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A B S T R A C T   

The rapid growth of photovoltaic solar energy, to achieve decarbonization, has been accompanied by increasing 
land occupation and the subsequent concern in the agroforestry sector. The increase in land area occupied has 
been of 20% in recent years, boosting solar electricity production to 5.9% of the total in Europe. This fact raises 
the question of the impact on vegetation greenness and moisture in the rural environment, something that has 
not always been considered. 

Image analysis is presented as one of the most effective tools to estimate the variation of vegetation greenness 
and moisture. For this, terrestrial images, like those from unmanned aerial vehicles, can be used; however, this 
limits the amount of information available and/or increases the cost. The use of satellite images in different 
bands is a relatively new tool that can be exploited for the analysis of solar plants impact. This work presents a 
new way to use Sentinel imagery to analyse the impact of utility-scale solar plants on vegetation and moisture of 
the surrounding areas. According to our results, a moderate decrease in weighted index for both moisture (5%) 
and vegetation (3%) occurred after solar plant installation. It is expected that these results can be of help for the 
design of new PV and agrivoltaic plants, originating the Ground-Integrated Photovoltaics (GIPV).   

1. Introduction 

The growth of photovoltaic solar energy has been unstoppable in the 
last decades, and more accelerated yet in recent years. The electric en
ergy demand, together with the decarbonization strategy of most 
countries, is causing the demand of photovoltaic solar energy to 
skyrocket [1]. According to the International Energy Agency, electricity 
demand is forecasted to grow at an annual rate of 3 % over the next three 
years compared to 2022 [2,3], with one-third of the global consumption 
located in China. Besides, more than one-third of the world’s electricity 
consumption will come from renewables in 2025 [3]. Such contribution 
entails that CO2 emissions are still growing, but more slowly than in 
former years, making renewable energies the way to reach the net-zero 
emissions goal. 

Global electricity consumption grew from about 11,000 TWh in 1990 
to more than 26,000 TWh in 2022. Even the global energetic crisis 

caused by the war in Ukraine made global electricity demand growth 
slow-down only slightly in 2022. Renewable energies as a whole are the 
main growing energy source, with around 400 TWh of increase in the 
period from 2019 to 2022. Even the initial forecast for the growth in 
2023 has been overpassed and renewable energies had grown more than 
1000 TWh at mid-2023. 

Photovoltaics (PV) is among the cheapest ways to produce elec
tricity, due to the descent in the price of the main element: the solar 
panel. Nonetheless, the success of PV has also brought criticism [4], not 
always based on scientific evidence and often pushed by spurious in
terests. Regardless of the reasons behind criticism, the occupation of the 
land by ground-mounted PV plants is a fact to be considered. The best 
scenario for the installation of photovoltaic plants would be the use of 
unproductive land. Nonetheless, in a context of ever-growing world 
population and the subsequent food demand, there is the possibility of 
coexistence or land sharing between PV and agriculture, recently coined 
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with the terms Agri-photovoltaics, Agrivoltaics or Agrovoltaics (APV) 
[5]. 

In the scientific literature, there are many works that deal with 
building integrated photovoltaics (BIPV). Photovoltaic integration in 
buildings arises from the need to improve the aesthetics of photovoltaic 
systems, without this necessarily implying a reduction in electricity 
production. It is a concept that occupies entire sections in world con
gresses and that is fully accepted. Likewise, there are works that address 
the aesthetic issues of large ground-mounted photovoltaic plants in the 
countryside. Some of these works call this strategy Land Integrated 
Photovoltaics (LIPV) [4], looking for a visual harmony of the panels with 
the surrounding landscape. 

Here, we propose to extend the LIPV concept to agriculture, since 
land integration alone does not consider if the previous (or potential) 
crop in the land is maintained or integrated when the solar plant is 
designed and installed. In this case, not only the land but also the soil, 
understood as the substrate for the crop, should be considered and so the 
BIPV appears as an extension of LIPV. According to Elkadeem et al. 
(2024) [6], despite not all the land is suitable for the combined PV- 
agriculture use, at least 8 % is, in countries like Sweden. 

Lately in the Iberian Peninsula, the capacity of new grid-connected 
ground-mounted PV power plants has evolved from small and medium 
‘solar farms’ to large utility-scale plants. Following the US National 
Renewable Energies Laboratory, the term ‘utility-scale’ is for capacities 
greater than 5 MWp. Although there are examples of utility-scale power 
plants that harness other solar technologies like thermoelectric, the vast 
majority of the capacity installed in the last years in the Iberian Penin
sula is solar PV. 

