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Abstract: Solar photovoltaic power plants typically consist of rows of solar panels, where the accurate
estimation of solar irradiance on inclined surfaces significantly impacts energy generation. Existing
practices often only account for the first row, neglecting shading from subsequent rows. In this
work, ten transposition models were assessed against experimental data and a transposition model
for inner rows was developed and validated. The developed model incorporates view factors and
direct and circumsolar irradiances shading from adjacent rows, significantly improving global tilted
irradiance (GTI) estimates. This model was validated against one-minute observations recorded
between 14 April and 1 June 2022, at Évora, Portugal (38.5306, −8.0112) resulting in values of mean
bias error (MBE) and root-mean-squared error (RMSE) of −12.9 W/m2 and 76.8 W/m2, respectively,
which represent an improvement of 368.3 W/m2 in the MBE of GTI estimations compared to the
best-performing transposition model for the first row. The proposed model was also evaluated in an
operational forecast setting where corrected forecasts of direct and diffuse irradiance (0 to 72 h ahead)
were used as inputs, resulting in an MBE and RMSE of −33.6 W/m2 and 169.7 W/m2, respectively.
These findings underscore the potential of the developed model to enhance solar energy forecasting
accuracy and operational algorithms’ efficiency and robustness.

Keywords: solar radiation; solar energy; transposition model; solar power plant; forecast

1. Introduction

In recent decades, there has been a significant surge in the installed capacity of PV
systems. In 2022 alone, solar photovoltaics comprised two-thirds of the new renewable
energy capacity added to the grid, totaling 239 GW [1]. This growth is driven by global
efforts to decarbonize the economy and achieve net-zero greenhouse gas emissions by 2050.
The International Energy Agency (IEA) estimates that PV systems will continue to expand,
with new capacity projected to exceed 700 GW by 2028 [2]. With the rapid increase in
the installed capacity of solar energy systems worldwide and the characteristic variabil-
ity of solar radiation, accurate estimation and forecasting of power output is becoming
increasingly important. The factor that most affects this output is the irradiance incident on
the solar energy collectors. However, weather stations, satellites, and numerical weather
prediction (NWP) models usually provide global (GHI) and diffuse (DIF) irradiance data
on the horizontal plane and direct irradiance on a plane normal to the sun’s rays (DNI).
Therefore, transposition models that can compute the irradiance incident on a tilted surface
from the available variables are essential.

Various transposition models have been developed and studied over the years. They can
be divided into analytical, semi-empirical, and empirical models [3]. Analytical models are
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based on the laws of physics and only require the geometric characteristics and position data
of the surface, while semi-empirical and empirical models also rely on observation data.

Physical models are usually based on the sum of the direct, diffuse, and reflected
irradiances on the tilted surface. The computation of the direct and reflected components
is often the same for all models, with the computation of the diffuse irradiance being the
distinct factor [4]. Among these models, some assume a uniform sky dome radiance with
the same intensity in all directions, termed isotropic. Anisotropic models, on the other
hand, define indices representing the irradiance intensity from different regions of the sky
dome, such as the circumsolar region (an annular region surrounding the sun disk), the
horizon-brightening region (a band along the horizon), and the background or remaining
region often called the isotropic region.

Transposition models also tend to show varying degrees of performance depending
on sky conditions, whether clear, cloudy, or overcast [5]. The complexity and variability of
the shape and position of clouds make the accurate instantaneous evaluation of the diffuse
component extremely difficult without knowing the distribution of sky radiance. A model
considering this would be more complex and require not only the simple measurement
of the irradiance on the tilted plane but many more variables that are not commonly mea-
sured, such as the spectral radiance. Thus, physical models must rely on assumptions
that can result in high transient errors [6]. Some of the most referenced analytical physical
models in the literature are reviewed in this work, such as the Klucher [7], Hay–Davies [8],
and Modified Bugler [9] models. On the other hand, abundant research on the compar-
ison of the different models at different locations and positions of the surfaces has been
published [3,4,10,11]. From these, no single model emerges as the best for all studied lo-
cations/positions, but it has been widely demonstrated that anisotropic models tend to
outperform isotropic models when compared to measured data because they consider the
angular dependence of sky radiance, thus reflecting real-world conditions more closely
compared to isotropic models.

Semi-empirical and empirical models, including machine learning approaches which
are data-driven, tend to be site-dependent, which means that they are biased towards
specific locations and/or tilt and azimuth angles [12–16], and will not be considered
here. While these models are gaining relevance and can provide substantial benefits in
some situations, their applicability is often limited because extensive local experimental
data are required for the model calibration. This increases the challenge and difficulty of
generalizing them to different geographic locations or environmental conditions. Given the
focus of this study on developing a transposition model that is applicable across various
conditions without the need for site-specific parameter adjustments, these models were
excluded to maintain a broader applicability and robustness of proposed approach.

Most transposition models have been developed for a tilted surface in an open field.
However, a solar energy power plant, such as photovoltaic power plants, comprises several
rows of modules, where rows other than the first have a different view of the sky dome
and the ground compared to the first row. Therefore, when computing the global tilted
irradiance (GTI) on a panel not located in the front row, the transposition model should
be adjusted to account for the fraction of the sky dome obscured by the rows at the front,
as well as the possible blocking of the direct beam and circumsolar irradiance from the
sun disk and the reflected irradiance coming from the front row and the ground between
them. Since in large solar power plants the number of panels in the first row can be
much smaller than the number of panels in the remaining rows, having a more accurate
transposition model for these panels can improve the estimation of power output. Few
authors have focused on this aspect, with the most notable and recent works being those
by Applebaum et al. [17], Varga and Mayer [18], and Tschopp et al. [19].

As mentioned above, one aspect of higher complexity in transposition models is the
parametrization of diffuse irradiance. This component of the GTI is strongly related to
the diffuse horizontal irradiance (DIF) and the global horizontal irradiance (GHI), which
are typically measured in radiometric stations. However, if only GHI is measured, a
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separation method is needed to estimate DNI and DIF. If there are no measurements
at the location of interest, estimations or forecast values need to be used instead. This
increases the uncertainty associated with the estimation of GTI and, consequently, of power
output. Of particular interest in this work is the usage of forecast values of solar radiation
components, with the goal of predicting power output in a time horizon up to three days
with an acceptable accuracy. In this regard, when utilizing forecast DNI and DIF as inputs,
a transposition model allows for the forecasting of GTI and power output of photovoltaic
systems if coupled with thermal and electric models of photovoltaic systems.

These forecasts can be obtained from a global operational numerical weather pre-
diction model (NWP) such as the Integrated Forecasting System (IFS) of the European
Centre for Medium-range Forecasts (ECMWF) [20]. By incorporating constitutive and
state equations describing physical phenomena in the atmosphere, subject to boundary
and initial conditions, NWP models provide the evolution of the atmospheric state, which
include surface-level GHI. In the case of IFS/ECMWFS, DNI is also included, allowing for
the study and assessment of solar resources and operational forecasts [21,22].

This work presents a comprehensive review of transposition models, categorizing
models that do not include shading or irradiance masking as “first-row models”, and those
that include these aspects as “inner-row models”. The development of a transposition
model for inner rows is also presented, which can be applied to a desired first-row model.
The proposed model is validated using experimental values, which are also used for the
assessment and comparison of all models. The use of operational forecasts of solar irradi-
ance is assessed to estimate the impact of the accuracy of the transposition model on GTI
prediction at different time horizons. The primary aim is to develop a transposition model
for inner rows of solar power plants, validate the proposed model against experimental
measurements, and evaluate its performance using operational solar radiation forecasts.
This study addresses gaps in the existing literature, which mainly focuses on the first row of
panels, neglecting the impact of direct and anisotropic diffuse shading on inner rows. The
hypotheses focus on the expected improvement in the accuracy of the developed model’s
results over existing models for the first row, as well as its robustness when used with
forecasted irradiance data as input.

This paper is organized as follows: An initial review of the most used analytical
models and recent models developed for rows that are not the first is presented in Section 2.
Section 3 details the development of a transposition model based on the works of Tschopp
et al. and Varga and Mayer [18,19] for surfaces not located in the first row. Section 4 presents
the experimental setup and procedure for testing the different models, and Section 5
discusses the evaluation and results. Section 6 establishes a connection with solar irradiance
forecasting by applying the developed model to forecasted values of direct normal and
diffuse horizontal irradiance, integrating it as an essential part of an operational algorithm
for forecasting solar irradiance on a tilted surface. Finally, Section 7 presents the conclusions
of this work.

2. Solar Irradiance Transposition Models for Tilted Surfaces

This section provides a review of analytical transposition models, ranging from the
most widely used and commonly referenced transposition models that do not consider
shading and obscuration to the few and most recently proposed models designed for inner
rows in solar power plants.

2.1. Transposition Models for the First Row of Collectors in Solar Power Plants

For modeling solar irradiance on a tilted surface (GTI), nine of the most commonly
used analytical transposition models are reviewed, where one is isotropic and the remaining
are anisotropic models. In all the following equations, α is the solar height, Φ is the solar
zenith angle, γs is the solar azimuth, θ is the incidence angle on the surface, β is the tilt
angle of the surface, and γp is the azimuth of the surface, taking the horizontal plane and
the local meridian as references.
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Analytical transposition models include the computation of tilt factors for determining
the beam (Rb), diffuse (Rd), and reflected (Rr) irradiances on the tilted surface. These factors
are used in Equation (1) for determining GTI, where DHI is the direct horizontal irradiance
as defined in Equation (2):

GTI = RbDHI + RdDIF + RrGHI (1)

DHI = DNI × cos(Φ) (2)

For the first row of photovoltaic panels, assuming no obstruction of the sun’s rays, the
direct irradiance on the tilted plane can be calculated at any given instant by multiplying
DHI with the beam radiation tilt factor described in Equation (3):

Rb =
cos(θ)
cos(Φ)

(3)

The irradiance reflected onto the tilted surface by the surrounding surfaces is assumed
isotropic and is modeled by multiplying GHI with the reflected irradiance tilt factor Rr
(Equation (4)), which consists of the product of the albedo of the surrounding ground (ρg)
and the view factor Fg (Equation (5)).

Rr = ρgFg, (4)

Fg =
1 − cos(β)

2
(5)

Numerous models have been proposed for determining the diffuse tilt factor Rd since
the diffuse radiation is highly variable due to its dependency on atmospheric conditions.
Models that consider the diffuse irradiance on a tilted surface coming from the entire
sky dome to have the same intensity are isotropic, while others that divide the sky dome
into regions with different intensities of diffuse radiance are called anisotropic models.
These regions are usually the circumsolar region, which constitutes an annular region
surrounding the sun, i.e., the horizon-brightening region, which is the region of the sky
dome near the horizon, and the remaining sky dome region is termed the isotropic region.

