
Universidade de Évora - Instituto de Investigação e Formação Avançada
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pelo Diretor do Instituto de Investigação e Formação Avançada:
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Resumo

Modelos Mistos de Crescimento Individual em Ambiente Aleatório

A utilização de um modelo misto de equações diferenciais estocásticas é uma abordagem ad-
equada para modelar o crescimento individual, sujeito a flutuações aleatórias do ambiente,
quando existem evidências de variabilidade nos parâmetros do modelo. Um dos métodos mais
utilizado para estimar os parâmetros do modelo é o método da máxima verosimilhança. Na
maioria dos casos, ao considerar como aleatórios os parâmetros do modelo, torna-se difı́cil
obter expressões em forma fechada para a função de verosimilhança, o que originou a adoção
de métodos de aproximação a esta função. Foi desenvolvido um novo método de aproximação,
baseado no conhecido método delta da Estatı́stica clássica, que designamos por método de
aproximação de delta. Este método foi desenvolvido para os casos de aleatoriedade no tamanho
médio assintótico e/ou na taxa de crescimento e comparado com métodos já existentes, em
particular, com o método de Laplace e outros métodos disponı́veis em packages do software
R. Os métodos foram ilustrados com base em dados reais de peso de bovinos da raça Mer-
tolenga. De forma a poder comparar a performance do método de delta com os outros métodos
foi necessário adaptar e desenvolver as expressões do método de Laplace e recorrer a bases de
dados simuladas para comparar com métodos já existentes.
Como as caracterı́sticas de cada animal podem ser relevantes para estimar a sua curva de cresci-
mento, foi desenvolvido um modelo misto de equações diferenciais estocásticas, para o caso
em que o parâmetro que representa o tamanho médio assimptótico do animal, não só é consid-
erado aleatório como pode ser escrito como uma função linear dos valores genéticos do próprio
animal, evidenciando desta forma a componente genética de cada animal na sua própria curva
de crescimento. Os resultados dos modelos mistos com a incorporação dos valores genéticos
revelaram uma melhoria na curva de crescimento do animal estimada.
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Abstract

Mixed Models for Individual Growth in a Random Environment

The use of stochastic differential equations mixed models is an appropriate approach to model
individual growth, subject to random fluctuations of the environment, when there is evidence
of variability in the model parameters. The maximum likelihood method is one of the most
used methods to estimate the model parameters. In most cases, when considering the model
parameters as random, it becomes difficult to obtain closed-form expressions for the likelihood
function, leading to the adoption of approximation methods. A new approximation method was
developed, based on the known delta method of classical Statistics, which we call the delta ap-
proximation method. This method was developed for the cases where the parameters related to
the asymptotic average size and/or growth rate are random and compared with existing methods,
in particular, with the Laplace method and other methods available in packages of R software.
The methods were illustrated based on real data on the weight of cattle of the Mertolenga breed.
To compare the performance of the delta method with the other methods, it was necessary to
adapt and develop the expressions of the Laplace method and resort to simulated datasets to
compare with already existent methods.
As the characteristics of each animal can be relevant to estimating its growth curve, a stochastic
differential equations mixed model was developed, for the case where the parameter that rep-
resents the asymptotic average size of the animal, not only is considered random but can be
written as a linear function of the genetic values of the animal itself, thus evidencing the genetic
component of each animal in its own growth curve. The results of the mixed models with the
incorporation of genetic values revealed an improvement in the estimated growth curve of the
animal.

v





Contents

Acknowledgments i

Resumo iii

Abstract v

List of Tables ix

Chapter 1. Introduction 1

Chapter 2. Estimation for stochastic differential equation mixed models using
approximation methods 5

2.1. Introduction 6
2.2. Stochastic differential equations for non-mixed models 8
2.3. Stochastic differential equation for mixed models 9
2.4. Mixed models with random asymptotic average size 10
2.5. Mixed models with random growth parameter 13
2.6. Mixed models with random asymptotic average size and random growth parameter 16
2.7. Performance comparison of the methods 19
2.8. Conclusions 29

Chapter 3. Likelihood Function through the delta approximation in Mixed SDE models 31
3.1. Introduction 32
3.2. Stochastic differential equations models 33
3.3. Mixed model for two random effects 36
3.4. Results 40
3.5. Recommendations 47
3.6. Conclusion 49

Chapter 4. Stochastic differential equations mixed model for individual growth with the
inclusion of genetic characteristics 53

4.1. Introduction 54
4.2. Stochastic differential equations models 56
4.3. Mixed models with genetic values 58
4.4. Real data application 59
4.5. Conclusion 64

Chapter 5. Conclusions 67

Appendix A: R codes for data Simulation 69

Appendix B: Estimates throught the delta approximation (DA) method 75

Appendix C: Estimates throught the Laplace approximation (LA) method 77

Appendix D: delta approximation (DA) codes 79
vii



Appendix E: Laplace approximation (LA) codess 87

Appendix F: R code for results in stochastic differential equation (SDE) with genetic values 97

Bibliography 103

viii



List of Tables

1 Results for the simulated dataset assuming a random α. The table shows the true
parameter values used in the simulations, the maximum likelihood estimates and
corresponding 95% asymptotic confidence bands using the “Exact method”/LA method
and the DA method. Estimates obtained by the mixedsde R package are shown. Instead
of showing the results for the modified weight µ, we present them for the real weight
A = h−1(µ). 20

2 Mean values and standard deviations (SD) of the estimates obtained through the DA
method and the “Exact method”/LA method for random α case, based on the 1000
simulated datasets, as well as the standard deviation estimate based on the empirical
Fisher information matrix (“SD. Fisher”). Instead of showing the results for the
modified weight µ, we show them for the weight A = h−1(µ). 21

3 Results for the simulated dataset assuming a random β. The table shows the true
parameter values used in the simulations, the maximum likelihood estimates, and
corresponding 95% asymptotic confidence bands using the DA and the LA methods
for a random β. Estimates obtained for the mixedsde R package are shown. Instead of
showing the results for the modified weight α, we present for the weight A = h−1(α). 22

4 Mean values and standard deviations (SD) of the estimates obtained through the DA
and the LA methods for random β, based on the 1000 simulated datasets and the
standard deviation estimate based on the empirical Fisher information matrix (“SD.
Fisher”). Instead of showing the results for the modified weight α, we show them for
the weight A = h−1(α). 23

5 Results for the simulated dataset assuming both α and β are random. The table
shows the true parameter values used in the simulations, the maximum likelihood
estimates, and corresponding 95% asymptotic confidence bands using the DA and the
LA methods. Estimates obtained for the mixedsde R packages are shown. Instead of
showing the results for the modified weight α (or, when α is random, for its mean µ),
we present for the weight A = h−1(α) (or A = h−1(µ)). 24

6 Mean values and standard deviations (SD) of the estimates obtained through the DA
and the LA methods for both random α and β, based on the 1000 simulated datasets
and the standard deviation estimate based on the empirical Fisher information matrix
(“SD. Fisher”). Instead of showing the results for the modified weight α (or, when α is
random, for its mean µ), we present for the weight A = h−1(α) (or A = h−1(µ)). 25

7 Results for the real dataset. Maximum likelihood estimates and corresponding 95%
asymptotic confidence bands for the DA and LA methods for the case where both
parameters α and β are assumed random. Instead of showing the results for the
modified weight µ, we show them for the weight A = h−1(µ). 26

8 Results for the real dataset. Maximum likelihood estimates and corresponding 95%
asymptotic confidence bands using the “Exact method”/LA method and the DA method
for the case where only α is assumed random, and the LA and DA methods for the case
where only β is assumed random. For the cases of random α, instead of showing the

ix



results for the modified weight µ, we show them for the weight A = h−1(µ). For the
case of random β, instead of showing the results for the modified weight α, we show
them for the weight A = h−1(α). 27

1 Results for the simulated dataset of 5000 animals when both α and β are random -
D5000(α, β). Besides the true parameter values used in the simulations, the Table shows
their maximum likelihood estimates and, when available, approximate 95% confidence
bands using the estimation methods: delta approximation methods DA(α, β), DA(α)
and DA(β), NMSDE method (using the exact likelihood when both α and β are
fixed), and MPE methods MPE(α, β), MPE(α) and MPE(β), where the likelihoods
or approximate likelihoods work with the indicated parameters taken as random.
Appropriate methods are underlined. Notice that the LLX values of approximate
methods may differ from the true values of the log-likelihood function at the parameter
estimated values. 43