In parallel with the deployment of utility-scale PV power plants, 
concern has been raised about their side-effects on native vegetation and 
wildlife, on local and regional climate and, in a nutshell, on ecosystem 
services (Randle-Boggis et al., 2020) [7]. With regards to effect on local 
climate, the model proposed by Hu et al. (2016) [8] envisaged PV plant 
local cooling of about − 2 ◦C, while the simulation conducted by Mill
stein and Menon (2011) [9] concluded that extensive adoption of PV in 
desert areas of USA would lead to a significant local temperature in
crease of + 0.4 ◦C. Chang et al. (2022) [10] developed a land-surface 
energy balance model for PV plants of fix tilt angle which was subse
quently incorporated into a meteorological model. After comparing with 
field observations from two utility-scale PV plants, they concluded that 
the resulting model reproduced accurately the temporal pattern of 
maximum daily temperature and land surface temperature (LST). Other 
researchers have installed air temperature sensors within the boundaries 
of the PV plant as well as in its vicinity taken as the control. For instance, 
Barron-Gafford et al. (2016) [11] found that the local nighttime tem
perature over a PV plant was regularly 3.5 ◦C warmer than the control 
wildland, which supported the hypothesis of an urban-like heat island 
effect associated to PV power plant. Nevertheless, their result could have 
been affected by convection from a nearby parking lot, as pointed by 
Broadbent et al. (2019) [12]. The latter authors reported average day
time air temperature 1.3 ◦C warmer than the reference site, although 
they stated that factors like wind speed and cloud cover played a role. 
On the other hand, Broadbent et al. (2019) [12] found no significant 
difference in nighttime air temperature between the plant and the 
reference site, unlike Barron-Gafford et al. (2016) [11]. 

Unlike the effect of PV plants on local air temperature, the amount of 
research about ecohydrological effects of utility-scale PV plants on their 
surrounding environment is limited (Wu et al., 2022 [13]; Yavari et al., 
2022 [14]). Armstrong et al. (2016) [15] reported lower daily maximum 
absolute humidity under the PV arrays, which suggested lower evapo
transpiration rates. Choi et al. (2023) [16] reported significantly higher 
soil moisture in vegetated PV arrays compared to conventional bare PV 
soil. They suggested that higher soil temperature could be in part 
responsible for the lower soil moisture in the bare PV. Kannenberg et al. 
(2023) [17] found minimal impact of a single-axis tracking PV array on 
APV grassland evapotranspiration and productivity, despite the shade 

casted by the PV panels. They suggested that the dynamic tilt angle 
resulted in more uniform soil wetting compared to fix tilt angle arrays, 
where moisture intercepted by the panels drips across the same edge. Li 
et al. (2018) [18] used a climate model to determine the effects of 
covering 20 % of the Sahara Desert land with PV panels on rain. Their 
simulations showed that a 50 % increase in precipitation (+0.13 mm/ 
day) could be expected. 

Barron-Gafford et al. (2016) and Guoqing et al. (2021) [19] 
mentioned the need to consider the impacts of utility-scale PV plants 
beyond their boundaries, and how they affect to surrounding land use 
management. As a rule of thumb, no previous in-field data of LST, soil 
moisture or near-surface air temperature will be available for the spe
cific site where a PV plant has been installed. LST, as well as the 
normalized difference moisture index (NDMI), the normalized differ
ence vegetation index (NDVI), and other vegetation indices, can be 
derived from remote sensing data, i.e. Earth observation satellite im
ages. To analyse the potential impact of PV plant installation on the 
surrounding environment, these images are a valuable resource, since 
they are available not only for after PV plant installation dates, but also 
before (Guoqing et al., 2021; Hurduc et al., 2024). 

From the foregoing literature review it follows that a number of 
works addressed the effect of PV plant on air temperature, some fewer 
tackled the effects on rain and soil moisture, and very few dealt with the 
impact on surrounding vegetation. The latter knowledge gap pushed us 
to undertake the present study. 

1.1. Objectives 

The land area dedicated to PV power plants has increased expo
nentially in recent years. Our study seeks to determine land use sce
narios that fulfil the EU objectives. We intend to give answer to three 
questions:  

• How can satellite images be exploited to analyse the impact of utility- 
scale PV plants?  

• What is an effective method to determine environmental variables 
related to a PV solar plant from satellite images?  

• Which is the environmental impact of the installation of a solar plant 
on the surrounding land, and what mitigating measures can be 
adopted? 

2. Materials and methods 

With the aim of determining the real impact that the installation of 
large photovoltaic plants has on the environment, a test was planned 
based on the analysis of satellite images, using data from the Copernicus 
mission. The Iberian Peninsula was selected for the analysis due to its 
character of privileged European region in terms of solar radiation and 
therefore an unbeatable place for the installation of large photovoltaic 
plants. Eight large PV plants (unit acreage greater than 50 ha) were 
selected, six of them located in Spain and the other two located in 
Portugal. 

The starting data are satellite images, both those provided by Google 
Maps, to locate large photovoltaic plants, determining whether they 
have been installed in recent years, as well as those provided by the 
Sentinel mission. In both cases these are free access images, considered 
sufficient for the purpose of this work. 

The methodology used is based on the temporal analysis of the image 
data in the frequency bands that provide the vegetation and moisture 
indices in the areas surrounding the solar plants, as well as in the areas 
internal to them, excluding the surface occupied by the photovoltaic 
panels. The following sections explain in detail the criteria for selecting 
the images, the type of image used, and the method devised to eliminate 
the dependence of the variation of the moisture and vegetation indices 
with respect to the weather of the year. 
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2.1. Satellite images to analyse the impact of utility-scale PV power plants 

Copernicus Sentinel missions are an EU project launched for scien
tific purposes based on twin satellites that give name to the different 
Sentinel missions. Sentinel-2 and Sentinel-3 missions, were used in this 
study, depending on the resolution required. Previous works have used 
Sentinel for PV related tasks such as site selection (Demir et al., 2023) 
[20]. In this work, Sentinel images were used to assess the impact of 
photovoltaic plants on the vegetation in these areas. 

