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A B S T R A C T

This study presents an assessment of thermal modeling for photovoltaic modules, focusing on power output
prediction using manufacturer-provided data along with irradiance and weather-related variables. Several
steady-state thermal models based on empirical correlations were evaluated for computing the temperature of
the photovoltaic module. Additionally, a dynamic model was developed based on the energy conservation
equation, incorporating the effects of wind speed and direction, using only manufacturer data and other pa-
rameters available in the literature. The performance of these models was evaluated against measured tem-
peratures on the backsides of photovoltaic modules. The models were further integrated with the simple estimate
with temperature correction and single diode and five-parameter electrical models to assess combined power
output prediction performance. Results show that the Mattei steady-state model is the most accurate for tem-
perature estimation, with a mean bias error of − 0.4◦C and a root mean squared error of 2.7◦C. For power output
estimation, the Kurtz (Sandia1) model combined with the simple estimate with temperature correction out-
performs others, showing a mean bias error of 4.6W and a root mean squared error of 54.5W. This study sys-
tematically evaluates and compares the performance of thermal models for different photovoltaic systems,
offering a framework for selecting appropriate models based on their accuracy in temperature estimation and
power output prediction. These models can support operational photovoltaic forecasts without the need for
production data and facilitate decision-making in the deployment and management of photovoltaic technology.

1. Introduction

A photovoltaic module is a device that converts sunlight into elec-
trical energy through the photovoltaic effect occurring in a junction of
two dissimilar semiconductor materials. The generated electricity can
vary rapidly due to the variability of the solar resource. Solar irradiance
is affected by factors such as the presence of clouds and aerosols in the
atmosphere. Moreover, photovoltaic power output is also very impacted
by temperature since higher values of module temperature result in a
decrease in conversion efficiency (Kalogirou, 2009). Previous studies
have extensively explored the impact of environmental parameters such
as irradiation, temperature, and dust on the performance of PV systems,
leading to the development of various empirical correlation forms to
enhance the accuracy of PV modeling. All these aspects are important
because, with the increase in installed capacity of photovoltaic systems

throughout the world, the need for modelling such a variable electricity
generation has also increased. Accurate models of the conversion from
sunlight into electricity can allow for better planning and development
of photovoltaic power plants, monitoring system performance, and can
also be included in electricity generation forecasting for better control of
the electric grid.

Many electrical models of photovoltaic cells have been developed in
the literature. Among these models, the level of detail, and therefore the
number of input parameters, may vary widely (Gholami et al., 2022a),
ranging from simple models where the electrical power produced is
assumed to be proportional to solar irradiance, to very detailed models
such as the equivalent electric circuit models (Castro, 2018; Evans and
Florschuetz, 1977). The most widely used models are single diode
models, typically involving three to five parameters for optimal per-
formance analysis. The parameter extraction is a key issue due to the
number of parameters to determine and the nonlinearity of the
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optimization problem, usually requiring numerical or analytical
methods and curve fitting methods (Abbassi et al., 2018). Precisely
adapting the parameters to real conditions is essential for accurate
power output estimates. For the crystalline silicon technology, the five
parameter single diode model shows a good balance between accuracy
and computation time (Gholami et al., 2022a), although additional ad-
aptations are needed for other technologies such as microcrystalline,
amorphous, and cadmium telluride (Mermoud and Lejeune, 2010).
Numerous studies review and compare different electric models, pre-
senting advantages and disadvantages derived from simulation or

experimental tests (Castro, 2018; Chenni et al., 2007; Chin et al., 2015;
Fahim et al., 2022; Gholami et al., 2022a; Hasan and Parida, 2016; Ma
et al., 2014; Roberts et al., 2017). These analyses emphasize the
importance of accurately capturing the electrical behavior of photo-
voltaic modules for reliable power output estimation.

When the temperature of photovoltaic cells/modules is not available,
a thermal model is also needed for accurate power output estimation.
Most thermal models used in the literature are steady-state and empir-
ical, often biased towards specific technologies, material properties or
locations. (Tuomiranta et al., 2014) obtained different correlations

Nomenclature

A Area of the photovoltaic module (m2)
As Photovoltaic module azimuth (◦)
Cmod Heat capacity of the module (J/K)
cp,Tf Specific heat capacity of air film at temperature Tf (J/Kg/

K)
DHI Direct horizontal irradiance (W/m2)
DIF Diffuse horizontal irradiance (W/m2)
DNI Direct normal irradiance (W/m2)
g Gravitational Acceleration (9.8 m/s2)
Gr Grashof number
GTI Global tilted irradiance (W/m2)
h Convective heat transfer coefficient (W/m2/K)
hrad Radiative heat transfer coefficient (W/m2/K)
I0 Reverse saturation current (A)
IAM Incidence angle modifier
I Electric current (A)
Imp Current at maximum power point (A)
Ipv Photovoltaic current (A)
Isc Short-circuit current (A)
K Boltzman constant (1.38× 10− 23 J/K)
Kg Extinction coefficient of the glazing (m− 1)
kTf Thermal conductivity of air film at temperature Tf (W/m/

K)
L Length of the module (m)
Lc Characteristic length of the module (m)
Lfree Length of the module along the natural convection air flow

(m)
Lg Glazing thickness (m)
m Diode ideality factor
n Refractive index
Ns Number of photovoltaic cells in series
Nu Nusselt number
P Power output (W)
Pe Estimated power output (W)
Pmax Maximum power output (W)
Pr Prandtl number
q Electrical charge of the electron (1.6× 10− 19 C)
Qcond Net rate of energy loss to the environment by conduction

(W)
Qconv Net rate of energy loss to the environment by convection

(W)
Qrad Net rate of energy loss to the environment by radiation (W)
Qsun Net in-plane solar irradiance (W)
Re Reynolds number
Ra Rayleigh number
Rp Parallel or shunt resistance (Ω)
Rs Series resistance (Ω)
S Incident irradiance (W/m2)
T Temperature (◦C)

Ta Air temperature (◦C)
Tf Temperature of air film at the surface of the module (◦C)
Tground Temperature of the ground surface(◦C)
Tmod Mean temperature of the photovoltaic module (◦C)
Tsky Apparent sky temperature (◦C)
Upv Coefficient of thermal losses from Mattei model (W/◦C/

m2)
V Voltage (V)
Vmp Voltage at maximum power point (V)
Voc Open-circuit voltage (V)
VT Thermal voltage (V)
W Width of the module (m)
WD Wind direction (North is assumed 0◦) (◦)
WDs Wind direction (South is assumed 0◦) (◦)
WS Wind speed (m/s)
xcr Critical length (m)

Greek symbols
αIsc Thermal coefficient of short-circuit current (%/◦C)
αPmax Thermal coefficient of maximum power (%/◦C)
αVoc Thermal coefficient of open-circuit voltage (%/◦C)
αTf Thermal diffusivity of air film at temperature Tf (m2/s)
β Tilt angle (◦)
ε Silicon bandgap (= 1.12 eV)
εb Emissivity of the back surface of the module
εf Emissivity of the front surface of the module
η Photovoltaic module efficiency
θ Angle of incidence (◦)
θr Angle of refraction (◦)
νTf Kinematic viscosity of air (m2/s)
σSB Stefan-Boltzmann constant (5.670 ×10− 8 W/m2/K4)
τ Transmittance