2 Results for the simulated dataset of 5000 animals when α is random, but β is fixed
(ω = 0) - D5000(α). Besides the true parameter values used in the simulations, the Table
shows their maximum likelihood estimates and, when available, approximate 95%
confidence bands, using the estimation methods: DA(α, β), DA(α), DA(β), NMSDE,
MPE(α, β), MPE(α), and MPE(β). Appropriate methods are underlined. Notice
that the LLX values of approximate methods may differ from the true values of the
log-likelihood function at the parameter estimated values. 44

3 Results for the simulated dataset of 5000 animals when β is random, but α is fixed
(θ = 0) - D5000(β). Besides the true parameter values used in the simulations, the Table
shows their maximum likelihood estimates and, when available, approximate 95%
confidence bands, using the estimation methods: DA(α, β), DA(α), DA(β), NMSDE,
MPE(α, β), MPE(α), and MPE(β). Appropriate methods are underlined. Notice
that the LLX values of approximate methods may differ from the true values of the
log-likelihood function at the parameter estimated values. 45

4 Results for the simulated dataset of 5000 animals when α and β are both fixed
(θ = ω = 0) - D5000. Besides the true parameter values used in the simulations, the
Table shows their maximum likelihood estimates and, when available, approximate
95% confidence bands, using the estimation methods: DA(α, β), DA(α), DA(β),
NMSDE, MPE(α, β), MPE(α), and MPE(β). Appropriate methods are underlined.
Notice that the LLX values of approximate methods may differ from the true values of
the log-likelihood function at the parameter estimated values. 46

5 Results for the simulated datasets of 50 and 500 animals when both α and β are
random - D50(α, β) and D500(α, β). Besides the true parameter values used in the
simulations, the Table shows their maximum likelihood estimates and, when available,
approximate 95% confidence bands, using the appropriate estimation methods DA(α, β)
and MPE(α, β) and the inappropriate estimation method NMSDE. Notice that the LLX

values of approximate methods may differ from the true values of the log-likelihood
function at the parameter estimated values. 47

6 Results for the simulated dataset of 50 and 500 animals when α is random, but β is fixed
(ω = 0) - D50(α) and D500(α). Besides the true parameter values used in the simulations,
the Table shows their maximum likelihood estimates and, when available, approximate
95% confidence bands, using the appropriate estimation methods DA(α, β), MPE(α, β)
and Exact(α) and the inappropriate estimation method NMSDE. Notice that the LLX

values of approximate methods may differ from the true values of the log-likelihood
function at the parameter estimated values. 48

x



7 Results for the simulated datasets of 50 and 500 animals when β is random, but α
is fixed (θ = 0) - D50(β) and D500(β). Besides the true parameter values used in the
simulations, the Table shows their maximum likelihood estimates and, when available,
approximate 95% confidence bands, using the appropriate estimation methods DA(α, β)
and MPE(α, β) and the inappropriate estimation method NMSDE. Notice that the LLX

values of approximate methods may differ from the true values of the log-likelihood
function at the parameter estimated values. 49

8 Results for the simulated datasets of 50 and 500 animals when α and β are both
fixed (θ = ω = 0) - D50 and D500. Besides the true parameter values used in the
simulations, the Table shows their maximum likelihood estimates and, when available,
approximate 95% confidence bands, using the appropriate estimation methods DA(α, β)
and MPE(α, β) and the estimation method NMSDE, which is the most appropriate for
this dataset. Notice that the LLX values of approximate methods may differ from the
true values of the log-likelihood function at the parameter estimated values. 50

9 Results for the real cattle weight data set. The maximum likelihood estimates and
approximate 95% confidence bands are shown when assuming a mixed model with
both α and β random and using the DA(α, β) estimation method and when assuming a
non-mixed model (α and β fixed) and using the NMSDE method (which is the classical
exact maximum likelihood method under that assumption). Notice that the LLX values
of the approximate method DA(α, β) method may differ from the true value of the
log-likelihood function at the parameter estimated values. 50

1 Descriptive statistics for the seven genetic values of the genetic evaluation: minimum
(min), 25th quantile (Q1), median, mean, 75th quantile (Q3), maximum (max), standard
deviation (s.d.), number of animals (M) and total number of weight observations (n). 61

2 Estimation results for the NMSDE and for the MSDE models assuming random α.
The table shows the values of the maximum likelihood estimates and corresponding
approximate 95% asymptotic confidence bands, as well as the corresponding value
of the log-likelihood. Besides showing the results for the modified weight α, we
present them for the weight A = h−1(µ) (for the NMSDE model µ = α). The AIC
and BIC values are also presented. The magnitude of the p-values of the LRT test
between the NMSDE and MSDE are shown: ns (p > 0.05); ∗ (0.01 < p ≤ 0.05); ∗∗

(0.001 < p ≤ 0.01); ∗∗∗ (p ≤ 0.001). 61

3 Estimation results for the NMSDE, MSDE and MSDEG models. The table shows
the values of the maximum likelihood estimates and corresponding approximate 95%
asymptotic confidence bands, as well as the corresponding value of the log-likelihood.
Estimates for the actual asymptotic weight (in kg) are shown with A = h−1(α),
A = h−1(µ) and A = h−1(c0 + c1g1), for NMSDE, MSDE and MSDEG, respectively.
The AIC and BIC values are also presented. The magnitude of the p-values of the LRT
test between the NMSDE and MSDE and between the MSDE and MSDEG are shown:
ns (p > 0.05); ∗ (0.01 < p ≤ 0.05); ∗∗ (0.001 < p ≤ 0.01); ∗∗∗ (p ≤ 0.001). 63

4 Estimation results for the NMSDE, MSDE and MSDEG models. The table shows
the values of the maximum likelihood estimates and corresponding approximate 95%
asymptotic confidence bands, as well as the corresponding value of the log-likelihood.
Estimates for the actual asymptotic weight (in kg) are shown with A = h−1(α),
A = h−1(µ) and A = h−1(c0 + c1g1), for NMSDE, MSDE and MSDEG, respectively.
The AIC and BIC values are also presented. The magnitude of the p-values of the LRT

xi



test between the NMSDE and MSDE and between the MSDE and MSDEG are shown:
ns (p > 0.05); ∗ (0.01 < p ≤ 0.05); ∗∗ (0.001 < p ≤ 0.01); ∗∗∗ (p ≤ 0.001). 64

xii



CHAPTER 1

Introduction

Stochastic differential equations (SDE) are mathematical equations used to model systems that
involve random or stochastic processes. They combine ordinary differential equations (ODE)
with stochastic terms, typically represented as a Wiener process or Brownian motion. SDE can
be used to model animal growth because growth processes in living organisms can be influ-
enced by numerous random factors and uncertainties. These factors may include variations in
the environment, food availability, genetic traits, and other stochastic influences. Using SDE al-
lows researchers to incorporate randomness and variability into the models, making them more
realistic and reflective of the inherent uncertainties observed in biological systems.

When modeling individual growth, many studies use deterministic models and fit them with
classic regression methods. These methods assume that the errors are independent, which is
only true when the errors are observational. They are inappropriate if the deviations between
observations are due to random changes on growth rates resulting from environmental random
fluctuations. SDE are built to model growth incorporating the dynamics of the growth process
and the effect of the random fluctuations. Our goal is to apply SDE models to describe the
dynamics of the evolution of bovine weight. To describe the growth of M animals, a general
SDE model can be written as follows,

dYi(t) = β (α − Yi(t)) dt + σ dWi(t), Yi(ti,0) = yi,0, i = 1, . . . ,M, (1.1)

where Yi(t) = h(Xi(t)) is the modified weight by a transformation function h, a known monoto-
nous continuously differentiable function, of the real weight Xi(t) of the animal i at age t, and
yi,0 = h(xi,0), where xi,0 is the assumed known size of animal i at an initial age of observation
ti,0. The parameter β > 0 is the growth coefficient and α is the mean asymptotic modified size
towards which the mean modified size converges as t → +∞; we denote by A = h−1(α) the
corresponding real asymptotic size. The intensity of the effect of environmental random fluctu-
ations on growth is measured by the parameter σ > 0, being Wi(t) (i = 1, . . . ,M) independent
realizations of the standard Wiener process. Specific choices of the function h lead to stochastic
versions of some models commonly used to describe growth, such as the monomolecular model
for h(x) = x, the Bertalanffy-Richards model for h(x) = xc (c > 0), the Gompertz model for
h(x) = ln x and the logistic model for h(x) = x−1, but the theoretical treatment is valid for any
monotonous C1 function h. Here, we will use h(x) = ln x, corresponding to the stochastic Gom-
pertz model. The SDE model described in (1.1) is also called the Vasicek model in the context
of interest rate dynamics [1], was proposed by Oldrich Vasicek in 1977 and is widely used in
the field of quantitative finance, where in this context, the Vasicek model provides a framework
for analyzing interest rate derivatives and pricing fixed income securities. It has been used to
estimate various interest rate parameters, such as the risk-neutral probability of default and the
term structure of interest rates. The field of models for organisms growth has various applica-
tions of different models of SDE. For example, [2] shows how to model the growth dynamic of
trees with fixed parameters that are estimated from data. Another example is [3], where they
compare evolutionary patterns of a continuous trait on a phylogeny using Brownian motion or
Ornstein-Uhlenbeck (OU) processes, among others.
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The stochastic differential equation non-mixed (NMSDE) models such as (1.1), are often
used to model individual growth, but when using real data an evidence of variability in the fixed
effect arise, thus transforming the NMSDE model into a stochastic differential equation mixed
(MSDE) model. MSDE models, also known as stochastic mixed-effects models or random ef-
fects models, combine the concepts of SDE and mixed-effects models. These models are used
to analyze longitudinal or repeated measures data where both fixed effects (population-level
effects) and random effects (subject-specific effects) are present, along with stochastic compo-
nents. In a MSDE the underlying dynamic process is described by a SDE, which captures the
evolution of the response variable over time. The model incorporates both fixed effects, which
represent the average behavior of the population, and random effects, which capture the indi-
vidual variations among subjects.