In the following, several models are presented, including the widely used isotropic
model that was developed by Liu and Jordan [23]. It assumes that the diffuse solar radiation
is uniformly spread across the sky, which simplifies the calculation of solar radiation on
inclined surfaces by considering the sky as a homogenous light source. This model only
considers the tilt angle of the surface as input, as presented in Equations (6) and (7), where
the diffuse tilt factor is simply a view factor between the surface and the sky. Its advantages
lie in its simplicity and widespread adoption for preliminary solar energy designs and
studies. However, the model’s accuracy can be compromised due to its isotropic assumption,
leading to potential inaccuracies in non-homogenous sky conditions and environments with
significant obstructions. Despite these limitations, it remains a significant tool in solar energy
research and engineering, often serving as a benchmark for more complex anisotropic models
that account for the directional distribution of diffuse radiation.

Liu and Jordan model (LJ):
Rd = Fs (6)

Fs =
1 + cos(β)

2
(7)

The remaining models analyzed are anisotropic models, which are often more repre-
sentative of real sky conditions.

Bugler model (B):
The Bugler model [24] includes a circumsolar region in which its contribution to the

diffuse irradiance is assumed to be 5% of DNI and can be computed using Equation (8),
where Fs is the sky view factor given by Equation (7). Bugler derived this model by analyz-
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ing solar radiation data and developing equations that incorporate these anisotropic factors,
resulting in more accurate predictions of solar irradiance on tilted surfaces. However, this
model overlooks the contribution of the circumsolar region to the isotropic irradiance and
was later modified.

Rd = Fs + 0.05
DHI × Rb

DIF
(8)

Temps and Coulson model (TC):
The Temps and Coulson [25] model, defined by Equation (9), considers the circum-

solar region through the factor
[
1 + cos2(θ)sin3(Φ)

]
and the horizon brightening through[

1 + sin3
(

β
2

)]
. This model was obtained through measurements of direct and diffuse

solar flux incident on slopes of various orientations for clear-sky conditions through a
pyranometer.

Rd = Fs

[
1 + cos2(θ)sin3(Φ)

][
1 + sin3

(
β

2

)]
(9)

Klucher model (K):
The Klucher model [7], given by Equation (10), is similar to the Temps and Coulson

model, except for the inclusion of the clearness index f , defined by Equation (11). Under
overcast conditions, this model reduces to the isotropic model (where f tends to 0). It was
derived from a 6-month dataset of measured hourly diffuse and total solar radiation on a
horizontal plane and total radiation on surfaces with 0◦ azimuth and tilts of 37◦ and 60◦.

Rd = Fs

[
1 + f sin3

(
β

2

)][
1 + f cos2(θ)sin3(Φ)

]
(10)

f = 1 −
(

DIF
DHI + DIF

)2
(11)

Hay–Davies model (HD):
The Hay–Davies model [8], which does not consider horizon brightening, is given by

Equation (12). Here, A is named the anisotropy index, also termed direct or beam irradiance
index, and is defined in Equation (13), where ENI is the extraterrestrial normal irradiance.
This index represents the total transmittance of the atmosphere for beam radiation and
is used to define the portion of circumsolar (A × Rb) and isotropic (Fs(1 − A)) diffuse
irradiance on the tilted surface.

Rd = A × Rb + Fs(1 − A) (12)

A =
DNI
ENI

(13)

Ma Iqbal model (MI):
The Ma Iqbal model [26], described through Equation (14), is similar to the Hay–Davies

model but uses the clearness index kT (Equation (15)) to define the circumsolar portion of
diffuse irradiance instead of the direct irradiance index. The clearness index is computed as
the ratio of global horizontal irradiance (GHI) to extraterrestrial horizontal irradiance (EHI).
This formulation allows the Ma Iqbal model to account for varying sky conditions and solar
geometry, enhancing its applicability in solar energy studies and irradiance forecasting.

Rd = kT Rb + Fs(1 − kT) (14)

kT =
GHI
EHI

(15)

Modified Bugler model (MB):
The Modified Bugler model [9] improves the Bugler model by considering the contri-

bution of the circumsolar region to the background isotropic diffuse radiance, computed
through Equation (16). This model was validated using extensive datasets from various lo-
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cations around the world. These datasets included measured solar radiation data collected
under different sky conditions, such as clear sky, cloudy sky, and overcast sky conditions.
Additionally, the model was validated against experimental data that accounted for various
surface orientations, including horizontal, tilted, and vertical surfaces.

Rd =

(
1 − 0.05

DHI
DIF

)
Fs + 0.05

DHI × Rb
DIF

(16)

Modified Ma Iqbal model (MMI):
The modified Ma Iqbal model (Equation (17)) [3] is similar to the original model

proposed by this author but uses a clearness index (Equation (18)) adjusted with an optical
air mass as defined in Equation (19) [27].

Rd = k′T Rb + (1 − k′T)Fs a = 1, (17)

k′T =
kT

1.031exp
(

−1.4
0.9+ 9.4

M

)
+ 0.1

(18)

M =
1

cos(Φ) + 0.15(93.885 − Φ)−1.253 (19)

Reindl model (R):
The Reindl model [28], based on the Hay–Davies model, uses the same anisotropic

index, A (Equation (13)), but includes an additional term to account for horizon brightening
(Equation (20)). This model was developed based on datasets from locations across the USA.

Rd = A × Rb + Fs(1 − A)

[
1 +

√
DHI

DHI + DIF
sin3

(
β

2

)]
(20)

Perez model (P):
The Perez model, one of the most widely used transposition models in the literature,

is included in this work even though it cannot be classified as an analytical model since it is
built upon measured data and is subject to continuous revisions for this reason. The version
of the Perez model [29] used in this work, often referred to as Perez3, is considered the most
widely accepted version of this model [4]. This model categorizes the sky in three zones:
the circumsolar zone, horizon band, and isotropic zone. The diffuse irradiance tilt factor is
computed using Equations (21)–(27), with the assumption that the circumsolar irradiance
originates from a point source and irradiance from the horizon from an infinitesimally thin
region. The zenith angle is exceptionally used in radians for Equation (26). The coefficients
Fij were determined using data from 10 American and 3 European locations and can be
consulted in [4,29].

Rd = F1
a
b
+ (1 − F1)Fs + F2sin β (21)

a = max(0, cos θ) (22)

b = max[cos 85◦, sin(90◦ − θz)] (23)

F1 = max[0, F11(ε) + F12(ε)∆ + F13(ε)θz] (24)

F2 = F21(ε) + F22(ε)∆ + F23(ε)θz (25)

ε =
GHI/DIF + 1.041θ3

z

1 + 1.041θ3
z

(26)

∆ =
DIF

ENIcos θz
(27)
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2.2. Transposition Models for Surfaces Not Located in the Front Row of a Solar Power Plant

The models presented in Section 2.1 were developed for a single row. In the case of
photovoltaic power plants, for instance, which are composed of various parallel rows, there
is a partial obscuring of the sky radiance and, eventually, the blocking of direct sun rays
by the front rows over the second and subsequent rows, thus affecting the global tilted
irradiance on these surfaces. An obscuring of the ground between rows can also occur,
which affects the reflected irradiance.

Some authors have considered this, namely Appelbaum et al. [17], who adjusted the
Klucher transposition model [7] by computing the sky view factor for the second row
and adjusting the indices of the circumsolar and horizon-brightening diffuse regions. For
this, the authors considered the circumsolar irradiance coming from a point source (the
sun) which would be completely obscured when the obscuring angle from the sun to the
base of the second row caused by the front row is higher than the sun elevation angle.
The correction for the horizon-brightening region was considered near sunrise and sunset.
This adjusted model was validated with data obtained in Tel Aviv, showing that for rows
other than the first, the effect of the anisotropic region defined as horizon brightening
is negligible.

Varga and Mayer [18] modified the Hay–Davies model [8], which does not include a
horizon-brightening region, to calculate the distribution of solar irradiance along a tilted
surface for rows behind the first. Besides the adjustment of the view factors, the circumsolar
irradiance was corrected through the modeling of the fraction of the region obscured by
the front row by considering a circumsolar region with an apparent angular radius of 15◦,
and the ground was divided into two sections: a shaded section that reflects only isotropic
diffuse irradiance and an unshaded section that reflects global irradiance. The model was
validated against power generation data from Hungary showing a clear improvement
when compared to a model that only considers shading of the direct irradiance.

Tschopp et al. [19] also adjusted the Hay–Davies model for surfaces that are not
on the front row by dividing the length of the surface of the row being evaluated, the
back surface of the row at its front, and the ground between them in segments and then
computing diffuse and direct irradiance in each segment. For this, the view factors between
all segments and between each segment and the sky are computed, while the obscuring
of the direct and circumsolar irradiances are determined based on a simple formula for
the shadow height on the surface. The model showed a significant improvement in the
estimation of GTI for rows other than the first compared to the original transposition model.

Considering this, it is expected that combining the higher detail in the modeling of
shadow and circumsolar irradiance obscuration presented in [18] and the inclusion of the
back surface of the row at the front and the ground between rows presented in [19] will
provide better estimations of GTI for rows that are not at the front of a solar power plant.

3. Development of Transposition Model for Surfaces Not Located in the Front Row of a
Solar Power Plant

The model proposed in this work for determining solar irradiance on tilted rows
adjacent to the first row builds upon the models presented in [18,19].Similar to these
models, it assumes rows of panels with lengths much greater than their heights, resulting
in a 2D representation as commonly used in the literature [17–19,30,31].

While the aforementioned models only consider cases when the sun is positioned at
the front of the rows, here, the modeling of the direct and circumsolar irradiance shading
for all involved surfaces is also included, considering any position of the sun, resulting
in a more realistic model. Additionally, the developed model was made generic and
can be applied to any first-row transposition model as long as it clearly considers direct,
circumsolar, and isotropic irradiance, instead of relying on a predefined first-row model.
Extra detail was also included in the modeling of ground shading by considering rows
beyond the two main rows being modeled.
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The three surfaces considered in this model, namely the front of the panel being
evaluated, the back of the panel at its front, and the ground between rows, are divided
into segments, as shown in Figure 1, where L, D, h0, and β are the length of the panels,
the horizontal distance between rows, the vertical distance between the ground and the
base of the rows, and the tilt angle, respectively. The value of GTI is computed for each
segment c of the panel being evaluated and considers the reflected solar irradiance from
each segment of the ground u and the back of the front panel v. The number of segments
into which these surfaces are divided is defined by the user and can be adjusted, namely
the number of segments of the panel being evaluated i = 1 : n, the number of segments of
the ground j = 1 : p, and the number of segments of the back of the front panel k = 1 : q.
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For each segment of both panels and ground, the GTI is computed as in [19] using

Equation (28), where
→

GTI,
→
I r, and

→
D are vectors with the values of the global tilted

irradiance, the direct normal irradiance, and the diffuse horizontal irradiance, respectively,
on each segment of the panel, ground, and front panel. I is the identity matrix while F
is the view factor matrix between all segments and R is the reflectivity matrix for each
segment. The view factors between all segments are computed using the Hottel crossed
string rule [32], and the reflectivity of the front of the panel is assumed to be 0 as in [19].

