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A B S T R A C T

Understanding energy consumption associated with cryptocurrency mining gained increasing
attention, with the literature focusing mainly on Bitcoin. This study uses data from the two energy
consumption indices, to estimate static and dynamic transfer entropies. The results provide a
nuanced understanding of the bidirectional relationships and their implications. The dominant
direction of information flow for Bitcoin is from electricity consumption to returns, while for
Ethereum, it is from returns to electricity consumption, suggesting that Ethereum’s returns
significantly impact electricity consumption patterns. Results highlight the need for policies that
integrate energy forecasting and environmental sustainability considerations and has significant
implications for policymaking.

1. Introduction

There is a growing interest in understanding the energy and environmental footprint of cryptocurrencies, especially Bitcoin (BTC)
and Ethereum (ETH) (Sai and Vranken, 2024). The mining process, though crucial to ensure the functionality and security of cryp-
tocurrency networks, is electricity-intensive and harmful to the environment. This situation has led to debates around the BTC mining
process, e.g., Li et al. (2019), Küfeoğlu and Özkuran (2019), and Maiti (2022). From an environmental perspective, depending upon
the consensus mechanism, cryptocurrencies may augment electricity consumption and carbon emissions (Sai and Vranken, 2024). In
response to this energy-intensive process, cryptocurrency projects were developed with reduced energy requirements, and others
changed their mining protocol, as in the case of ETH.

BTC and ETH operate in geographically distributed networks of computing nodes, making it hard to measure their energy con-
sumption accurately, consequently reducing the number of sources to obtain confinable energy consumption data. Initially, both
employed the Proof-of-Work (PoW) consensus protocol, which led to similar issues concerning energy consumption and carbon
emissions. However, ETH transitioned to ETH 2.0, adopting a Proof-of-Stake (PoS) mechanism (September 15, 2022) to address
sustainability, scalability, and security concerns. Our findings indicate that a statistically significant predictive relationship exists
between ETH returns and electricity consumption, which contrasts with BTC.
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The difference underscores the impact of consensus mechanisms on the environmental footprint and operational dynamics of
cryptocurrencies. PoW-based cryptocurrencies generally require much more electricity than those using alternative consensus
mechanisms like PoS (Drăgnoiu et al., 2023). Notably, the PoS consensus mechanism does not require miners to do intensive math-
ematical calculations to validate transactions, which offers potential energy savings over PoW (Asif and Hassan, 2023).

Understanding the relationship between cryptocurrency prices and electricity consumption is crucial to evaluate and accurately
predict their future energy consumption, as stated, for example, by de Vries (2021) or Maiti (2022) for BTC. However, due to the
asymmetric and nonlinear nature of this relationship, it is not easy (Maiti et al., 2023). While several studies, such as those by Bejan
et al. (2023), Corbet et al. (2021), Huynh et al. (2022), Kumari et al. (2024), Li et al. (2019), Maiti (2022), and Sapra et al. (2024) have
explored this relationship focusing on BTC, all, except for Maiti et al. (2023), utilized linear models, highlighting the need to apply
approaches that consider the identified nonlinear relationship (Neto, 2022). Furthermore, most studies have focused on analyzing this
relationship for BTC. The transfer entropy (TE) approach (Shannon and Rényi) was applied to overcome the identified gaps and
quantify the asymmetric information flow between both two major cryptocurrencies’ returns and total electricity consumption,
amplifying the scope of the analysis made by Maiti et al. (2023). The TE approach, widely used in several research areas, is a
directional measure of the dependence between two variables, e.g., Behrendt et al. (2019), and overcomes the low capability of
conventional Granger tests to detect nonlinear causality.

The present study performed a dynamic evaluation of this relationship by applying a sliding windows approach. This assessment is
useful as it allows us to identify how extraordinary events (such as the ETH’s transition from PoW to PoS) affect the bidirectional
relationship between variables. Our findings reveal that ETH returns have a statistically significant and predictive relationship with
electricity consumption, while BTC returns do not show a significant relationship. Furthermore, the information flow dynamics
indicate that ETH’s transition from PoW to PoS substantially impacts the bidirectional relationship between returns and electricity
consumption.

While our results concerning BTC align with the findings of Maiti et al. (2023), our study expands the literature by focusing on ETH.
Unlike BTC, ETH is the backbone of decentralized finance (DeFi) and smart contracts. ETH distinguishes itself from BTC not only
through its consensus mechanism—transitioning from PoW to PoS—but more critically through its diverse use cases in DeFi and smart
contracts. Unlike BTC, which primarily functions as a store of value and medium of exchange, ETH supports a wide range of decen-
tralized applications (dApps) that enable peer-to-peer financial transactions, automated contract execution, and the creation of new
financial instruments. These functionalities make ETH a vital asset within the DeFi ecosystem, where the value of ETH is closely tied to
the activity and demand for these applications. Consequently, the relationship between ETH returns and electricity consumption may
differ markedly from BTC due to the distinct economic forces at play. Our study, therefore, contributes to the literature by not only
comparing ETH and BTC but also by providing insights into how the unique features of ETH, particularly within the DeFi space, in-
fluence its energy dynamics and market behavior.