Sentinel-2 provides access to 12 bands, and the methodology pro
posed is the result for different tests by combining bands and data 
processing. Two levels of data processing are provided by Sentinel: Since 
Level1 does not correct the effects of the atmosphere, we used Level2 
data, where the effects of the atmosphere on the light that is reflected off 
the surface of the Earth and reaches the sensor are excluded. Data are 
available globally since March 2017. 

Image resolution of Sentinel-2 is presented in Annex 1. 
Sentinel-3 mission has an Instrument Payload dedicated to different 

scientific areas:  

- Ocean and Land Colour Instrument (OLCI),  
- Sea and Land Surface Temperature Radiometer (SLSTR),  
- SAR Radar Altimeter (SRAL),  
- MicroWave Radiometer (MWR).  
- Precise Orbit Determination (POD) instruments. 

Image resolution of Sentinel-3 OLCI is presented in Annex 1. 
Other researchers have used Sentinel-2 images for the assessment of 

PV installations (Zhang et al., 2023) [21], with different intentions. In 
the aforementioned case, the aim was to determine the coverage by 
panels in certain areas, something that we have also done in this work. 
However, in our case we have removed the influence of the panels on the 
image to determine the remaining environmental impact. 

Once the solar plants were identified (Table 1 and Fig. 1), two images 
of each plant were collected from Copernicus in dry and wet seasons. 
Also, images were obtained both before and after the solar plant 
installation. The days selected were based on the availability of clear 
images (less than 20 % cloudy), so they were not necessarily the same 
day but as close to as possible. 

The years selected fulfilled the condition of being similar hydrolog
ical years. According to AEMET, the hydrological years 2017/18 and 
2022/23 were both dry and similar in terms of rainfall (474 mm and 
487 mm, respectively). 

The study used 144 satellite images in total. For each PV plant, 18 
satellite images were exploited, including two seasons (dry or summer, 
wet or spring) and different band combinations, as well as different 
scenarios of the use of land. It must be noted that in general the sur
rounding lands also experimented changes, mainly due to the agricul
tural use depending on the crop, tillage practices, land management, etc. 
Farther on it is explained how to exclude as much as possible the in
fluence of third-party activities apart from the solar plant. 

2.2. Validation of the selected images 

To follow an objective and reproducible analytic method, besides 
using two periods of the year before and after the installation, the NDVI 
and NDMI images obtained from Sentinel, were processed with ImageJ, 
a public domain Java image processing software. The objective was to 
compare the vegetation cover before and after the installation as an 
index of the environmental and agronomical impacts. 

It was considered that, given that these are large PV plants, and that 
Sentinel presents a limited resolution, a mechanism that would elimi
nate the influence of other external factors, should be used. Then, it was 
considered an expanded area (100 times larger), for which the area of 
the photovoltaic plant is not significant (<1%). The 2017 and 2023 
vegetation indices were then compared for this expanded area, and show 
an average reduction of 5 %, regardless of the existence of a photovoltaic 
plant. 

Therefore, to eliminate the influence of climate change, vegetation in 
the area where the photovoltaic plant is located was not compared, but 
vegetation in the area where no photovoltaic plant is located was 
compared (2017 to 2023). This process was carried out independently 
for each photovoltaic plant for 2017 and 2023. 

Finally, these relative indices were compared to determine if there is 
relative variation between both years. 

It must be pointed out that, to minimize the influence of nearby 
urban changes along the years considered, or local climatic effects, when 
images covering an encompassing area 100 times larger than the plant 
presented NDVI or NDMI indexes variation from 2017 to 2013 greater 
than 10 %, such plants were discarded. 

2.3. Environmental and agronomic impacts of a solar plant by analysing 
vegetation and moisture indices 

The use of infrared images for the analysis of defects or malfunc
tioning in PV modules is commonly applied to photovoltaic systems 
(Buerhop et al., 2022) [22]. Usually, hot spots due to defective PV 
modules or shading can be detected with this technology. But infrared 
images can also be used for the detection of vegetation and in the 
common NDVI reflected infrared bands can lead to an erroneous vege
tation index determination. Nevertheless, combining different bands 
(Jörges et al., 2023) [23] an analysis of the impact of the solar plant can 
be performed. For crystalline silicon (c-Si) based PV modules, the 
reflectance presents an increase from 990 nm to 1150 nm. In Annex-I, 
the detailed bands provided by Copernicus Sentinel-2 program are 
presented. Bands 9 and 10 are the closest to such reflectance window. An 
example of the NDVI images used is in Fig. 2. 

