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A B S T R A C T   

Quantifying fuel load over large areas is essential to support integrated fire management initiatives in fire-prone 
regions to preserve carbon stock, biodiversity and ecosystem functioning. It also allows a better understanding of 
global climate regulation as a potential carbon sink or source. Large area assessments usually require data from 
spaceborne remote sensors, but most of them cannot measure the vertical variability of vegetation structure, 
which is required for accurately measuring fuel loads and defining management interventions. The recently 
launched NASA’s Global Ecosystem Dynamics Investigation (GEDI) full-waveform lidar sensor holds potential to 
meet this demand. However, its capability for estimating fuel load has yet not been evaluated. In this study, we 
developed a novel framework and tested machine learning models for predicting multi-layer fuel load in the 
Brazilian tropical savanna (i.e., Cerrado biome) using GEDI data. First, lidar data were collected using an un
named aerial vehicle (UAV). The flights were conducted over selected sample plots in distinct Cerrado vegetation 
formations (i.e., grassland, savanna, forest) where field measurements were conducted to determine the load of 
surface, herbaceous, shrubs and small trees, woody fuels and the total fuel load. Subsequently, GEDI-like full- 
waveforms were simulated from the high-density UAV-lidar 3-D point clouds from which vegetation structure 
metrics were calculated and correlated to field-derived fuel load components using Random Forest models. From 
these models, we generate fuel load maps for the entire Cerrado using all on-orbit available GEDI data. Overall, 
the models had better performance for woody fuels and total fuel loads (R2 = 0.88 and 0.71, respectively). For 
components at the lower stratum, models had moderate to low performance (R2 between 0.15 and 0.46) but still 
showed reliable results. The presented framework can be extended to other fire-prone regions where accurate 
measurements of fuel components are needed. We hope this study will contribute to the expansion of spaceborne 
lidar applications for integrated fire management activities and supporting carbon monitoring initiatives in 
tropical savannas worldwide.   

1. Introduction 

Climate change mitigation and biodiversity conservation efforts 
across the world require an understanding of wildfire dynamics 
(Bowman et al., 2013; Lehmann et al., 2014). Tropical Savanna eco
systems are generally fire-adapted (Simon et al., 2009; Hoffmann et al., 
2012; Durigan and Ratter, 2016), but human activities have affected fire 
regimes and landscape characteristics (Hantson et al., 2015; Andela 
et al., 2017; Andela et al., 2018; Rosan et al., 2019; Durigan et al., 2020). 
Fire dynamics in tropical savannas depend, among other factors, on the 
vegetation structure and accumulated fuel loads (combustible contents) 
(Sandberg et al., 2001; Chuvieco et al., 2003; Keane et al., 2013). Fuel 
load structure continuity, condition (live or dead) and moisture are 
important variables for modeling fire behavior (Stavros et al., 2018; 
Gomes et al., 2020a), assessing its severity (Hu et al., 2019; Klauberg 
et al., 2019), calculating greenhouse gas emissions (GHG) (Ogle et al., 
2019; Gomes et al., 2020a) and improving landscape management and 
conservation strategies to promote a pyro-diverse ecosystem (Schmidt 
et al., 2018; Franke et al., 2018). These applications demand measure
ments of all fuel components as they interact with fire differently. That 
includes necromass (e.g., duff, litter, downed wood debris) and different 
plant types (e.g., grasses, herbs, forbs, shrubs, trees). 

Remote sensing technologies are commonly used to examine fuel 
load distribution and spatial variability over large areas. In this regard, 
lidar (light detection and ranging) sensors are preferred as they can 
directly detect different vegetation strata with high accuracy (Erdody 
and Moskal, 2010, Gajardo et al., 2014, Szpakowski and Jensen, 2019, 
Chuvieco et al., 2020). Generally, the approach for local scale fuel 
mapping relies on discrete-return or full-waveform lidar sensors in 
aircraft or unnamed aerial vehicle (UAV) platforms to collect lidar data 
and calculate lidar-derived metrics that will subsequently serve as pre
dictor variables in statistical models (Hermosilla et al., 2014; Hudak 
et al., 2016a; Bright et al., 2017; Stefanidou et al., 2020). Nonetheless, 
when there are limited resources for airborne and UAV-lidar surveys, or 
it is necessary to upscale analyses to a regional/global level, images 
acquired by satellite systems operating in either optical or microwave 
domain are then required (Wulder et al., 2012; García et al., 2017; 
Franke et al., 2018). The Geoscience Laser Altimeter System (GLAS, 
onboard ICESat-1 – Zwally et al., 2002) was the first spaceborne lidar 
sensor to collect sample data globally, and it was operational between 

2003 and 2009. Although its main objective was to measure ice-sheet 
changes, GLAS was also used for forest and fuel-related studies (Lefsky 
et al., 2006; Duncanson et al., 2010; Ashworth et al., 2010; García et al., 
2012; Peterson et al., 2013; Ferreira et al., 2011). Its successor mission 
launched in 2018, ICESat-2, is a photon-counting lidar system that also 
provides valuable 3-D sample data globally that can be similarly used for 
biomass estimation (Narine et al., 2020). Yet, neither of these missions’ 
characteristics were optimized for collecting data over the global range 
of forest canopy structures which limits opportunities to use these data 
to examine some important biomes at regional scale. 

A new promising near-global dataset for fuel load estimation comes 
from the Global Ecosystem Dynamics Investigation (GEDI) sensor, with 
unprecedented high resolution lidar data samples collected between 
~52◦ north and south latitudes, available since April 2019 (Dubayah 
et al., 2020). As the first of its kind, GEDI was specifically designed to 
measure forest structure. The sensor is characterized as a large-footprint 
(diameter of ~25 m) full-waveform lidar with penetration capability in 
forests with up to ~99% canopy cover (Hancock et al., 2019; Duncanson 
et al., 2020). GEDI’s penetration capabilities in dense vegetation is what 
mainly differentiates it from the previous spaceborne lidar sensors 
designed for ice sheet measurements. Furthermore, the footprints are 
separated at 60 m along track and 600 m across track - an improvement 
to GLAS’ 70 m footprint separated ~170 m along track (Zwally et al., 
2002). The improved technical specification makes GEDI more suitable 
than any previous spaceborne sensor to measure forest structure at 
regional and global scales. 

The GEDI mission plan includes the delivery of a global aboveground 
dry biomass (AGB) product at a spatial resolution of 1-km (Dubayah 
et al., 2020) that is suitable for global biomass mapping requirements 
(Hall et al., 2011). These AGB estimates are expected to be the global 
benchmark of forest AGB, essential for measuring the world’s carbon 
stocks. Furthermore, recent studies used GEDI waveform metrics for 
developing models to estimate forest height (Potapov et al., 2021; 
Rishmawi et al., 2021), biomass (Saarela et al., 2018; Silva et al., 2021; 
Duncanson et al., 2020; Rishmawi et al., 2021), and canopy structure 
diversity (Marselis et al., 2018; Schneider et al., 2020; Rishmawi et al., 
2021). However, to date, no published study on estimation of fuel loads 
from GEDI data is available and the GEDI AGB products may be of 
limited use for fire-related applications because calibration data to 
derive information on important layers may be lacking – such as from 
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duff, litter, down woody debris, grasses, forbs and shrubs. In addition, 
these lower fuel strata layers that are crucial for fire behavior and 
emissions are commonly not considered in previous studies using 
spaceborne lidar sensors (Lefsky et al., 2005; García et al., 2012; 
Peterson et al., 2013). Therefore, it is necessary to develop models using 
GEDI-derived metrics that consider all fuel load components for effec
tively meeting integrated fire management criteria and for improving 
carbon budget estimates. 