MSDE models find applications in various fields due to their ability to capture both fixed
effects and random effects, such as pharmacokinetics and pharmacodynamics modeling [4],
where they can capture both the individual-level variability and the dynamic behavior of drug
concentrations in the body over time, whose extension for biomedical data is presented in [5,6];
pharmacological studies [7] constitute an attractive class of stochastical models for biomedical
data; biology and ecology [8] models are employed to analyze biological systems with both
deterministic growth patterns and random environmental effects; in option pricing [9], presents
a mixed stochastic differential equation containing both Wiener process and a Hölder continu-
ous process, where a stochastic viability theorem is proven, in [10] the asymptotic properties of
the estimators of MSDE are studied. This approach was proposed to cope the problems arising
when the standard growth functions have a monotone increasing growth and can fail to model
unexpected changes in growth rates.

Estimating the parameters in MSDE models typically involves maximizing the likelihood
function. However, the estimation process can be complex and in very few cases there exists
a closed form expression for the maximum likelihood function. Therefore, estimation and in-
ference for MSDE models involve fitting the model to the observed data using approximation
methods or numerical approaches. Some numerical approaches have been implemented in R
packages such as mixedsde and MsdeParEst [11, 12]. These packages have a restriction of us-
ing a single time vector for all individuals not being possible to use them when individuals have
different time vectors or even in the more complex structure where they have different time vec-
tors and non-equidistant observations. To utilize MSDE in real-world scenarios where different
individuals may possess distinct time vectors, it is essential to propose new techniques or adapt
existing ones. In this context, we have developed the delta approximation (DA) method, an
extension of the classic delta method, tailored for scenarios where the parameters α and/or β
can be treated as random variables. Furthermore, we have derived all necessary formulas from
the well-established Laplace approximation (LA) method for utilization in real data settings.
These approximation approaches allow estimating the parameters of MSDE with vectors of
non-equidistant and different observations between animals, the advantage of the DA method
over the LA method is its ability to provide a simpler presentation and a closed-form expression
for approximating the likelihood function. We present the application to cattle weight real data,
comparing the performance of the different methods. We also present the application to simu-
lated data to observe the effect of having diferent datasets sizes and different age vectors on the
different estimation methods.

The genetic component appears as a natural addition when we think of the variability be-
tween individuals. The inclusion of genetic values in the maximum likelihood function depends
on the specific context and model being used, where for our case, we consider the random α
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case as a linear function of the genetic values. Thus, the objective is not only to explain part
of the variation in the parameters that have not been explained before, but also to identify those
characteristics of the animals that contribute most to their growth.

This thesis is organized as follows, in chapter 2 we present the NMSDE models, their main
properties and the use of the maximum likelihood estimation method to estimate the models
parameters. We also present the extension to MSDE model, for the random α case and/or for
the random β case and the methodological developments and expressions for the DA method
and the LA method are obtained. In chapter 3 we present the extension to MSDE models,
where we focus on the development of the DA method applied to the likelihood function for the
case where both parameters α and β are independent Gaussian distributed random variables. In
chapter 4, we introduce the particular MSDE models, for the random α case, with the inclusion
of the genetics values. For this purpose, we write the random effect of transformed weight at
maturity as a linear function of genetic values. In this way it was possible to explain part of the
variation of the parameters that were not explained before the inclusion of the genetic values.
Chapter 5 presents the general conclusions. The developed R codes can be found in the Appen-
dix.

This thesis is a collection of three research papers published in peer-reviewed indexed sci-
entific journals during my PhD research. The papers forming chapters (2), (3) and (4) of this
thesis are mostly presented in the form they were published.
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CHAPTER 2

Estimation for stochastic differential equation mixed models using
approximation methods

Nelson T. Jamba
Gonçalo Jacinto

Patrı́cia A. Filipe
Carlos A. Braumann
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Abstract
We used a class of stochastic differential equations (SDE) to model the evolution of cattle
weight that, by an appropriate transformation of the weight, resulted in a variant of the Ornstein-
Uhlenbeck model. In previous works, we have dealt with estimation, prediction, and optimiza-
tion issues for this class of models. However, to incorporate individual characteristics of the
animals, the average transformed size at maturity parameter α and/or the growth parameter β
may vary randomly from animal to animal, which results in SDE mixed models. Obtaining a
closed-form expression for the likelihood function to apply the maximum likelihood estimation
method is a difficult, sometimes impossible, task. We compared the known Laplace approxi-
mation method with the delta method to approximate the integrals involved in the likelihood
function. These approaches were adapted to allow the estimation of the parameters even when
the requirement of most existing methods, namely having the same age vector of observations
for all trajectories, fails, as it did in our real data example. Simulation studies were also per-
formed to assess the performance of these approximation methods. The results show that the
approximation methods under study are a very good alternative for the estimation of SDE mixed
models.
Keywords delta method; Laplace method; maximum likelihood estimation; mixed models; sto-
chastic differential equations.

2.1. Introduction
The growth of individual organisms must take into account random environmental fluctu-

ations that affect the growth rate and so we use stochastic differential equation (SDE) models.
To describe the growth of an individual in a randomly fluctuating environment, a class of SDE
models has been studied, for instance in [2, 13, 14]. The models of this class can be written,
by using an appropriate transformation of the size, in the form of a mean-reverting Ornstein-
Uhlenbeck model, also called the Vasicek model in financial mathematics [1], as

dYi(t) = β (α − Yi(t)) dt + σ dWi(t), Yi(ti,0) = yi,0, i = 1, . . . ,M, (2.1)

where Yi(t) = h(Xi(t)) is a modified size by the transformation h, a monotonous C1 function
(which we assume to be known) of the real size Xi(t) at age t of the ith individual (i = 1, . . . ,M).
We have Yi(ti,0) = yi,0 = h(xi,0), where xi,0 is the size observed at age ti,0 (known initial obser-
vation) for individual i, and α = h(A), where A is the asymptotic size or size at maturity. The
growth parameter β is the rate of approach to maturity, σ measures the strength of environmen-
tal fluctuations on growth, and Wi(t) (i = 1, . . . ,M) are independent standard Wiener processes.
Specific choices of the function h lead to stochastic versions of some models commonly used
to describe growth (e.g., monomolecular, Bertalanffy-Richards, Gompertz, and logistic). The
estimation, prediction, and optimization issues for this class of models with applications to cat-
tle weight data can be found in [13, 15–18]. For this type of data, one of the most adequate
choices of the transformation function h was the logarithm of the weight, which corresponds to
the stochastic Gompertz model. For this reason, when illustrating the results obtained in this
paper, this particular model was used in the application.

Since model parameters may differ among animals, we extend the study to mixed SDE mod-
els where the parameters α and/or β vary randomly among animals. The maximum likelihood
estimation method was applied and we studied the delta approximation method, inspired by the
classical delta method, to approximate the integral involved in the likelihood function, and com-
pared it with the available R package for SDE mixed models mixedsde. Another already-known
approximation method is the Laplace approximation method. Despite some papers having al-
ready proposed the Laplace approximation method ([19,20]), none of them use this approxima-
tion method in the cases where the number of observations and/or the ages of such observations
vary from animal to animal. The motivation of the paper is to study approximation methods
6



that can be applied to the more realistic SDE mixed models in the context of real cattle growth
data, where different animals have different age vectors and different numbers of weighings.
In particular, we further develop and assess the performance of an approximation method (the
delta method) that is easy to implement and a reliable and fast alternative to other existing ap-
proximation methods. In [14] the delta approximation method was proposed for the particular
case where both parameters α and β are independent Gaussian distributed random variables.