→
GTI = (I − FR) −1

(→
I r +

→
D
)

, (28)

→
I r = DHI ×

→
Rb (29)

→
D = DIF ×

→
Rd (30)

→
Rb = max

0,
cos

→
θ

cos
→
Φ

(
1 −

→
S
)

(31)

→
Rd =

→
F sXi + Xcs

(
1 −

→
S cs

)
(32)

For the computation of the transposed direct normal (Equation (29)) and diffuse

(Equation (30)) irradiance on each segment, the vectors
→
Rb and

→
Rd are obtained from

Equations (31) and (32) which consist of the tilt factors for the direct (beam) and diffuse
irradiances. The shading of the direct irradiance in each segment is taken into consideration
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in the direct tilt factor through the vector
→
S , whose values are either 0, when direct

irradiance is not obscured, or 1, when the direct irradiance is obscured, depending on
the geometrical characteristics of the installation and the apparent position of the sun in
the sky. Regarding the diffuse tilt factor, an isotropic component, Xi, and a circumsolar
component, Xcs, are modeled as in a first-row transposition model, which, as mentioned
above, can be any first-row model as long as it includes direct, circumsolar, and isotropic
irradiance components. In the present work, a set of analytical transposition models for
first rows are firstly assessed against experimental values and then one is selected, which
will then be used in this model evaluation, as reported in the following sections. The sky
view factors are computed for each segment considering the summation and reciprocity

rules. The fraction of circumsolar irradiance that is obscured is modeled by the vector
→
S cs

ranging from 0, when there is no obscuration, to 1, when all irradiance from the considered
circumsolar region is obscured.

The vectors
→
S and

→
S cs (Equations (33) and (34), respectively) are determined based on

the model proposed by Varga and Mayer [18] with various modifications for the inclusion
of cases in which the sun is positioned at the back of the row and the computations for the
different segments of the back surface of the row in front of the one being evaluated and
the ground. Depending on the surface of each segment, namely the surface of the panel
being evaluated, c, the back surface of the panel of the row at its front, v, or the surface of
the ground between them, u, the way the shading vectors are modeled differs. Since this is
a two-dimensional model, firstly, the projection of the solar elevation angle to the azimuth
of the panels, α′, is needed, which is obtained through Equation (35), where γs is the solar
azimuth and γp is the azimuth of the surfaces.

→
S =


→
S c
→
S u
→
S v

 (33)

→
S cs =


→
S cs,c
→
S cs,u
→
S cs,v

 (34)

α′ = tan−1

 tan α

cos
(

γs−γp

)
 (35)

The shading of direct beam and the fraction of obscured circumsolar irradiance are
determined for each segment of the panel, ground, and back of the front panel according to
the projected solar elevation angle relative to each of the angles shown in Figure 2. These
angles are computed using Equations (36)–(43), where i, j, and k are the indices of the
segments in the panel being evaluated, at the back of the front panel, and on the ground
between the rows of panels, respectively. The angles with subscript c are obtained for each
segment of the panel being evaluated, those with subscript v are obtained for each segment
of the back of the front panel, and those with subscript u are obtained for each segment
of ground between the two rows. The angles δ and ε result from the view of the top of an
adjacent panel from a segment, the angles ζ and ξ result from the view of the bottom of an
adjacent panel from a ground segment, and the angles λ and σ result from the view of the
top of a subsequent panel from a ground segment.

δc(i) = tan−1


(

L − c(i+1)−c(i)
2

)
sinβ

D +
(

c(i+1)−c(i)
2 − L

)
cosβ

Πa = 1, (36)
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δv(k) = tan−1


(

L − v(k+1)−v(k)
2

)
sinβ

D

 (37)

δu(j) = tan−1

[
Lsinβ+ h0

u(j+1)−u(j)
2 − Lcosβ

]
(38)

εu(j) = tan−1

[
Lsinβ+ h0

D − u(j+1)−u(j)
2 + Lcosβ

]
(39)

ζu(j) = tan−1

[
h0

u(j+1)−u(j)
2

]
(40)

λu(j) = tan−1

[
Lsinβ+ h0

D + u(j+1)−u(j)
2 − Lcosβ

]
(41)

ξu(j) = tan−1

[
h0

D − u(j+1)−u(j)
2

]
(42)

σu(j) = tan−1

[
Lsinβ+ h0

2D − u(j+1)−u(j)
2 + Lcosβ

]
(43)
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The shading of direct irradiance for each segment of the panel surface, i, is given by
Equation (44). Shading can occur (Sc(i) = 1) when the sun is positioned either in front of
or behind the rows. Specifically, shading occurs when the projected solar elevation angle is
positive and lower than the angle from the middle of the segment to the top of the front
row (indicating that the sun is behind the front row), or when the projected solar elevation
angle is negative and lower than the tilt angle of the surfaces (indicating that the sun is
behind the panel). For the remaining cases, the segments are not shaded.

Sc(i) =

1,
[

δc(i) > α′ ∧
∣∣∣γs−γp

∣∣∣ < 90◦
]
∨
(
β > |α′| ∧

∣∣∣γs−γp

∣∣∣ ≥ 90◦
)

0,
[

δc(i) ≤ α′ ∧
∣∣∣γs−γp

∣∣∣ < 90◦
]
∨
(
β ≤ |α′| ∧

∣∣∣γs−γp

∣∣∣ ≥ 90◦
) (44)

The shading of direct irradiance for each segment of the back surface of the front row,
denoted by index k, is computed through Equation (45). Each segment is always shaded
if the sun is positioned in front of the rows. Additionally, if the sun is not in front of the
rows, shading occurs when the projected solar elevation angle exceeds the tilt angle of the
surfaces or when it is lower than the angle from the middle of the segment to the top of the
panel being evaluated.

Sv(k) =

 1,
∣∣∣γs−γp

∣∣∣ < 90◦ ∨
(∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ [δv(k) > |α′| ∨ β < |α′|]
)

0,
∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ δv(k) ≤ |α′| ∧ β ≥ |α′|
(45)

The computation of the shading of direct irradiance on the ground between the rows is
performed through Equation (46), which involves comparing the projected solar elevation angle
with six other angles as depicted in Figure 2 and calculated through Equations (38) to (43).

Each ground segment, denoted by index j, is shaded under the following conditions:
when the sun is positioned in front of the rows and behind the row in front, or when its
projected solar elevation angle is lower than the angle of the middle of the segment to the
top of the subsequent row in front. Additionally, ground segments are shaded if the sun
is behind the row being evaluated or when the projected solar elevation angle is lower
than the angle from the middle of the segment to the top of the subsequent row behind.
Moreover, for ground segments positioned below the front row, shading occurs when the
projected solar elevation angle exceeds the tilt of the surfaces.

Su(j) =



1,

∣∣∣γs−γp

∣∣∣ < 90◦ ∧ ([ζu(j) < α′ < δu(j) ∧ δu(j) > 0] ∨ λu(j) > α′ ∨ [δu(j) ≤ 0 ∧ α′ > ζu(j)])∨∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧
(

[εu(j) > ξu(j) ∧ εu(j) > |α′| > ξu(j)] ∨ [εu(j) ≤ ξu(j) ∧ εu(j) < |α′| < ξu(j)]∨
[δu(j) < 0 ∧ |δu(j)| < |α′|] ∨ |α′| ≤ σu(j)

)

0,

∣∣∣γs−γp

∣∣∣ < 90◦ ∧ ([δu(j) ≥ 0 ∧ δu(j) ≤ α′] ∨ [λu(j) ≤ α′ ≤ ζu(j)])∨∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧
(

[δu(j) ≥ 0 ∧ εu(j) ≤ |α′| ∧ ξu(j) ≤ |α′|] ∨ [σu(j) ≤ |α′| ≤ ξu(j) ∧ |α′| ≤ εu(j)]∨
[δu(j) < 0 ∧ εu(j) ≤ |α′| ∧ ξu(j) ≤ |α′| ∧ |δu(j)| ≥ |α′|]

) (46)

The modeling of the circumsolar irradiance obscuring follows a similar approach,

albeit with the utilization of the vector
→
S cs to represent the fraction of circumsolar irradiance

that is obscured. Circumsolar irradiance is assumed as being uniformly distributed within
the annular region surrounding the sun disk, with an apparent external angular radius, r,
of 15◦. The obscured area of the circumsolar region is given by Equation (47) as in [18]:

C(x) =
sin−1

√
r2−(|α′ |−x)2

r
180

−

√
r2 − (|α′| − x)2

2πr
(47)

In the case of the segments of the panel being evaluated (Equation (48)), several
conditions dictate the obscuring of circumsolar irradiance. When the sun is positioned in
front of the rows, total obscuration (Scs,c(i) = 1) occurs if the entire circumsolar region
is below the angle defined by the middle of the segment to the top of the front row,
denoted as δc(i). Substantial obscuration (more than 50%, Scs,c(i) = |1 − C(δc(i))|) occurs
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if this angle is higher than the projected solar elevation angle and the difference between
these two angles is smaller than the angular radius. It is less obscured (less or equal to
50%, Scs,c(i) = C(δc(i))) if the projected solar elevation angle is higher than δc(i) and
the difference between these two angles is smaller than the angular radius. Finally, no
obscuration (Scs,c(i) = 0) occurs if the projected solar elevation angle exceeds δc(i) and the
difference between these two angles is higher than the angular radius. A similar principle
applies when the sun is behind the rows, with the difference that instead of using the angle
δc(i), the comparison is made with the tilt angle β.