Confirming GEDI’s capability to predict fuel loads in savannas will 
open a range of new opportunities to improve fire management planning 
and decisions at regional and global scales. Furthermore, the possibility 
of having this information from space also opens the range of GEDI 
applications to map fuel loads during the mission life-span and for up
coming lidar satellite missions (e.g., Multi-footprint Observation Lidar 
and Imager - MOLI (Murooka et al., 2013, Kimura et al., 2017, Asai et al., 
2018). The applications of such technological advances include mapping 
fire risk, carbon emissions and estimate fire behavior and fuel load dy
namics for larger areas such as countries or entire biomes, thus 
contributing to mitigate the impacts of climate change in these regions. 
The overall aim of this study was to assess the capability of GEDI for 
estimating large-scale multi-layer fuel loads in the Brazilian tropical 
savanna (Cerrado). Herein, we developed a framework to i) calibrate 
and validate Random Forest (RF) models for predicting different fuel 
layers (ground, surface, shrubs, trees and total fuel load) at the plot level 
across the complex gradient of Cerrado formations (i.e., grassland, 
savanna and forest) in Brazil from field and simulated GEDI data; and ii) 
characterize large-scale, multi-layer fuel loads across the entire Cerrado 

(i.e. 1.9 million km2) by applying the calibrated RF models to on-orbit 
GEDI data collected over its whole extent, and then aggregating the 
footprint level fuel load estimates to 1-km-resolution grid across the 
biome. 

2. Material and methods 

2.1. Study area 

Cerrado is the most biodiverse savanna in the world and considered 
as a top global hotspot for conservation priorities (Myers et al., 2000). It 
has been rapidly converted to crop and pasturelands and less than half of 
its original vegetation cover remains (Strassburg et al., 2017). This 
native vegetation, however, has been severely impacted by human- 
mediated shifts in fire regimes and widespread invasion of fire-prone 
African fodder grasses (Durigan and Ratter, 2016). Our study sites are 
located in the Serra do Cipó National Park (SCNPK), Chapada dos Vea
deiros National Park (CVNPK), Paraopebas National Forest (PNF) and 
University of São João Del-Reis Forest (UFSJ) (Fig. 1). Site locations 
were chosen to span a range of vegetation structures within the Cerrado 
biome, covering the three major formations (i.e., grassland, savanna, 
and forest). In Cerrado, grasslands are characterized by the presence of 
grass species alone (vegetation type locally known as “Campo limpo”), 
with scattered shrubs (“Campo sujo” and “Campo rupestre”), or domi
nated by grasses and shrubs with scattered trees (“Cerrado ralo”). The 
savanna formation is mostly dominated by contorted short trees with 
scattered shrubs and grasses (e.g., “Cerrado sensu stricto”). Forests are 

Fig. 1. Spatial location of the Brazilian savanna (Cerrado) (a, b) and study sites where UAV-lidar and field data were collected, namely, Chapada dos Veadeiros 
National Park (CVNPK, c1), Serra do Cipó National Park (SCNPK, c2) Paraopeba National Forest (PNF, c3) and University of São João Del-Rei’s Forest (UFSJ, c4). Fig. 
c1-c4 show the UAV-lidar coverage and canopy height model derived from the 3D point cloud. 
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tree-dominated formations (e.g., “Cerradão”, in addition to the extra- 
Cerrado forest formations as Riparian and Gallery forests). For further 
study site characteristics regarding their location, seasonal/climate 
traits, soil characteristics and topography, please refer to section 2.1 in 
da Costa et al. (2021). 

2.2. Fuel load measurements 

We established sample plots in different Cerrado vegetation forma
tions (i.e., grassland, savanna, and forest) between June and July 2019. 
First, 50 square plots of 30 × 30 m (900 m2) were set across the study 
sites (Fig. 2a). Each plot corner was geolocated using a Differential 
Global Navigation Satellite System (Fig. 2c). Subsequently, four 1 × 1 m 
(1 m2) and two 1 × 5 m (5 m2) subplots were set within each plot to 
measure surface and shrubs/small trees fuel components, respectively 
(Fig. 2b, d). In the field, all duff, litter and downed woody debris (surface 
fuels; SUfuels) were separated from non-woody grasses, herbs and forbs 
(herbaceous fuels; HBfuels). They were immediately weighed with a 10 g 
precision scale. Three 500 g samples were taken to be weighed on a 
laboratory scale (precision of 1 mg) and oven dried at 65 ◦C until a 
constant weight was reached. The fresh and dry weight of the samples 
were used to calculate fuel moisture content (FMC, Eq. (1)). The total 
dry biomass of SUfuels and HBfuels were then calculated for the plots using 
Eqs. (2) and (3). In addition, SUfuels and HBfuelswere summed up to create 
a single component of the lowest stratum SHfuels (Eq. (4)). 

FMC(%) = (FW − DW)/DW (1)  

where: FW is the sample’s fresh weight (g) measured in the field and DW 
is its oven-dried weight (g). 

SUfuels =
∑n

i=1
((duff i(kg)+ litteri(kg)+ downed woodi(kg) )

x (1 − FMC) ) x HEFSU

(2)  

where: SUfuels is the total dry biomass (Mg ha− 1) of duff, litter and 
downed wood collected in sub-plot i. HEFSU is the hectare expansion 

factor of 2.5 used to convert from kg to Mg ha− 1. 

HBfuels =
∑n

i=1
((non − woody grassesi (kg)+ forbsi(kg) )

x (1 − FMC) ) x HEFSU

(3)  

where: HBfuels is the total dry biomass (Mg ha− 1) in plot i of non-woody 
grasses and forbs collected in subplot j. 

SHfuels = SUfuels +HBfuels (4)  

where: SHfuels is the total dry biomass (Mg ha− 1) of the lowest vegetation 
stratum. 

Similarly, all the shrubs and trees with diameter at breast height 
(dbh, 1.3 m) < 10 cm were harvested and immediately weighed with a 
10 g precision scale. Three 500 g samples of stems, branches and leaves 
were taken to be weighed in a laboratory scale (precision 1 mg) and oven 
dried at 65 ◦C until constant weight was reached. The total dry biomass 
of this component was then calculated using Eq. (5). 

SSfuels =
∑n

i=1
((shrubsi (kg)+ small treesi (kg) ) x (1 − FMC) ) x HEFSS

(5)  

where: SSfuels is the total dry biomass (Mg ha− 1) of shrubs and small trees 
(dbh < 10 cm). HEFss = 2.5. 