Our main objective is to compare the delta and Laplace approximation methods. In addition
to this methodological comparison, we have two other objectives. The first is to assess the
robustness of these approximation methods for estimating model parameters when there is no
exact method available as an alternative. These methods can be particularly useful when the
integral appearing in the likelihood function cannot be explicitly computed, and no closed-
form expression of this function can be obtained, as is the case in the random β scenario and
when both parameters α and β are considered random. The second objective is to use the
approximation methods in the particular case where the likelihood function can be explicitly
obtained, and therefore an exact method is available (α random), as a benchmark to assess the
robustness of the estimates obtained by the approximation methods.

To illustrate the results, we have used the weight in kilograms of the 10843 Mertolengo cattle
males with recorded genetic information on the database of the Associação de Criadores de
Bovinos Mertolengos (ACBM), which registers the growing and finishing phases of the young
Mertolengo males, and its associated breeders in the Alentejo region in Portugal. Each animal
has multiple weight records, ranging from 3 to 33, at various ages from birth to a maximum age
between 0.2 and 8.1 years, totaling 69782 observations.

A survey of several parametric and nonparametric methods for asymptotic inference in SDE
mixed models can be found in [10] with the discussion of asymptotic properties of estimators
and presentation of several applications. For instance, in [5] and [6] the authors apply SDE
mixed effects models to tumor growth dynamics using fully Bayesian inference through the
pseudo-marginal methods. In [7] an application to electroencephalography data is used by
discretizing the continuous time likelihood. The Laplace approximation approach and other
approximation methodologies have been addressed, for instance, in [21], [19], and [22]. Some
methodologies were already implemented in R packages (see, for example, [23], [24], and [25])
and here we will compare the results obtained by the delta and the Laplace approximation
methods with those obtained using the R package mixedsde. The mixedsde R package allows
inference on the Ornstein-Uhlenbeck and Cox-Ingersoll-Ross SDE mixed models for random
effects on the trend of additive, multiplicative, or jointly additive-multiplicative types. It allows
one to obtain the maximum likelihood estimates of the model parameters through approximation
methods using a parametric approach, a parametric Bayesian approach, and a non-parametric
Bayesian approach. In its parametric approach, it uses the continuous-time likelihood function
obtained via the Girsanov formula and approximates the likelihood with a discretized version
[24, 26].

The available packages require that the time vector of observations is the same for all trajec-
tories. This is not the case in our application, since in our real data the animals are not weighted
at the same ages and, for this reason, the existing packages could not be used. To be able to
compare the results of both delta and Laplace approximation methods considered here with the
results obtained by the mixedsde R package, we have used a dataset of simulated weights at
the same equidistant ages. A bias analysis of the parameter estimates and an evaluation of the
adequacy of the confidence intervals based on the empirical Fisher information matrix was also
applied to both the delta and the Laplace approximation methods.

In summary, in this paper, we present useful contributions not available elsewhere.
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• Closed-form expressions for the delta approximation method: This paper offers all
closed-form expressions of the delta approximation method, particularly when the pa-
rameters α or β are considered random.
• Detailed formulas for the Laplace approximation method: This paper introduces intri-

cate formulas for the Laplace approximation method, accommodating data with vary-
ing numbers of observations per subject and non-equidistant observations. These for-
mulas enable a straightforward implementation.
• Comprehensive comparison among methods: A thorough comparison is conducted be-

tween the two approximation methods (delta and Laplace) and the mixedsde R pack-
age. This comprehensive analysis provides a clear understanding of their performance
under different scenarios involving random parameter considerations.

This paper is organized as follows: In Section 2.2, we present the SDE models, their main
properties, and the use of the maximum likelihood estimation method to estimate the model’s
parameters. In Section 2.3, we present the SDE mixed model. In Sections 2.4 and 2.5, the
particular SDE mixed models for the random α case and for the random β case are presented,
and the methodological developments and expressions for the delta approximation method and
the Laplace approximation method are obtained. In Section 2.6, the same approach is presented
for the case where both α and β are random. In Section 2.7, we present the application to
our real cattle weight data and to simulated data, comparing the performance of the different
methods. We end with Section 2.8, where the main conclusions are presented.

2.2. Stochastic differential equations for non-mixed models
We consider data from M individuals. Let Xi(t) be the size at time t of the ith individual (i =

1, . . . ,M). The corresponding modified size is Yi(t) = h(Xi(t)), where the transformation h is a
monotonous C1 function. If the individual is growing in a randomly fluctuating environment,
we can model growth through (2.1).

It can be seen, for instance in [27], that the solution of (2.1) is given, for t ≥ ti,0, by

Yi(t) = α − (α − yi,0)e−β(t−ti,0) + σe−βt
∫ t

ti,0
eβsdWi(s), i = 1, . . . ,M, (2.2)

and follows a Gaussian distribution with mean α−(α−yi,0)e−β(t−ti,0) and variance σ
2

2β (1−e−2β(t−ti,0)).
Note that Yi(t) is a homogeneous diffusion process with drift coefficient a(y) = β (α − y) and
diffusion coefficient b(y) = σ2.
Let ti, j (i = 1, ...,M, j = 1, ..., ni) be the age of the jth observation of individual number i and let
Yi, j = Yi(ti, j) = h(Xi(ti, j)) be the corresponding modified weight according to model (2.1). For
each individual i (i = 1, . . . ,M), denote by ti =

(
ti,0, ti,1, . . . , ti,ni

)
its time vector of observations

(which may differ from individual to individual), by Yi =
(
Yi,0,Yi,1, ...,Yi,ni

)
its random vector

of observables, and by yi =
(
yi,0, yi,1, ..., yi,ni

)
the observed value of Yi. We assume ti, j−1 < ti, j

and make Ei, j = e−(ti, j−ti, j−1). We see that Yi, j = α + Eβi, j(Yi, j−1 − α) + σe−βti, j
∫ ti, j

ti, j−1
eβsdWs, and so,

conditioned on Yi, j−1 = yi, j−1, the transition distribution for animal i is Gaussian:

Yi, j|Yi, j−1 = yi, j−1 ∼ N
(
α +

(
yi, j−1 − α

)
Eβi, j ,

σ2

2β
(1 − E2β

i, j)
)
. (2.3)

To estimate the parameter vector p = (α, β, σ), the maximum likelihood estimation method is
usually applied, see, for instance, [15]. From (2.3), using the fact that Yi(t) is a Markov process,
we know that, given Yi,0 = yi,0 (assumed known), the joint probability density function (p.d.f.)
8



for animal i is

pYi(yi|α, β, σ) =
ni∏
j=1

exp
(
−1

2

(
yi, j−α−(yi, j−1−α)Eβi, j

)2

σ2
2β (1−E2β

i, j )

)
√

2πσ2

2β (1 − E2β
i, j)

(2.4)

=

exp

−1
2

ni∑
j=1

(
yi, j − α − (yi, j−1 − α)Eβi, j

)2

σ2

2β (1 − E2β
i, j)


ni∏
j=1

√
2π
σ2

2β
(1 − E2β

i, j)

, i = 1, . . . ,M,

and, by independence among individuals, we obtain the likelihood function for the M animals

L(α, β, σ) =
M∏

i=1

pYi(yi|α, β, σ). (2.5)

The maximum likelihood estimate p̂ of the parameter vector p is obtained by maximization of
(2.5). The maximum likelihood estimators are asymptotically Gaussian with mean p = (α, β, σ)
and variance-covariance matrix V. We can estimate V by the inverse of the empirical Fisher
information matrix.
We have described a quite general SDE animal growth model and the maximum likelihood
estimation method to estimate the model’s parameters α, β, and σ, that are assumed to be the
same for all individuals. However, in cattle weight data, it is natural to think that different
animals may differ in some parameter value. So, we will consider this situation using mixed
SDE models.