Besides NDVI, we used the NDMI. NDMI analysis uses NIR and SWIR 
bands to display moisture. The SWIR band reflects changes in both the 
water moisture content of the vegetation and the structure of the spongy 
mesophyll in the vegetation canopies, while the NIR reflectance is 
affected by the internal structure and dry matter content of the leaf, but 
not by its moisture content. An example of this method is presented in 
Fig. 3. 

Note that Figs. 2 and 3 were obtained from Sentinel-2 using the 
normalized color scale for NDVI and NDMI, respectively, in order to 
present a better visual effect. Nevertheless, the original Sentinel-2 
grayscale images were used for the analysis, as stated below. We used 
ImageJ to calculate the NDVI and NDMI histograms whose mean values 

Table 1 
The eight PV plants or solar plants (SP) analysed.  

Code Country Type of tracking Sloped terrain (yes 
for slope > 10 %) 

Occupation 
(ha) 

SP1 Spain Horizontal single- 
axis 

No (average grade 
lower than 2 %) 

820 

SP2 Spain No tracking (fix tilt 
angle of 20◦) 

No (average grade 
lower than 3 %) 

300 

SP3 Portugal Fix, ground oriented Yes (grades up to ca. 
58 %) 

100 

SP4 Spain No tracking (fix tilt) No (average grade 
lower than 3.5 %) 

943 

SP5 Spain No tracking (fix tilt) Yes (average grade 
lower than 12 %) 

1000 

SP6 Spain Horizontal single- 
axis 

No (average grade 
lower than 1 %); 

28.35 

But ends where a hill 
starts 

SP7 Spain No tracking (fix tilt) Not in the solar 
plant. 

100 MWp 

But the plant ends 
near hills 

SP8 Portugal No tracking (fix tilt) No (average grade 
lower than 6 %) 

368  
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were used as indices. 

2.4. The use of relative indices to assess the impact of a solar plant 

The method consisted of taking images of the same area with a time 
offset of 5 years, before and after the installation of the plant, and 
generating relative indices of both vegetation and humidity to eliminate 
the influence of meteorological changes and urban or agricultural 
management actions in the area. 

Images that covered only the PV plant were used, along with broader 
images. The broader images where then compared for Summer and 
Spring of the two years to verify that the large area does not undergo 
substantial changes (due to externality factors such as climate change) 
and then the area surrounding the PV plant was compared before and 
after the plant construction, eliminating the plant itself from the image 
for both years and seasons. 

Once the images were collected, the first step was to obtain a tem
plate through selective filtering that would allow the area covered by the 

PV plant to be eliminated. To do this, images with smaller aperture and 
false color were used (see Fig. 4a). Then, the area occupied by the PV 
modules was eliminated from the images, by obtaining a template with 
the PV modules (see Fig. 4a), both before and after the PV plant 
installation (see Fig. 4c–f). Afterwards, the NDMI and NDVI indices were 
derived by calculating the histograms. Finally, relative indices were 
obtained by dividing the index of the surrounding area of the plant, 
excluding the area of PV modules, by the index of the encompassing 
area, for each season (spring, summer) and year (2017 and 2023). The 
average value of both seasons was taken as the year index. 

In short, the method followed consisted of the following steps:  

- Take images NDMI and NDVI for each plant, before and after the 
installation of the plant, for two seasons.  

- Process the images to subtract the area of the PV panels.  
- Obtain the histogram as a number to be compared.  
- Compare histograms of surrounding area of the solar plant and 

encompassing area including the solar plant 

Fig. 1. Satellite false colour images for the eight solar plants (SP) analysed.  

Fig. 2. Using NDVI images from 2017 and 2023 in the same geographic area.  
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- Find the index that characterizes the effect of the solar plant 
installation. 

This procedure is summarized in Fig. 5: 

3. Results and discussion 

3.1. Detection of the area occupied by the solar plant 

Despite cSi in PV modules typically features a reflectance increase 
between 990 nm and 1150 nm (Jörges et al., 2023) [23], the spatial 
resolution of Sentinel closer bands, namely, Band 9 (945 nm) and Band 
10 (1373 nm), 60 m, was considered insufficient. Therefore, we also 
considered the combination of bands 8A (864 nm) and 11 (1610 nm) 
with a spatial resolution of 20 m. 

Fan and Huang (2021) [24] used two surface products of the Mod
erate Resolution Imaging Spectroradiometer (MODIS) aboard the NASA 
Aqua satellite to examine surface emissivity and land surface tempera
ture of six solar farms in the southwest of USA. They observed that 
compared to adjacent areas that had remained unaltered, the solar farm 
sites reduced outgoing radiances in three MODIS infrared bands. 

To date, much of the research conducted to ascertain the effect of 
utility-scale PV plants on local climate has focused on semiarid and arid 
sites of the USA (Barron-Gafford et al., 2016 [11]; Broadbent et al., 2019 
[12]) and China (Wu et al., 2022 [13]; Chang et al., 2022 [10]). In 
contrast, the PV plants analyzed in our study are located in sites which 
with the exception of plant SP5, are less arid (Main climate group C – 
temperate, Köppen–Geiger climate classification). 

