International conference on analytical techniques in art and cultural heritage **LISBON** | 07>12 MAY # TECHNICAL INFORMATION ## **TECHNART2023 BOOK OF ABSTRACTS** #### TITLE TECHNART2023 Non-destructive and Microanalytical Techniques in Art and Cultural Heritage. Book of Abstracts ## **EDITORS** Marta Manso, Vanessa Antunes, Maria Luísa Carvalho ## **PUBLISHER** Universidade Nova de Lisboa - Faculdade de Ciências e Tecnologia, Lisboa, 7th > 12th May 2023, LISBON, Portugal #### **ISBN** 978-989-9164-08-6 # **ACKNOWLEDGEMENTS** Luiza Oliveira (NOVA school of Science and Technology) Gonçalo Baptista, José Grilo, Rúben Inocêncio and Sara Pandolfi (NOVA School of Science and Technology) Dora Fernandes and Filipe Bernardes (MNAz) Sawitri Bulska #### NOTE Authors are responsible for the text included in the abstracts, for the reliability and truthfulness of the information and for the rights to publish any material included in the text ART2023.com | technart20 | 30 | Paolo Antonino Maria Triolo | Implementation of the diagnostic capabilities of
the CMOS sensor in the NIR environment, using
1070nm interference filter and a conventional
band-pass filters set | 5103 | |----|---|---|------| | 31 | Patrícia Gatinho, Cátia Salvador, Silvia Macedo
Arantes, M. Rosário Martins, Amélia M. Silva, Ana
Z. Miller and A. Teresa Caldeira | Prospection of bioactive compounds produced by bacterial isolates from pristine environments | 5368 | | 32 | Marta Porcaro, Antonio Brunetti, Anna Depalmas,
Carlo Casi, Rosario Maria Anzalone and Caterina
De Vito | Use of X-ray fluorescence combined with Monte
Carlo simulation for determination of bronze
alloys | 799 | | 33 | N.K. Kladouri, S. Skaltsa, Th. Gerodimos, K.
Pezouvani and A.G. Karydas | Compositional μ-XRF analyses of copper-based coins from Rhodes, Greece, 4th c. BCE to 2nd c. CE | 9750 | | 34 | <u>Isabel Amaya-Torres</u> , Constanza Acuña, Valeria
Godoy, Karla Leiva, Rosalía Astorga | Climate data analysis for sustainable conservation of cultural heritage | 2004 | | 35 | Ada Sáez, Mónica Álvarez de Buergo, Natalia
Pérez-Ema | Portable non-destructive techniques applied to the study of the deterioration pattern of partially submerged heritage in reservoirs | 2576 | | 36 | <u>Maria Kylafi</u> | The Pylos Geoarchaeological Program: Fusion of Images towards understanding Ancient Landscape | 8955 | | 37 | Maria Zdończyk, Barbara Łydżba-Kopczyńska,
Joanna Cybińska | Luminescent coatings for the anti-theft protection of cultural heritage glass and metal objects | 2026 | | 38 | <u>Vanessa Antunes</u> , Jorge Machado, Marluci
Menezes, Carla Tomás, José Cruz, Gunnar Liestol,
João Serra | Collaborative Efforts in Preserving Cultural
Heritage: The "Forte das Memórias" Project | 6365 | | 39 | <u>Cátia Salvador</u> , Silvia Macedo Arantes, M. Rosário
Martins, António Candeias, Cesareo Saiz-Jimenez
and A. Teresa Caldeira | Microbial communities of underwater caves from
Algarve coast: Biological activities prospection | 686 | | 40 | Jorge Sanjurjo Sánchez, Carlos Arce
Chamorro, Adolfo Fernández Fernández, Alves
Carlos, Jose Carlos Sánchez-Pardo and Rebeca
Blanco-Rotea | Geophysical survey using gamma ray
spectrometry (GRS) on the archaeological site of
Cidadela (Galicia, NW Spain) | 4901 | | 41 | <u>Iñaki Vázquez de la Fuente</u> , Inés Barbier, Sara
Puente Muñoz, Nagore Prieto Taboada, Gorka
Arana and Juan Manuel Madariaga | Natural materials for cleaning metallic leachates
(based on iron and copper) on marble surfaces as
alternative of traditional gels | 5521 | | 42 | <u>Tomas Trojek</u> , Pavel Novotny, Martin Hlozek and
Darina Trojkova | X-ray fluorescence imaging with benchtop devices for scanning and full field techniques | 9984 | | 43 | Martina Romani, Erlantz Lizundia and Maite
Maguregui | μ-EDXRF imaging to evaluate desalination ability of cellulose foams and sponges applied on wall paintings | 8794 | | 44 | Nouchka De Keyser, Fréderique Broers, Annelies
van Loon, Francesca Gabrieli, Frederik Vanmeert,
Steven De Meyer, Arthur Gestels, Victor Gonzalez,
Petria Noble, Koen Janssens and Katrien Keune | Pararealgar and semi-amorphous arsenic sulfides
discovered in Rembrandt's Night Watch | 3922 | | 45 | <u>Joanna Zwinczak</u> , Krzysztof Kruczała and Marek
Bucki | Retouches of the paint layer: Research into
physical and chemical changes of the materials
used in conservation studios in the National
Museum in Kraków | 3956 | | 46 | Maria Antonia Garcia, <u>Consuelo Imaz</u> , Pedro Pablo
Perez and Ana Albar | GUADAMECI ALTARPIECE : A CASE OF
STUDY EMPLOYING DIFFERENT ANALYTICAL