Acronyms and Abbreviations
1d3p Single diode and 3 parameters model
1d4p Single diode and 4 parameters model
1d4pm Single diode and 4 parameters model with ideality factor

adjustment
1d5p Single diode and 5 parameters model
GPI Global performance index
HIT Heterojunction intrinsic thin layer
IEC International electrotechnical commission
MBE Mean bias error
rMBE Relative mean bias error
RMSE Root mean squared error
R2 Coefficient of determination
rRMSE Relative root mean squared error
SE Simple estimate model
SET Simple estimate with temperature correction model
STC Standard test conditions
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between module temperature (seven different semiconductor materials)
and solar irradiance, air temperature and wind speed for Abu Dhabi.
(Coskun et al., 2017) tested seventeen different correlations available in
the literature for a photovoltaic powerplant in Turkey, modifying them
for a better fit to the experimental data. The modified Chenni correlation
(Coskun et al., 2017) was shown to be the most suitable under variable
wind speed conditions. A comprehensive list of explicit and implicit
correlations for module temperature estimation found in the literature is
available in (Skoplaki and Palyvos, 2009). Most models typically
incorporate solar irradiance, air temperature and wind speed, while
additional parameters such as air humidity and dust deposition can also
impact photovoltaic system performance. (Gholami et al., 2023) inves-
tigated the effect of these variables on photovoltaic panel temperature,
finding standardized Beta coefficients of 0.541, 0.645, − 0.035, − 0.055,
and − 0.068 for irradiation, ambient temperature, humidity, wind speed,
and dust accumulation, respectively. Their proposed semi-empirical
correlations achieved coefficients of determination ranging from 0.728
to 0.974. Additionally, studies have shown that dust accumulation im-
pacts the performance of photovoltaic systems, causing both reduced
power generation and increased module temperatures (Gholami et al.,
2022b; Kazem et al., 2022).

Physical models based on the energy conservation equation for dy-
namic regimes and heat transfer modeling can reproduce the thermal
response of photovoltaic modules over time under variable conditions,
making them suitable for simulations with smaller timesteps, typically
at a second or minute time scale. Most studies in the literature consider
either the electrical or the thermal model alone, or when both are
considered, they are often uncoupled (Gholami et al., 2022a). Since the
photovoltaic cell/module temperature depends on the electrical power
generated and vice-versa, coupling thermal and electrical models is
advantageous. Some of the few works that include this coupling were
developed recently (Li and Wu, 2022; Perovic et al., 2019). (Perovic
et al., 2019) developed a dynamic model that includes the dependence
of electric power on module efficiency and temperature, comparing
temperature results with measurements in three different points on the
back of a photovoltaic module. (Li and Wu, 2022) developed a 3-D
thermal model which, when coupled with the single diode 5 parame-
ters electric model, resulted in values of power output, back-surface
temperature, and current-voltage curves consistent with observations.
In (Torres-Lobera and Valkealahti, 2014), a model for module temper-
ature and power output estimation incorporating a dynamic thermal
model and the single diode 5 parameter model, considering parasitic
effects and bypass diodes, as well as site-specific adjusting parameters,
was developed. In this case, root mean square error of 1.34◦C for module
temperatures and a normalized root mean square error of 1.98 % for
power-voltage curves were found. (Gu et al., 2019) assessed thermal
resistance distribution and environmental effects on photovoltaic mod-
ule performance through a coupled electrical-thermal model, high-
lighting the significance of radiative and convective thermal resistances.
In (Tina, 2010), coupled electrical and thermal models for photovoltaic
module temperature estimation was presented using inputs such as
electric voltage and current, ambient temperature, wind speed and di-
rection, total irradiance, and relative humidity. (Bevilacqua et al., 2021)
developed and validated a one-dimensional thermal model for photo-
voltaic modules, using the energy balance of individual layers in dy-
namic conditions and determining the temperature distribution across
the module cross-section through a finite difference method. In (Tuncel
et al., 2020) a dynamic coupled thermal-electric model considering
irradiance, air temperature, wind speed and direction, module param-
eters and geospatial data was developed for hourly data and assessed
against observations of a poly-crystalline photovoltaic module, resulting
in an MBE of 3.35 W/m2.

This work systematically evaluates and compares thermal models for
different photovoltaic systems, focusing on the accuracy of temperature
estimation and power output prediction. It focuses on models that take
only as inputs the characteristic values commonly provided by

manufacturers in the datasheets, beside solar irradiance and meteoro-
logical variables. Data-based models such as regression or machine
learning models were not included in the analysis. Experimental values
of environmental variables and power output of a photovoltaic system
are used for model assessment. Additionally, a developed electric-
thermal coupled model for dynamic regimes, considering the wind di-
rection relative to module rows, is also included in the analysis and
validated against the same data. All models are compared to find the
most accurate method for estimating power output of photovoltaic
systems without needing measurements from the system. The novelty of
this work lies in several key aspects. Firstly, a transient thermal model
was developed that extends beyond traditional steady-state models,
enabling predictions under varying operational scenarios. Secondly, a
thorough comparative analysis of multiple thermal models was con-
ducted, evaluating their performance against measured data from
several PV technologies. This comprehensive evaluation framework
ensures robustness of the proposed methodology and strengthens the
practical implications for operational decision-making in PV systems.
Ultimately, the approach used supports PV forecasts even in the absence
of energy generation data, thereby advancing the field’s capability for
accurate and reliable performance estimation.

This paper is organized as follows: Section 2 presents the method-
ology of this work specifically the experimental data used for model
assessment, including the environmental conditions (solar irradiance,
air temperature and wind speed and direction) and photovoltaic system
characteristics and power generation data. The various steady-state
thermal models of the photovoltaic modules for obtaining module
temperature are assessed, and the developed dynamic thermal model is
presented. These models are then coupled with the simple estimate with
temperature correction and single diode five parameter electric models
and validated against observations in Section 3. Finally, Section 4 pre-
sents the conclusions of this work.

2. Methodology

The methodology encompasses two main components: data collec-
tion and processing, and thermal and electric modeling. Data collection
involved retrieving and processing solar resource and meteorological
variables, as well as photovoltaic system data. Thermal modeling uti-
lized both steady-state and dynamic models to estimate module tem-
peratures under changing environmental conditions. Coupling the
thermal with electric models allows for the estimation of photovoltaic
power output. The chapter discusses the formulation of empirical and
physics-based models and the rationale behind model selection.

2.1. Data

Data from four different photovoltaic systems located at Fukushima
Renewable Energy Institute (FREA, AIST), Koriyama, Japan (37.4495◦

N, 140.3144◦ E, Fig. 1) were utilized in this study. The systems employ
different photovoltaic cell technologies: one with polycrystalline mod-
ules, two with monocrystalline modules, and one using heterojunction
technology with intrinsic thin layer (HIT), which combines mono-
crystalline and amorphous silicon with dissimilar band gaps. The char-
acteristics of these systems are presented in Table 1.

The experimental data comprise environmental variables and
photovoltaic system variables. Environmental variables include global
tilted solar irradiance (GTI) measured using a class A pyranometer
(Hukseflux CHF-SR20-JM), direct normal irradiance (DNI) measured
using a pyrheliometer, air temperature (Ta), wind speed (WS) and wind
direction (WD) at 7.4 m height. Photovoltaic system variables comprise
power output (P) and temperature at the back of the module (Tmod),
measured with a type T thermocouple attached with Kapton tape
directly to the back of one module per system. These variables were
recorded at 1-minute timestep and converted to 10-minute mean values.
The dataset spans from January 1st 2017 to December 31st 2020. Data
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preprocessing excluded winter months (December through March) due
to snow accumulation on modules, retaining records with valid values
across all variables. This resulted in a total of 24543 10-minute data
points per system during the daylight hours.