Different choices for the primary colours red (R), green (G) and blue 
(B) were tested. Despite colour is not determinant for boundary detec
tion, it makes easier to identify the boundaries to the unaided eye. To 
ease boundaries detection of the areas under supervision, visible B2 
band and Long Wave Infrared B12 band were added to form the so-called 
false colour. With the help of the program ImageJ and its tool for 
filtering, using hue, saturation and brightness (HSB) color threshold, a 
mask for the area covered only for the PV modules is obtained. This 
mask was used to eliminate PV modules from the images. All the masks 
obtained are displayed in Fig. 6. 

3.2. Environmental impact assessment: Moisture affection 

To determine any effects of the solar plant on the moisture of the 
surrounding area, combinations of the satellite bands related to the 
moisture were considered. Since the PV module is a flat surface free of 
water (except on a rainy day and neglecting atmospheric dew conden
sation), the NDMI was used, which is calculated by Sentinel-2 from the 
B8A and B11 bands through the following equation: 

NDMI = (B8A - B11) / (B8A + B11). 

3.2.1. Independence and validation of the data obtained 
To determine the validity of the data and to ensure the independence 

of the effect of the plant with respect to other effects such as changes in 
rainfall from one year to the next or changes in nearby agricultural 
management strategies, a comparison of the moisture levels of the 
extended area was first performed. The years 2017 and 2023 were 
compared, in the Spring and Summer, obtaining results like those shown 
in Table 2. 

Data on Table 2 show how in the wide surrounding of all the plants, 
except SP6, there is a generalized reduction in the moisture levels 
detected. Given the size of the image (100 times greater than the plant 
image), this is not attributable to the plant, but to the fact that between 
the two years there is a slight drop in humidity. To discard areas where 
the variation in indices was very high and therefore attributable to local 
elements, the variation limit between 2017 and 2023 was set at 10 %. 
Therefore, analyses in areas with a global variation of indices of less than 
10 % were considered significant, with it being very significant if it is 
less than 5 %. Therefore, we have eight significant cases (all) and four 
very significant cases (SP1, SP3, SP5, SP6) out of the total of eight. In 
addition to choosing only large areas with variation of less than 10 %, in 
this study we added one more criterion to separate the variations from 
external variables such as climate. To do this, what we calculate is a 
relative variation index between the area close to the plant and the 
extended area. 

Fig. 7 presents graphically the data of Table 2. A ratio of 1 (100 %) 
means the same moisture index in both years. It can be observed that the 
greatest differences occur in Spring, despite in Summer the moisture 
levels are similar in both years for all the PV plants. Only plants SP7 and 
SP8 show a larger decrease (84–85 %) in Spring compared to the rest 

Fig. 3. Using NDMI images from 2017 and 2023 in the same geographic area.  
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(92–100 %). 
We decided to consider the very significant cases to support the main 

conclusions, but also the significant cases to suggest future work in the 
line of determining if there could be a stronger relationship, since as 
mentioned above, the index compares the solar plant with the sur
rounding area. 

3.2.2. Comparison of in/out NDMI as an index for the evaluation 
When the plant inside area, after eliminating the area occupied by 

the panels from the image, is compared with the outside area that en
compasses the plant, in particular corresponding to a tenfold area 
magnification, a figure is obtained that is independent of the hydrology 
of the year; rather, it refers exclusively to the effect of the solar plant. 

To obtain an index that is totally independent of the plant location, 
the inside/outside NDMI index computed from the histogram afore
mentioned was normalized to refer it to the condition of the initial year 
(2017). In this manner, it was possible to verify the evolution of the 
moisture relationship between the PV plant inside and outside over the 
time lapse studied. 

According to the results depicted in Fig. 8, after the solar plant 
installation, the moisture index, taken as the mean of the NDMI index in 
the area of the solar plant, compared to the encompassing area, de
creases compared to the same index before installation. 

Fig. 8A) and the mean values in Table 3 show the decreasing ten
dency of the general moisture values. It must be noted that such data 
should not be mixed with the data of the encompassing area moisture 
indices, as in the first case we are presenting a relative index: In/out 
means SP area relative to the encompassing area. Thus, considering that 
the NDMI values decreased slightly from 2017 to 2023, this in/out index 
implies that in moisture decrease is higher for the PV plant inside area. 

Seasonal comparisons deliver interesting results as well. First, for all 
the PV plants (except SP4 and SP7) the reduction was more pronounced 
in Spring than in Summer. Moreover, the variation in Spring was 
different for each plant, ranging from 2 % (SP7) to 10 % (SP2), and the 
summer variations were more similar for every PV plant, despite in 
Summer the relative NDMI indices even showed an increase in the PV 
plant area compared to the encompassing area. The differences observed 
could be associated with the slope of the terrain, that was higher for SP3 
and SP5; and it was these PV plants that presented a higher value of the 
mean descent. 

3.3. Agronomical impact assessment: Effects on vegetation 

To evaluate the impact on vegetation, we analysed the degree of 
variation of the vegetated area in the zone directly influenced by the PV 
plant. For this purpose, the NDVI was used. Sentinel-2 calculates it from 

Fig. 4. Obtaining the images for the calculation of NDMI indices. Note that despite the NDMI value was higher in 2017, it must be taken as a relative index compared 
with the encompassing area images. 
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Fig. 5. Flux diagram of the process used for the analysis.  
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the B08 (near infrared) and B4 (red) bands as: 
NDVI = (B08 – B4) / (B08 + B4). 