2.3. Stochastic differential equation for mixed models
SDE mixed models are used to model growth, with applications in various fields, such as

animal growth and pharmacokinetics, among others [7, 14, 21, 28, 29]. For the type of models
we present here, in [14, 19, 22, 30], it can be seen that, when one or both drift parameters α
and β may vary randomly among animals, the likelihood function can be obtained from the
transition density function conditioned on the respective random parameter(s). Assume that b
is a d-dimensional vector of parameters that vary randomly among animals and let bi be its
random effect on animal i. Let ϵ be the vector of the remaining model parameters, assumed
to be common to all animals. The distribution of b among animals has p.d.f. p(b|Ψ), where
Ψ is the parameter vector that characterizes that distribution and needs to be estimated. As-
suming independence among the animals, the M parameter vectors bi of the different animals i
(i = 1, . . . ,M) are independent identically distributed random variables with common p.d.f. p.
Assume also that the bi (i = 1, . . . ,M) are independent of the Wiener processes that characterize
the environmental conditions under which the animals are growing. The likelihood function for
M trajectories (animals) is given by

L(ϵ,Ψ) =
M∏
i=1

pYi(yi|ϵ,Ψ) =
M∏
i=1

+∞∫
−∞

pYi(yi|bi, ϵ)p(bi|Ψ) dbi, (2.6)

where pYi(yi|bi, ϵ) is the joint p.d.f. for animal i conditional on bi. The case of a single parameter
bi = (αi) has already been studied for αi ∼ N(µ, θ2) and allows a closed-form computation of
the integral in the likelihood function, resulting in a final closed-form (heavy) expression for
this function. One can see it, for example, in [31] for the particular situation of µ = 0 and a
time vector of observations ti ≡ t = (t0, t1, . . . , tn), i = 1, . . . ,M, common to all animals and
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having uniform time spacing (t j − t j−1 ≡ δ , j = 1, . . . , n), which considerably simplifies the
expressions, and in [14] and [21] for the general situation.

However, the integral in (2.6) does not always have a closed-form solution, like when the
random parameter is β, corresponding to bi = (βi), and when both parameters are considered
random, corresponding to bi = (αi, βi). For the case when both parameters are considered ran-
dom, [14] proposed the delta approximation method (DA method) to approximate the integral
in (2.6). This approximation method allows us to obtain simpler expressions for the likelihood
function, usually in closed-form. Although inspired by the classical statistical delta method, it
differs from it in purpose and in the methodology used. In the following subsections, we are
going to detail the same DA method for the cases not shown in [14], namely for the cases where
just one parameter, α or β, is random. This method can be useful if we are interested in con-
sidering just the case of a single random parameter, for instance, when it is the most reasonable
assumption for a certain real application. So, in this paper, we will also compare the DA method
with other methods for the specific cases where only one of the parameters, α or β, is considered
random.
This method is also suitable to use in the situation of a general age vector of observations,
allowing us to estimate the parameters of the models even when the different animals have their
weights observed at different ages and those ages may be non-equidistant.
We are also going to develop the numerical implementation of the Laplace approximation
method (LA method) since, despite having already been proposed in [20], we could not find
available packages enabling us to test the performance of the Laplace approximation method
and compare it with the performance of the DA method. On the numerical implementation of
the LA method, we have generalized the known existing references and applications, so that
the method can be used to estimate the parameters when the number and ages of observation
fail to be equidistant and/or common to all observed animals. Finally, the DA method and the
LA method will be compared with the existing implemented methodologies that require an age
vector common to all animals.

2.4. Mixed models with random asymptotic average size
If we assume, for each animal, a random asymptotic size αi, following a Gaussian distribu-

tion with mean µ and variance θ2, the joint p.d.f. for animal i is given by

pYi(yi|µ, θ, β, σ) =

+∞∫
−∞

pYi(yi|αi, β, σ)p(αi|µ, θ) dαi, (2.7)

with pYi(yi|αi, β, σ) obtained by replacing α with αi in (2.4) and

p(αi|µ, θ) =
1
√

2πθ2
e−

(αi−µ)
2

2θ2 . (2.8)

Thus, from (2.6) and using (2.7) and (2.8), we get, after some simplifications, the likelihood
function

L(µ, θ, β, σ) =
M∏

i=1

 1
√

2πθ2

ni∏
j=1

 1√
πσ2

β
(1 − E2β

i, j)

 (2.9)

+∞∫
−∞

exp

−1
2

ni∑
j=1

(
yi, j − αi − (yi, j−1 − αi)E

β
i, j

)2

σ2

2β (1 − E2β
i, j)

−
(αi − µ)2

2θ2

 dαi

 .
It is shown in [14] that it is possible to explicitly compute the integral in (2.9) and to obtain
the log-likelihood function for all animals LL(µ, θ, β, σ) = ln L(µ, θ, β, σ) as the closed-form
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expression:

LL(µ, θ, β, σ) =
M∑

i=1

(
−

ni

2
ln (2π) −

ni

2
ln

(
σ2

2β

)
−

1
2

ni∑
j=1

ln
(
1 − E2β

i, j

)
−

1
2

ln (Di)

−
β

Diσ2

ni∑
j=1

(
yi, j − µ −

(
yi, j−1 − µ

)
Eβi, j

)2

1 − E2β
i, j

+
2β2θ2

Diσ4

 ni∑
j=1

(
yi, j − yi, j−1Eβi, j

)
1 + Eβi, j


2

−
β(Di−1)

Diσ2

 ni∑
j=1

(
yi, j − yi, j−1Eβi, j

)2

1 − E2β
i, j


 ,

(2.10)

with Di =
2βθ2

σ2

ni∑
j=1

1 − Eβi, j
1 + Eβi, j

+ 1.

This is not always possible for other situations and approximation methodologies are very useful
to overcome this problem.

In the following subsections we are going to approximate the integral in (2.9) using the
Laplace and delta approximation methods, allowing to obtain closed-form approximate expres-
sions for the likelihood function. This might seem unnecessary since, in this case, we have an
exact explicit expression, but it allows us to use this case as a benchmark to evaluate the quality
of the approximations.

2.4.1. Likelihood function through the Laplace approximation method
Notice that the integrand function of the integral in (2.9) is the exponential of

fi(αi) = −
1
2

ni∑
j=1

(
yi, j − αi − (yi, j−1 − αi)E

β
i, j

)2

σ2

2β (1 − E2β
i, j)

−
(αi − µ)2

2θ2
. (2.11)

To use the Laplace approximation method, we first need to obtain the value α̂i of αi that max-
imizes (2.11). The function fi(αi) is a real twice continuously differentiable function with first
and second order derivatives, respectively

f ′i (αi) = −
ni∑
j=1

(
yi, j − αi − (yi, j−1 − αi)E

β
i, j

) (
Eβi, j − 1

)
σ2

2β

(
1 − E2β

i, j

) −
αi − µ

θ2
(2.12)

and

f ′′i (αi) = −
ni∑
j=1

(
Eβi, j − 1

)2

σ2

2β

(
1 − E2β

i, j

) − 1
θ2
. (2.13)

In this case, due to the quadratic form of the function to be maximized, an exact expression for
α̂i can be easily obtained and is given by

α̂i =

 ni∑
j=1

(
Eβi, j − 1

)2

σ2

2β

(
1 − E2β

i, j

) + 1
θ2


−1  ni∑

j=1

(
yi, j − yi, j−1Eβi, j

) (
1 − Eβi, j

)
σ2

2β

(
1 − E2β

i, j

) +
µ

θ2

. (2.14)

In other cases, where it is not possible to obtain an explicit expression, a numerical method
must be used. By taking the second order Taylor series expansion of fi(αi) at α̂i, and since α̂i is
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a maximum of fi and therefore f ′(α̂i) = 0, we can write∫ +∞

−∞

exp ( fi(αi)) dαi ≈

∫ +∞

−∞

exp
(

fi(α̂i) +
1
2

f ′′i (α̂i)(αi − α̂i)2
)

dαi

= exp ( fi(α̂i))
∫ +∞

−∞

exp

−1
2

(αi − α̂i)2

−
(

f ′′i (α̂i)
)−1

 dαi

= exp ( fi(α̂i))

√
2π∣∣∣ f ′′i (α̂i)

∣∣∣ . (2.15)

The usual procedure in applying the Laplace approximation method would consist in replacing
expressions (2.13) and (2.14) in (2.15) and then in (2.9) in order to obtain an approximate
expression for LL(µ, θ, β, α). Maximizing such expression w.r.t. the parameters, we would
obtain approximately their maximum likelihood estimates.

However, in the random α case, due to the quadratic nature of the function fi(αi), it turns out
that the approximate expression (2.15) is in fact exact. Indeed, it is a trivial exercise to show that,
for any quadratic function, the second order Taylor expansion is exactly equal to the function
and, therefore, in the random α case, the second-order Taylor expansion fi(α̂i)+ 1

2 f ′′i (α̂i)(αi−α̂i)2

of fi(αi), on which (2.15) is based, is an exact expression for fi(αi). So, we can in this case write
the equal sign instead of the approximation sign in expression (2.15) and, therefore, replacing
(2.15) in (2.9) provides, not just an approximation of the log-likelihood function but rather
the exact log-likelihood function, for which we have already provided expression (2.10). In
summary, in the random α case, the Laplace approximation method provides exactly the same
results as the exact method (i.e., the method of direct maximization of expression (2.10) w.r.t.
the parameters).