2.2. Thermal modeling of photovoltaic modules

When the measured temperature of the modules is unavailable, a
model for its estimation is necessary. Specifically, a model that can
accurately estimate the temperature using easily available meteorolog-
ical variables and characteristics of the photovoltaic systems is required.
From the models described in the literature, two main categories can be
found: steady-state and dynamic models.

Steady-state models are most common and assume that the heat
transfer rate between the modules and the environment is quasi-
stationary. In contrast, dynamic models consider the variation in ther-
mal energy storage in the module and heat transfer rates over time.
Steady-state models are usually correlations based on experimental
data, which can make these models biased towards specific climates or
technologies. Dynamic models tend to be based on physical principles

and are more suitable for estimations made over small timesteps.

2.2.1. Steady state models
The steady-state models analyzed in this work are amongst the most

commonly used thermal models in the literature and typically require
air temperature (Ta), global tilted irradiance (GTI) and wind speed (WS).

2.2.2. Modified Chenni thermal model
The Chenni thermal model (Chenni et al., 2007) was improved by

examining the trend in the temperature difference between the model’s
results and observation data, resulting in the modified Chenni thermal
model (Coskun et al., 2017), as shown in Eq. (1). The observation data
used results from a year of records from a polycrystalline powerplant in
Turkey.

Tmod =Ta − 1.93666+0.0138GTI(1+0.031 Ta)(1 − 0.042WS)

+ 0.007882GTI − 0.0000134647(GTI)2
(1)

2.2.3. Mattei thermal model
The Mattei thermal model (Mattei et al., 2006) was developed using

Fig. 1. Location and plan of the photovoltaic systems at FREA, AIST.
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observation data from a grid-connected system and a polycrystalline
module with eight temperature sensors integrated into the module,
resulting in the correlation shown in Eq. (2). The coefficient of thermal
losses, Upv, is computed through Eq. (3), and the transmittance and
absorption product at a normal incidence angle of irradiance, (τα)n,
assumes a value of 0.81.

Tmod =
Upv Ta + GTI((τα)n − ηSTC (1 − αPmax × Tstc)

Upv + GTIαPmax ηSTC
(2)

Upv = 26.6+2.3WS (3)

2.2.4. Sandia thermal model
The Sandia thermal model (Sandia National Laboratories, n.d.),

shown in Eq. (4), was developed for different module and mount types
through the experimentally determined coefficients a and b, as pre-
sented in Table 2.

Tmod = Ta+GTIea+bWS (4)

2.2.5. Faiman thermal model
The Faiman thermal model (Faiman, 2008) is computed using the

correlation shown in Eq. (5), derived from observations on seven
different photovoltaic modules with mono and polycrystalline silicon
cells located at Sede Boqer in the Negev Desert. The observations of GTI
and Tmod were made using a pyranometer on the plane of array and
thermocouples attached to the back of the modules using a small bead of
quick-drying epoxy putty.

Tmod = Ta+
GTI

25+ 6.84WS
(5)

2.2.6. JIS thermal model
The JIS thermal model presented in Eq. (6), originates from the

Japanese Industrial Standard (Japanese Industrial Standard - Japanese
Standards Association, 2005) and was determined for two different
mount types, resulting in parameters a and b shown in Table 3.

Tmod = Ta+
(

a
b WS0.8 + 1

+ 2
)

GTI
GSTC

− 2 (6)

2.2.7. Migan thermal model
The Migan model (Migan, 2013) is computed using the correlation

on module temperature, air temperature, global tilted irradiance, and
wind speed, as shown in Eq. (7). This equation is derived from several
different assumptions regarding a 5-layer module considering conduc-
tion and convection losses and disregarding heat losses due to radiation.

Tmod = Ta+
0.32GTI

8.91+ 2WS
(7)

2.2.8. Dynamic model
Dynamic thermal models are based on the energy conservation

equation derived from the first law of thermodynamics. For a specific
photovoltaic module, an energy balance equation for eachmaterial layer
can be included in the model (Bevilacqua et al., 2021) or, alternatively, a
simpler model can be developed by considering the entire module
(Perovic et al., 2019). In this work, since the focus is on general models
that only uses parameters provided by the manufacturers, the later
approach is followed, and thus the module is considered as a block with
an average temperature Tmod. This approach is a compromise between
the need for input data and parameters and computational effort. The
energy balance can be defined by Eq. (8), where Cmod is the equivalent
heat capacity of the module, Qsun is the net rate of in-plane solar irra-
diance and Qcond, Qconv and Qrad are the net rates of heat transfer to the
environment through conduction, convection and thermal radiation,
respectively, and Pe is the electric power output generated by the

Table 1
Characteristics of the photovoltaic systems for Standard Test Conditions (STC).

System 1 2 3 4

Photovoltaic modules
Manufacturer Toshiba Panasonic Kyocera Sharp
Model TA60M250WA VBHN238SJ23A KS242P–3CF3CE NQ− 198AC
Technology Monocrystalline HIT Polycrystalline Monocrystalline
Pmax [W] 250.0 238.1 242.0 198.0
Vmp [V] 30.96 43.4 29.8 22.4
Imp [A] 8.07 5.50 8.13 8.84
Voc [V] 37.92 52.20 36.90 27.50
Isc [A] 8.62 5.85 8.80 9.50
αPmax [%/K] − 0.440 − 0.290 − 0.450 − 0.392
αVoc [%/K] − 0.300 − 0.288 − 0.320 − 0.357
L [m] 1.650 1.580 1.662 1.165
W [m] 0.991 0.812 0.990 0.990
Thickness [mm] 40 35 46 46
Strings
No. of modules 8 8 8 10
Position 1st row 2nd row 3rd row 5th row
Peak power [W] 2000.0 1904.8 1936.0 1980.0
Inverters
Manufacturer Tabuchi Electric Tabuchi Electric Tabuchi Electric Tabuchi Electric
Model EPU-A-T100P-SB EPU-A-T100P-SB EPU-A-T100P-SB EPU-A-T100P-SB
Efficiency (%) 93 93 93 93
Capacity [kW] 10 10 10 10

Table 2
Parameters of the Sandia models.

Name Module Type Mount a b

Kurtz
(Sandia1)

Glass/cell/glass Open rack − 3.47 − 0.0594

Sandia2 Glass/cell/glass
Close roof
mount − 2.98 − 0.0471

Sandia3
Glass/cell/polymer
sheet Open rack − 3.56 − 0.0750

Sandia 4
Glass/cell/polymer
sheet

Insulated back − 2.81 − 0.0455

Table 3
Parameters of the JIS models.

Name Mount a b

JIS1 Frame 46 0.41
JIS2 Roof 50 0.38

S. Pereira et al.
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photovoltaic cells.

Cmod
dTmod

dt
= Qsun − Qcond − Qconv − Qrad − Pe (8)

In (Luketa-Hanlin and Stein, 2012; Tuncel et al., 2020), a sensitivity
analysis was performed to evaluate the effect of the heat capacity value
on the performance of dynamic thermal models. The results showed that
varying this value had very little impact on the modeled temperature
and power output of the modules when compared to the remaining
terms of the equation. As such, the recommended value of 22800 J/K is
applied to any photovoltaic system (Luketa-Hanlin and Stein, 2012).