Scs,c(i) =



1,
[∣∣∣γs−γp

∣∣∣ < 90◦ ∧ α′ − δc(k) ≤ −r
]
∨
(∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ |α′| − β ≤ −r
)

|1 − C(δc(i))|,
∣∣∣γs−γp

∣∣∣ < 90◦ ∧−r < α′ − δc(i) < 0

|1 − C(β)|,
∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧−r < |α′| − β < 0

C(δc(i))
∣∣∣γs−γp

∣∣∣ < 90◦ ∧ 0 ≤ α′ − δc(i) < r

C(β),
∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ 0 ≤ |α′| − β < r

0,
[∣∣∣γs−γp

∣∣∣ < 90◦ ∧ α′ − δc(i) ≥ r
]
∨
(∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ |α′| − β ≥ r
)

(48)

The fraction of circumsolar irradiance obscured for each segment of the back surface
of the front panels is given by Equation (49). It is assumed that all circumsolar irradiance
is obscured when the sun is positioned in front of the rows. When the sun is positioned
behind the rows, the projected solar elevation angles plus or minus the circumsolar angular
radius are compared in a similar manner to Equation (48), but with reference to the tilt
angle of the surface and the angle of the middle of the back surface segment to the top of
the panel being evaluated.

Scs,v(k) =



1,
( ∣∣∣γs−γp

∣∣∣ < 90◦
)
∨
(∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ [|α′| − δv(k) ≤ −r ∨ |α′| − β ≥ r]
)

|1 − C(δv(k))|,
∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧−r < |α′| − δv(k) < 0

|1 − C(β)|,
(∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ 0 < |α′| − β < r
)

C(δv(k))
∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ 0 ≤ |α′| − δv(k) < r

C(β),
(∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧−r < |α′| − β ≤ 0
)

0,
[∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ |α′| − δv(k) ≥ r ∧ |α′| − β ≤ −r
]

(49)

The computation of circumsolar irradiance obscuration for each segment of the ground
between rows is more complex (Equation (50)). Complete obscuration is assumed when
the entire circumsolar region is positioned either behind the front row panel or the panel
being evaluated, considering the middle of the ground segment. Additionally, complete
obscuration occurs when the angle of the top of the circumsolar region is lower than the
angle of the top of the subsequent rows of panels, whether in front or behind. Similarly to
the equations above (Equations (48) and (49)), the projected solar elevation angles plus or
minus the circumsolar angular radius are compared with the six different angles shown
in the scheme at the bottom of Figure 2 for the computation of the fraction of circumsolar
irradiance that is obscured.
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Scs,u(j) =



1,

 ∣∣∣γs−γp

∣∣∣ < 90◦ ∧


[δu(j) ≥ 0 ∧ α′ − ζu(j) ≥ r ∧ α′ − δu(j) ≤ −r]∨
α′ − λu(j) ≤ −r∨
[δu(j) < 0 ∧ α′ − ζu(j) ≥ r]∨
[α′ − r ≤ λu(j) ∧ α′ + r ≥ ζu(j)]


∨


∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧


[|α′| − ξu(j) ≥ r ∧ |α′| − εu(j) ≤ −r]∨
|α′| − σu(j) ≤ −r∨
[δu(j) ≤ 0 ∧ |α′| − |δu(j)| ≥ r]∨
[|α′| − r ≤ σu(j) ∧ |α′|+ r ≥ εu(j)]∨
[|α′| − r ≤ σu(j) ∧ |α′|+ r ≥ ξu(j)]




|1 − C(|δu(j)|)|,

[∣∣∣γs−γp

∣∣∣ < 90◦ ∧ δu(j) ≥ 0 ∧−r < α′ − δu(j) < 0
]
∨[∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ δu(j) < 0 ∧ 0 ≤ |α′| − |δu(j)| < r
]

|1 − C(εu(j))|,
∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧−r < |α′| − εu(j) < 0

|1 − C(ζu(j))|,
∣∣∣γs−γp

∣∣∣ < 90◦ ∧ α′ − r > λu(j) ∧ 0 < α′ − ζu(j) < r

|1 − C(λu(j))|,
∣∣∣γs−γp

∣∣∣ < 90◦ ∧ α′ + r < ζu(j) ∧−r < α
′ − λu(j) < 0

|1 − C(ξu(j))|
∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ |α′| − r > σu(j) ∧ 0 < |α′| − ξu(j) < r

|1 − C(σu(j))|,
∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ |α′|+ r < ξu(j) ∧−r < |α′| − σu(j) < 0

C(|δu(j)|)

[∣∣∣γs−γp

∣∣∣ < 90◦ ∧ δu(j) ≥ 0 ∧ 0 ≤ α′ − δu(j) < r
]
∨[∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ δu(j) < 0 ∧−r ≤ |α′| − |δu(j)| < 0
]

C(εu(j)),
∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ 0 ≤ |α′| − εu(j) < r

C(ζu(j)),
∣∣∣γs−γp

∣∣∣ < 90◦ ∧ α′ − r > λu(j) ∧−r < α′ − ζu(j) < 0

C(λu(j)),
∣∣∣γs−γp

∣∣∣ < 90◦ ∧ α′ + r < ζu(j) ∧ 0 < α′ − λu(j) < r

C(ξu(j)),
∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ |α′| − r > σu(j) ∧−r < |α′| − ξu(j) < 0

C(σu(j)),
∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧ |α′|+ r < ξu(j) ∧ 0 < |α′| − σu(j) < r

0,

[ ∣∣∣γs−γp

∣∣∣ < 90◦ ∧
(

[δu(j) ≥ 0 ∧ α′ − δu(j) ≥ r]∨
[α′ − ζu(j) ≤ −r ∧ α′ − λu(j) ≥ r]

)]
∨[∣∣∣γs−γp

∣∣∣ ≥ 90◦ ∧
(

|α′| − εu(j) ≥ r∨
[|α′| − ξu(j) ≤ −r ∧ |α′| − σu(j) ≥ r ∧ |α′| − εu(j) ≤ −r]

)]

(50)

4. Experimental Setup and Procedure

In order to obtain observational data for both a first row and subsequent rows of panels
with varying tilt angles and inter-row distances, a structure featuring a pyranometer for
measuring GTI was constructed in an open field near Évora, Portugal (38.5306◦, −8.0112◦),
as shown in Figures 3–5.

The experimental setup consists of three frames: a base, a front frame, and a rear frame,
with a pyranometer installed on the rear frame. The base was leveled, and two transversal
bars on the sides ensured that both front and rear frames maintained the same tilt angle.
The apparatus allows for adjustment with three degrees of freedom: tilt angle of the front
and rear frames (β, from 20◦ to 90◦) through the solidary adjustment of the inclination of
both frames; distance between frames (D, from 0.80 m to 1.10 m) through three positions
of where the front frame can be fixed to the base; and position of the pyranometer along
the length of the rear frame (cs, from 0.08 m to 1.08 m) by sliding the instrument along its
supporting bar. The uncertainty on the measurements of each of these variables is 1 cm in
the cases of distances and 1◦ in the case of the tilt angles.

To represent the adjacent row, three Alveopan bilaminate white polypropylene boards,
with a total width W of 3.03 m and length L of 1.08 m, were installed in the front frame. The
reflectivity of these boards was measured using a FieldSpec HandHeld 2 spectroradiometer
(ASD, Inc., Boulder, CO, USA) [33], yielding an average reflectivity of 0.921. Although
potential edge effects were acknowledged due to board sizes, these were not factored into
the general model. For data collection purposes relevant to the assessment of transposition
models applied to the first rows, these boards were removed.
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Global tilted irradiance was measured using a Kipp & Zonen CMP11 pyranometer
(Kipp & Zonen, Delft, The Netherlands), while global horizontal irradiance and reflected
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irradiances (for the computation of ground albedo) were measured using a Kipp & Zonen
CM7B albedometer (Kipp & Zonen, Delft, The Netherlands). Both sensors were connected
to a CR300 datalogger from Campbell Scientific (Shepshed, Loughborough, UK). Addition-
ally, DNI, DIF, and GHI observation data were obtained from the Évora–PECS station of
the DNI-ALENTEJO project network [34], located 5 m from the experimental setup.

The internal clock of the CR300 data logger used in the apparatus was synchronized
with the data logger of the Évora–PECS station, both set to UTC time. Sensor outputs
were sampled at 1 Hz and mean, maximum, minimum, and standard deviation values
were recorded every minute. Observations were corrected following the best practices
in the field, namely the WMO recommendations and the BSRN (Baseline Solar Radiation
Network) guide, including corrections for sensor zero offset and filters according to the
BSRN quality control procedure, considering the extremely rare limits [35] and removing
measurements for zenith angles equal or above 85◦.

Prior to the field measurements, a calibration procedure was conducted specifically
for the CMP11 pyranometer and CM7B albedometer using a reference CMP21 pyranometer
(Kipp & Zonen, Delft, The Netherlands), according to the ISO 9847:1992 standard [36].

For the accurate application of transposition models, the ground albedo value is
needed. While a standard value of 0.2 is often used, this study estimated the ground
albedo using Equation (51) [37], where BSA and WSA represent the black-sky albedo
and white-sky albedo, respectively. BSA is defined as the albedo in the absence of the
diffuse component and is a function of the solar zenith angle, while the WSA is the albedo
considering the diffuse component as isotropic and in the absence of the direct component.
The mean values of BSA and WSA were obtained by fitting Equation (44) to experimental
data, where the albedo, ρ, was computed by applying the ratio of reflected (GRI) to global
horizontal (GHI) irradiance observations from the albedometer. Following data treatment,
including filtering and removal of the records for solar zenith angles lower than 70◦, BSA
and WSA were found to be 0.206 and 0.208, respectively, across all recorded data periods.

ρ = BSA + (WSA − BSA)
DIF
GHI

(51)

Observations were conducted between 14 April and 1 June 2022. For first-row tests,
5 datasets or periods were generated, each corresponding to a specific tilt angle, as shown
in Table 1, with the pyranometer positioned at cs = 0.50 m. Testing of the developed model
for other rows resulted in 19 periods with various tilt angles, distance between rows, and
pyranometer positions, as shown in Table 2. Periods 4, 9, and 19 include instances in which
the pyranometer is shaded.

It should be noted that measurements were conducted during a period of relatively
high solar elevation, minimizing shading effects. To better capture shading effects, the
inter-row distance during experimental tests were shorter than typical photovoltaic power
plant configurations. Nonetheless, the developed model is designed to encompass diverse
real-world conditions in the field.

Table 1. Structure position and number of 1 min data points for each testing period of the first-row tests.

Period β (◦) Number of Data Points

1 20 551
2 38 582
3 50 620
4 70 545
5 90 508

All - 2806
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Table 2. Structure position and number of 1 min data points for each testing period of the proposed
model for rows other than the first.