2.4.2. Likelihood function through the delta approximation method
A second approximation of the integral in (2.9) is obtained using the delta approximation

method. For this approximation we need to rearrange the expression of the likelihood function
as

L(µ, θ, β, σ) =
M∏

i=1


ni∏
j=1

 1√
2πσ2

2β (1 − E2β
i, j)


+∞∫
−∞

exp

−1
2

ni∑
j=1

(
yi, j − αi − (yi, j−1 − αi)E

β
i, j

)2

σ2

2β (1 − E2β
i, j)

 exp
(
−

(αi−µ)2

2θ2

)
θ
√

2π
dαi

 .
(2.16)

Isolating, in the integrand function, the p.d.f. of the Gaussian distribution of the αi and denoting
by E the expectation with respect to that distribution, we get

L(µ, θ, β, σ) =
M∏

i=1


ni∏
j=1

 1√
2πσ2

2β (1 − E2β
i, j)


+∞∫
−∞

ui(αi)
1

θ
√

2π
exp

(
−

(αi − µ)2

2θ2

)
dαi


=

M∏
i=1


ni∏
j=1

 1√
2πσ2

2β (1 − E2β
i, j)

 E[ui(αi)]

 ,
(2.17)

where
ui(αi) = exp (gi(αi)) (2.18)
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with

gi(αi) = −
1
2

ni∑
j=1

(
yi, j − αi − (yi, j−1 − αi)E

β
i, j

)2

σ2

2β (1 − E2β
i, j)

. (2.19)

Using the same idea of the delta method to approximate E[ui(αi)], as in [14], where αi = µ+ θδi

with δi (i = 1, . . . ,M) i.i.d. standard Gaussian random variables, and noting that ui(αi) is a
real twice continuously differentiable function, we obtain

ui(αi) = ui(µ + θδi) ≈ ui(µ) + θδiu′i(µ) +
1
2

(θδi)2u′′i (µ) (2.20)

and

E[ui(αi)] ≈ui(µ) +
1
2
θ2u′′i (µ), (2.21)

with
u′′i (µ) = ui(µ)

[(
g′i(µ)

)2
+ g′′i (µ)

]
, (2.22)

where the first and second order derivatives are already presented in [14] and so we omit them
here.

Replacing (2.21) in (2.17), we obtain

L(µ, θ, β, σ) ≈
M∏

i=1


ni∏
j=1

 1√
2πσ2

2β (1 − E2β
i, j)


(
ui(µ) +

1
2
θ2u′′i (µ)

) . (2.23)

Now, replacing (2.18) and (2.22) in (2.23), we get the expression for the log-likelihood function

LL(µ, θ, β, σ) ≈
M∑

i=1

−1
2

ni∑
j=1

ln
(
2π
σ2

2β
(1 − E2β

i, j)
)
−

1
2

ni∑
j=1

(
yi, j − µ − (yi, j−1 − µ)E

β
i, j

)2

σ2

2β (1 − E2β
i, j)

+ ln

1 + 1
2
θ2

− ni∑
j=1

(1 − Eβi, j)
2

σ2

2β (1 − E2β
i, j)

+

 ni∑
j=1

(1 − Eβi, j)(yi, j − µ − (yi, j−1 − µ)E
β
i, j)

σ2

2β (1 − E2β
i, j)


2


 .

(2.24)

As we can observe, the approximation of the log-likelihood function through the delta method
provides a very simple closed-form expression.

2.5. Mixed models with random growth parameter
A similar procedure as the one presented in the previous section can be used in the case

where the growth parameter βi is considered a random variable following a Gaussian distribution
with mean λ and variance ω2. The joint p.d.f. for animal i is now given by

pYi(yi|α, λ, ω, σ) =
∫ +∞

−∞

pYi(yi|α, βi, σ)p(βi|λ, ω) dβi, (2.25)

where pYi(yi|αi, β, σ) is obtained by replacing β with βi in (2.4) and the p.d.f. of βi is

p(βi|λ, ω) =
1

√
2πω2

e−
(βi−λ)

2

2ω2 . (2.26)
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Thus, from (2.6) and using (2.25), after some simplifications we obtain the likelihood function

L(α, λ,ω, σ) =
M∏

i=1

 1
√

2πω2

ni∏
j=1

(
1
√

2π

)

+∞∫
−∞

exp

−1
2

ni∑
j=1

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2

σ2

2βi
(1 − E2βi

i, j )


exp

 1
2

ni∑
j=1

ln
(
σ2

2βi
(1 − E2βi

i, j )
)

exp
(
−

(βi − λ)2

2ω2

)
dβi

)
.

(2.27)

The use of the delta and the Laplace approximation methods allows us to obtain approximate
expressions for the likelihood function.

2.5.1. Likelihood function through the Laplace approximation method
The integrand function in expression (2.27) can written as the exponential of the function

fi(βi) = −
1
2

ni∑
j=1


(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2

σ2

2βi
(1 − E2βi

i, j )
+

1
ni

(βi − λ)2

ω2 + ln
(
σ2

2βi
(1 − E2βi

i, j )
) . (2.28)

The function fi(βi) is a real twice continuously differentiable function. First, we need to obtain
the value β̂i that maximizes (2.28) and then, in order to obtain a Laplace approximation, we
need to apply to fi(βi) a second order Taylor expansion about β̂i.
Since in this case we cannot obtain a closed-form expression for the maximum β̂i, we can apply
a numerical method. Having the numerical maximum, β̂i, and resorting to the same approach
used in (2.15), the Laplace approximation of the integral in (2.27) will be given by

exp
(

fi(β̂i)
) √

2π
| f ′′i (β̂i)|

, (2.29)

with

f ′i (βi) =
ni∑
j=1

−E2βi
i, j (ti, j − ti, j−1)(

1 − E2βi
i, j

) −

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2(
1 − E2βi

i, j

)
σ2

−
βi − λ

niω2 +
2βiE

2βi
i, j (ti, j − ti, j−1)

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2(
1 − E2βi

i, j

)2
σ2

+
1

2βi
−

2βiE
βi
i, j(ti, j − ti, j−1)(yi, j−1 − α)

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)(
1 − E2βi

i, j

)
σ2


(2.30)
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and

f ′′i (βi) =
ni∑
j=1

2E4βi
i, j (ti, j − ti, j−1)2(

1 − E2βi
i, j

)2 −
2βiE

2βi
i, j (ti, j − ti, j−1)2(yi, j−1 − α)2(

1 − E2βi
i, j

)
σ2

+
2E2βi

i, j (ti, j − ti, j−1)2(
1 − E2βi

i, j

) +
4E2βi

i, j (ti, j − ti, j−1)
(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2(
1 − E2βi

i, j

)2
σ2

−
1

2β2
i

−
8βiE

4βi
i, j (ti, j − ti, j−1)2

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2(
1 − E2βi

i, j

)3
σ2

−
1

niω2 −
4βiE

2βi
i, j (ti, j − ti, j−1)2

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2(
1 − E2βi

i, j

)2
σ2

−
4Eβi

i, j(ti, j − ti, j−1)(yi, j−1 − α)
(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)(
1 − E2βi

i, j

)
σ2

+
2βiE

βi
i, j(ti, j − ti, j−1)2(yi, j−1 − α)

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)(
1 − E2βi

i, j

)
σ2

+
8βiE

3βi
i, j (ti, j − ti, j−1)2(yi, j−1 − α)

(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)
(
1 − E2βi

i, j

)2
σ2

 .

(2.31)

Replacing (2.29) in (2.27), we obtain, after some algebraic manipulations,

LL(α, λ, ω, σ) ≈
M∑

i=1

(
− lnω −

ni

2
ln(2π) −

1
2

ln
(∣∣∣ f ′′i (β̂i)

∣∣∣) + fi(β̂i)
)
. (2.32)

For the Laplace approximation we can observe that it is possible to obtain a closed-form
approximation formula of the log-likelihood, but for that we need to obtain the maximum value
of βi by numerical methods. This slows down the maximization of the log-likelihood function,
which uses an iterative procedure, since, at each step of that procedure, the numerical deter-
mination of the maximum values of the βi needs to be repeated. These repeated numerical
determinations are not required in the delta approximation method.

