

An extended OLG model for solving the Global Commons problem through intergenerational concern

By António Pedro Pica Msc –in Economics-Universidade de Évora & Miguel Rocha de Sousa (mrsousa@uevora.pt)

CICP & CEFAGE & Assistant Professor of Economics, DE-ECS, University of Évora, Portugal. IPSA RC 35, Toronto & SASE, Paris. Ordem dos Economistas & SEDES, PT.

> SASE World Congress Session S14,- Assessing Frontiers of Climate Change 8:30-10:00 ROOM New York 1 - Top Floor Rio de Janeiro Brazil Windsor Florida Hotel

An extended OLG model for solving the Global Commons problem trough intergenerational concern by António Pica & Miguel Rocha de Sousa

Abstract:

Udalov (2014) extended a collective goods problem through an Overlapping Generations Model where there is a decision regarding the **type of energy use**, either **fossil fuel versus renewable use energy**. Udalov introduced a politico-economic equilibrium contingent on the effort or commitment on renewable energy. We provide his framework but further extended it, by using an **eta** parameter which provides intergenerational concern among different generations, old versus youngsters. We depart from non-existent Udalov non-concern of intergenerational generations, and extend it to use a parameter –eta – which reflects this concern. We further provide a game, in the sense of game theory, where the politico economic equilibrium is contingent on the intergenerational concern, which reflects strategic interaction among youngsters and old people. Some politico-economic results at hand. As higher intergenerational concern - eta parameter - a tribute to Stern's (2004) report, the faster the pace of recuperation of a global common good, the lower level of pollution, and politico-economic equilibria recovers the fastest (m) the investment in renewable energy.

Key-words:OLG model; Fossil versus renewable energy; Intergenerational concern; Pollution; Global commons. **JEL Codes:** C70; D64; D70; O13; O19.

Intergenerational Concern | Cooperation | Climate Change | OLG model | Game Theory

Theoretical Framework – Climate Change

Figura 1

Observed (1900–2020) and projected (2021–2100) changes in global surface temperature (relative to 1850–1900) Source: (IPCC, 2023)

Nicholas Stern

Arthur Pigou

Nicholas Stern

Arthur Pigou

Nicholas Stern

Arthur Pigou

Nicholas Stern

Arthur Pigou

Figura 2 Global industrial greenhouse gas (GHG) emissions

Source (Nordhaus, 2018, p. 347)

Figura 3

Average temperature rise under different scenarios (since 1900, °C)Source: (Nordhaus, 2018, p. 348)

Theoretical Framework – Game Theory

John von Neumann e Oskar Morgenstern

John Nash

Fudenberg e Tirole

John von Neumann e Oskar Morgenstern

John Nash

Fudenberg e Tirole

John von Neumann e Oskar Morgenstern

John Nash

Fudenberg e Tirole

Theoretical Framework – Game Theory

John von Neumann e Oskar Morgenstern

John Nash

Fudenberg ~ e ~ Tirole

Gary Becker

Maurice Godelier

Gary Becker

Maurice Godelier

Maurice Godelier

Maurice Godelier

Allais, Samuelson and Diamond

John and Pecchenino

Vladimir Udalov

Allais, Samuelson and Diamond

John and Pecchenino

Vladimir Udalov

Allais, Samuelson and Diamond

John and Pecchenino

Vladimir Udalov

Allais, Samuelson and Diamond

John and Pecchenino

Vladimir Udalov

Active Research – Youngsters

 $Env_t = Env_{t+1} = \overline{Env}$

 $r_{t+1} = \bar{r}$

 $c_t^1 = c_{t+1}^2 = \overline{c}$

Active Research – Youngsters

Evolução do consumo por qualidade ambiental (parametrizado em \bar{r} , δ , η =0,1, ω =1 e μ ¹=1)

Figure 4 Evolution of consumption by environmental quality Authors, 2023

□ 0,00-0,50 □ 0,50-1,00 □ 1,00-1,50 □ 1,50-2,00

Active Research – Youngsters

Evolução do consumo por qualidade ambiental (parametrizado em \bar{r} , δ , $\eta=1$, $\omega=0,1$ e $\mu^1=1$)

Figure 5 Evolution of consumption by environmental quality Autors, 2023

□0,980-0,985 □0,985-0,990 □0,990-0,995 □0,995-1,000 □1,000-1,005 □1,005-1,010

Active Research – Old / elderly

Without Intergenerational concern

$$V_t^{old} = \ln c_t^2 + \ln Env_t$$

With Intergenerational concern

$$U_t^{old} = \ln c_t^2 + \ln Env_t + \frac{\eta}{1+\delta} \ln Env_{t+1}$$

Active Research – Old / Elderly

(parametrizado em $\omega \in \mu^2$) $rac{\overline{c}}{\overline{Env}}$ ω

Evolução do consumo por qualidade ambiental

Figure 6

Evolution of consumption by environmental quality Autors, 2023

$$\mu^2 - \mu^1 = \mu^*$$

Superfície de EN da Preocupação Intergeracional (parametrizada em \bar{r} , δ , ω =0,5 e μ *=-10)

Figure 7 NE Surface of Intergenerational Concern Autor, 2023

Superfície de EN da Preocupação Intergeracional (parametrizada em \bar{r} , δ , ω =1 e μ^* =-10)

Figure 8 NE Surface of Intergenerational Concern Autor, 2023

Superfície de EN da Preocupação Intergeracional (parametrizada em \bar{r} , δ , ω =20 e μ^* =-10)

Figure 9 NE Surface of Intergenerational Concern Authors, 2023

□-60,00--40,00 □-40,00--20,00 □-20,00-0,00 □0,00-20,00 □20,00-40,00 □40,00-60,00

Fronteira de EN

Figure 11 NE Surface of Intergenerational Concern Authors, 2023

Superfície de EN da Preocupação Intergeracional (parametrizada em \bar{r} , δ , ω =0,5 e μ^* =10)

Figure 12 NE Surface of Intergenerational Concern Authors, 2023

Figure 13 NE Surface of Intergenerational Concern Authors, 2023

Active Research – Discussion of Results

youngsters

Active Research – Discussion of Results

Elderly

Consumption Evolution

 μ^2

≽

(consumption base value)

Active Research – Discussion of Results

Conclusion

Environmental Heritage

Cooperation

Sustainable Development

Limits of Analysis and Further Work

- Log linear deterministic model
 Stochastic model
- Simulations contingent on the positive ortant
 Cover the most important results to other ortants
- Equal intergenerational concern for young and old
 Extend to different parameters for both generations

"Climate change is the greatest market failure the world has ever seen"

(Stern, 2007)