Period D (m) β (◦) cs (m) Number of Data Points

1 1.10 38 0.08 585
2 1.10 38 0.58 604
3 1.10 38 1.08 1528
4 0.81 38 0.18 2345
5 0.81 38 0.38 605
6 0.81 38 0.58 615
7 0.81 38 0.78 608
8 0.81 38 0.98 585
9 0.80 50 0.15 581
10 0.80 50 0.35 2412
11 0.80 50 0.55 617
12 0.80 50 0.75 632
13 0.80 50 0.95 651
14 0.84 20 0.26 1807
15 0.84 20 0.46 365
16 0.84 20 0.66 648
17 0.84 20 0.86 612
18 0.84 20 1.06 633
19 0.81 38 0.18 718

All - - - 17,151
Shaded - - - 2163

Unshaded - - - 14,988

5. Results and Discussion

The different transposition models, including the developed model for rows that
are not the first, were applied to the observations of DNI and DIF from the Évora–PECS
station. Subsequently, the model outputs were compared with GTI observations from the
experimental setup using multiple evaluation metrics developed in the software MATLAB
R2018b. These metrics comprised the coefficient of determination (R2), mean bias error
(MBE), and root-mean-squared error (RMSE) along with a global performance index (GPI)
based on R2, MBE, and RMSE, where a higher value represents the better accuracy of the
model [22].

Given the significant influence of atmospheric conditions, particularly cloud cover, on
global irradiance, the mean and standard deviation of the clearness index were computed
for each period based on 1 min observations. The clearness index, typically ranging from
0 to 1, represents the ratio of global horizontal irradiance measured at ground level to its
counterpart estimated at the top of the atmosphere [34] (Equation (15)). It serves as an
indicator of the total transmittance of the atmosphere, reflecting higher values under clear-
sky conditions and lower values under overcast conditions. The subsequent subsections
provide detailed tables presenting these clearness index values for each period.

Some clearness index values exceeded unity, with a maximum value of 1.079, attributed
to cloud enhancement events. These phenomena occur when partly cloudy skies lead to a
temporary increase in local GHI above the extraterrestrial irradiance, facilitated by multiple
scatterings and reflections by clouds [35]. These values were kept in the analysis, as they
capture the transient nature of atmospheric conditions during the observation periods.

5.1. Results for the First Row

The transposition models presented in Section 2.1 were computed for the periods
shown in Table 1, with the resulting mean and standard deviation of the clearness index
and GTI, alongside various evaluation metrics, summarized in Table 3. Across all models,
GTI values were generally underestimated, with the exception of the Bugler and Modified
Bugler models, where GTI was overestimated. This discrepancy could stem from the



Energies 2024, 17, 3444 17 of 32

treatment of the direct normal component within the factor Rb used for modeling the diffuse
component. Nevertheless, the Modified Bugler model showed better results compared
with the other models. The Modified Bugler model tends to perform best except for vertical
surfaces (period 5), where the Klucher model seems to show better results. Given that the
global performance index (GPI) for the overall data presented the Modified Bugler model
as the best performing model, it was chosen as the primary model for first-row applications
in the proposed model. Despite its tendency to overestimate GTI, with an overall MBE of
23.8 W/m2 and RMSE of 30.5 W/m2, it delivered optimal results for period 3, characterized
by a tilt angle of 50◦ and small variation in sky conditions (standard deviation of clearness
index of 0.087).

Table 3. Mean and standard deviation of the clearness index and GTI and metrics of GTI from the
transposition models analyzed for each and all measuring periods of the first-row tests. The best
performing model is represented in bold for each indicator and period and the clearness index data
are repeated for each metric for better readability.

Metric

Period

kt GTI

Liu
Jordan

K
lucher

H
ay

D
avies

R
eindl

M
a

Iqbal

M
odified

M
a

Iqbal

B
ugler

M
odified

B
ugler

Tem
ps

C
oulson

PerezMean Std Mean
(W/m2)

Std
(W/m2)

R2

1 0.697 0.100 700.0 322.0 0.9995 0.9992 0.9995 0.9995 0.9995 0.9995 0.9994 0.9995 0.9987 0.9994
2 0.720 0.081 702.1 330.0 0.9991 0.9988 0.9991 0.9992 0.9991 0.9991 0.9990 0.9991 0.9985 0.9991
3 0.674 0.087 585.5 297.9 0.9955 0.9941 0.9965 0.9967 0.9959 0.9959 0.9946 0.9957 0.8341 0.9975
4 0.686 0.141 474.8 288.4 0.9946 0.9936 0.9945 0.9938 0.9944 0.9944 0.9942 0.9944 0.9317 0.9934
5 0.676 0.102 327.7 202.8 0.9982 0.9963 0.9978 0.9953 0.9979 0.9978 0.9991 0.9987 0.9837 0.9993

All 0.690 0.105 558.1 323.6 0.9959 0.9969 0.9974 0.9975 0.9970 0.9970 0.9938 0.9947 0.9216 0.9978

MBE
(W/m2)

1 0.697 0.100 700.0 322.0 −44.4 −28.8 −36.6 −36.4 −38.6 −38.4 58.1 29.8 −43.7 −31.5
2 0.720 0.081 702.1 330.0 −53.7 −40.7 −44.6 −43.9 −46.9 −46.7 51.2 23.6 −34.6 −36.5
3 0.674 0.087 585.5 297.9 −66.5 −32.4 −48.6 −42.4 −53.9 −53.5 23.0 5.3 −157.4 −24.1
4 0.686 0.141 474.8 288.4 −51.4 −28.4 −45.1 −38.4 −46.5 −46.5 37.2 19.7 −75.0 −24.0
5 0.676 0.102 327.7 202.8 −23.2 −2.0 −27.3 −18.3 −25.8 −26.2 57.9 44.6 −19.6 −10.3

All 0.690 0.105 558.1 323.6 −48.7 −27.1 −40.9 −36.4 −42.9 −42.8 44.8 23.8 −68.7 −25.6

RMSE
(W/m2)

1 0.697 0.100 700.0 322.0 49.7 36.1 41.3 41.2 43.5 43.3 59.1 30.4 45.8 37.5
2 0.720 0.081 702.1 330.0 56.1 43.5 46.3 45.6 48.8 48.5 53.9 25.8 36.1 38.9
3 0.674 0.087 585.5 297.9 71.9 38.0 51.7 45.1 57.6 57.2 27.4 15.2 181.8 26.9
4 0.686 0.141 474.8 288.4 56.5 34.8 48.7 42.7 50.4 50.3 42.9 26.7 94.8 30.8
5 0.676 0.102 327.7 202.8 24.9 11.8 28.3 21.7 27.0 27.3 62.6 48.2 41.9 11.3

All 0.690 0.105 558.1 323.6 54.9 35.0 44.5 40.7 47.1 47.0 50.2 30.5 100.2 30.9

GPI All 0.690 0.105 558.1 323.6 1.068 1.848 1.412 1.569 1.324 1.329 1.195 1.959 −1.000 1.953

5.2. Results for Other Rows

For the evaluation of the developed transposition model for rows other than the first,
some adjustments were implemented to accommodate the experimental setup (refer to
Figure 5). Given the absence of panels in the second row, this row was not considered in
the modeling. Instead, GTI was computed for each segment of the back of the front panel
and ground, followed by the calculation of GTI at a designated point which represents
the sensor. In this case, the angles εu, λu, ξu, σu, and δv used for shadow computation and
circumsolar irradiance obscuration were not applicable. Another modification involved
the length of ground considered in the model. Since the setup comprised only one panel,
reflections from the ground beyond the modeled rows could significantly impact the
measured GTI and were thus incorporated into the model validation process (depicted in
Figure 5).

GTI estimation was performed using both the developed model and the Modified
Bugler model for reference and comparison, which is a common practice in the absence
of a specific model for other rows. It is important to note that the configurations used in
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periods 4, 9, and 19 result in direct shading of the pyranometer for a certain time span
of the day. As example, periods 1 and 12, when there was no shading, and period 19,
when there was shading and obscuration of the pyranometer by the front row, are shown
in Figures 6–8 (the small data gaps during the day are a result of the filtering procedure
mentioned in Section 4). Despite the fact that slightly lesser improvements are observed for
period 12 (Figure 6), which is attributed to partially cloudy conditions, the effectiveness of
the developed model over the Modified Bugler is evident across the evaluated periods.
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The results for each period, all periods, and for the data when the pyranometer is
shaded or unshaded are presented in Table 4. When compared with the original Modified
Bugler model, which overestimates the GTI, the proposed model improves the MBE for
most periods, albeit with a slight underestimation. Typically, the Modified Bugler performs
better in periods characterized by higher pyranometer positioning and greater frame-
to-frame distances, resembling first-row irradiance conditions. During periods of direct
irradiance shading (periods 4, 9, and 19), the Modified Bugler model, which does not
consider shading, shows significantly higher errors. Another aspect to highlight is the
impact of clouds in the performance of the model. In periods 9 and 14, for example, when
the mean clearness index is lower and its standard deviation is higher (indicating cloudier
skies) the metrics show lower performance of both models.

Table 4. Mean and standard deviation of the clearness index and metrics of GTI from the Modified
Bugler model and proposed model for other rows.

Period kt GTI Modified Bugler Model Developed Model for Other Rows

Mean Std Mean
(W/m2)

Std
(W/m2) R2 MBE

(W/m2)
RMSE
(W/m2) R2 MBE

(W/m2)
RMSE
(W/m2)

1 0.687 0.077 566.1 342.1 0.9905 100.0 106.1 0.9921 −31.1 39.5
2 0.675 0.108 646.2 324.4 0.9988 75.6 76.6 0.9987 −38.5 44.8
3 0.584 0.204 456.2 338.0 0.9413 57.9 96.2 0.9410 −24.7 82.0
4 0.641 0.191 176.2 126.3 0.0873 521.5 651.9 0.9844 −15.7 22.7
5 0.704 0.095 627.8 335.9 0.9984 76.4 78.5 0.9990 −38.6 42.3
6 0.690 0.103 599.6 356.2 0.9995 68.4 70.8 0.9991 −39.4 42.3
7 0.672 0.098 582.9 345.2 0.9996 69.3 71.0 0.9996 −39.4 43.8
8 0.684 0.104 634.2 335.2 0.9990 36.6 37.6 0.9988 −69.5 77.3
9 0.540 0.206 248.4 187.0 0.1385 290.2 376.0 0.3225 −81.1 161.5