The absorbed solar energy is computed through Eq. (9) requiring the
area of the module, A, provided by the manufacturer, and where S is the
absorbed irradiance, (τα)n is the optical efficiency for normal incidence,
which is obtained through the product of transmissivity by the typical
absorptivity value of 0.9 (Sandia National Laboratories, n.d.). For the
equations for the computation of S and (τα)n, please check Appendix A.
Although each module has both active and inactive areas, in this study,
the total area of the photovoltaic module is assumed to be the active
area, since the ratio of active to total area is typically close to 1.

Qsun = A× S× (τα)n (9)

The heat transfer by conduction is considered negligible since the
contact area between the module and the supporting structure is small.
The net rate of heat transfer by convection can be computed through Eq.

(10), where hf and hb are the convective heat transfer coefficients at the
front and back of the photovoltaic module, respectively.

Qconv = A
(
hf + hb

)
(Tmod − Ta) (10)

Convection can be defined as free (or natural) convection, driven by
buoyancy due to temperature gradients in the fluid, or forced convec-
tion, driven by external forces, or a combination of both depending on
the flow conditions. Eqs. (11) through (16) are used to compute the
overall convective heat transfer coefficient of each surface (Kaplanis and
Kaplani, 2019). In these equations, Lc represents the length of the
module along the airflow direction. The thermodynamic and transport
properties of dry air, obtained at 1 atm and film temperature Tf , are

used. The film temperature is computed through the formula Tf
= Ta+0.25(Tmod − Ta) for natural convection (Fujii and Imura, 1972;
Kaplani and Kaplanis, 2014; Reiter et al., 2015). This model considers
the wind direction, WDs, in which 0◦ is for a wind direction from the
South (local reference meridian), through the characteristic length
Lc computed by Eq. (16) (Kaplani and Kaplanis, 2014), with As rep-
resenting the photovoltaic module azimuth.

hf/b =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

hf/b,free, if
Gr

Re2f/b
> 100

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

h3f ,free + h3f ,forced
3
√

, if0.1 ≤
Gr
Re2

f
≤ 100

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

h3b,free + h3b,forced
3
√

, if0.1 ≤
Gr
Re2b

≤ 100 ∧ leeward

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

h3b,free − h3b,forced
3
√

, if0.1 ≤
Gr
Re2

b
≤ 100 ∧ windward

hf/b,forced, if
Gr

Re2
f/b

< 0.1

(11)

Gr = Ra/Pr (12)

Ra = g
(
1
/
Tf
)
(Tmod − Ta)L3

/
(vTf αTf ) (13)

Pr = cp,Tf vTf
/
kTf (14)

Ref/b =WS× Lc,f/b
/
vTf (15)

The convective heat transfer coefficient for natural convection is
computed through Eq. (17), where Lfree is the length of the module along
the natural airflow (Kaplani and Kaplanis, 2014). The Nusselt number,
Nu, is computed using the correlations in Eq. (18) presented by Reiter
et al. (2015). The first correlation is used for laminar flow, while the
second is used for turbulent flow.

hf/b,free =
Nuf/b × kTf

Lfree
(17)

in which the critical Rayleigh value is computed using Eq. (19), where θv
is given by Eq. (20).

Racr = 108.9− 0.00178(θv) (19)

θv = 90 − β (20)

In the case of forced convection, the convective heat transfer

Lc =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

W, if windward ∧ [45 < (WDs − As) < 135 ∨ 225 < (WDs − As) < 315 ]

L, if windward ∧ [(WDs − As) ≤ 45 ∨ 135 ≤ (WDs − As) ≤ 225 ∨ (WDs − As) > 315 ]
4L×W
2(L+W)

, if leeward

(16)

Nuf/b =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎛

⎜
⎝0.825+ 0.387

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Ra sin(β)

(

1+

(
0.492
Pr

)9/16
)− 16/9

6

√
√
√
√

⎞

⎟
⎠

2

, if0.1 < Ra < Racr ∧ Pr > 0.001

0.56(Racrcos(θr))0,25 + 0.13
( ̅̅̅̅̅̅

Ra3
√

−
̅̅̅̅̅̅̅̅̅
Racr3

√ )
, if Ra ≥ Racr ∧ Pr > 0.001

(18)
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coefficients for the front and back surfaces of the module are calculated
considering the wind speed and direction, as shown in Eq. (21). The first
correlation is used for laminar flow, the second for transition flow, and
the third for turbulent flow (Sartori, 2006). The critical Reynolds
number (Recr) is 4×105, and Lc is computed using Eq. (16), which also
depends on the wind direction.

hforced, f/b =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

3.83WS0.5L− 0,5
c , if

xcr
Lc

≥ 0.95

5.74WS0.8L− 0,2
c − 16.46

/

Lc, if0.05 ≤
xcr
Lc

< 0.95

5.74WS0.8L− 0,2
c , if

xcr
Lc

< 0.05

(21)

in which the critical value xcr is given by Eq. (22).

xcr = RecrvTf
/
WS (22)

The net rate of heat transfer with the environment by thermal

radiation is computed using Eq. (23). The radiative heat transfer co-
efficients for the front and back surfaces of the module are computed
using Eqs. (24) and (25), respectively. The sky temperature is obtained
in Kelvin through the correlation presented in Eq. (26) (Swinbank,
1963), and the ground temperature (Tground) is assumed to be equal to the
air temperature. The emissivity coefficients (ε) are assumed to be 0.85
for the front surface and 0.91 for the back surface (Kaplanis and Kaplani,
2019).

Qrad = A
(
hrad ,f

(
Tmod − Tsky

)
+ hrad ,b

(
Tmod − Tground

) )
(23)

hrad, f = εfσSB
(
T2

mod +T
2
sky

)(
Tmod +Tsky

)1+ cos(β)
2

+ εfσSB
(
T2

mod +T
2
ground

)

×
(
Tmod +Tground

)
(
Tmod − Tground

)

(
Tmod − Tsky

)
1 − cos(β)

2
(24)

Fig. 2. Dynamic model flowchart.
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hrad ,b= εbσSB
(
T2

mod+T
2
sky

)(
Tmod+Tsky

)
(
Tmod − Tsky

)

(
Tmod − Tground

)
1+cos(180 − β)

2

+εbσSB
(
T2

mod+T
2
ground

)(
Tmod+Tground

)1 − cos(180 − β)
2

(25)

Tsky = 0.0552T1.5
a (26)

Finally, the electrical power output of the module, Pe, can be ob-
tained from different models. In this work, the most commonly used
electric models–simple estimate with temperature correction, and the
single diode and five parameters models (presented in Appendix A)–
were coupled to the presented dynamic thermal model. Typical values
available in the literature were assumed for different parameters of
photovoltaic modules, including surface emissivity (Kaplanis and
Kaplani, 2019), glazing transmissivity, module absorptivity (Sandia
National Laboratories, n.d.), and heat capacity (Luketa-Hanlin and
Stein, 2012). This means the model can be further optimized for
improved results by adjusting these parameters.

To solve these equations and simultaneously obtain the module
temperature and electrical power output, an iterative method must be
applied. In this work, the Dorman and Prince version of the Runge-Kutta
formula (Dormand and Prince, 1986) was used through the Matlab
function ode45.