Finally, all the trees in the plots with dbh ≥ 10 cm were measured for 
total height (ht) and dbh using a digital clinometer and diameter tape, 
respectively. We used those measurements to estimate the dry above
ground biomass of trees (WDfuels) using Eq. (6) (Chave et al., 2014). 

WDfuels =
∑n

j=1
0.0673 x

(
ρ x dbhj

2 x htj
)0.976 x HEFwd (6)  

where: WDfuels is the total dry aboveground biomass of trees (Mg ha− 1); 
dbhj and htj are the dbh (cm) and ht (m) per tree j; ρ is the wood density 
(g cm− 3) derived from Zanne et al. (2009). HEFwd = 0.011. The total 
fuel load (TFfuels) was calculated by summing all the components (Eq. 
(7)). Table 1 summarizes fuel load component values in the sample plots 

Fig. 2. Summary of field data survey where different plot sizes were designed for collecting tree, shrub, and surface fuels (a, b). Subfigures c) and d) depict plot 
sampling configuration and surface fuel collection, respectively. 
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by each Cerrado formation and a description of the data collection 
authorization process is in the supplementary material. 

TFfuels = SUfuels +HBfuels + SSfuels +WDfuels (7)  

2.3. UAV-lidar data acquisition and processing 

The UAV-lidar 3-D point clouds were acquired with the GatorEye 
Gen 1 UAV system (Broadbent et al., 2021) in July 2019. The GatorEye 
platform was a DJI M600 Pro hexacopter that integrated a Velodyne 
VLP-32c dual-return laser scanner lidar with an Inertial Measurement 
Unit (Fig. 3), and it was coupled with a dual-return lidar sensor with 32 
separate lasers, each having a 360◦ vertical field of view (FOV). The 
sensor emitted around 600,000 pulses per second with a theoretical 
return number of 1.2 million returns per second and in parallel, a Global 
Navigation Satellite System (GNSS) receiver collected static geolocation 
data to calculate a post-processing kinematic (PPK) flight trajectory. 
Herein, UAV-lidar 3D point cloud data processing included imple
menting the GatorEye Multi-scalar Post-Processing Workflow (as 
detailed in Broadbent et al., 2021), aligning the flight lines, and clipping 
the point clouds within the field plots for GEDI data simulation (Section 
2.4). 

2.4. GEDI data 

2.4.1. GEDI full-waveform simulation 
We simulated GEDI data from the UAV-lidar 3D point cloud for 

calibrating fuel load models to avoid the geolocation errors of GEDI 

(~10–20 m) and due to the fact that GEDI orbits are likely not to overlay 
our field plots. The GEDI pre-launch plan included the development of a 
GEDI simulator that is able to reproduce the on-orbit GEDI data char
acteristics for the calibration of aboveground biomass models (Hancock 
et al., 2019). The simulation includes transforming discrete-return lidar 
point clouds into full-waveform signals (Blair and Hofton, 1999) in 
GEDI-sized footprints and with the expected GEDI instrument noise 
added. The waveform signal-to-noise ratio (SNR) on the on-orbit GEDI 
data depends on characteristics such as laser type (power or coverage), 
acquisition time (day or night), canopy cover and atmospheric condi
tions (Hancock et al., 2019; Dubayah et al., 2020; Duncanson et al., 
2020). The simulator ensures consistency across point cloud flight 
characteristics especially for high-density lidar point clouds, as used as 
input in this study, that allow consistently transferring models to the on- 
orbit GEDI data. Complete description and validation of the GEDI 
simulator are described in detail in Hancock et al., 2019. GEDI-like 
waveforms were simulated from the high-density UAV-lidar point 
clouds clipped to the study sample plots using the gediWFSimulator tool 
in the rGEDI package (Silva et al., 2020) in R (R Core Team, 2020). 
Realistic noise was added considering a beam sensitivity of 0.98 (i.e., the 
canopy cover at which ground is detected 90% of the time with 5% 
probability of a false positive Hancock et al. (2019)) by using a link 
margin of 4.956 at 95% of canopy cover that relates to noise of the 
power beam collecting data at night (Boucher et al., 2020). For ground 
detection and metrics calculation, the waveforms were denoised and 
smoothed by setting the noise threshold as the mean plus 3 standard 
deviations and smoothing width (applied after denoising) equal to 0.5 m 
(Qi et al., 2019; Silva et al., 2021). 

2.4.2. GEDI-derived vegetation structure metrics 
We calculated the following metrics from the simulated GEDI full- 

waveforms (Table 2): RH (relative height) at the 98th height percen
tile (RH98, in m), canopy cover fraction (CCF, in %), plant area index 
(PAI, in m2 m− 2), and Foliage Height Diversity (FHD, unitless). These 
metrics were selected to match to the GEDI Level 2A and 2B products 
and facilitate model interpretability. RH98 represents the height below 
which 98% of the returned laser energy is registered. It was selected to 
represent the top of the canopy, avoiding the noise of using the last 
return elevation value (Silva et al., 2018). The CCF is related to the 
percent of the ground covered by the vertical projection of canopy 
material calculated from the Gaussian fitted ground signal. PAI is the 
projected area of plant elements per unit ground surface, which relates 

Table 1 
Summary of field measurements of surface fuels (SUfuels), herbaceous (HBfuels), 
surface and herbaceous fuels (SHfuels), shrubs (SSfuels, dbh < 10 cm), woody fuels 
(WDfuels, dbh ≥ 10 cm) and total fuel load (TFfuels) over the different Cerrado 
formations (i.e., grassland, savanna and forests).  

Cerrado 
formation 

Number of 
plots 

Fuel 
component 

Fuel load (Mg ha− 1) 

min max mean sd 

Grassland 5 SUfuels 2.7 10.3 5.1 3.1   
HBfuels 3.7 19.9 10.6 6.8   
SHfuels 6.6 25.6 15.7 8.5   
SSfuels 0.1 4.5 1.4 1.8   
WDfuels 0.0 0.6 0.1 0.3   
TFfuels 11.7 25.9 17.2 7.3 

Savanna 30 SUfuels 2.0 22.4 8.0 4.1   
HBfuels 0.6 7.7 3.7 1.9   
SHfuels 3.8 26.1 11.7 4.5   
SSfuels 0.5 39.7 10.1 9.2   
WDfuels 0.0 55.6 18.6 17.1   
TFfuels 13.3 100.2 40.4 23.5 

Forest 15 SUfuels 0.8 30.1 13.9 7.3   
HBfuels 0.4 6.7 1.3 1.6   
SHfuels 1.3 30.7 15.3 7.8   
SSfuels 0.0 36.8 11.9 13.1   
WDfuels 25.9 138.1 77.1 39.2   
TFfuels 43.7 187.9 104.2 42.4  

Fig. 3. GatorEye UAV-lidar (Gen 1) system. a) DJI M600 Pro hexacopter, with Phoenix Scout Ultra, hyperspectral, and visual sensors; b) three GNSS antennas for 
navigation, and one for sensor trajectory (positioned in the middle); c) Velodyne Ultra Puck lidar system. 