10 0.590 0.190 420.5 307.1 0.9769 103.4 112.0 0.9944 −42.3 50.6
11 0.674 0.145 548.9 307.6 0.9986 61.2 62.1 0.9962 −51.6 57.8
12 0.622 0.157 432.0 270.4 0.9949 52.4 55.2 0.9946 −54.0 62.1
13 0.561 0.134 436.4 272.7 0.9962 37.9 40.6 0.9961 −44.7 58.7
14 0.351 0.192 124.5 79.55 0.4669 250.6 304.9 0.4610 87.0 141.2
15 0.636 0.154 440.7 300.0 0.9980 28.3 30.3 0.9987 −62.7 69.6
16 0.524 0.275 481.7 370.5 0.9792 35.1 61.7 0.9793 −50.3 78.2
17 0.695 0.172 679.9 360.3 0.9907 41.5 50.6 0.9909 −65.9 78.0
18 0.677 0.147 643.9 334.1 0.9966 37.4 42.4 0.9964 −63.4 69.0
19 0.644 0.177 248.6 232.2 0.0372 373.2 570.2 0.9063 −12.4 75.5

All 0.638 0.188 323.8 304.6 0.4698 381.2 301.2 0.9543 −12.9 76.8
Shaded 0.682 0.197 203.7 169.2 0.0028 717.3 775.0 0.2585 −28.9 84.2

Unshaded 0.632 0.186 421.6 336.7 0.9047 88.9 131.0 0.9552 −26.5 75.7



Energies 2024, 17, 3444 20 of 32

Due to the variation in sky conditions along the different periods, the comparison be-
tween the different positioning of the setup proved challenging and thus, more importance
is given to the overall results instead of each period. In this regard, the developed model
for rows affected by the presence of rows in front showed an MBE of −12.9 W/m2 and a
root-mean-squared error of 76.8 W/m2. As expected, this model outperforms the first-row
model when the pyranometer is shaded. Even under unshaded conditions, the developed
model is better than the model for the first row, showing the impact of the obscuring of
the sky dome due to the other rows, considering the sky radiance anisotropy, namely the
circumsolar region, and of the reflections from the front row and ground on the GTI.

To quantify the impact of the proposed model on reducing the error for each irradiance
component on a tilted surface compared with the Modified Bugler model, a weight (wi) for
each component i of GTI was computed through Equation (52):

wi =
1
n∑

iD − iMB
GTID − GTIMB

(52)

Here, D stands for developed model and MB for the Modified Bugler model. The
results are presented in Table 5 for the direct, Ib, diffuse circumsolar, Dcs, diffuse isotropic,
Diso, and reflected, Ire f l , components and for both unshaded and shaded conditions. For
the proposed model, the reflected component includes reflections in the ground and in the
back side of the front panel. The mean bias error of each model is also included in the table
for reference.

Table 5. MBE and weight of each component of GTI on the reduction in bias error when comparing
the developed model with the Modified Bugler model.

Period MBE Modified
Bugler (W/m2)

MBE Developed
Model (W/m2) wIb (%) wDcs (%) wDiso (%) wIrefl (%)

Unshaded 88.9 −26.5 0.0 0.5 56.6 42.9
Shaded 717.3 −28.9 66.5 2.6 28.7 2.2

All 381.2 −12.9 8.4 0.8 53.1 37.7

Overall, the masking of the isotropic diffuse irradiance has the highest weight in
the difference between the Modified Bugler and the developed model followed by the
modeling of reflected irradiance. As expected, when the direct irradiance is shaded, this
becomes the most impactful component, while for unshaded conditions, it has no impact.

6. Operational Algorithm for Forecasting of Solar Irradiance on Tilted Surfaces

This section presents the application of the developed model to predict irradiance on
tilted surfaces using operational direct normal and diffuse irradiance forecasts as inputs.

6.1. Forecast Input Data

The transposition models presented in this work, in particular the developed model
for rows that are not the first, require several geometrical details on the solar panels of the
power plant as input. However, only two meteorological variables, specifically DNI and
DIF, are necessary for the determination of the GTI. The European Centre for Medium-
range Weather Forecasts (ECMWF) developed the Integrated Forecasting System (IFS),
which issues global hourly forecasts every day at 00 UTC up to 10 days ahead. These
forecasts include the GHI and DNI variables, while DIF can be computed through the
closure function GHI = BHI + DIF (where BHI is given by Equation (2)).

In the work by Pereira et al. [22], a method based on artificial neural networks (ANNs)
was developed to generate improved spatial and temporal downscaled DNI forecasts using
operational forecast outputs from the ECMWF/IFS and the Copernicus Atmospheric Mon-
itoring Service (CAMS). This work employs the same models and procedure, while also
including the analysis and usage of GHI as compared with previous work. Figures 9–11 pro-
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vide a direct comparison between ECMWF/IFS forecasts and observations made through
calibrated sensors at Évora–Verney station in Portugal (38.5678, −7.9114). These figures
show data for DNI, GHI, and DIF for each forecast day of the forecast horizon (day 0: 1 h
to 24 h; day 1: 25 h to 48 h; day 2: 49 h to 72 h) over the period from 1 December 2016 to 31
May 2021, with a timestep of 10 min.
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Figure 11. Comparison between 10 min downscaled forecasts of the ECMWF/IFS and observations
made at Évora–Verney of DNI, DIF, and GHI for forecast day 2 (the colormap represents the number
of data points in each bin; bin size: 20 × 20 W/m2).

As expected, shorter forecast horizons correspond to smaller errors in the forecasts.
Improved DNI forecasts were obtained using artificial neural network models, accounting
for the nonlinear relationships between the DNI and various meteorological forecasted
variables, such as GHI, cloud cover, and aerosol optical depth, as well as the variation in
DNI over a given period before the forecasted instant. A brief explanation of this model and
procedure can be found in Appendix A. The application of this procedure results in the metrics
shown in Figure 12, where the diffuse component was computed using the GHI forecasted by
the ECMWF/IFS and the improved DNI forecasts generated by the ANN models.

The application of the ANN model shows improvements in the forecasting of both DNI
and DIF over a dataset that encompasses different sky conditions. The same procedure was
applied by retrieving weather forecasts for the measurement periods used in this work to
evaluate the different transposition models (Section 4). The resulting 10 min improved DNI
and computed DIF forecasts were then evaluated against the 10 min mean observations
obtained from the experimental data presented in Section 4.

Table 6 shows the results for first-row and inner-row tests. Detailed results for each
testing period can be found in Appendix B. Similar to the larger dataset, the longer the
forecast horizon, the higher the errors. However, the errors obtained tend to be greater
than the ones aforementioned. This discrepancy is due to the smaller dataset used for this
analysis, where even minor differences between forecasts and observations can lead to
significant errors. Forecasts of DNI and DIF tend to have larger errors compared to global
variables such as GHI or GTI, since accurate forecasting of clouds, specifically their location,
is critical for this temporal resolution. The GTI results from the transposition models, based
on the output of these forecast models, are presented in the following.
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Table 6. DNI and DIF forecast results for all data of first-row tests and for all shaded and unshaded
data of the developed model testing (MBE, MAE, and RMSE in W/m2).

Data and
Variable

Day 0 Day 1 Day 2
R2 MBE MAE RMSE R2 MBE MAE RMSE R2 MBE MAE RMSE

First-row tests

All DNI 0.4859 −38.5 87.2 132.1 0.2568 −41.5 107.4 169.2 0.2373 −99.8 151.2 225.7
DIF 0.5258 −1.6 44.2 62.1 0.5540 4.0 41.3 60.3 0.5382 7.7 48.6 62.4

Inner-row tests

All DNI 0.5386 34.0 146.3 208.7 0.5458 39.4 145.1 208.6 0.4930 31.8 156.0 224.6
DIF 0.4252 66.4 66.5 94.6 0.4720 64.0 64.0 91.5 0.4316 68.3 68.3 95.2

Shaded DNI 0.6166 126.4 185.6 267.4 0.6488 134.8 183.6 263.8 0.5840 121.6 196.2 272.8
DIF 0.4670 −49.7 92.8 126.8 0.5025 −53.1 97.1 126.9 0.4255 −44.4 101.0 131.0

Unshaded DNI 0.5351 16.9 139.0 196.0 0.5389 21.8 138.0 196.7 0.4876 15.2 148.5 214.6
DIF 0.3884 −8.9 61.6 87.4 0.4437 −17.6 57.8 83.3 0.4038 −15.6 62.3 87.1

6.2. Operational Analysis of Transposition Models

To understand how the selected transposition models perform in an operational
forecast context, the transposition models were applied using the resulting forecasts of DNI
and DIF for the testing location with a 10 min timestep. The results were then compared
with the observations.

Table 7 presents the results for the first row using the Modified Bugler model and for
inner rows using the developed model for each day of the forecast horizon.
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Table 7. GTI results of the developed model for rows that are not the front row for each day of
forecast horizon using DNI and DIF forecasts (MAE and RMSE in W/m2; MAPE and RMSPE in %).

Data Day 0 Day 1 Day 2
R2 MBE MAE RMSE R2 MBE MAE RMSE R2 MBE MAE RMSE

First-row tests
All 0.9646 6.7 34.5 48.7 0.9607 15.5 39.4 55.0 0.8001 71.5 67.3 128.5

Inner-row tests
All 0.7197 −31.5 100.6 164.0 0.7162 −32.1 101.1 165.6 0.6727 −37.2 106.8 179.4

Shaded 0.0074 −115.3 152.4 285.1 0.0242 −116.7 152.4 281.8 0.0078 −113.9 151.3 284.5
Unshaded 0.8031 −16.0 91.0 129.8 0.7907 −16.5 91.6 133.6 0.7318 −23.0 98.6 152.2

Regarding first-row results, when compared with the results using DNI and DIF
measurements instead of forecasts (Table 3), it is evident that for the analyzed periods, the
use of forecasts shows better results for days 0 and 1 regarding MBE. However, there is a
deterioration for day 2 and across all forecast horizons regarding the MAE and RMSE.

As for the inner-row test results, when compared with GTI based on DNI and DIF
measurements instead of forecasts (Table 4), there is a general deterioration in the results,
except for the MBE in unshaded conditions for forecast days 0 and 1. Detailed results for
each testing period can be found in Appendix B. The use of the developed transposition
model resulted in overall MBE and RMSE values of 33.6 W/m2 and 169.7 W/m2, respec-
tively, for the entire forecast horizon. These values show that the model is eneficial for
linking irradiance forecast models with energy generation modeling in solar power plants,
aiding in the production of power output forecasts. These forecasts are essential for better
decision-making by operators of such energy systems due to the variability of resource and
energy demand.

To understand how the mean bias error of DNI and DIF forecasts affects the bias of the
computed GTI values, Figure 13 was created. This figure shows the difference between the
MBE of GTI from the developed model using forecasts and experimental data as input as a
function of the MBE of DNI and DIF predictions for the forecast at day 0. Positive values
of this difference are represented with blue circles, while negative values are represented
with white circles. For better readability, only periods with an MBE difference of less than
100 W/m2 are represented, which resulted in excluding only period 1.