Moreover, our paper contributes to the extant literature on green finance by providing empirical evidence on how cryptocurrency
trading activities, particularly for ETH, can influence energy consumption patterns and also cryptocurrency prices by empirically
evaluating (statically and dynamically) the impact of electricity consumption on the BTC and ETH markets and vice versa. This study
aims to address the following research questions: (i) How does the electricity consumption of BTC and ETH impact their financial
performance? and (ii) How do the financial returns of BTC and ETH influence their electricity consumption patterns?

The remainder of the letter is structured as follows: Section 2 presents the data and methods, Section 3 presents and discusses the
results, and Section 4 presents the conclusions.

2. Data and methods

2.1. Data

The study uses daily BTC and ETH closing prices from May 20, 2017, to June 2, 2024, obtained from https://www.investing.com/.
The starting point of May 2017 was selected due to the availability of the Ethereum Energy Consumption Index data. Furthermore, the
beginning of the data marks the period when both BTC and ETH experienced substantial growth in both market capitalization and
energy consumption, providing a robust dataset for our analysis. The data for both cryptocurrency’s energy consumption index was
retrieved from https://digiconomist.net/. Both sites were accessed on June 3, 2024. BTC and ETH were selected due to their prom-
inence in the cryptocurrency market, significant differences in their consensus mechanisms, and the availability of electricity con-
sumption data.

2.2. Methods

The Shannon (STE) and Rényi (RTE) transfer entropies were applied. The STE, proposed by Schreiber (2000), is a non-parametric
method that allows the measurement of the causal information transfer between systems in a bi-directional way. It is defined in Eq. (1)
under the assumption of a Markovian process of k and l orders for Y and X, respectively.

STEY→X(k, l) =
∑

x,y
p
(
xt+1, x(k)t , y(l)t

)
loglog

p
(
x(k)t , y(l)t

)

p
(
x(k)t

) (1)
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The bootstrap method (particularly suited for dealing with non-stationarity and nonlinearity in the data) proposed by Dimpfl and
Peter (2013) was used to evaluate the presence of information flow. Grounded in the existing literature that balances statistical
reliability with computational efficiency, to estimate the standard errors and p-values of the TE measures, the bootstrapping process
was performed with 300 replications [see, for example, Assaf et al. (2022), Banerjee et al. (2022), Behrendt et al. (2019) or Urdiales
et al. (2021)]. This process provides a more reliable inference of the information flow between the variables. The Shannon Net TE was
also utilized to identify which of the paired variables influence each other, as given by Eq. (2):

NET STEYX = STEY→X − STEX→Y (2)

Thus, the dominant direction of the information flow could be (i) positive, i.e., from Y to X, if STEY → X(k, l) > STEX → Y(k, l); (ii)
negative, i.e., from X to Y, if STEY → X(k, l) < STEX → Y(k, l); (iii) equal to zero, i.e., equal dominance of information flow in both
directions, if STEY → X(k, l) = STEX → Y(k, l).

The STE was estimated considering sliding windows of 500 observations to dynamically analyze the information flow and evaluate
how extraordinary events (such as the ETHs’ PoW to PoS transition) can affect the bidirectional relationship between variables. This
window size was chosen to provide enough data points for accurate TE estimation while effectively capturing temporal dynamics.

As the STE does not allow for considering the tail events, the RTE was also estimated as defined in Eq. (3). Similar to the STEY → X(k,
l), the RTEq; Y → X(k, l) measures the information flow (or TE) from Y to X. However, unlike in Shannon’s case, RTEq; Y → X(k, l) could also
be negative (on account of nonlinear pricing). Moreover, if RTEq; Y → X(k, l) = 0, it does not imply the independence of both processes
(Jizba et al., 2012).

RTEq;Y→X(k, l) =
1

1 − q
log

( ∑
xϱq
(
x(k)t

)
pq
(
x(k)t

)

∑
x,yϱq

(
x(k)t , y(l)t

)
pq
(
x(k)t , y(l)t

)

)

(3)

The escort distribution is represented by ϱq and the weighting parameters by q.
According to Jizba et al. (2012), the q parameter controls the measure’s sensibility to different probability distributions. It allows

for evaluating the tail events. For 0 < q < 1, it gives high weight to extreme events of low probability. For q → 1, the STE is regained.
For q > 1, outcomes with higher initial probabilities are preferred.