3.3.1. Independence and validation of the obtained data 
An analysis of the variation of vegetation in the PV plant encircling 

area was carried out, covering an area 100 times larger than that of the 
plant itself. It makes the influence of the solar plant negligible as it oc
cupies less than 1 % of the covered surface, as summarized in Table 4. 

For NDVI, the variation from 2017 to 2023 is even lower than for 
NDMI. Thus, from 2017 to 2023 there was a slight average variation in 
the vegetation in general, with only three cases that exhibited an 
average decrease greater than 5 %, but in all cases lesser than 10 %. 
Therefore, applying the same criterion for NDVI (vegetation analysis) 
than the applied for then NDMI (moisture) analysis) abovementioned. 

Moreover, in this case, there were two plants for which a slight in
crease in vegetation was observed in the extended area, between 2017 
and 2023. Anyway, the average variations were small, as corresponds to 
similar hydrological years. 

Fig. 9 shows that, except for plants SP2, SP7 and SP8, the variation of 
vegetation in the encircling area is not substantial. This fact makes the 
further findings about the variation of vegetation inside the PV plant 
independent from the climate change. But even when the variation of 
vegetation was higher in the encompassing area, a relative index was 
used to avoid such influence. 

3.3.2. Comparison of inside/outside NDVI as an evaluation index 
In the case of vegetation indices, there was an additional pitfall due 

to the reflection indices of the PV panels itself. For this reason, the area 

Fig. 6. Masks obtained for the solar plants analysed.  

Table 2 
Comparison between 2023 and 2017 histogram mean value of NDMI images for the solar plants (SP) encompassing area, for two seasons and the annual values.  

NDMI in the wide area SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 Mean 

OUT/OUT Spring23-17 0,97 0,94 0,96 0,92 0,93 1,00 0,84 0,85 0,93 
OUT/OUT Summer23-17 1,02 0,90 0,97 0,97 0,99 1,01 0,97 0,96 0,97 
Annual OUT/OUT 23/17 0,99 0,92 0,96 0,94 0,96 1,01 0,91 0,91 0,95  
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occupied by the PV plant was eliminated to avoid the influence of the 
panels on the image. 

The results indicate that both NDVI and NDMI decreased in the 

outside areas close to the solar plants. Hence it can be inferred that there 
is a slight decrease in vegetation in the surrounding environment. This 
may be due to the construction of roads and highways and the use of 
clearing and herbicides inside the plant boundary. But it could also mean 

Fig. 7. Variation of NDMI from 2017 to 2023 in the encompassing area for 
solar plants SP1 to SP8. 

Fig. 8. Variation of the NDMI, for the area of each PV plant relative to the encompassing area, and for 2023 relative to 2017. A) displays the mean values, while B) 
displays the seasonal values. 

Table 3 
Comparison of NDMI values in solar plants (SP) area vs. the encompassing area for different seasons of 2023 vs. 2017and the mean value.  

NDMI in the SP area vs. the encompassing area, 2023 vs. 2017 SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 Mean 

Weighted In/out for Spring 0,911 0,895 0,905 0,961 0,908 0,916 0,976 0,940 0,926 
Weighted In/out for Summer 1,008 1,007 0,936 0,962 0,986 0,956 0,966 1,029 0,981 
Annual weighted in/out 0,960 0,951 0,921 0,961 0,947 0,936 0,971 0,984 0,954  

Table 4 
Comparison of NDVI values for the encompassing areas.  

NDVI SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 Mean 

Out/Out Spring23-17  0.97  0.94  0.99  0.94  1.03  0.99  0.89  0.85  0.95 
Out/Out Summer23-17  1.00  0.93  0.99  0.98  1.01  1.02  1.00  0.99  0.99 
Annual Out/Out 23/17  0.99  0.93  0.99  0.96  1.02  1.00  0.94  0.92  0.97  

Fig. 9. Variation of NDVI from 2017 to 2023 in the encompassing area for solar 
plants 1 to 8. 
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that the nearby vegetation is affected, although the variations are not 
great. 

Only for the SP5 plant the variation detected is greater, reaching an 
average decrease of 7 %, as shown in Fig. 10. 

The average value of vegetation indices descent, obtained by 
comparing the plant nearness and farther area, is 2 %, when the area 
occupied by the panels was excluded from the analysis (see Table 5). 
Zhang et al. (2023) [21] found that NDVI increased after the installation 
of PV plants in temperate coastal zones of China but also decreased on 
the rest of regions. However, in our case there were plants that did not 
show an appreciable variation, like SP4, and others whose variation is 7 
%, like SP5. In SP5, the panels are installed in an area with an orographic 
slope, the same as in the SP3 plant with a similar variation. Thereby, 
land slope could be a factor that negatively affects vegetation after the 
installation of a solar plant. 