Since the MBE of the proposed model is typically negative for the tests carried out
(Tables 7 and A5), and considering the relationship between the MBE values for the fore-
casted DNI and DIF components (when one tends to higher positive values, the other tends
to more negative values (Tables 6 and A3) as a consequence of the closure equation and
knowing that the MBE of the GHI forecasts is lower), the bias of the GTI using prediction
values may decrease as shown in Figure 13 due to a favorable combination of forecast
and model errors. This is the reason why the MBE for unshaded conditions using forecast
values (Table 7) is lower than the bias error for the same conditions using experimental
values (Table 4). However, this trend is not observed for the shaded conditions, where the
mean bias error is still lower when using ground-based measurements. A more detailed
analysis of these aspects is needed in the future, which extends beyond the scope of the
present work. Also, due to spatial resolution limitations, the forecasted variables from
ECMWF (current operational horizontal resolution: ~9 km) are identical for the first and
second rows in this experiment. In future work, this algorithm should be validated for
a larger power plant that encompasses multiple grid points of a high-resolution forecast
model at a hectometric scale.
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7. Conclusions

This work presented a comprehensive analysis of nine analytical transposition models
based on physics alongside the Perez transposition model to compute the global tilted
irradiance on photovoltaic module surfaces. Additionally, it presented a model for the com-
putation of this variable in rows of modules other than the first, which usually comprises
most rows of solar power plants. The developed model can be applied to any first-row
transposition model, provided it considers direct, circumsolar, and isotropic diffuse irradi-
ance. This model computes the GTI for different longitudinal segments of the surfaces of
the row of modules, the back of the row in front, and the ground between the rows. It takes
into consideration the different view factors and the obscuring of direct and circumsolar
irradiance for each of the segments for any apparent solar position and includes the shading
effect of the succeeding rows on the ground segments.

The evaluation of these models utilized data collected in Évora, Portugal, for different
tilt angles for first-row tests and also for different inter-row distances, including shading
conditions, to assess the performance of the developed model. The clearness index helps
address potential confounding variables by providing a baseline for sunshine conditions.
However, we acknowledge that factors such as wind, relative humidity, precipitation, and
aerosols also affect the experiment to some extent. In future research, these factors should
be considered. Also, our dataset is limited to our experimental setup. While expanding to
diverse locales would enhance generalizability, the focus of this study was on addressing
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challenges specific to inner rows of solar panels, rather than aiming for global applicability.
Thus, while our findings offer valuable insights, they may not directly apply to all regions.

Results showed that the best analytical transposition model for the first row is the
Modified Bugler model, showing an overall MBE of 23.8 W/m2 and RMSE of 30.5 W/m2.
Conversely, for other rows, the developed model showed an MBE of −12.9 W/m2 and
RMSE of 76.8 W/m2, resulting in an improvement of 368.3 W/m2 and 224.4 W/m2, respec-
tively, compared to using the selected reference transposition model for first rows. This
shows the importance of considering the direct shading and obscuring of the sky dome
when computing GTI for surfaces in rows that are not the first.

Furthermore, the operational performance of transposition models was evaluated for
GTI forecasting, using improved irradiance forecast values instead of measurements of
DNI and DIF. These forecast values were obtained from artificial neural network models
using numerical weather prediction and aerosol forecast data. Results of the first-row
tests showed a MBE and RMSE for all data of 6.7 W/m2 and 48.7 W/m2 for forecast day
0, 15.5 W/m2 and 55.0 W/m2 for forecast day 1, and 71.5 W/m2 and 128.5 W/m2 for
forecast day 2. This shows an increased error compared to results using observations which
are a mean MBE and RMSE increase across the three days of forecast of 7.4 W/m2 and
46.9 W/m2. It also shows how the forecast performance tends to deteriorate with time. The
same is visible for the tests performed for other rows, which show an overall MBE and
RMSE of −31.5 W/m2 and 164.0 W/m2 for forecast day 0, −32.1 W/m2 and 165.6 W/m2

for forecast day 1, and −37.2 W/m2 and 179.4 W/m2 for forecast day 2.
This work demonstrated that transposition models that neglect shading and irradiance

obscuration are not suitable for the accurate estimation of GTI in surfaces that are not in
the front row of a solar power plant. The use of a dedicated model for these conditions,
such as the one presented in this work, is of great importance, given that GTI is the main
factor influencing the energy generation of solar photovoltaic systems.
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Glossary

Nomenclature
A Anisotropy index
BHI Beam horizontal irradiance (W/m2)
C Fraction of circumsolar area obscured by the adjacent row
c Length along the panel (m)
cs Position of the pyranometer along the length of the panel (m)
D Distance between rows in the horizontal plane (m)
→
D Vector of diffuse horizontal irradiance vector (W/m2)
Dcs Circumsolar diffuse component of GTI (W/m2)
DIF Diffuse horizontal irradiance (W/m2)
Diso Isotropic diffuse component of GTI (W/m2)
DNI Direct normal irradiance (W/m2)
EHI Extraterrestrial horizontal irradiance (W/m2)
ENI Extraterrestrial normal irradiance (W/m2)
F View factor matrix
Fg Ground view factor
Fs Sky view factor
f Clearness index as defined in the Klucher model
GTI Global tilted irradiance (W/m2)
GRI Global reflected irradiance (W/m2)
h0 Vertical distance between the ground and the panel base (m)
I Identity matrix
Ib Direct component of GTI (W/m2)
→
I r Vector of direct horizontal irradiance vector (W/m2)
Ire f l Reflection component of GTI (W/m2)
kT Clearness index
L Length of the panel (m)
MAE Mean absolute error (W/m2)
MBE Mean bias error (W/m2)
MAPE Mean absolute percentage error (%)
R Reflectivity matrix
Rb Beam irradiance tilt factor
Rd Diffuse irradiance tilt factor
RMSE Root-mean-squared error (W/m2)
RMSPE Root-mean-squared percentage error (%)
R2 Coefficient of determination
Rr Reflected irradiance tilt factor
r Apparent angular radius of circumsolar irradiance (◦)
S Shading of direct component coefficient
Scs Shading of circumsolar component coefficient
u Length along the ground (m)
v Length along the back of the front panel (m)
W Row width (m)
wi Weight of irradiance component i to the bias reduction (%)
Xi Isotropic component of first-row model
Xcs Circumsolar component of first-row model
Acronyms
ANN Artificial neural networks
CAMS Copernicus Atmospheric Monitoring Service
ECMWF European Centre for Medium-range Weather Forecasts
IFS Integrated forecasting system
NWP Numerical weather prediction
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Greek symbols
Φ Solar zenith angle (◦)
α Solar elevation angle (◦)
α’ Projection of α in the vertical plane of the local meridian (◦)
β Surface tilt angle (◦)
γp Surface azimuth (◦)
γs Solar azimuth (◦)
δ Angle between the horizontal and the top of the front panel (◦)
ε Angle between the horizontal and the top of the panel being considered (◦)
ζ Angle between the horizontal and the bottom of the front panel (◦)
θ Angle of incidence (◦)
λ Angle between the horizontal and the bottom of the panel

being considered (◦)
ξ Angle between the horizontal and the top of the panel

in front of the front panel (◦)
ρ Ground albedo
σ Angle between the horizontal and the top of the panel behind the panel

being considered (◦)

Appendix A

The flowchart of the model used to generate forecast data of direct normal irradiance
(DNI) [22] used in this work is shown in Figure A1.
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Figure A1. Flowchart of the model used to generate DNI forecasts [22].

The model takes as input data the variables shown in Table A1 from the operational
Integrated Forecasting System (IFS) of the European Centre for Medium-range Weather
Forecasts (ECMWF) and the Copernicus Atmospheric Monitoring Service (CAMS). These
are run every day at 00 UTC, providing hourly forecast values up to 90 h ahead at discrete
points of a global grid with a horizontal spatial resolution of 0.125◦ × 0.125◦.

A temporal and spatial downscaling is performed on these variables, which results
in forecasts for a specific location and higher temporal resolution. This downscaling
is obtained through a bi-linear interpolation of the values in the four surrounding grid
points of the desired location for the spatial downscaling and a piecewise cubic hermite
interpolation of the hourly values into smaller timesteps (in this work, it was 10 min values)
for the temporal downscaling.
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Table A1. Input variables obtained from numerical weather prediction models.

Variables Obtained from IFS/ECMWF Variables Obtained from CAMS

Direct normal irradiance Total aerosol optical depth at 670 nm
Global horizontal irradiance Total aerosol optical depth at 865 nm

Low cloud cover Total aerosol optical depth at 1240 nm
Medium cloud cover Sea salt aerosol optical depth at 550 nm

High cloud cover
Total cloud cover

Wind speed
Air temperature

Solar zenith angle

The downscaled variables are then fed to an artificial neural network (ANN model A),
which is a feed-forward network with one hidden layer comprising seven neurons and uses
(i) a backpropagation learning function, namely Bayesian regularization backpropagation;
(ii) a linear layer output with an initialization function that initializes the weights and biases
of the layers according to the Nguyen–Widrow initialization algorithm; (iii) the hyperbolic
tangent sigmoid transfer function; and (iv) the mean-squared error as a performance
function. The input and output data are processed by removing rows with constant
values and scaling the mean of each row to 0 and deviations to 1. This ANN takes into
consideration the nonlinear relationships between the different atmospheric and aerosol
variables and DNI resulting in improved DNI forecasts for the specified location and
temporal resolution.

A second artificial neural network (ANN model B) is similar to ANN model A, but
uses the Levenberg–Marquardt backpropagation algorithm and has eight neurons in the
hidden layer, taking as input a time series of 12 timesteps of the improved DNI forecasts
prior to the forecast moment (from the output of the ANN model A) along with the season
and time of day. This model takes into consideration the temporal variation in DNI and
further improves the DNI forecasts from ANN model A.

Appendix B

Table A2. Metrics of DNI and DIF forecasts for the measuring periods used for first-row tests (MBE,
MAE, and RMSE in W/m2).