All the TEs’ estimates were made using the R package RTransferEntropy.

3. Results and discussion

The descriptive statistics reveal that both cryptocurrencies display (i) positive mean returns (the returns were calculated according
to rt= lnln(Pt) − lnln(Pt − 1), where Pt and Pt − 1 represent the daily values of a given series on days t and t − 1, respectively), which were
higher for BTC and with a lower standard deviation, (ii) positive kurtosis (> 10.5), meaning fat-tailed distributions, and (iii) negative
skewness (< − 0.75), meaning a higher probability of negative returns than positive ones. The results of the Augmented Dickey–Fuller
and Shapiro–Wilk tests allowed us to reject the null hypothesis in both.

Several studies reported the nonlinear relationship between BTC prices and returns, with its electricity consumption [see, for
example, Huynh et al. (2022), Maiti (2022), and Maiti et al. (2023)]. Considering the cited studies, the TE approach was applied, given
that it is a model-free and non-parametric technique that can deal with the identified nonlinearities. The STE and Net TE results for
both cryptocurrencies are presented in Table 1.

Table 1
STE results.

BTC Information flow TE ETE S. Err p-value Net TE
Returns–>Electricity 0.0042 0.0009 0.0013 0.1900 0.0003
Electricity–>Returns 0.0039 0.0006 0.0012 0.3433
Bootstrapped TE (300 replications):
Quartiles 0 0.25 0.5 0.75 1
Returns–>Electricity 0.0006 0.0022 0.003 0.004 0.0093
Electricity–>Returns 0.0009 0.0028 0.0034 0.0043 0.0076

ETH Information flow TE ETE S. Err p-value Net TE
Returns–>Electricity 0.0145 0.0108 0.0014 0.0000 *** 0.0095
Electricity–>Returns 0.0050 0.0012 0.0013 0.1433
Bootstrapped TE (300 replications):
Quartiles 0 0.25 0.5 0.75 1
Returns–>Electricity 0.0011 0.0029 0.0037 0.0047 0.0058
Electricity–>Returns 0.0014 0.0026 0.0033 0.0043 0.0078

Notes: (i) “***” represents the significance level of 1 %; (ii) S.Err represents standard error estimates; (iii) Net TE corresponds to the Net STE, given by
the difference between the STE (represented as TE on the table) from Returns → Electricity and Electricity → Returns; (iv) ETE is the effective transfer
entropy, as defined by Marschinski and Kantz (2002). It is computed by comparing the original transfer entropy with that obtained from a shuffled
version of the source time series. By randomizing the source series, spurious correlations are removed, allowing ETE to isolate the true nonlinear transfer
of information between variables; (v) the bootstrapped part of the table accounts for both the non-stationarity and nonlinearity in data; (vi) The quartiles
represent the distribution of data points, highlighting the convergence of cryptocurrency returns with overall directional movement.
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Our results show that the information flow from Returns to Electricity is higher (0.08 and 1.9 times higher for BTC and ETH,
respectively) than in the reverse case, which is consistent with previous work of Maiti et al. (2023). This finding indicates a strong
directional relationship and, in a certain way, the predictive power of the Returns on Electricity. In this sense, both cryptocurrencies’
returns can impact electricity consumption behavior. In the case of ETH, this relationship is even stronger and statistically significant
(also supported by the results of the Net TE), meaning the changes in the ETH returns (and prices consequently) have a greater impact
on its electricity consumption. These results and implications could also impact energy mix management and risk analysis.

For BTC, the bootstrapped TE estimates for Returns → Electricity range from 0.0006 at the 0th quartile to 0.0093 at the 100th
quartile, while for Electricity → Returns range from 0.0009 to 0.0076 across the same quartiles. Although the TE values are generally
low, there is a slight increase in the influence of Returns on Electricity at higher quartiles, indicating variability in the data’s infor-
mational flow. For ETH, the bootstrapped TE estimates for Returns → Electricity show a more consistent and significant pattern, with
values ranging from 0.0011 at the 0th quartile to 0.00583 at the 100th quartile and ranging from 0.0014 to 0.0078 for Electricity →
Returns. These results highlight a stronger and statistically significant relationship between ETH returns and electricity consumption,
reflecting a more pronounced and reliable informational flow than BTC. The bootstrapping provides a robust validation of these
dynamic relationships by considering non-stationarity and nonlinearity.

ETH’s integration into DeFi networks makes it a crucial asset for smart contracts and financial transactions beyond mere specu-
lation. This unique role influences how ETH’s price and returns are related to electricity consumption, as DeFi applications may
demand continuous operation and significant computational resources. Indeed, our findings suggest that ETH’s impact on energy use is
tied to the mining process and the broader operational demands of maintaining DeFi systems.