2.5.2. Likelihood function through the delta approximation method
Considering now the likelihood function (2.27) and, proceeding as in subsection 2.4.2 with

ui(βi) = exp

−1
2

ni∑
j=1


(
yi, j − α − (yi, j−1 − α)Eβi

i, j

)2

σ2

2βi
(1 − E2βi

i, j )
+ ln

(
2π
σ2

2βi
(1−E2βi

i, j )
)
 , (2.33)

we see that the likelihood function can be approximated, using the delta method, by

L(α, λ, ω, σ) =
M∏

i=1

E[ui(βi)] ≈
M∏

i=1

(
ui(λ) +

1
2
ω2u′′i (λ)

)
, (2.34)

where we have used the approximation

ui(βi) = ui(λ + ωδi) ≈ ui(λ) + ωδiu′i(λ) +
1
2

(ωδi)2u′′i (λ) (2.35)
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and

E[ui(βi)] ≈ui(λ) +
1
2
ω2u′′i (λ), (2.36)

with

u′′i (λ) = ui(λ)
[(

g′i(λ)
)2
+ g′′i (λ)

]
, (2.37)

So, we obtain for the log-likelihood function

LL(α, λ, ω, σ) ≈
M∑

i=1

−1
2

ni∑
j=1

(
yi, j − α − (yi, j−1 − α)Eλi, j

)2

σ2

2λ (1 − E2λ
i, j )

−
1
2

ni∑
j=1

ln
(
2π
σ2

2λ
(1 − E2λ

i, j )
)

+ ln
(
1 +

1
2
ω2

[
(g′i(λ))

2 + g′′i (λ)
]))
,

(2.38)

where

gi(λ) = −
1
2

ni∑
j=1

(
yi, j − α − (yi, j−1 − α)Eλi, j

)2

σ2

2λ (1 − E2λ
i, j )

−
1
2

ni∑
j=1

ln
(
2π
σ2

2λ
(1 − E2λ

i, j )
)

(2.39)

and its first and second order derivatives are presented in [14] and omitted here.

2.6. Mixed models with random asymptotic average size and random growth parameter
In this section, we consider the mixed model where αi (i = 1, . . . ,M) are i.i.d. random

variables following a Gaussian distribution with mean µ and variance θ2 and βi (i = 1, . . . ,M)
are i.i.d. random variables following a Gaussian distribution with mean λ and variance ω2 and
are independent of the αi variables. The random parameter vector is the 2-dimensional vector
bi = (αi, βi), the fixed effects parameter vector becomes the 1 × 1 vector ϵ = (σ), the random
effects parameter vector is Ψ = (µ, λ, θ, ω), and the p.d.f. of the random effects p is a bivariate
Gaussian distribution

p(αi, βi|µ, λ, θ, ω) = p(αi|µ, θ)p(βi|λ, ω) (2.40)

=
1
√

2πθ2
exp

(
−

(αi − µ)2

2θ2

)
1

√
2πω2

exp
(
−

(βi − λ)2

2ω2

)
.

To obtain the likelihood function in (2.6), the joint p.d.f. for animal i is given by

pYi(yi|ϵ,Ψ) =
∫

R2

pYi(yi|bi, ϵ)pB(bi|Ψ) dbi

=
+∞∫
−∞

+∞∫
−∞

pYi(yi|αi, βi, ϵ)p(αi|µ, θ)p(βi|λ, ω) dαi dβi,
(2.41)

To obtain pYi(yi|αi, βi, ϵ) in (2.41), notice that, due to the Markov property of each individual
trajectory i when conditioned on αi and βi, we have

pYi(yi|αi, βi, ϵ) =
ni∏
j=1

pYi(yi, j, ti, ti−1|yi, j−1, αi, βi, ϵ), (2.42)
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with the transition densities between consecutive observation ages of the animal i trajectory
given by

pYi(yi, j, ti, ti−1|yi, j−1, αi, βi, ϵ) =

exp

−1
2

(
yi, j−αi−(yi, j−1−αi)E

βi
i, j

)2

σ2
2βi

(1−E2βi
i, j )

√
2π σ2

2βi
(1 − E2βi

i, j )
. (2.43)

Thus, replacing (2.40) and (2.43) on (2.6), the likelihood function, after some simplifications,
is given by

L(µ, θ, λ, ω, σ) =
M∏

i=1

1
2πθω

(
1
√

2π

)ni
+∞∫
−∞

+∞∫
−∞

exp

−1
2

ni∑
j=1

(
yi, j − αi − (yi, j−1 − αi)E

βi
i, j

)2

σ2

2βi
(1 − E2βi

i, j )

 (2.44)

exp

−1
2

ni∑
j=1

ln
(
σ2

2βi
(1 − E2βi

i, j )
) exp

(
−

1
2

(αi − µ)2

θ2

)
exp

(
−

1
2

(βi − λ)2

ω2

)
dαi dβi.

In the next sections, we will use the Laplace and the delta approximation methods to obtain
approximate expressions to the likelihood function.

2.6.1. Likelihood function through the Laplace approximation method
Following the same approach taken in subsections 2.4.1 and 2.5.1, the integrand function in

the likelihood function (2.44) can be written as the exponential of the function

fi(αi, βi) =
ni∑
j=1

−1
2

(
yi, j − αi − (yi, j−1 − αi)E

βi
i, j

)2

σ2

2βi
(1 − E2βi

i, j )
(2.45)

−
1
2

ln
(
σ2

2βi
(1 − E2βi

i, j )
)
−

(αi − µ)2

2niθ2
−

(βi − λ)2

2niω2

)
.

Rewriting expression (2.44) we obtain

L(µ, θ, λ, ω, σ) =
M∏

i=1

 1
2πθω

(
1
√

2π

)ni
+∞∫
−∞

+∞∫
−∞

exp ( fi(αi, βi)) dαi dβi

 . (2.46)

As shown in subsection 2.4.1, when it is not possible to obtain an explicit expression for the
vector (α̂i, β̂i) that maximizes the function (2.46), a numerical method must be used. By taking
the second order Taylor series expansion of (αi, βi) at (α̂i, β̂i), and since (α̂i, β̂i) is a maximum of
fi(α̂i, β̂i) and therefore ▽ fi(α̂i, β̂i) = 0, we can write

+∞∫
−∞

+∞∫
−∞

exp ( fi(αi, βi)) dαi dβi

≈

+∞∫
−∞

+∞∫
−∞

exp
(

fi(α̂i, β̂i) +
1
2

[
αi − α̂i βi − β̂i

]
H
[
fi(α̂i, β̂i)

] [αi − α̂i

βi − β̂i

])
dαi dβi

= 2π
∣∣∣detΣ(α̂i,β̂i)

∣∣∣1/2 exp( fi(α̂i, β̂i)), (2.47)

where H[ fi(α̂i, β̂i)] is the Hessian matrix of fi(αi, βi) computed at (α̂i, β̂i), assumed to be negative
definite, and Σ(α̂i,β̂i) = −H−1[ fi(α̂i, β̂i)].
The first and second partial derivatives with respect to αi are given in (2.12) and (2.13) with β
replaced by βi. Therefore, an exact expression for α̂i is given by (2.14) with β replaced by β̂i.
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The first and second partial derivatives with respect to βi were also already given in subsection
2.5.1, in expressions (2.30) and (2.31), but we must replace in these expressions α with α̂i. The
expression for ∂

2 fi(αi,βi)
∂αi∂βi

=
∂2 fi(αi,βi)
∂βi∂αi

is given by

∂2 fi(αi, βi)
∂αi∂βi

=
4βi

σ2

ni∑
j=1

(t j − t j−1)E2βi
i, j

(
yi, j − αi − (yi, j−1 − αi)E

βi
i, j

) (
Eβi

i, j − 1
)

(1 − E2βi
i, j )2

−
2βi

σ2

ni∑
j=1

(t j − t j−1)(yi, j−1 − αi)E
βi
i, j

(
Eβi

i, j − 1
)

(1 − E2βi
i, j )

(2.48)

+
2βi

σ2

ni∑
j=1

(t j − t j−1)Eβi
i, j

(
yi, j − αi − (yi, j−1 − αi)E

βi
i, j

)
(1 − E2βi

i, j )

−
2
σ2

ni∑
j=1

(
yi, j − αi − (yi, j−1 − αi)E

βi
i, j

) (
Eβi

i, j − 1
)

(1 − E2βi
i, j )

,

Replacing (2.47) in (2.46), we obtain, after some algebraic manipulation

LL(µ, θ, λ, ω, σ) ≈
M∑

i=1

{
− ln(θω) −

ni

2
ln(2π) −

1
2

ln(| det H[ fi(α̂i, β̂i)]|) + fi(α̂i, β̂i)
}
. (2.49)

For the Laplace approximation it is possible to obtain a closed-form approximation formula
of the log-likelihood, but, like in the random β case, that formula involves now the maximum
value of (αi, βi), which has to be determined numerically and repeatedly at each step of the
iterative procedure of the log-likelihood maximization. In the next section we present the delta
approximation method and we can see that, for such approximation method, it is possible to
obtain a closed-form approximation formula without having to resort to such repeated numerical
determinations.