Fig. 2 illustrates the dynamic model used to estimate the module
temperature and electrical power output of photovoltaic systems. This
structured approach ensures accurate modeling by integrating thermal
and electrical processes.

3. Results and discussion

The thermal models discussed in Section 2 were applied to the
study’s open rack mounted photovoltaic systems. Models originally
designed for roof-mounted or insulated modules, namely Sandia2,
Sandia4, and JIS2, were excluded from consideration. The results were
assessed against observations as shown in Fig. 3, which presents a direct
comparison between estimated module temperature and the measured
temperature on the back of the photovoltaic module.

The dynamic thermal model, which incorporates electric power
output, was evaluated when coupled with the simple estimate with

Fig. 3. Comparison between measured and estimated temperature with the various models.

Table 4
Statistical indicators of thermal models when compared to the measured
temperature.

Model R2 MBE
(◦C)

rMBE
(%)

RMSE
(◦C)

rRMSE
(%)

GPI

Mattei 0.975 − 0.4 − 1.8 2.7 13.7 0.620
Sandia3 0.973 0.9 4.6 2.8 14.0 0.328
Migan 0.975 1.2 6.0 2.7 13.6 0.297
JIS1 0.967 0.8 4.0 3.1 15.7 0.072
Faiman 0.969 1.6 8.2 3.0 15.1 − 0.159
Dynamic +

1d5p 0.958 − 0.4 − 2.0 3.6 18.1 − 0.205

Dynamic +

SET
0.959 − 1.0 − 5.0 3.6 17.9 − 0.395

Kurtz
(Sandia1)

0.955 2.0 10.2 3.6 18.3 − 0.932

Modified
Chenni 0.926 − 2.9 − 14.4 4.7 23.4 − 2.370
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temperature correction (SET) and single diode and 5 parameters (1d5p)
models. Selection of these electrical models for coupling with the dy-
namic thermal model was based on preliminary tests demonstrating
their suitability and accuracy for predicting the electrical photovoltaic
system performance. As detailed in Appendix A, these preliminary
evaluations showed that the SET model offers a straightforward yet
effective approach for incorporating temperature effects, making it a
practical choice for dynamic simulations. On the other hand, the 1d5p
model, with its detailed parameterization, provides a more nuanced and
precise representation of the electrical characteristics of photovoltaic
modules.

The models used in this study are derived from experimental corre-
lations and theoretical assumptions or empirical relations developed by
various researchers using data from different technologies and under
different environmental conditions. As a result, each model’s perfor-
mance can be affected by the specific characteristics and assumptions
inherent in its development. For instance, models differ in how they
account for the different heat transfer mechanisms, material properties,
and environmental conditions, which leads to variations in their accu-
racy. While some models, such as the Mattei and Modified Chenni, show
negative bias, other overestimate temperatures due to these inherent
differences.

This overestimation could also be due to the fact that temperature
measurements are taken outside of the photovoltaic module, usually
resulting in values slightly lower than the actual photovoltaic cell tem-
perature, which is the output of the thermal models. Detailed results are
provided in Table 4, which presents various statistical indicators,
namely the correlation coefficient, R2, mean bias error, MBE, relative
mean bias error, rMBE, root mean squared error, RMSE, relative root
mean squared error, rRMSE, and a global performance indicator GPI.
The GPI allows for the ranking of the models from best to worst (higher
to lower value) according to the above metrics (further details can be
found in Pereira et al. 2023). Fig. 4 displays a boxplot of these results,
providing a visual comparison of the performance of each model relative
to others based on MBE, RMSE and GPI metrics.

The assumptions discussed above are confirmed, and the steady-state
Mattei model is identified as the best in estimating module temperature,
having the highest GPI along with a mean bias error of − 0.4 ◦C and root
mean squared error of 2.7 ◦C. The best dynamic model is shown to be the
one coupled with the single diode and 5 parameters electrical model

with a mean bias error of − 0.4 ◦C and root mean squared error of 3.6 ◦C.
In Fig. 4, it is visible that the Modified Chenni and Kurts (Sandia1)
models show lower performance, particularly in terms of higher bias and
lower accuracy. Detailed results for each model and photovoltaic system
can be consulted in Table B.1 in Appendix B.

However, the measured temperature is not the actual mean tem-
perature of the module and, since the goal of this work is to have an
accurate estimation of the photovoltaic power output, the thermal
models were evaluated in terms of estimated power when coupled with
either the simple estimate with temperature correction or the single
diode and 5 parameters electrical models. For steady-state models, this
involved using the thermal model to estimate module temperature based
on environmental conditions such as irradiance and ambient tempera-
ture. This estimated temperature is then used in the electrical model to
adjust the electrical power output accordingly.

The results for the SET model are presented in Figs. 5 and 6 and
Table 5. Here, the estimated and measured electric power are directly
compared, with a remarkably similar overestimation for all thermal
models. This is also observed when using the measured temperature
with the SET model (upper left plot of Fig. 5). The best thermal model
(with the highest GPI) coupled with the SET model in terms of power
output prediction is shown to be the Kurtz (Sandia1) model with a mean
bias error of 4.6 W and root mean squared error of 54.5 W. Using the
temperature measured in the back of the module only returns better
power estimates when compared with the results for Mattei and Modi-
fied Chenni models which show the worst metrics as visible in Fig. 6. The
results for each model and photovoltaic system are presented in
Table B.2 of Appendix B.

The same analysis was carried out by coupling the thermal models
with the single diode and 5 parameters model and the corresponding
results can be seen in Figs. 7 and 8 and Table 6.

With this electrical model, an overestimation of the output power is
observed for all steady-state thermal models, being the best model the
Kurtz (Sandia1) thermal model with a mean bias error of 15.7 W and
root mean squared error of 83.6 W. All models, except the Mattei and
Modified Chenni models, show better results than the use of measured
module temperature when estimating power output with the 1d5p
electrical model. The results for each model and photovoltaic system are
presented in Table B.3 in Appendix B.

Comparing the results shown in Table 5 and Table 6, the best

Fig. 4. Boxplot of thermal model results.
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combination of thermal and electrical models for the estimation of
power output is shown to be the Kurtz (Sandia1) thermal model with the
simple estimate with temperature correction model which shows a mean

bias error of 4.6 W and a root mean squared error of 54.5 W. Also,
clearly visible when comparing Figs. 6 and 8, the use of the simple es-
timate with temperature correction model for electric power calculation

Fig. 5. Comparison between measured and estimated power output with SET model coupled with each thermal model.

Fig. 6. Boxplot of SET results.
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shows greater variability in statistical indicators across different tem-
perature models compared to the single diode 5 parameters model,
which has a maximum variation in MBE of 1.5 W between thermal
models. This means that when using the 1d5p electrical model, the
choice of thermal model is less critical for accurate power output
estimation.

While the models considered in this study include the impact of
module temperature, irradiance, and some of them wind speed and di-
rection, other meteorological variables such as relative humidity, pre-
cipitation in the form of rain or snow, and dust accumulation can also
affect the thermal response of photovoltaic modules and deserve further
investigation to enhance the robustness of the models.