Period and
Variable

Day 0 Day 1 Day 2
R2 MBE MAE RMSE R2 MBE MAE RMSE R2 MBE MAE RMSE

1
DNI 0.5114 −33.1 57.0 87.6 0.6120 −14.9 38.3 67.9 0.4664 −15.3 72.2 99.5
DIF 0.1228 18.5 26.5 39.1 0.2874 6.0 11.0 13.7 0.0912 −2.8 32.0 37.9

2
DNI 0.9082 −68.7 68.9 72.7 0.7794 −30.4 39.5 58.6 0.6228 −36.1 61.6 85.1
DIF 0.8119 40.8 41.1 46.5 0.0063 6.8 15.9 21.1 0.0019 7.0 31.7 36.5

3
DNI 0.3542 −50.9 92.0 115.0 0.0803 −17.7 175.5 204.5 0.0014 −13.2 131.0 164.0
DIF 0.6937 −8.7 59.7 70.4 0.5290 0.6 78.9 86.8 0.6843 −9.4 70.4 77.7

4
DNI 0.2470 47.4 74.0 127.7 0.2273 −33.2 79.1 128.7 0.1022 −322.1 322.1 391.3
DIF 0.2873 −57.5 58.4 94.0 0.4425 −24.5 40.2 69.2 0.4884 11.7 43.2 69.3

5
DNI 0.4456 −86.6 149.2 220.4 0.1410 −121.6 206.9 283.7 0.2980 −132.1 180.7 256.1
DIF 0.5380 −3.2 32.5 39.9 0.0513 33.5 57.9 70.8 0.0195 36.9 65.1 76.6
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Table A3. DNI and DIF forecast results for the measuring periods used for testing of the developed
model (MBE, MAE, and RMSE in W/m2).

Period and
Variable

Day 0 Day 1 Day 2
R2 MBE MAE RMSE R2 MBE MAE RMSE R2 MBE MAE RMSE

1
DNI 0.1957 26.3 101.8 141.4 0.1127 14.1 92.3 146.1 0.0151 −28.4 128.6 162.6
DIF 0.1687 −59.2 64.2 76.0 0.4663 −36.4 36.9 52.9 0.0006 4.7 59.5 67.6

2
DNI 0.9552 55.4 55.6 66.8 0.4768 28.5 59.8 80.9 0.9153 9.4 21.7 33.9
DIF 0.5153 −48.5 48.5 52.3 0.0240 −20.4 31.3 40.1 0.2740 −23.8 30.7 39.8

3
DNI 0.6753 24.0 121.2 190.3 0.6811 −16.6 134.1 187.7 0.6930 2.9 134.2 184.3
DIF 0.6857 −19.4 48.7 72.4 0.6798 −15.5 51.3 71.1 0.5439 −15.4 60.7 85.3

4
DNI 0.0879 46.2 178.6 273.2 0.1934 59.5 162.1 253.6 0.2277 51.8 162.0 251.3
DIF 0.2560 −55.3 63.1 97.3 0.5052 −60.9 65.2 90.1 0.4056 −55.6 64.6 91.0

5
DNI 0.1872 −58.2 106.8 140.4 0.0197 −45.0 133.4 184.8 0.0065 0.4 83.2 149.6
DIF 0.1999 21.2 40.3 46.0 0.0189 −11.8 38.5 58.5 0.0143 −4.1 35.6 56.4

6
DNI 0.3289 −147.5 169.6 210.3 0.3673 46.18 47.2 89.7 0.3013 38.0 46.6 89.3
DIF 0.0152 88.0 96.9 129.0 0.0550 −33.5 33.5 46.3 0.0019 −25.4 28.5 44.2

7
DNI 0.8260 −24.4 36.7 44.5 0.8981 11.9 31.0 37.3 0.8394 37.6 49.0 65.9
DIF 0.6205 14.6 22.6 28.4 0.4374 −3.9 23.9 26.6 0.0125 −25.9 38.1 49.2

8
DNI 0.8672 25.8 53.5 60.2 0.8169 30.5 74.9 85.3 0.8656 57.5 61.8 69.2
DIF 0.5586 −3.2 11.8 15.8 0.3760 −13.7 26.8 30.6 0.0822 −26.5 26.5 30.9

9
DNI 0.1415 160.6 213.8 270.0 0.1635 99.9 184.8 223.0 0.0117 190.2 290.4 341.6
DIF 0.3964 −102.6 115.7 143.9 0.0298 −96.5 126.6 157.6 0.0196 −102.5 131.1 161.4

10
DNI 0.3396 93.7 196.6 266.0 0.2661 33.3 204.1 268.5 0.4108 −20.3 201.3 235.9
DIF 0.2564 −42.3 90.2 122.9 0.2894 −20.0 85.2 113.8 0.3719 −17.3 87.1 105.8

11
DNI 0.2717 −129.9 170.9 207.2 0.6058 −42.8 83.0 111.2 0.6257 22.0 69.2 103.2
DIF 0.0832 55.7 70.8 96.5 0.0929 22.9 37.4 45.3 0.3765 −7.9 23.0 30.9

12
DNI 0.0420 45.0 197.2 228.6 0.1069 95.6 258.8 310.0 0.3188 197.5 295.7 363.3
DIF 0.5633 −63.8 97.1 113.2 0.6490 −114.3 128.1 152.1 0.7377 −108.5 121.3 150.0

13
DNI 0.2652 200.3 217.9 265.3 0.2650 231.0 252.1 300.2 0.2762 262.2 299.9 341.5
DIF 0.1240 −77.5 104.1 127.2 0.1153 −99.3 119.9 141.8 0.1656 −119.1 135.3 154.5

14
DNI 0.3747 101.8 137.5 163.5 0.4259 156.6 162.3 210.6 0.2201 107.0 145.8 186.7
DIF 0.4555 26.2 89.6 111.4 0.4369 14.8 85.0 112.2 0.4314 55.2 95.9 122.8

15
DNI 0.1945 −102.7 125.5 161.5 0.2203 −148.3 173.5 190.0 0.2292 −116.1 139.4 170.9
DIF 0.3872 66.8 68.7 93.0 0.4400 81.7 81.7 97.4 0.4533 73.0 76.7 102.6

16
DNI 0.0805 20.7 230.0 265.3 0.1606 −34.3 209.9 246.7 0.0197 −197.8 326.9 405.4
DIF 0.5675 18.9 53.0 65.6 0.4792 31.2 64.2 77.2 0.7111 −15.6 46.0 52.8

17
DNI 0.3496 −15.5 92.7 146.0 0.4274 −37.6 119.2 158.3 0.4238 −96.0 151.4 205.5
DIF 0.1479 14.3 29.4 38.5 0.2745 11.2 31.1 39.7 0.3782 31.2 41.1 50.6

18
DNI 0.0262 5.2 145.8 211.6 0.0983 19.4 139.8 198.7 0.0154 39.0 142.2 210.7
DIF 0.0994 9.8 76.4 102.3 0.1921 3.7 72.6 95.8 0.0518 −4.0 81.5 111.6

19
DNI 0.7739 −27.3 65.6 99.7 0.8940 0.1 42.2 67.5 0.7421 −33.4 89.0 121.4
DIF 0.4384 8.1 20.8 27.4 0.8150 −2.1 12.9 18.2 0.0654 34.8 45.4 60.6
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Table A4. GTI metrics of first-row tests for each day of forecast horizon and for each period using the
Modified Bugler transposition model with DNI and DIF forecasts (MBE, MAE, and RMSE in W/m2).

Period
Day 0 Day 1 Day 2

R2 MBE MAE RMSE R2 MBE MAE RMSE R2 MBE MAE RMSE

1 0.9795 29.2 33.5 46.4 0.9798 29.5 35.6 46.4 0.9719 23.0 41.4 48.7
2 0.9980 8.9 13.8 16.6 0.9941 12.7 22.6 25.6 0.9933 11.0 23.8 27.7
3 0.9224 −29.4 45.4 63.9 0.9511 31.6 45.7 65.9 0.9345 16.3 36.4 56.3
4 0.9177 9.8 44.7 59.4 0.8715 19.8 51.8 74.6 0.0893 −203.9 210.1 277.7
5 0.9633 21.6 34.9 40.6 0.9329 21.8 41.7 48.4 0.9742 47.0 29.9 34.6

Table A5. GTI results of the developed model for rows that are not the front row for each day of
forecast horizon and for each period using DNI and DIF forecasts (MAE and RMSE in W/m2, MAPE
and RMSPE in %).

Period
Day 0 Day 1 Day 2

R2 MBE MAE RMSE R2 MBE MAE RMSE R2 MBE MAE RMSE

1 0.0043 −163.0 207.1 364.9 0.0059 −163.5 195.8 364.0 0.0048 −179.4 215.5 365.9
2 0.9913 −30.7 34.9 38.8 0.9835 −41.0 42.7 57.2 0.9768 −50.3 53.2 70.5
3 0.6449 −17.4 117.5 175.0 0.6302 −36.0 129.9 181.5 0.5980 −25.8 128.2 187.2
4 0.3640 −3.7 81.8 137.8 0.3764 −3.0 84.0 138.3 0.3630 1.1 85.3 142.8
5 0.4550 −87.7 108.9 214.5 0.4017 −99.6 131.8 234.1 0.4038 −72.3 105.8 217.9
6 0.9196 −105.8 113.3 141.0 0.9651 −29.2 45.2 57.8 0.9636 −30.8 46.8 59.7
7 0.9938 −43.3 43.8 48.8 0.9981 −31.1 31.6 35.0 0.9971 −26.5 27.0 30.9
8 0.9958 −48.0 50.0 52.5 0.9963 −50.2 51.5 53.8 0.9949 −49.7 51.7 54.6
9 0.1442 −82.6 112.5 166.3 0.1479 −93.7 114.7 166.2 0.0815 −84.5 127.3 179.2

10 0.1607 −62.4 142.8 242.5 0.1907 −78.1 143.9 239.9 0.2246 −105.8 147.0 242.8
11 0.8884 −92.8 97.4 125.5 0.9728 −62.1 67.4 78.0 0.9823 −37.5 44.1 51.3
12 0.5099 −43.6 108.8 150.6 0.4232 −36.7 136.7 181.2 0.5488 44.0 111.4 167.7
13 0.9111 19.9 57.1 71.5 0.9154 28.6 54.7 71.8 0.9025 41.8 64.9 87.6
14 0.1142 95.4 105.1 135.2 0.1097 107.8 113.6 155.5 0.0710 111.3 121.3 155.7
15 0.8651 −61.9 74.8 91.6 0.8613 −68.5 87.4 96.9 0.8723 −64.5 78.0 91.8
16 0.4764 5.2 166.3 204.4 0.4233 −30.8 172.6 212.8 0.0174 −227.0 295.8 380.3
17 0.9180 −43.9 70.8 85.8 0.9211 −59.2 76.7 91.8 0.9147 −79.1 90.5 107.8
18 0.8772 −41.7 81.4 99.7 0.8803 −39.9 78.1 97.9 0.8741 −41.9 83.2 100.8
19 0.6672 −55.3 65.9 114.3 0.6605 −51.8 62.1 114.6 0.6384 −39.4 51.7 109.7
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