Table 2 
GEDI waveform metrics used as predictors to estimate fuel load components.  

Acronym Description 

RH98 Relative height at the 98th height percentile (m) 
PAI Plant Area Index (m2 m− 2) 
CCF Canopy cover fraction (%) 
FHD Foliage Height Diversity (unitless)  
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to the canopy cover and plant occupation of the vertical space. The FHD 
is an index for expressing canopy structure complexity and vertical 
distribution (MacArthur and Horn, 1969). It is calculated by summing 
the product between the proportion of vertical PAI profiles and its log
arithm in a selected horizontal layer (Tang and Armston, 2019). The 
theoretical basis and full description of cover and vertical profile GEDI 
metrics are detailed in the algorithm theoretical basis document (Tang 
and Armston, 2019). The metrics were calculated using the gediWF
Metrics function in rGEDI (Silva et al., 2020) (Fig. 4). 

2.5. Fuel load modeling development 

Principal Component Analysis (PCA) was applied using the R pack
age FactoMineR (Lê et al., 2008) for characterizing fuel load and GEDI 
metrics across field plots and vegetation formations. An explorative 
analysis of the derived PC scores was conducted in the first two com
ponents to analyze the relationships between field and GEDI variables. 

Fuel loads were modeled separately, yielding five models with the 
GEDI metrics as predictors and SUfuels, HBfuels, SHfuels, SSfuels, WDfuels and 
TFfuels as response variables. We used the random forest (RF) algorithm 
implemented through the Caret R package (Kuhn et al., 2020) as our 
modeling approach. RF builds regression tree ensembles from boot
strapping the data, and the final prediction is the average ensemble 
outcome (Breiman et al., 1984; Breiman, 1996). This method was 
selected for being flexible to the different data distributions present in 
our dataset due to the various vegetation structures in the Cerrado for
mations (Fig. S1). Each RF was built with 500 trees tuning the number of 
predictors at each split (mtry). We tested mtry ranging from two to four 

(2 ≤ mtry ≤ 4), selecting the best tuned model in a 5-fold cross-validation 
assessment using the coefficient of determination (R2), absolute (Mg 
ha− 1) and relative (%) root square mean error (RMSE) and mean dif
ference (MD) (Eqs. 8 to 12). 

R2 = 1 −

∑n

i=1

(
Yi − Ŷ i

)2

∑n

i=1

(
Yi − Y

)2 (8)  

RMSE (Mg/ha) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(
Ŷi − Yi

)2

n

√
√
√
√
√

(9)  

RMSE (%) =
RMSE

Y
x 100 (10)  

MD (Mg/ha) =

∑n

i=1

(
Ŷ i − Yi

)

n
(11)  

MD (%) =
MD
Y

x100 (12)  

where: Ŷi is the estimated fuel load (Mg ha− 1), Yi is the observed fuel 
load (Mg ha− 1); n is number of samples. For each fuel layer, the tuned 
model was run 500 times to account for the algorithm randomness. 

Fig. 4. Cerrado formations (a1, b1, and c1) and respective 3D point clouds from a UAV lidar survey (a2, b2, and c2) and metrics from the simulated waveforms (a3, 
b3, and c3). 
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2.6. Fuel loads characterization in Cerrado 

The GEDI Level 2A and 2B version 2 data products (Dubayah et al., 
2021a, 2021b) collected between April 18, 2019 and October 29, 2020 
were downloaded over the entire Cerrado vegetated area. The GEDI 
orbits intersecting Cerrado limits were found and downloaded using the 
gedifinder and gediDownload functions in rGEDI package (Silva et al., 
2020). The footprints were masked to the Cerrado vegetated area based 
on the land cover classification from Mapbiomas for the same year of the 
data collection (Souza et al., 2020). The GEDI footprint-level metrics 
(Table 2) were extracted using the getLevel2AM and getLevel2B functions 
and filtered using the quality flag (quality_flag = 1). This flag indicates 
usable data by summarizing individual quality assessment parameters 
based on waveform shot energy, sensitivity (< 0.9 over land), ampli
tude, and real-time surface tracking quality (Hofton and Blair, 2019; 
Beck et al., 2020). 

The fuel load models developed in item 2.5 were applied to the GEDI 
footprints (diameter of ~25 m) collected across the Cerrado biome 
extent. Fuel load maps of each component were created by taking the 
average of the footprint-level estimates at 1-km2 grid cells for mapping 
purposes and compatibility with planned gridded GEDI products 
(Dubayah et al., 2020) and requirements for global biomass maps (Hall 
et al., 2011). 

We calculated the uncertainty of fuel load predictions in each cell by 
accounting for the footprints’ variability within the cell, uncertainty 
associated with the RF algorithm, and RF lack of fit. To show this we 
start by assuming that the fuel load estimate at footprint i with model m 
is given: 

RFim = θi + eim (13)  

where θi is the overall mean prediction for footprint i and eim is an error 
term. We assume that the expected value and variance of this error are E 
[eim] = 0 and Var[eim] = τi

2, respectively. The parameter τi
2 captures the 

within-footprint variability associated with the randomness of the RF 
algorithm. We also assume that the RF mean prediction θiis given by: 

θi = μi + ϵi (14)  

where μi is the true biomass of footprint i and ϵiis another error term. 
This error term accounts for the fact that mean RF prediction is not 
identical to the true biomass. We assume that E[ϵi] = 0 and Var[ϵi] = ψ2, 
where ψ2 quantifies the uncertainty associated with the lack of fit of the 
RF model. These equations imply that: 

RFim = μi + ϵi + eim (15) 

The fuel load prediction at footprint i is then given by the average of 
the RF models applied to footprint i: 

RFi =

∑
mRFim

M
=

Mμi

M
+

Mϵi

M
+

∑
meim

M
= μi + ϵi +

∑
meim

M
(16)  

where RFi is the mean fuel load estimate at footprint i and M is the 
number of RF models that were fit. Assuming no correlation between 
lack of model fit (ϵi) and differences between RF models (eim), this im
plies that: 

Var
(

RFi|μi

)
= ψ2 +

τ2
i

M
(17) 

Recall that we took the average of all GEDI footprint-level fuel load 
predictions within a 1-km2 cell. Assuming no spatial correlation in the 
mean fuel load in each footprint and model lack of fit, we have that the 
uncertainty associated with each cell is: 

Var
(

RFk

)

= Var

⎛

⎝

∑
iRFik

nk

⎞

⎠ = Var

⎛

⎜
⎝

∑
iμik

nk
+

∑
iϵik

nk
+

∑
i

∑
m

eimk

M

nk

⎞

⎟
⎠ (18)  

where nk is the number of GEDI footprints within the 1-km2 cell (k). 
If we assume that the uncertainty associated with model lack of fit 

(ψ2) does not vary from footprint to footprint, then: 

= Var
(∑

iμik

nk

)