4. Conclusions

In this work, several thermal models of a photovoltaic module,
including a developed dynamic thermal model, were evaluated for their
ability to estimate temperature and electrical power output using only
the characteristic parameters provided by the module manufacturer.
Measurements of GTI and temperature on the back of the module from
four different technologies were used for assessment. The best model for
estimating the measured temperature was the steady-state Mattei
model, achieving anMBE of − 0.4 ◦C. In terms of power output, the Kurtz
model coupled with the simple estimate with temperature correction
electrical model demonstrated best performance, with an MBE of 4.6 W.
When coupled with the single diode and 5 parameter electric model, the
MBE was 15.7 W. The single diode 5 parameter model showed consis-
tent results across all thermal models, with a maximumMBE variation of
only 1.5 W, indicating the choice of thermal model is less critical when
combined with a highly detailed electrical model.

This study provides a comprehensive evaluation of both steady-state
and dynamic thermal models, highlighting the importance of selecting
appropriate coupling of thermal and electrical models to improve the
accuracy of module temperature and power output estimations for
photovoltaic systems. It is shown that selecting the most accurate model
for estimating module temperature does not necessarily yield the best
power output estimates, as the accuracy of power output predictions
strongly depends on the selected electrical model. It was also shown that
using one of the studied thermal models (excluding the Mattei and
Modified Chenni models) results in better estimates of photovoltaic
power output than using temperature measurements on the back of the
modules.

Table 5
Statistical indicators of SET model output coupled with each thermal model.

Model R2 MBE
(W)

rMBE
(%)

RMSE
(W)

rRMSE
(%)

GPI

Kurtz (Sandia1) 0.995 4.6 0.7 54.5 8.5 0.329
Faiman 0.994 7.4 1.2 55.3 8.6 0.088
JIS1 0.994 7.2 1.1 55.5 8.6 0.071
Dynamic 0.995 12.0 1.9 54.4 8.5 0.061
Sandia3 0.994 10.2 1.6 54.9 8.6 0.033
Migan 0.994 9.5 1.5 55.3 8.6 0.008
Measured

temperature
0.994 13.7 2.1 57.4 8.9 − 0.505

Mattei 0.994 16.3 2.5 57.0 8.9 − 0.562
Modified

Chenni 0.992 27.6 4.3 66.7 10.4 − 2.606

Fig. 7. Comparison between measured and estimated power output with the single diode and 5 parameters model coupled with each thermal model.
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The evaluated models allow researchers and power plant operators
to estimate the temperature and power output of PV systems without the
need for extensive and costly experimental testing. These models can be
employed for forecasting the power output of photovoltaic modules if
forecasts of GTI and other relevant weather variables are available.
Further refinements in thermal modeling could focus on improving ac-
curacy under varying environmental conditions or specific module
technologies, while continuous validation and adaptation of these
models with experimental data from power plants could enhance their
applicability and reliability in different operational settings.

The findings can aid in the planning and development of PV systems
by providing reliable tools for performance estimation, ultimately
enhancing the efficiency and feasibility of PV installations. This study
highlights the practical benefits and scientific and technological
importance of these models, offering valuable insights for optimizing
and managing photovoltaic systems, and paving the way for more ac-
curate and efficient renewable energy solutions.
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Fig. 8. Boxplot of 1d5p model results.

Table 6
Statistical indicators of single diode and 5 parameters model output coupled
with each thermal model.

Model R2 MBE
(W)

rMBE
(%)

RMSE
(W)

rRMSE
(%)

GPI

Kurtz (Sandia1) 0.987 15.7 2.5 83.6 13.0 0.250
JIS1 0.987 15.8 2.5 83.7 13.0 0.216
Faiman 0.987 16.0 2.5 84.0 13.1 0.119
Dynamic 0.987 16.0 2.5 84.2 13.1 0.046
Migan 0.987 16.2 2.5 84.4 13.1 0.000
Sandia3 0.987 16.3 2.5 84.5 13.2 − 0.059
Measured

Temperature
0.987 16.3 2.5 84.8 13.2 − 0.140

Mattei 0.987 16.7 2.6 85.4 13.3 − 0.348
Modified Chenni 0.986 17.2 2.7 86.5 13.5 − 0.750
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Appendix A. - Electric models of photovoltaic modules

Here, a preliminary review and assessment of standard electric models of photovoltaic modules, namely, a simple estimate model and an
equivalent circuit model using a data-driven model as reference, is presented.

The models were evaluated against observations using as input the characteristics of the photovoltaic modules, observed GTI and temperature
measured at the back of the modules.

For these models, the incident irradiance, S, is obtained through Eq. (27) (Bevilacqua et al., 2021), where θb is the incidence angle of direct solar
radiation, θd is the equivalent diffuse incidence angle obtained through Eq. (28) (Duffie and Beckman, 2013) which are also used to compute the beam
and diffuse incidence angle modifiers, Kθb and Kθd , respectively. The incident angle modifier is computed as in Eq. (29) (Duffie and Beckman, 2013).
The transmittance values can be obtained through Eqs. (30) and (31), respectively, where θr is the angle of refraction computed through Eq. (32).
Typical input parameters for photovoltaic modules suggested in (De Soto et al., 2006) were used in this work, namely, the refractive index n = 1.526,
the extinction coefficient Kg = 4 m− 1 and the thickness Lg = 0.002m of the glazing.

S = DNIcosθbKθb +(GTI − DNIcosθb)Kθd (27)

θd = 59.7 − 0.1388β+0.001497β2 (28)

Kθ =
τ(θ)
τ(0) (29)

τ(θ) = e
−

(
KgLg

cos(θr )

)
[

1 −
1
2

(
sin2

(θr − θ )

sin2
(θr + θ )

+
tan2(θr − θ )

tan2(θr + θ )

)]

(30)

τ(0) = e− (KgLg)
[

1 −
(
1 − n
1+ n

)2
]

(31)

θr = sin− 1
[
1
n
sin(θ)

]

(32)

where β stands for the tilt angle of the modules. The air mass modifier is computed as in Eqs. (33) and (34) (Duffie and Beckman, 2013), where the
constants denoted as ai can be obtained from (De Soto et al., 2006) for different photovoltaic cells. In this case, the coefficients for monocrystalline
silicon were employed, since De Soto et al. (De Soto et al., 2006) also showed that selecting a single set of coefficients and applying them for any cell
type results in outcomes which are comparable to using different air mass modifier relationships for each cell type.

M =
∑4

0
ai(AM)

i (33)

AM =
1

cos(θz) + 0.5057(96.080 − θz)− 1.634 (34)

The simple estimate model with temperature correction (SET) (Evans and Florschuetz, 1977) is described by Eq. (35), where the estimated power
output is directly proportional to the solar irradiance absorbed by the photovoltaic module (S) and the air mass modifier (M) as well as to some
characteristics of the modules, namely its efficiency at STC given by the manufacturer (ηSTC) and the surface area (A), including a correction due to the
module temperature as in (Evans and Florschuetz, 1977).

Pe = ηSTC × A× S×M× (1+ αPmax × (Tmod − TmodSTC) ) (35)

This correction is done through the peak power temperature coefficient, αPmax , often provided in the datasheet of the photovoltaic modules, being
TmodSTC the temperature of the photovoltaic cell at STC, namely 25◦C.

The necessary parameters for the direct computation of the power output of a module in real conditions using equivalent circuit models are not
readily available. Still, the only commonly available electrical characteristics from the manufacturers are the maximum power (Pmax), current (Imp)
and voltage (Vmp) at maximum power, short-circuit current (Isc) and open-circuit voltage (Voc), all for standard test conditions (STC). The parameters
needed for a given equivalent electric circuit model need to be computed from these values and then adjusted for the real conditions in the field,
namely different conditions of incident solar irradiance and cell temperature.