The sliding windows approach was applied to evaluate these dynamic relationships and identify the time-varying dynamics of the
TE and Net TE. Fig. 1 depicts the evolution of TE between each cryptocurrency and its electricity consumption, the reverse TE, and the
Net TE for each pair.

Our results indicate a connectedness between energy consumption and both cryptocurrencies’ returns, consistent with the findings
of Sapra et al. (2024) for BTC. Most of the time, electricity consumption has a greater impact on BTC returns than the opposite.
However, there are exceptions during certain periods. Conversely, ETH returns have a greater impact on electricity consumption than
the opposite, with exceptions during specific periods. For instance, the highest values of information transmission from returns to
electricity consumption and net transmission of information were observed near changes in its mining consensus protocol. Addi-
tionally, higher values of STE from Returns → Electricity and Net TE were noted during this period.

Since the STE does not consider tail events, the RTE was estimated, and the results are shown in Table 2. Once again, for ETH, there
is a statistically significant flow of information from Returns → Electricity for most q values. This finding was not observed in the case of
BTC, which may be explained by the theories of production and value investing (Sapra et al., 2024). In the opposite direction (Elec-
tricity → Returns), ETH, but not BTC, displays increased flow for higher q values. These results indicate that the impact of ETH’s
electricity consumption on its returns and, consequently, prices is not homogeneous and may vary with tail events. Furthermore, as

Fig. 1. Time evolution of the STE between BTC returns and electricity consumption (on the top) and between ETH returns and electricity con-
sumption (on the bottom).
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shown in Fig. 2, the flow of information is greater in both directions for lower q values and decreases as q → 1.

4. Conclusion

This paper assesses whether electricity usage of BTC and ETH impacts their financial performance and vice versa. The study
provides insights for investors and users into the connection between cryptocurrency electricity consumption and utility usage.

For ETH, this study finds statistically significant information flow from Returns → Electricity, suggesting that energy companies can
use this cryptocurrency’s returns to better forecast and manage energy demand, potentially prioritizing renewable resources to meet
this demand sustainably. Moreover, the variation in cryptocurrency prices, especially in what refers to extreme events, introduces risks
to energy consumption stability and financial stability for energy companies, necessitating risk analysis and mitigation strategies such
as hedging and diversification to ensure energy and economic resilience.

The STE and RTE results for Electricity → Returns for ETH are mixed, suggesting a complex influence of total ETH electricity
consumption on returns. Additionally, substantial changes in the tail distribution of the ETH’s electricity consumption behavior
pattern may have a direct impact on its returns. For both cryptocurrencies, the RTE value converges with STE as q → 1.

The present study’s findings are highly relevant to policymakers in forecasting the future of both cryptocurrencies’ total electricity
consumption. They emphasize the bidirectional nature of the relationship between ETH returns and electricity consumption, a dy-
namic particularly relevant for the energy-intensive operations of DeFi platforms. This insight is crucial for developing strategies to
manage the environmental impact of DeFi activities. Furthermore, this research reveals that ETH returns significantly impact

Table 2
Rényi TE results.

q BTC ETH

Returns → Electricity Electricity → Returns Returns → Electricity Electricity → Returns

0.01 0.1076 0.1075 0.2904** 0.2267
0.10 0.0812 0.0783 0.2482** 0.1907
0.20 0.0591 0.0522 0.2063** 0.1591
0.30 0.0430 0.0329 0.1678*** 0.1324
0.40 0.0312 0.0198 0.1321** 0.1077
0.50 0.0227 0.0119 0.1000** 0.0843*
0.60 0.0165 0.0076 0.0727** 0.0626**
0.70 0.0121 0.0056 0.0509*** 0.0434***
0.80 0.0088 0.0047 0.0346*** 0.0274**
0.90 0.0062 0.0043 0.0228*** 0.0146***
0.99 0.0044 0.0039 0.0152*** 0.0058*

Notes: (i) “***”, “**” and “*” represents the significance level of 1 %, 5 % and 10 %, respectively; (ii) q denotes the weighting parameter.

Fig. 2. Shannon and Rényi TE for different q values.
Notes: (i) “***”, “**” and “*” represents the significance level of 1 %, 5 % and 10 %, respectively; (ii) q denotes the weighting parameter.
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electricity consumption, indicating that market activities can influence energy usage. This work highlights the need for policies
integrating energy forecasting and environmental sustainability considerations and has significant implications for policymaking,
particularly as ETH transitions towards a PoS consensus mechanism. In this sense, policymakers could use this information to develop
regulations that encourage more sustainable consensus mechanisms. Understanding these dynamics can aid in forecasting energy
needs and planning for a more environmentally friendly energy mix.
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