The data on the variation of vegetation indices led us to conclude 
that although the PV plant does not cause a great impact on the sur
rounding vegetation, this impact is a decrease in the NDVI. 

Other researchers reported similar results. For instance, (Hurduc 
et al. 2024) [25] observed a decrease in wintery NDVI after the instal
lation of a 46 MWp PV plant in Portugal, compared to the before- 
construction situation. On the other hand, they found little to no vari
ation between the before and after situation during the estival season. 
(Xu et al. 2024) [26] also observed a decrease in the vegetation green
ness indicator (in their case, the enhanced vegetation index, EVI) for 98 
out of 116 solar parks located in different continents. They found that 
the effect on EVI was geographical and land cover dependent. For the 
North America sites, they reported a higher decrease in EVI at croplands 
(-19.1 %) compared to grasslands (-6.6 %), whereas for the East and 
South Asia sites the respective values were − 5.8 % and − 4.1 %. 
Regarding seasonal variations, the largest impact on vegetation at mid- 
latitudes occurred in summer. In contrast with our results and the 
aforementioned results by Hurduc et al. (2024) [25] and Xu et al. (2024) 
[26], Xia et al. (2022) [27] found a significant greening trend for the 
desert vegetation in the surroundings of utility-scale PV plants, 
comparing before- and after- PV plant installation. 

3.4. Uncertainty and estimated error 

Given the difficulty in validating comparing with in-situ measure
ments, NDVI uncertainty has to be derived theoretically. Thus, to esti
mate the expected NDVI uncertainty, Borgogno-Mondino et al. (2016) 
[28] applied the variance propagation law approach to estimate the 
uncertainty of the factors that affect the reflectance used for NDVI 
calculation. They stated that the major contribution to NDVI uncertainty 
comes from topographic and atmospheric factors. They explained that 
topography affects reflectance uncertainty due to its narrow relationship 

with sun incidence angle calculation. For an agricultural area in 
Northwest Italy, they observed that the absolute value of NDVI uncer
tainty in October (0.07) was higher than in September (0.05), which 
they attributed to the degradation effect of the sun elevation angle on 
reflectance and, ultimately, on NDVI. In our study, we use values from 
0 to 255 instead of − 1 to + 1, so the translation for the uncertainty 
0.05–0.07 would be 6.37 to 8.92 in absolute values. 

De Petris et al. (2023) [29] assessed average absolute theoretical 
NDVI uncertainty from the Sentinel-2 data for several European coun
tries following a South-North gradient; the countries were Greece, Czech 
Republic, Lithuania, and Finland. For Greece, which is similar in latitude 
to the Iberian Peninsula, they reported an NDVI uncertainty of 0.06 in a 
spring month like April, and 0.05 in a summer month like July. On the 
other hand, De Petris et al. (2023) [29] found no significant differences 
in the temporal (month-wise) profile of NDVI uncertainty among the 
four countries aforementioned. 

With regards to NDMI, if we compare the bands involved in its 
calculation (band 8A and band 11, Table A2) with their counterparts of 
NDVI (bands 4 and 8, Table A1), we observe that the values of signal-to- 
noise ratio (SNR) are lower for the NDMI calculation bands. Considering 
that the SNR is the inverse of the noise-to-signal ratio, the NDMI un
certainty is higher than NDVI uncertainty. Nevertheless, considering the 
SNR high values (>70), as stated before, the main factor does not come 
from the sensor but from external factors. 

On this study, instead of absolute NDVI and NDMI values we 
computed relative values comparing the same images with different 
zoom size. Therefore, it can be expected that the effect on NDVI and 
NDMI uncertainty in one or another year is smaller than de variation 
obtained as results. 

3.5. How agrivoltaics can aid to attenuate the estimated impact 

According to our findings, conventional PV plants have some impact 
on the surrounding land environment. Probably, this is due to the fact 
that the roads that lead to the areas of the panels are usually weeded to 
facilitate the traffic of maintenance vehicles. 

If an agrivoltaic system was considered, the impact on the land 
would be smaller, since the crop vegetation on one hand is able to 
maintain certain levels of moisture and also it would increase the land 
use efficiency so that the overall yield obtained from the land would be 
higher. 

Agrivoltaics can also help to recover decreasing acreage for arable 
lands (Pulkit et al., 2021) [30] maintaining the capacity to produce 
foodstuffs in a scenario of world growing population. Even more, the PV 
plant, built under the conditions of coexistence with agriculture (Muñoz 
and Hernández, 2022) [31], can contribute to the improvement in the 
production of the solar plant itself, since the evapotranspiration of the 

Fig. 10. Variation of NDVI for the area of each solar plant relative to the encompassing area, for 2023 relative to 2017. A) displays the mean values while B) displays 
the seasonal values. 
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plants contributes to lower the temperature of the solar panels, with the 
subsequent improvement in performance. In addition, the vegetation 
cover of the soil, whether due to crops or to the native vegetation itself, 
can aid to reduce PV panels soiling [32], which occurs in PV plants 
where the ground gap between panels rows is bare or with little vege
tation (Altyeb et al. 2022) [33]. 