+Var
(∑

iϵik

nk

)

+Var

⎛

⎜
⎝

∑
i

∑
m

eimk

M

nk

⎞

⎟
⎠ (19)  

= Var
(∑

iμik

nk

)

+
nkψ2

n2
k

+
1
n2

k

(
∑

i

Mτ2
ik

M2

)

(20)  

= Var
(∑

iμik

nk

)

+
ψ2

nk
+

∑
iτ2

ik

n2
kM

(21) 

Finally, if we assume that E[μik] = mk and Var[μik] = δk
2, then the 

overall uncertainty at each cell (k) is given by: 

=
δ2

k

nk
+

ψ2

nk
+

∑
iτ2

ik

n2
kM

(22) 

This expression shows that the variance for each cell k can be par
titioned into the variability of biomass within each cell k (captured by 
δk

2), model lack of fit (captured by ψ2) and RF uncertainty (captured by 
τik

2). Notice that, as the number of GEDI footprints within cell k in
creases (i.e., nk increases), then overall uncertainty decreases. Further
more, increasing the number of RF models (i.e., M) only decreases the 
last uncertainty piece. 

For each cell, we estimated δk
2 and τ̂2

ik with the following equations: 

δ̂
2
k =

∑
i

(

RFik − RFk

)2

nk − 1
(23)  

τ̂2
ik =

∑
m

(

RFikm − RFik

)2

M − 1
(24)  

where RFik is the mean fuel load prediction of footprint i in cell k, RFkis 
the mean fuel load prediction in cell k, RFikmis the fuel load prediction of 
footprint i in cell k using RF model m. The only variance parameter that 
is estimated separately using the field data is the lack of fit parameter (i. 
e., ψ2). The estimation of this parameter is described in the supple
mentary material. The uncertainty is presented in absolute values by 
taking the square-root of the summed variance parameters. A workflow 
summarizing the full methodology applied in this study is provided in 
Fig. 5. 

3. Results 

3.1. Exploratory analysis of GEDI metrics and fuel components in the 
Cerrado formations 

The PCA biplot shows distinct scores for the Cerrado formations and 
these first two PCs were responsible for 75.7% of the variables’ cumu
lative variance (Fig. 6a). The RH98 and FHD showed high correlation 
with each other (r = 0.94, p-value = 2.2E-16) and were the two metrics 
mainly explaining the variability in PC1 being, overall, positively 
correlated to samples in the forest formation and negatively correlated 
with grassland observations. The fuel components that were mostcor
related with RH98 and FHD were WDfuels (r > 0.85 p-value <2.2E-15) 
and TFfuels (r > 0.82, p-value <1.3E-13). SUfuels had a weaker relation
ship (r < 0.51, p-value <0.0008) with the GEDI variables, though higher 
values were found in forests (Fig. 6b). Similarly, SHfuels had lower cor
relations (r < |0.30|, p-value <0.03) with the GEDI variables than its 
sub-components SUfuels (r < 0.52, p-value <0.0008) and HBfuels (r < | 
0.59|, p-value <0.002). The grassland observations showed opposite 
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Fig. 5. Workflow to estimate fuel load components in Cerrado using GEDI data. High density UAV-lidar point clouds were collected (a) from which GEDI-like waveforms were simulated (b). The models were created 
using fuel load measurements from the field (c) as response variables in a random forest (RF) model and GEDI waveform metrics as predictors (d). The RF models were applied to the 25-m GEDI footprints in Cerrado (e) 
and averaged into 1-km grid cells (f). 
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scores on PC1 compared to the forest observations and were mostly 
represented by the variation in HBfuels; this is consistent with the 
dominance of herbaceous species in these formations (Fig. S2) indicated 
by the negative correlation of HBfuels with the metrics CCF and PAI. The 
savanna formation lies near the center, overlapping with the other two 
formations. This is also depicted in the variables’ distributions (Fig. 6b), 
where most of the GEDI waveform metrics showed increasing values 
from grasslands to forests. 

3.2. Fuel load models 

Overall, all models presented relatively good performance during 
training with R2 > 0.78, RMSE <10.83 Mg ha− 1, MD < 0.17 Mg ha− 1 

(Fig. 7). The WDfuels and TFfuels components were more accurately esti
mated with models, yielding R2 values of 0.88 and 0.71, respectively, 
and RMSE of both ~40 Mg ha− 1 in the validation (Table 3). On the other 
hand, the models estimating components at the lower stratum (SUfuels, 
HBfuels, SHfuels) exhibited moderate to low performance during validation 
(R2 < 0.46). The estimates were less accurate when estimating the 

Fig. 6. Biplot of the first two axes of a principal 
component analysis of simulated GEDI waveforms 
metrics and field fuel load measurements (a) and their 
respective density plots (b). RH98 = Relative height 
at the 98 th height percentile; CCF = canopy cover 
fraction; FHD = Foliage Height Diversity; PAI = Plant 
Area Index; SUfuels = surface fuels (duff, litter, 
downed wood); HBfuels = Herbaceous fuels; SHfuels =

SUfuels + HBfuels; SSfuels = shrubs and small trees 
(diameter at 1.3 m above ground (dbh) < 10 cm); 
WDfuels = woody fuels (trees with dbh > 10 cm); 
TFfuels = SUfuels + HBfuels + SSfuels + WDfuels.   
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surface and herbaceous components in a single model (i.e., SHfuels; R2 =

0.17, RMSE = 6.22 Mg ha− 1, MD = 0.31 Mg ha− 1) than in separate 
models; i.e., for HBfuels (R2 = 0.46, RMSE = 2.81 Mg ha− 1, MD = 0.12 
Mg ha− 1) and for SUfuels (R2 = 0.31, RMSE = 5.22 Mg ha− 1, MD = 0.13 
Mg ha− 1) individually. Differences in the training-validation 

performance were higher for SHfuels and SSfuels. 

3.3. Fuel loads characterization across the Cerrado biome 

Fuel load estimates were obtained from the application of the models 
to the on-orbit GEDI data. The estimates were obtained for the entire 
Cerrado biome in the 25 m-radii GEDI footprints. In a Cerrado subset 
(Fig. 8), gradients of fuel load associated with topography were 
observed in the different formations. For instance, there was a pattern of 
higher WDfuels and TFfuels estimates in forests (Fig. 8 e2 and f2) than in 
the other formations (Fig. 8 a2 - d2). On the other hand, HBfuels estimates 
were significantly higher in grasslands (Fig. 8 a2), mainly when 
compared to forest formations (Fig. 8 e2 and f2). The SUfuels estimates 
were also higher in forest formations (Fig. 8 e2 and f2) than in grasslands 
(Fig. 8 a2). 