METHODOLOGIES | 3969 | | 47 | Simona Raneri, Giulia Lorenzetti, Vincenzo
Palleschi, Simonetta Rota, Beatrice Merciadri,
Stefano Legnaioli | The 'Madonna delle Grazie' of Andrea del Sarto/
Giovanni Antonio Sogliani: a multi-analytical
study | 6948 | | 48 | Fiona McNeill, Taren Ginter, Megan Gallagher,
Shaelyn Horvath, Josephine La Macchia, Sonia
Marotta | The toxicity of historical white lead makeup | 7166 | | 49 | Milene Gil | Analytical study of the powdered pigments
collection from the Brazilian artist Gilda
Neuberger (1911-2011) | 7307 | | 50 | Mariangela Cestelli Guidi, Fabio Aramini, Antonella
Balerna, Silvia Brandalesi, Giuseppe Bonifazi,
Giuseppe Capobianco, Elisabetta Giani, Eleonora
Gorga, Marcella loele, Barbara Lavorini, Alice
Mantoan, Lucilla Pronti, Martina Romani, Silvia
Serranti, Vittorio Sciarra, Mauro Simeone, Stefano
Tamascelli, Gianluca Verona Rinati, Giacomo
Viviani | ARTEMISIA: artificial intelligence to support diagnostic technologies for Cultural Heritage. An integrated multi-modal approach for assessing the state of conservation of pictorial works. | 7316 | # Prospection of bioactive compounds produced by bacterial # isolates from pristine environments Patrícia Gatinho (1,2), Cátia Salvador (2), Silvia Macedo Arantes (2), M. Rosário Martins (2,3), Amélia M. Silva (4), Ana Z. Miller (2,5), A. Teresa Caldeira (2,6,7) - (1) Department of Engineer, School of Science and Technology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal. - (2) HERCULES Laboratory, Institute for Advanced Studies and Research, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal - (3) Department of Medical and Health Sciences, School of Health and Human Development, University of Évora, Évora, Portugal. - (4) Center for Research and Technology of Agro-Environmental and Biological Sciences & Department of Biology and Environment, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal. - (5) Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Avenida Reina Mercedes 10, 41012 Sevilla, Spain. - (6) Department of Chemistry and Biochemistry, School of Sciences and Technology, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal - (7) City U Macau Chair in Sustainable Heritage, Institute for Advanced Studies and Research, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal. Pristine environments can be defined as places with limited or no connections to anthropogenic activities [1], for example, karstic and marine caves, important landmarks of Natural and Cultural Heritage. Usually, these environments are exposed to extreme factors such as temperature, salinity, osmolarity, UV radiation, pressure, or pH, with values close to the limit of life. In these extreme environments, living organisms biosynthesize secondary metabolites with potential bioactivities giving them unique survival skills to grow in hostile conditions [2]. This study aims to search for new bioactive compounds produced by Actinobacteria, Firmicutes, Bacteroidetes and Proteobacteria stains isolated from pristine environments such as Selvagens Islands (Madeira, Portugal) and the Paleolithic Escoural Cave (Montemor-o-Novo, Portugal) [3]. The antioxidant activity and antimicrobial action spectra against *Gram*-negative and *Gram*-positive bacteria were evaluated. Additionally, supernatants of bacterial strains cultures were screened for antitumor potential using a breast cancer epithelial cell line MDA-MB-231. The results obtained suggest that selected bacteria isolates produce biologically active compounds with potential application in biotechnology and biomedicine. Bioprospection and discovery of new compounds represent an opportunity for the study and valorization of these Natural and Cultural Heritage habitats, allowing new products obtained by fast and low-cost biotechnological processes to be implemented as novel green-safe and sustainable solutions. Acknowledgements: The authors acknowledge to FCT – Foundation for Science and Technology, I.P., within the scope of the projects UIDB/04449/2020, MICROCENO (PTDC/CTA-AMB/0608/2020), ART3*mis* (2022.07303.PTDC) and C. Salvador (DL 57/2016/CP1372/CT0019) to individual support. S. Atashgahi, MM. Häggblom, H. Smidt. Environmental Microbiology 20(3), 2018, 934 –48. https://doi.org/10.1111/1462-2920.14016. ^[2] D. Giordano, Marine drugs of MDPI 19(11), 2020; 1–7. https://doi.org/10.3390/md19110642. ^[3] A. T. Caldeira, N. Schiavon, G. Mauran, C. Salvador, T. Rosado, J. Mirão, A. Candeias. Coatings of MDPI 11(2),2021;1–17. https://doi.org/10.3390/coatings11020209.