones (33).

Nowadays, several animal models are available for PCa
study, namely spontaneous models, chemically-induced,
hormonally-induced, implanted, and genetically-modified
(34, 35) (Figure 1).

The spontaneous models of PCa present a long period of
latency (nearly 2-3 years) and a low incidence, being not
advantageous for the study of this condition. The first
spontaneous PCa tumor was reported by Dunning in 1963 in
a 22 months-old Copenhagen rat (36-38). Ten years later, in
1973, Pollard described a spontaneous prostatic carcinoma
in 26 months-old Wistar rats (37). In 1957 were described
spontaneous tumors of ventral prostate in 34-37 months-old
AxC rats (38). Moreover to these rat strains, aged ACl/Seg
rats have a high susceptibility to develop spontaneous tumors
in ventral prostate lobe (39).

The development of PCa may be induced though
administration of chemical carcinogens, being the MNU, 3,2’-
dimethyl-4-aminobiphenyl (DMBA), PhiP and BOP the most
used. MNU is a direct alkylating agent, frequently used to induce
the development of cancer in several organs, including prostate
and the mammary gland. MNU may be used in combination
with hormones to induce PCa development. Our research team
has successfully used a rat model of PCa that was chemically
and hormonally-induced in 12 weeks-old Wistar rats as follows:
the anti-androgenic drug flutamide (50 mg/kg) was administered
subcutaneously for 21 consecutive days; twenty-four hours later
the testosterone propionate (100 mg/kg) was dissolved in corn
oil and administered subcutaneously; two days later the MNU
(30 mg/kg) was intraperitoneally injected; and two weeks later
the implants filled with crystalline testosterone were implanted
in the interscapular region of animals under anesthesia (30, 40-
42). DMBA is an indirect carcinogenic agent that needs to be
activated in the liver. Its metabolites interact with DNA inducing
irreversible changes in DNA (43). DMBA is able to induce the
development of carcinomas in ventral prostate lobe through a
subcutaneous injection (27). PhiP is a heterocyclic amine whose
active metabolites form DNA adducts, inducing development of
cancer in prostate, mammary gland, and intestine (44-46). It can
be administered in the diet or administered by gavage (47, 48).
BOP is a nitrosamine with tropism to several organs, like
pancreas, liver, and prostate (49). After its oral administration,
BOP is converted into carbon dioxide that acts as a DNA
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Figure 1. In vivo models available for prostate cancer. Spontaneous models develop prostate cancer spontaneously; chemically-induced models are
obtained through administration of chemical carcinogens, like N-methyl-N-nitrosourea, 3,2’-dimethyl-4-aminobiphenyl, 2-amino-I-methyl-6-
phenylimidazol[4,5-bpyridine and N-nitrosobis (2-oxopropyl) amine; hormonally-induced models are obtained through administration of hormones, like
testosterone; implanted models can be obtained through implantation of cancer cell lines obtained from humans (xenograft model) or from the same
species (syngeneic), in the prostate (orthotopic) or in a different place (heterotopic); and genetically-modified models results from genetic alterations.

methylating agent. The BOP has only the ability to induce the
development of squamous cell carcinomas in ventral prostate
lobes, that have no correspondence with human prostate,
constituting a limitation of this model (33).

PCa can be also induced through administration of
hormones, due to the sensitivity of prostate tissue to
androgens. The implants filled with testosterone and estrogen
may be subcutaneously implanted for a long period of time
in rats. Simultaneously to the development of PCa, the
animals may develop pituitary tumors leading to their early

death (33).
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The implanted models of PCa may be obtained through
implantation of PCa cells obtained from humans (xenograft
model) or from rat PCa (syngeneic model). The cell lines
may be implanted in the rat prostate (orthotopic) or in a
different place (heterotopic) (50-53). The xenograft models
are immunodeficient, which did not allow the evaluation of
the interplay between immune system and cancer.
Genetically-engineered models are less time-consuming
and labor-intensive when compared with chemically and
hormonally-induced models. An incidence of 100% in
guaranteed and tumors are androgen-sensitive (54).
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Figure 2. Therapeutic approaches for prostate cancer.

At the current stage of knowledge, the advances in the
study of PCa using 3D and organ-on-chip models have been
small and need further research and increased funding.

Current Therapies for Prostate Cancer

First, the stage of the disease and the patient’s profile must
be clearly understood to choose the best treatment for each
patient (55, 56). For this, it is important to have a good early
diagnosis and assess the risk of the disease. After this, there
exist a variety of approaches to be considered, which include
active surveillance, watchful waiting, surgery, radiation,

Active surveillance
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chemotherapy, hormone therapy and immunotherapy (55, 57)
(Figure 2). All these approaches can be used alone or in
combination.