The spatial variation of fuel components estimates in Cerrado is 
shown in Fig. 9. These maps allowed us to identify regions in Cerrado 
with higher estimated HBfuels and lower WDfuels in some regions (e.g., 
~45◦W ~ 10◦S, Fig. 9b and d) and regions with accumulated fuel as in 
northern Cerrado (e.g., ~45◦W ~ 5◦S Fig. 9e). The distribution of the 
estimates was mostly evenly distributed except for SHfuels that was 
slightly skewed for higher values, and WDfuels and TFfuels that had higher 
frequencies of lower values (Fig. 10 a-f). The mean estimated values of 
SUfuels, HBfuels, SHfuels, SSfuels, WDfuels, and TFfuels were 7.63 ± 1.63, 7.87 
± 1.78, 14.74 ± 1.87, 7.58 ± 1.64, 10.29 ± 9.97 and 28.55 ± 11.4 Mg 
ha− 1, respectively. The uncertainty of the predictions was similarly 
distributed across Cerrado (Fig. 11), with a pattern of lower uncertainty 

Fig. 7. Training results for estimating surface fuels (SUfuels), herbaceous fuel (HBfuels), surface and herbaceous fuels (SHfuels), shrub (SSfuels), tree (WDfuels) and total 
fuel load (TFfuels) using Random Forest and GEDI waveform metrics as predictors. R2 = coefficient of determination; RMSE = root mean square error; and MD =
mean difference. 

Table 3 
Cross-validation performance assessment in 500 iterations of models used to 
estimate surface fuels (SUfuels), herbaceous fuel (HBfuels), surface and herbaceous 
fuels (SHfuels), shrub (SSfuels), tree (WDfuels) and total fuel load (TFfuels). Values 
represent mean ± standard deviation.  

Fuel R2 RMSE MD 

(Mg ha− 1) % (Mg ha− 1) % 

SUfuels 0.31 ±
0.07 

5.22 ±
0.21 

55.51 ± 2.79 0.13 ±
0.18 

4.61 ± 2.92 

HBfuels 0.46 ±
0.068 

2.81 ± 0.2 78.6 ± 6.38 0.12 ±
0.14 

10.01 ±
5.46 

SHfuels 0.17 ±
0.064 

6.22 ±
0.34 

47.49 ± 2.89 0.31 ±
0.28 

4.04 ± 2.57 

SSfuels 0.15 ±
0.062 

10.55 ±
0.5 

113.32 ±
11.09 

0.35 ±
0.35 

16.01 ±
10.87 

WDfuels 0.88 ±
0.029 

13.07 ±
0.67 

40.6 ± 3.64 − 0.32 ±
0.67 

1.51 ± 2.83 

TFfuels 0.71 ±
0.052 

23.01 ±
1.13 

40.78 ± 2.4 0.22 ±
0.94 

2.09 ± 2.12 

R2 = coefficient of determination; RMSE = root mean square error; and MD =
mean difference. 
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Fig. 8. Depiction of the GEDI footprint level estimates of fuel components showing all the GEDI ground-tracks (a1, b1, c1, d1, e1, f1) and a single-track profile over 
grassland, savanna, and forest formations (a2, b2, c2, d2, e2, f2). Estimates were done for surface fuels (SUfuels), herbaceous fuels (HBfuels), surface and herbaceous 
fuels (SHfuels), shrubs and small trees (SSfuels), woody fuels (WDfuels) and total fuel load (TFfuels). 
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in regions with more GEDI footprints (Fig. S2). 

4. Discussion 

GEDI is capable of providing high resolution 3D canopy structural 
information of various forest ecosystems (Dubayah et al., 2020; 
Schneider et al., 2020) and holds untapped potential for establishing 
effective forest fire management frameworks. This study demonstrated 

the potential of using GEDI data to estimate large-scale multi-layer fuels 
across the whole Cerrado by applying both simulated and on-orbit data 
to model commonly used fuel load layers. The use of spaceborne lidar 
sensors for fuel mapping has been previously reported mainly to map 
canopy fuels with GLAS and ICESat-2 sensors (Ashworth et al., 2010; 
García et al., 2012; Peterson et al., 2013; Gwenzi et al., 2016; Narine 
et al., 2020). However, this is, to our knowledge, the first study 
demonstrating the usefulness of GEDI in estimating fuels loads at such a 

Fig. 9. GEDI-derived large scale fuel load estimates at the 1 km grid cell resolution for the entire Cerrado biome. These estimates were aggregated from the footprint- 
level predictions. Surface fuels (SUfuels (a)), herbaceous fuels (HBfuels (b)), surface and herbaceous fuels (SHfuels (c)), shrubs and small trees fuels (SSfuels (d)), woody 
fuels (WDfuels (e)), and the total fuel load (TFfuels (f)). 
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large geographic scale, contributing to the expansion of spaceborne lidar 
applications for integrated fire management activities and supporting 
carbon monitoring initiatives in savannas. 

4.1. Large scale fuel load estimation using spaceborne lidar 

Our results demonstrated a high predictive capacity of GEDI metrics 
in modeling WDfuels and TFfuels that allows large-scale fuel load estima
tions. This finding is in agreement with similar studies focused on esti
mating biomass in different ecosystems using as predictors canopy 
metrics derived from spaceborne lidar sensors on the satellites ICESat-1 
and ICESat-2 (Xiao et al., 2019). A study carried out by Lefsky et al. 
(2005) in a tropical broadleaf forest in Brazil demonstrated that GLAS- 
derived heights were able to explain 73% of the variation in field- 
measured aboveground biomass. Popescu et al. (2011), who mapped 
aboveground biomass in a temperate forest dominated by pine and oak 
stands in eastern Texas, found a strong relationship (R2 = 0.80) between 
GLAS height variables and the reference biomass derived from airborne 
lidar data. In a more detailed study to test the capabilities of GLAS data 
in predicting forest aboveground biomass, Chi et al. (2015) estimated R2 

values ranging from 0.64 to 0.90 over different forest zones in China. 
Nevertheless, it is noteworthy that those studies did not account for 

important vegetation layers for fire management and that GLAS yield 
products at a coarser resolution (footprints with diameter of 70 m), 
despite being a full-waveform lidar as GEDI. Similarly, by using simu
lated ICESat-2 photon-counting lidar data, Narine et al. (2019) models 
explained 79% of the variation in AGB in a pine-dominated forest. 
Gwenzi et al. (2016) described some of the limitations of using ICESat-2 
for retrieving vegetation height in structurally complex savannas. They 
found that canopy height estimation in areas of low-density vegetation 
cover may have lower precision due to the expected number of signal 
photons in these areas. The performance of our models also suggests that 
GEDI can be more appropriate for this type of vegetation. 

Part of the unexplained variance by our SSfuels models may be due to 
the lower sensitivity of GEDI to herbaceous and low stature shrubs 
compared to the denser overstory tree canopies the GEDI mission was 
designed to map. GEDI’s utility for mapping short, sparse canopies and 
understory has yet to be established, and while the accuracies seen here 
are likely lower than for closed-canopy forests, or canopy fuels, our re
sults suggest that GEDI data are still useful for this more challenging 
application. The measurement challenge is largely due to convolution of 
the waveform return from the ground and from short vegetation above 
the ground, where detecting the vegetation from the waveforms will be 
more challenging. This issue will be exacerbated over slopes or when 

Fig. 10. Distribution of the estimates of fuel load components in Cerrado using GEDI waveform metrics and Random Forest. Separated models were trained to 
estimate surface fuels (SUfuels (a)), herbaceous fuels (HBfuels (b)), surface and herbaceous fuels (SHfuels (c)), shrubs and small trees fuels (SSfuels (d)), woody fuels 
(WDfuels (e)), and the total fuel load (TFfuels (f)). 
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vegetation cover is low, which is often the case in the Cerrado. The top 
portion of small trees and shrub crowns observed in the waveforms may 
not show enough canopy cover to register as a significant return signal 
and consequently may not be properly detected using the selected 
metrics. 