The single diode and 5 parameters model (1d5p) as represented in Fig. A.1 and with I-V curve equation as given in Eq. (36) includes a current
source which is caused by the photovoltaic effect and called photovoltaic current, Ipv, in parallel with a diode behaving as the p-n junction and a
resistance, Rp, which accounts for the leakage current in the p-n junction and a series resistance, Rs, that represents the electric resistances of the
silicon, of the electrodes and the contact between these materials. In this model, the five parameters were determined based on the method presented
by Castro (Castro, 2018) in which expressions for the parameters I0STC and IpvSTC are obtained as a function of the remaining three parameters, which in
turn are obtained from the equations at the three characteristic points in the I-V curve, thus resulting in the system of equations given by Eqs. (37)
through (41).
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Fig. A.1. - Single diode and 5 parameters equivalent electric circuit.

I = Ipv − I0

⎛

⎜
⎝e

V+IRs
mVT − 1

⎞

⎟
⎠ −

V + IRs
Rp

(36)

ImpSTC = IscSTC −
VmpSTC + RsImpSTC − RsIscSTC

Rp
−

(

IscSTC −
VocSTC − RsIscSTC

Rp

)

e
VmpSTC+RsImpSTC − VocSTC

mVTSTC (37)

0 = ImpSTC+
−
(RpIscSTC − VocSTC+RsIscSTC)e

VmpSTC+RsImpSTC − VocSTC
mVTSTC

mVTSTCRp
− 1

Rp

1+
Rs(RpIscSTC − VocSTC+RsIscSTC)e

VmpSTC+RsImpSTC − VocSTC
mVTSTC

mVTSTCRp
+ Rs

Rp

(38)

−
(RpIscSTC − VocSTC+RsIscSTC)e

RsIscSTC − VocSTC
mVTSTC

mVTSTCRp
− 1

Rp

1+
Rs(RpIscSTC − VocSTC+RsIscSTC)e

RsIscSTC − VocSTC
mVTSTC

mVTSTCRp
+ Rs

Rp

= −
1
Rp

(39)

I0STC =

(

IscSTC −
VocSTC − RsIscSTC

Rp

)

e
− VocSTC
mSTCVTSTC (40)

IpvSTC = I0STCe
VocSTC

mSTCVTSTC +
VocSTC
Rp

(41)

The real conditions in the field must be considered, which is done through Eq. (42) to (47).

Isc = IscSTC
S×M
GSTC

(1+ αIsc(Tmod − TmodSTC) ) (42)

Voc,g = mVTSTCln

⎛

⎜
⎝

S×M
GSTCIpvSTCRp − Voc,g

I0STCRp

⎞

⎟
⎠ (43)

Voc = Voc,g(1+ αVoc(Tmod − TmodSTC) ) (44)

m = mSTC (45)

I0 =

(

Isc −
Voc − RsIsc

Rp

)

e
− Voc
mVT (46)

Ipv = I0e
Voc
mVT +

Voc
Rp

(47)

Finally, the power output is estimated through Eq. (48) and a system of non-linear equations, Eqs. (49) and (50), with initial values given by Eqs.
(51) and (52).

Pe = Vmp × Imp (48)

Imp = Isc −
Vmp + RsImp − RsIsc

Rp
−

(

Isc −
Voc − RsIsc

Rp

)

e
Vmp+RsImp − Voc

mVT (49)

−
(RpIsc − Voc+RsIsc)e

Vmp+RsImp − Voc
mVT

mVTRp
− 1

Rp

1+
Rs(RpIsc − Voc+RsIsc)e

Vmp+RsImp − Voc
mVTSTC

mVTRp
+ Rs

Rp

= −
Imp
Vmp

(50)
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Imp(0) = ImpSTC(1+ αIsc(Tmod − TmodSTC) ) (51)

Vmp(0) = VmpSTC(1+αVoc(Tmod − TmodSTC) ) (52)

The recently published international standard IEC 60891 ED3 (IEC, 2021IEC, 2021), specifically the procedure 4.4.4, was used in this work as an
empirical model based on measurements for comparison and as a reference for this type of modeling approach. This model requires the current and
voltage values at the three characteristic points of the I-V curve for four different conditions of incident irradiance and temperature.

This dataset was obtained for the four systems considered in this work through indoor measurements in the lab for various combinations of
irradiance at normal incidence and cell temperature, namely (1000 W/m2, 25℃), (1000 W/m2, 60℃), (200 W/m2, 25℃) and (200 W/m2, 60℃) by
means of a solar simulator and a temperature chamber at AIST (Ustun et al., 2019). The solar simulator is comprised of six xenon lamps with elliptical
mirrors and ultraviolet, AM1.5 G and iron net dark filters with an output range of 100–1300 W/m2 while the temperature chamber has a range of 15
℃ to 65℃ (Ustun et al., 2019).

The current and voltage for maximum power in real conditions is then obtained through bi-linear interpolation thus allowing for the estimation of
the power output.

The electric models presented were used to estimate the power output of the four different photovoltaic systems using the measured GTI, DNI and
module temperature data, thus generating 10-minute power output values for each electric model. Results were compared to the power output
measurements and with each other as shown in Table A.1. The same statistical indicators for each system/technology are presented separately in
Table A.2. All models tend to show an overestimation of the power output which can result in part from the fact that the temperature used as input to
these models is the one measured at the back of the photovoltaic modules and not the photovoltaic cell temperature. It might be the case, as it often is,
that the temperature measured this way is lower than the actual temperature of the cell and consequently the power estimated will be higher than the
actual power output of the photovoltaic module.

The IECmodel was shown to have better results which was expected since it is based on measurements of the specific systems assessed in this work.
The following model is the simple estimate with temperature correction which, although not as detailed, achieved in this case better results than the
single diode and 5 parameters model, especially in terms of RMSE. Both of these models perform slightly better for systems 2 and 3 (HIT and poly-
crystalline technologies, see Table A.2).

Table A.1
Statistical metrics of the electric model results.

Model R2 MBE (W) rMBE (%) RMSE (W) rRMSE (%) GPI

IEC 0.994 − 3.6 − 0.6 59.0 9.2 0.511
SET 0.994 13.7 2.1 57.4 8.9 0.108
1d5p 0.987 16.3 2.5 84.8 13.2 − 2.020

Table A.2
– Statistical indicators of the results of electric models using measured temperature for each system.

Model System R2 MBE (W) rMBE (%) RMSE (W) rRMSE (%)

SET

1 0.988 26.2 4.0 61.8 9.3
2 0.992 4.0 0.6 52.5 7.9
3 0.991 2.3 0.3 55.4 8.4
4 0.989 22.4 3.4 59.4 9.0

1d5p

1 0.970 36.6 5.5 99.1 15.0
2 0.982 4.6 0.7 77.6 11.7
3 0.981 5.1 0.8 78.9 12.0
4 0.980 18.8 2.8 81.7 12.4

IEC

1 0.989 18.5 2.8 59.4 9.0
2 0.987 − 32.8 − 5.0 66.3 10.0
3 0.991 − 0.9 − 0.1 55.6 8.4
4 0.991 0.9 0.1 54.0 8.2

Appendix B. - Temperature model results for each photovoltaic system

Table B.1
- Statistical indicators of the results of thermal models when compared to the measured temperature for each system.