Active surveillance consists of cancer monitoring through
blood tests, PSA blood test and digital rectal exam.
Moreover, prostate biopsies and imaging screening can be
performed. This strategy is usually applied to patients with
localized PCa and low risk of cancer growing or spreading
outside of prostate. Watchful waiting is used in patients with
low-risk and slow-growing disease, patients with other
diseases and those with a limited life expectancy. Routine
tests are not usually done on these patients (55, 57).
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There are different surgical approaches, depending on the
stage of the disease and patient status. Radical prostatectomy,
by laparoscopic or robotic-assisted, removes entire prostate
gland and seminal vesicles (58). Transurethral resection of
the prostate is performed to remove the inner part of the
prostate that surrounds the urethra relieving trouble urinating
(59). Minimally invasive techniques, with minimal incisions
or using tiny instruments into the urethra are increasingly
used to treat PCa or relieve symptoms.

Radiation therapy in PCa include, for example, external
beam radiation, brachytherapy or radiopharmaceuticals use.
Radiopharmaceuticals is an emergent cancer therapy that
deliver radiation therapy directly to cancer cells (60).
Specifically in set of PCa, at the end of March 2022 the Food
and Drug Administration (FDA) approved 177Lu-PSMA-617
to treat patients with metastatic PCa who have been treated
with androgen receptor (AR) pathway inhibitors and taxane-
based chemotherapy (61). This drug combines a targeting
compound with a therapeutic radioisotope. After its
administration binds to PCa cells that express prostate-
specific membrane antigen (PSMA), a transmembrane protein
and, once bound, emissions from the radioisotope damage
tumor cells disrupting their capacity to replicate and
triggering cell death (62-64).

Hormonotherapy is one of the most advanced areas where
new drugs have been developed, such as apalutamide and
darolutamide. Apalutamide, an androgen signaling inhibitor,
has been studied and was approved by FDA in 2018 and by
European Medicine Agency (EMA) in 2019 (65-67). It is
used to treat non-metastatic castration-resistant prostate
cancer (CRPCa) and metastatic hormone-sensitive PCa in
combination with androgen deprivation therapy (65).
Darolutamide is an androgen-receptor inhibitor used in the
treatment of non-metastatic CRPCa in combination with
surgery or medical castration approved in USA in 2019 and
in the European Union in 2020 (68-71).

Another emerging therapy for PCa is called focal
irreversible electroporation. This technology uses low voltage
direct electric current that permanently damages the cell
membrane and leads to cell death, preserving the surrounding
prostate structures (72-74). Tissue selectivity, reduced toxicity
on vital anatomical structures surrounding the prostate lesions,
and preservation of urinary and sexual functions are the main
advantages of this technique (75). Moreover, this technique is
minimally invasive in contrast with other therapies, allow
precision in targeting cancerous cells and the recovery time is
short (74, 76). However, this technique is still at an early stage
of development and there are still not many scientific studies
comparing it with more traditional approaches, but the results
seem promising (74, 77-79).

Immunotherapy is a promising PCa therapy that uses
patients’ own immune system to recognize and kill cancer
cells. Sipuleucel-T, a cell-based vaccine, is the only FDA
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approved immunotherapy for asymptomatic or minimally
symptomatic metastatic CRPCa (80, 81). However, it is not
yet available in Europe (82, 83). The treatment involves the
use of patient’s immune cells stimulated to target the antigen
prostatic acid phosphatase (80). Other vaccine therapies are
being tested in clinical trials, such as Prostvac (84). Immune
checkpoint inhibitors are another type of immunotherapy that
block checkpoint proteins from binding with their partner
proteins, allowing the immune system, namely T cells, to
attack and kill the cancer cells. Pembrolizumab is a drug that
targets PD-1/PD-L1 pathway and is the only FDA approved
for advanced PCa that has high microsatellite instability,
DNA mismatch repair deficiency or high tumor mutational
burden (85-87). There are more ongoing studies and clinical
trials with these immune checkpoint inhibitors drugs but
whose results still do not allow their approval by the
competent authorities and their commercialization (88-91).

Animal models have been vital for discovery, development,
and approval of novel drugs for cancer treatment, by allowing
to evaluate their safety, toxicity, pharmacodynamics,
pharmacokinetic and efficacy. Determining efficacy and safety
is critical during the initial phases of drugs discovery and
development, and ultimately for approval and commercia-
lization. Some of the drugs approved by the FDA or EMA, and
listed above, were tested in rodent models (92-102).

Conclusion

Models for any given assay should be carefully chosen by
researchers whilst considering the aim of the study, the
associated costs, and the advantages and disadvantages of each
model. Although several models are available for PCa studies,
rodent models remain the ones most used. Despite their
disadvantages, rat models have provided a great deal of
information concerning PCa biopathology, allowing better
understanding of the disease as well as leading to the
development of more effective therapies. The PCa hormone
and chemically-induced model is very complex, time and
labor-consuming, but it successfully induces development of
PCa tumors hormone-dependent and histologically similar to
those developed by men, allowing data translation. In the
future, animal models will certainly continue to be a
fundamental tool in the study of PCa and development of new
therapeutic approaches, since only laboratory animals allow for
the study of several variables simultaneously.
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