Although surface, herbaceous and shrub fuels are a key component in 
fire behavior and emission models, most previous studies to estimate 
fuel loads using spaceborne lidar sensors focused on canopy fuels 

(García et al., 2012; Peterson et al., 2013). Obtaining information on 
fuels in low stature and sparse vegetation ecosystems, such as savannas 
and grasslands, is more challenging than in dense vegetation cover (e.g., 
Popescu et al., 2018). The lower performance for SUfuels, HBfuels, and 
SHfuels suggests that spaceborne lidar data interacts with this lower 
stratum less strongly than with tree fuels. In fact, surface components 
are hardly directly retrieved with lidar measurements (Jakubowksi 
et al., 2013; Hudak et al., 2016b; Price and Gordon, 2016; Bright et al., 

Fig. 11. Uncertainty of fuel load predictions accounting for the footprints’ variability within the cell, uncertainty associated with the RF algorithm, and RF lack of fit. 
Surface fuels (SUfuels (a)), herbaceous fuels (HBfuels (b)), surface and herbaceous fuels (SHfuels (c)), shrubs and small trees fuels (SSfuels (d)), woody fuels (WDfuels (e)), 
and the total fuel load (TFfuels (f)). 
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2017), and it is commonly necessary to rely on their indirect relationship 
with other variables, such as canopy structure or climate (Hudak et al., 
2016a; Mauro et al., 2021). Results in this study demonstrate that the 
GEDI waveform metrics could also be used as proxies to indirectly 
explain part of the variability of these fuels in savanna ecosystems and 
underscore the improvement in modeling HBfuels and SUfuels in separate 
models rather than a single model (SHfuels). The difference among HBfuels 
and SUfuels is indicated by their contrasting relationships, such as having 
greater values of SUfuels in forest formations (e.g., due to litterfall) and 
having inverse relationships to CCF and HBfuels. Nonetheless, the dy
namics of HBfuelsand SUfuels may be more impacted than WDfuels by plant 
phenology, seasonality (Costa et al., 2020; Oliveira et al., 2021), and fire 
events (Gomes et al., 2020b). Roitman et al. (2018) analyzed decades of 
AGB surveys in Cerrado and also demonstrated that environmental 
factors can help to explain part of the AGB variation in Cerrado. As more 
data become available, future studies could use multitemporal series to 
exploit the layers’ seasonal structural dynamics mainly due to leaf flush 
and fall, in search for more unexplained variance that might not be 
obtained otherwise. The complementary use of multispectral and/or 
hyperspectral images for better distinguishing photosynthetic- from 
non-photosynthetic vegetation fractions (e.g., Roberts et al., 2003) 
coupled to GEDI metrics might improve the estimation of some surface 
fuels (e.g., litter, downed wood) in open-canopy formations and are 
recommended in future studies. 

A multilevel approach by linking field plots, UAV-lidar, and space
borne lidar data is the backbone of our methodological framework to 
produce both large scale multi-layer fuel load information in Cerrado. 
The RF models developed using simulated GEDI full-waveforms from 
UAV-lidar have the advantage of not being affected by waveform geo
location errors that are inherent with GEDI. Currently, these geolocation 
errors are around 10–20 m, but are expected to decrease to ~7–8 m after 
completed mission calibrations (Dubayah et al., 2020). This error can 
make it difficult to have coincident – in space and time - field and GEDI 
data for modeling. Our study is aligned with the simulation approach 
that has been suitable for GEDI model development and application 
(Saarela et al., 2018; Hancock et al., 2019; Marselis et al., 2019; Pat
terson et al., 2019; Qi et al., 2019; Schneider et al., 2020; Dubayah et al., 
2020; Duncanson et al., 2020; Silva et al., 2021). Comprehensive as
sessments of the accuracy of on-orbit GEDI data in retrieving key 
structural vegetation parameters by synchronizing field measurements 
within GEDI footprints may be needed for assessing estimation uncer
tainty in different scales. Nevertheless, the models developed with 
simulated GEDI waveforms can be applied to the GEDI footprints 
covering about the entire globe (~52◦ N and S) providing a valuable 
asset for regional to global forest structure analysis as demonstrated for 
the Cerrado. 

4.2. Caveats and source of uncertainty 

While it may be straightforward to derive vegetation structural 
metrics in relatively dense vegetation cover (e.g., Popescu et al., 2018), 
obtaining such information in low stature and sparse vegetation for
mations, such as savannas and grasslands, is more challenging (Glenn 
et al., 2016; Gwenzi et al., 2016). One of the current limitations in our 
findings concerns the uncertainty of estimating surface and low stature 
vegetation fuels. This issue was also described in different studies using 
airborne lidar that reported R2 ranging from ~25–45% (Jakubowksi 
et al., 2013, Hudak et al., 2016b, Price and Gordon, 2016, Bright et al., 
2017). Pesonen et al. (2008) models had a better performance for esti
mating downed dead wood volume in boreal forests, suggesting a higher 
predictive capacity for this component. Nonetheless, despite surface 
fuels being a key component in fire behavior and emission models, they 
have received less attention than canopy fuels, particularly using 
spaceborne sensors (García et al., 2012; Peterson et al., 2013; Bright 
et al., 2017). Tackling this issue may require inclusion of variables 
related to fuel dynamics such as time since the last fire (Chen et al., 

2017) and precipitation occurrence (Oliveira et al., 2021). 
Another consideration is related to GEDI data characteristics. First, 

the GEDI mission is planned to collect data until 2023, limiting appli
cation of models to this time span. Nonetheless, we expect that other 
missions, such as MOLI (Murooka et al., 2013; Kimura et al., 2017; Asai 
et al., 2018), will give similar data in the future. The second point is 
related to the sampling nature of GEDI. We observed here that when 
aggregating footprints to a 1-km2 grid cell there were still some areas not 
yet covered (Fig. S3), which can be due to the GEDI orbit missing the 
cells, or data loss from cloud cover. Those gaps might be filled with 
forthcoming dataset updates during the mission; it is expected that most 
1 km2 grid cells will have at least two ground tracks (Patterson et al., 
2019) by the end of the GEDI mission lifetime. The number of required 
footprints to predict fuel load or AGB density in 1-km2 cells may vary 
due to the vegetation complexity within the cell, which might need 
further investigation; nonetheless we observed an exponential decrease 
in uncertainty with an increase in number of footprints (Fig. S5). Finally, 
the impact of terrain characteristics for detecting ground and retrieving 
waveform metrics was not covered in this study. When the within 
footprint terrain slope is high, the interpretation of the signals is more 
complex causing, for instance, ground and canopy energy at the same 
height (Harding and Carabajal, 2005; Lefsky et al., 2005). In a study 
comparing small- and large-footprint lidar sensors, Silva et al. (2018) 
also observed an effect of terrain slope (> 20◦) by overestimating ground 
elevation and RH metrics on large-footprint data, mainly in dense can
opies. For instance, an alternative for GLAS waveforms was applying 
topographic correction using ancillary data (Lefsky et al., 2005; Lefsky 
et al., 2007). Similar effects of topography in the returned GEDI wave
form may need to be investigated and addressed in further studies. 