4. Conclusions 

Once the data object of this study have been analysed, and the pre
vious discussions carried out, the following conclusions can be drawn: 

Satellite imagery can be used to determine the environmental impact 
of installing an utility-scale photovoltaic plant. This option is accessible 
to the general public, although the treatment of the images and their 
interpretation requires some training and significant associated work. 

After the installation of a photovoltaic plant, a decrease in moisture 
levels is observed in the area occupied by the plant, compared to the 
moisture levels in the areas distant from the PV plant. This decrease is 
also reflected in the vegetation indices, although in this case it is less 
pronounced. According to our results, a weighted moderate decrease in 
both NDMI (-5%) and NDVI (-3%), compared to the distant areas, was 
detected after the solar plant installation. 

The grade or slope of the terrain whereon the PV plant is installed 
plays an important role on its impact on the general moisture content, 
and it also affects vegetation indices. It is recommended to adopt miti
gating measures in the case of photovoltaic installations on rough hilly 
terrains. Presumably, the rain and/or cleaning water that drains from 
the panels has a negative impact on the soil. 

The use of solar trackers did not have a significant impact compared 
to plants that do not implement solar tracking. Both NDVI and NDMI 
indices were not significantly affected after the installation of solar 
tracking PV plants, compared to plants with fix-tilt PV panels. 

The coexistence of photovoltaic plants and agriculture could miti
gate the impact on the soil and would improve land use in the concept of 
Ground-Integrated Photovoltaics. 
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Annex I. 

The 13 spectral bands of SENTINEL-2 range from the Visible (VNIR) and Near Infra-Red (NIR) to the Short Wave Infra-Red (SWIR):  

• 4 × 10 metre Bands: the three classical RGB bands ((Blue (~493 nm), Green (560 nm), and Red (~665 nm)) and a Near Infra-Red (~833 nm) band;  
• 6 × 20 metre Bands: 4 narrow Bands in the VNIR vegetation red edge spectral domain (~704 nm,~740 nm, ~783 nm and ~ 865 nm) and 2 wider 

SWIR bands (~1610 nm and ~ 2190 nm) for applications such as snow/ice/cloud detection, or vegetation moisture stress assessment;  
• 3 × 60 metre Bands mainly focused towards cloud screening and atmospheric correction (~443 nm for aerosols and ~ 945 nm for water vapour) 

and cirrus detection (~1374 nm).  

Table A1 
10 m Spatial Resolution Bands and associated Signal to Noise ratio (SNR).  

Band 
number 

S2A S2B Lref (reference radiance)(W m¡2 sr¡1 
μm¡1) 

SNR 
@ Lref 

Central wavelength 
(nm) 

Bandwidth 
(nm) 

Central wavelength 
(nm) 

Bandwidth 
(nm) 

2 492.7 65 492.3 65 128 154 
3 559.8 35 558.9 35 128 168 
4 664.6 30 664.9 31 108 142 
8 832.8 105 832.9 104 103 174   

Table A2 
20 m Spatial Resolution Bands and associated Signal to Noise ratio (SNR).  

Band 
number 

S2A S2B Lref (reference radiance) (W m¡2 sr¡1 
μm¡1) 

SNR 
@ Lref 

Central wavelength 
(nm) 

Bandwidth 
(nm) 

Central wavelength 
(nm) 

Bandwidth 
(nm) 

5 704.1 14 703.8 15 74.5 117 
6 740.5 14 739.1 13 68 89 

(continued on next page) 

Table 5 
Comparison of NDVI values in solar plants area relative to the encompassing area for two seasons of 2023 vs. 2017, and the overarching mean value.  

NDVI for the SP area relative to the encompassing area, 2023 relative to 2017 SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 Mean 

Weighted In/out for spring 0,978 0,966 0,922 1,000 0,871 0,958 0,997 0,948 0,955 
Weighted In/out for summer 1,009 1,061 0,949 1,008 0,992 1,001 0,995 0,989 1,001 
Average weighted in/out 0,994 1,014 0,935 1,004 0,931 0,980 0,996 0,969 0,978  
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Table A2 (continued ) 

Band 
number 

S2A S2B Lref (reference radiance) (W m¡2 sr¡1 
μm¡1) 

SNR 
@ Lref 

Central wavelength 
(nm) 

Bandwidth 
(nm) 

Central wavelength 
(nm) 

Bandwidth 
(nm) 

7 782.8 19 779.7 19 67 105 
8a 864.7 21 864.0 21 52.5 72 
11 1613.7 90 1610.4 94 4 100 
12 2202.4 174 2185.7 184 1.5 100   

Table A3 
60 m Spatial Resolution Bands and associated Signal to Noise ratio (SNR).  

Band 
number 

S2A S2B Lref (reference radiance) (W m¡2 sr¡1 
μm¡1) 

SNR 
@ Lref 

Central wavelength 
(nm) 

Bandwidth 
(nm) 

Central wavelength 
(nm) 

Bandwidth 
(nm) 

1 442.7 20 442.2 20 129 129 
9 945.1 19 943.2 20 9 114 
10 1373.5 29 1376.9 29 6 50  
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