Model System R2 MBE (◦C) rMBE (%) RMSE (◦C) rRMSE (%)

Modified
Chenni

1 0.857 − 2.9 − 11.3 4.6 18.0
2 0.885 − 2.1 − 8.2 4.2 16.9
3 0.828 − 3.6 − 13.5 5.1 19.4
4 0.857 − 2.9 − 11.3 4.6 18.0

Mattei

1 0.951 − 0.3 − 1.0 2.7 10.5
2 0.952 0.2 0.8 2.7 10.9
3 0.952 − 0.9 − 3.3 2.7 10.2
4 0.949 − 0.5 − 1.9 2.8 10.8

(continued on next page)
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Table B.1 (continued )

Model System R2 MBE (◦C) rMBE (%) RMSE (◦C) rRMSE (%)

Kurtz
(Sandia1)

1 0.909 2.0 7.7 3.7 14.3
2 0.896 2.8 11.4 4.0 16.1
3 0.935 1.3 5.0 3.1 11.9
4 0.909 2.0 7.7 3.7 14.3

Sandia3

1 0.947 0.9 3.4 2.8 11.0
2 0.941 1.7 7.0 3.0 12.1
3 0.959 0.2 0.8 2.5 9.4
4 0.947 0.9 3.4 2.8 11.0

Faiman

1 0.939 1.6 6.2 3.0 11.7
2 0.923 2.5 9.9 3.4 13.8
3 0.958 0.9 3.5 2.5 9.5
4 0.939 1.6 6.2 3.0 11.7

JIS1

1 0.933 0.8 2.9 3.2 12.3
2 0.929 1.6 6.5 3.3 13.2
3 0.948 0.1 0.4 2.8 10.7
4 0.933 0.8 2.9 3.2 12.3

Migan

1 0.951 1.1 4.4 2.7 10.5
2 0.939 2.0 8.0 3.1 12.3
3 0.965 0.5 1.8 2.3 8.7
4 0.951 1.1 4.4 2.7 10.5

Dynamic + SET

1 0.907 − 0.8 − 2.9 3.7 14.4
2 0.935 − 0.6 − 2.3 3.2 12.6
3 0.909 − 1.4 − 5.1 3.7 13.9
4 0.915 − 1.2 − 4.8 3.6 13.8

Dynamic + 1d5p

1 0.902 − 0.2 − 0.8 3.9 14.8
2 0.932 0.0 0.0 3.3 12.9
3 0.909 − 0.8 − 2.8 3.7 13.9
4 0.915 − 0.6 − 2.5 3.6 13.7

Table B.2
Statistical indicators of SET model output coupled with each thermal model for each system.

Model System R2 MBE (W) rMBE (%) RMSE (W) rRMSE (%)

Measured
temperature

1 0.988 26.2 4.0 61.8 9.3
2 0.992 4.0 0.6 52.5 7.9
3 0.991 2.3 0.3 55.4 8.4
4 0.989 22.4 3.4 59.4 9.0

Modified
Chenni

1 0.982 41.6 6.3 76.6 11.6
2 0.991 12.5 1.9 55.9 8.5
3 0.989 20.3 3.1 60.4 9.2
4 0.984 36.0 5.4 71.8 10.9

Mattei

1 0.989 28.1 4.2 61.3 9.3
2 0.992 5.4 0.8 52.8 8.0
3 0.991 6.5 1.0 53.4 8.1
4 0.989 25.2 3.8 60.1 9.1

Kurtz
(Sandia1)

1 0.991 15.3 2.3 54.6 8.3
2 0.992 − 4.0 − 0.6 52.9 8.0
3 0.990 − 5.7 − 0.9 56.8 8.6
4 0.991 12.8 1.9 53.7 8.1

Sandia3

1 0.990 21.7 3.3 57.2 8.6
2 0.992 0.0 0.0 52.3 7.9
3 0.991 0.7 0.1 54.1 8.2
4 0.991 18.5 2.8 55.8 8.4

Faiman

1 0.990 18.6 2.8 57.0 8.6
2 0.992 − 2.0 − 0.3 52.7 8.0
3 0.991 − 2.5 − 0.4 55.9 8.5
4 0.991 15.7 2.4 55.5 8.4

JIS1

1 0.990 18.2 2.8 56.8 8.6
2 0.992 − 2.2 − 0.3 52.8 8.0
3 0.990 − 2.8 − 0.4 56.9 8.6
4 0.991 15.4 2.3 55.3 8.4

Migan

1 0.990 20.9 3.2 57.6 8.7
2 0.992 − 0.5 − 0.1 52.4 7.9
3 0.991 − 0.2 0.0 54.8 8.3
4 0.991 17.7 2.7 56.1 8.5

Dynamic

1 0.990 22.4 3.4 56.2 8.5
2 0.992 2.9 0.4 51.5 7.8
3 0.991 0.7 0.1 54.1 8.2
4 0.991 21.9 3.3 55.9 8.4
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Table B.3
Statistical indicators of single diode and 5 parameters model output coupled with each thermal model for each system.

Model System R2 MBE (W) rMBE (%) RMSE (W) rRMSE (%)

Measured
temperature

1 0.970 36.6 5.5 99.1 15.0
2 0.982 4.6 0.7 77.6 11.7
3 0.981 5.1 0.8 78.9 12.0
4 0.980 18.8 2.8 81.7 12.4

Modified
Chenni

1 0.970 36.7 5.5 99.8 15.1
2 0.982 3.6 0.5 77.3 11.7
3 0.980 6.5 1.0 81.1 12.3
4 0.978 21.8 3.3 86.2 13.0

Mattei

1 0.970 36.8 5.6 99.5 15.0
2 0.982 4.7 0.7 77.6 11.7
3 0.981 5.7 0.9 79.6 12.1
4 0.979 19.7 3.0 83.1 12.6

Kurtz
(Sandia1)

1 0.971 36.5 5.5 98.4 14.9
2 0.982 5.5 0.8 77.6 11.7
3 0.982 4.4 0.7 77.9 11.8
4 0.981 16.6 2.5 78.8 11.9

Sandia3

1 0.970 36.7 5.6 99.0 15.0
2 0.982 5.2 0.8 77.6 11.7
3 0.981 5.1 0.8 78.8 11.9
4 0.980 18.1 2.7 80.8 12.2

Faiman

1 0.971 36.6 5.5 98.6 14.9
2 0.982 5.3 0.8 77.5 11.7
3 0.981 4.7 0.7 78.3 11.9
4 0.981 17.3 2.6 79.8 12.1

JIS1

1 0.971 36.4 5.5 98.4 14.9
2 0.982 5.2 0.8 77.6 11.7
3 0.982 4.5 0.7 77.9 11.8
4 0.981 17.0 2.6 79.2 12.0

Migan

1 0.971 36.7 5.5 98.9 15.0
2 0.982 5.2 0.8 77.6 11.7
3 0.981 5.0 0.8 78.6 11.9
4 0.980 17.8 2.7 80.6 12.2

Dynamic

1 0.971 36.5 5.5 98.8 14.9
2 0.982 5.0 0.8 77.8 11.8
3 0.982 4.7 0.7 78.2 11.9
4 0.981 18.0 2.7 80.3 12.1
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