4.3. Future applications and challenges 

Previous studies of GEDI have focused on deriving products by using 
the waveform metrics and its relationships with the vertical structure of 
the vegetation (Marselis et al., 2019; Schneider et al., 2020; Duncanson 
et al., 2020). The quality of the metrics relies on the accuracy to detect 
the ground signal which is expected to vary based on various factors 
such as canopy cover, GEDI beam energy, weather conditions and 
topography. However, apart from the environmental characteristics and 
sensor properties, what determines the ground classification is the al
gorithm incorporated. Hancock et al. (2019) described and tested 
Gaussian fitting along with the lowest maximum and inflection point 
algorithms to detect the ground signal and calculated RH metrics from 
simulated GEDI waveforms, showing that there might be differences 
among them. Further research exploring the impact of ground algo
rithms on GEDI metrics associated with fuel load estimation needs to be 
conducted, ideally with the study based on individual physiognomies 
and landscape conditions. 

RF was implemented in our study due to its ease of usage, inter
pretability, versatility in handling missing data, and prior success with 
respect to fuel load estimation and to GEDI-based studies (Healey et al., 
2020; Marshak et al., 2020; Rishmawi et al., 2021). Being an ensemble 
technique, RF improves the average prediction performance and is 
robust to outliers. Techniques such as ordinary least square regression, 
lasso logistic regressions and sensitivity analysis, and combinations of 
multiple machine learning methods, have also been applied to GEDI data 
for quantifying forest traits and structural diversity (Boucher et al., 
2020; Burns et al., 2020; Duncanson et al., 2020; Sanchez-Lopez et al., 
2020). More recently, deep learning-based regression models, e.g., 
Convolutional Neural Networks (CNN), have been successfully applied 
for estimating continuous forest structural parameters such as AGB 
(Asner et al., 2018) and canopy height (Lang et al., 2019; Li et al., 2020). 
For instance, Li et al. (2020) showed that deep learning slightly out
performs random forest models in the estimate of canopy height. 
Therefore, a review of the efficiency of various statistical modeling 
techniques for the estimation of disparate forest metrics can be deemed 
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to be a critical step for furthering GEDI powered research for fuel load 
and AGB modeling and management. 

With several planned global missions, such as NASA-ISRO’s NISAR 
and ESA’s BIOMASS, offering new capabilities, data fusion of GEDI with 
these distinct sensors can compensate for drawbacks such as influence of 
clouds, atmospheric haze, multiple scattering, sloped terrain and off- 
nadir pointing (Pardini et al., 2019; Yang et al., 2011; Quegan et al., 
2019; Rosen et al., 2015). We also encourage readers to take full 
advantage of the Multi-Mission Algorithm and Analysis Platform 
(MAAP) that hosts a colossal amount of related data, tools, algorithms, 
and computing capabilities for performing multi-sensor operations 
(Albinet et al., 2019). During the initial phase of GEDI, several studies 
had explored the possibility of merging GEDI with synthetic aperture 
radar (SAR) for improving various forest metrics such as forest height 
and other structure attribute mapping and characterization (Qi et al., 
2019; Qi and Dubayah, 2016). Adding to this, a study by Silva et al. 
(2021) highlighted how integrating NISAR and ICESat-2 with GEDI offer 
us new opportunities for enhancing AGB mapping in temperate forests 
with complex terrain. Similarly, data from multispectral sensors also 
hold potential for improving spatial resolution of GEDI (Potapov et al., 
2021). Such multi-sensor data fusion approaches will be important for 
developing wall-to-wall maps in applications that require higher spatial 
resolution such as fire behavior models (Benali et al., 2016; Saatchi 
et al., 2007). Data fusion approaches applicability for estimating large 
scale forest canopy height, AGB and past forest disturbances assessment 
has been already demonstrated (Potapov et al., 2021; Saarela et al., 
2018; Sanchez-Lopez et al., 2020). Ultimately, data integration from 
different missions (e.g., NASA’s Landsat 8/OLI and NISAR, and ESA’s 
Sentinel 2/MSI and BIOMASS) will be necessary for developing wall-to- 
wall maps with finer spatial resolutions and for covering regions outside 
GEDI orbit coverage. 

Fuel mapping is one of the most important stages that should be 
considered in wildfire prevention and planning (Keane and Reeves, 
2012; Agee and Skinner, 2005; Franke et al., 2018). With the proposed 
framework it is possible to obtain fuel load estimates for large areas, 
such as the Cerrado biome. This is a key point for advancing on a broad 
spatial scale understanding of fire effects on ecological processes, 
ecosystem functioning, carbon emissions, and fuel dynamics (Turner 
et al., 1995; Bowman et al., 2013; Gomes et al., 2018; Oliveira et al., 
2021). Management solutions based on integrated fire management 
initiatives have taken place in Cerrado conservation areas mainly since 
2014 and consider practices of prescribed burning in mosaics to preserve 
the fire history of a region (Schmidt et al., 2018). The fuel components 
estimate for large areas as developed here will also be an important 
resource for this end (Franke et al., 2018; Gomes et al., 2018; Schmidt 
et al., 2018). 

5. Conclusions 

In this study we evaluated the capability of GEDI data for estimating 
large scale multi-layer fuel loads in a tropical savanna ecosystem. We 
used the random forest algorithm fed by GEDI waveform metrics 
simulated from high-density UAV-lidar 3D point clouds as our modeling 
approach. To our knowledge, this is the first attempt to map different 
fuel components with GEDI waveform metrics. Overall, the models had 
better performance for predicting woody fuels (e.g., WDfuels and TFfuels). 
Our results support the expected benefits of using GEDI data for 
improving models to estimate vegetation traits on structurally-complex 
ecosystems. Furthermore, we were able to upscale from local to biome- 
level predictions by applying our models to GEDI data over the entire 
Cerrado yielding relatively high-resolution fuel load estimates in this 
region. Therefore, we expect that users can potentially improve large- 
scale fuel load monitoring using the presented framework and extend 
the analysis to other fire-prone ecosystems. Following research on data 
integration of GEDI data with different sensors is expected for meeting 
spatial and temporal requirements of other fire-related applications - 

such as assessing fuel load dynamics, modeling fire behavior and 
calculating carbon emissions - and assist in better understanding the 
climate-fire interactions across different landscapes. 
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