2.6.2. Likelihood function through the delta approximation method
In [14] the delta approximation method was proposed to approximate the integral in (2.6),

which, in this case, is given by (2.41) and does not have an explicit solution. This approximation
method allows us to obtain simpler and closed-form expressions for the likelihood function. As
shown in [14], denoting expression (2.44) by ui(αi, βi) = exp (gi(αi, βi)), where

gi(αi, βi) =
ni∑
j=1

− 1
2

(
yi, j−αi−(yi, j−1−αi)E

−βi
i, j

)2

σ2
2βi

(1−E2βi
i, j )

− 1
2 ln

(
2π σ

2

2βi
(1 − E2βi

i, j )
) , (2.50)

the likelihood function (2.44) can be written as

L(µ, θ, λ, ω, σ) =
M∏

i=1

(
+∞∫
−∞

+∞∫
−∞

ui(αi, βi)pB(αi, βi|µ, λ, θ, ω) dαi dβi

)
=

M∏
i=1

E[ui(αi, βi)].
(2.51)

The mathematical expectation of ui(αi, βi) can be approximately obtained by applying the delta
approximation, consisting in a second-order Taylor series expansion and resulting in

E[ui(αi, βi)] ≈ ui(µ, λ) +
θ2

2
∂2ui

∂α2
i

(µ, λ) +
ω2

2
∂2ui

∂β2
i

(µ, λ). (2.52)
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The log-likelihood function, LLY(µ, θ, λ, ω, σ) = ln L(µ, θ, λ, ω, σ), will be then given by

LLY(µ, θ, λ, ω, σ) ≈
M∑

i=1

ln
{

ui(µ, λ) +
θ2

2
∂2ui

∂α2
i

(µ, λ) +
ω2

2
∂2ui

∂β2
i

(µ, λ)
}
. (2.53)

The closed-form expressions for the first and second order derivatives of ui(αi, βi) with respect
to αi and βi are presented in [14].

2.7. Performance comparison of the methods
In this section, for the SDE mixed cattle growth models, our focus is on the parameters

estimation and the approximation methods to achieve it when no exact method is available. Ini-
tially, we will evaluate the performance of the DA method and compare it with the LA method.
Additionally, to benchmark these two approximation methods against numerically implemented
alternatives, we will compare the estimates of DA and LA methods with those obtained using
the mixedsde R package. However, it is important to note that, unlike the DA and LA approx-
imation methods, the mixedsde package requires uniformity in the time vector of observations
across all trajectories. This constraint prevents us from using the real cattle dataset for a com-
prehensive comparison of the three methods.
For this purpose, we generated simulated datasets containing monthly weights for 500 animals,
covering the period from birth to four years of age and resulting in a total of 24,500 observa-
tions. The trajectories were simulated using the stochastic Gompertz model (using the logarithm
transformation of the weights). We used the following methodology:

• The 500 random parameter values of the M = 500 animals were simulated based on a
Gaussian distribution.

– For the case of random α, we have used a mean µ = 6.45 (corresponding to the
asymptotic weight h−1(µ) = 632.7 kg) and a standard deviation θ = 0.15, thus
obtaining, for each animal i (i = 1, . . . , 500), the corresponding αi value, to be
incorporated in the transition density (2.3) as the true value of α for that animal.

– For the random β case, we have used a mean λ = 1.43 year−1 and a standard
deviation ω = 0.30 year−1, thus obtaining, for each animal i (i = 1, . . . , 500), the
corresponding βi value, to be incorporated in the transition density (2.3) as the
true value of β for that animal.

– For the case where both α and β are considered random, we have used the same
values for the parameters as used in the separated α and β cases.

– As for the remaining non-random parameters, we use σ = 0.33 year−1/2.
– We have used β = 1.43 year−1 and α = 6.45, respectively for the random α case

and the random β case.
• Having the parameters defined, we have simulated the trajectory of each animal based

on the Markov property and the use of the transition densities between consecutive
observation times.
• We have obtained one simulated dataset for the case where the parameter α is con-

sidered random, one for the case where the parameter β is considered random, and
another for the case where both parameters are considered random.

In Section 2.7.1, we will analyze the simulated dataset where the parameter α is consid-
ered random, evaluating the performance of the estimation methods with a random average
asymptotic size. Following this, in Section 2.7.2, we will examine the simulated dataset with
the parameter β considered as random, assessing the performance of the estimation methods
with a random growth parameter. Subsequently, in Section 2.7.2, we will explore the simulated
dataset when both parameters are considered random, evaluating the performance of the esti-
mation methods with two random effects. In this scenario, we will also assess the performance
when only the parameter α is random or when only the parameter β is random. Finally, in
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Section 2.7.4, we will consider the real cattle weight dataset, comprising 10843 animals. For
this real data, we will compare the DA and LA estimation methods when only the parameter
α is random, when only the parameter β is random, and when both parameters are considered
random. The comparative performance study cannot in this case use the results of the mixedsde
package.

To assess the performance of the estimates, within each subsection, we conduct a bias anal-
ysis and evaluate the precision of the standard deviation estimates obtained from the empirical
Fisher information matrix. The ultimate goal is to assess the performance of the DA method.
First, for benchmarking purposes, when an exact method is available (the case when the pa-
rameter α is considered random) and, at last, in the absence of an exact method, to investigate
whether the DA method can be used for parameter estimation of the model (cases when the
parameter β is considered random or both parameters are considered random).

2.7.1. Model with a random average asymptotic size
In this subsection, using the simulated dataset with α a Gaussian random variable with

mean µ and standard deviation θ, we obtain the estimates of the parameters, µ, θ, β, and σ, by
maximization of the exact log-likelihood function (2.10) (“Exact method”). We will also esti-
mate the parameters by the DA method, i.e., by maximization of the approximate log-likelihood
function (2.24) using the DA method. The maximum likelihood estimates based on the exact
log-likelihood function (2.10) (“Exact method”) will be the same estimates obtained by the LA
method because, in this case and as shown on subsection 2.4.1, the approximation of the log-
likelihood function obtained by the LA method is in fact exact and coincides with the exact
log-likelihood function. These “Exact method” estimates allow us to evaluate the performance
of the DA method for the case where the parameter α is random. In this case, the “Exact
method” estimates are available and can be used to assess, by comparison, the quality of the
DA method estimates.

We also compare with the estimates obtained by the R package mixedsde. Table 1 presents
the estimation results for the stochastic Gompertz model. The maximum likelihood estimates
and the 95% approximate confidence bands based on the inverse of the empirical Fisher infor-
mation matrix are presented for the DA method and also, using the exact log-likelihood function
(2.10), for the “Exact method”. Note that the mixedsde package does not provide confidence
intervals for the estimates.

Table 1. Results for the simulated dataset assuming a random α. The table
shows the true parameter values used in the simulations, the maximum likeli-
hood estimates and corresponding 95% asymptotic confidence bands using the
“Exact method”/LA method and the DA method. Estimates obtained by the
mixedsde R package are shown. Instead of showing the results for the modified
weight µ, we present them for the real weight A = h−1(µ).

True DA method Exact/LA method mixedsde

A 632.70 635.47 ± 9.56 625.71 ± 11.56 633.79
θ 0.15 0.1197 ± 0.0085 0.1555 ± 0.0150 0.0787
β 1.43 1.4037 ± 0.0188 1.4221 ± 0.0191 1.3117
σ 0.33 0.3312 ± 0.0030 0.3289 ± 0.0030 0.4671

The DA method and the mixedsde method present an estimate of A closer to the true value
than the “Exact method”. The estimate of the standard deviation θ of the random parameter
α presents a greater bias in the mixedsde method and in the DA method than in the “Exact
method”. We must refer that for the DA method, the asymptotic confidence interval does not
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include the true value for θ. For the fixed parameters β and σ, the estimates obtained from
the DA method are quite close to the true value and similar to those obtained by the “Exact
method”. The mixedsde underestimates or overestimates these two parameters.

Since for this simulated dataset, we know the true value of the parameters, we can compare
them with the estimates obtained by the different methods and confirm if they are included in the
asymptotic confidence intervals for the DA method and the “Exact method”. We can observe
that only for the DA method the asymptotic confidence interval does not include the true value
for θ. Since these asymptotic confidence intervals based on the Fisher information matrix may
be quite unreliable for small sample sizes, we proceed with a bias analysis and an evaluation
of the quality of the standard deviation estimates obtained from the Fisher information matrix.
With this purpose:

• We have obtained K = 1000 replications of the simulated dataset assuming random α
with the same parameter vector p = (µ = 6.45, θ = 0.15, β = 1.43, σ = 0.33) (using
the same procedure detailed at the beginning of Section 2.7);
• For each simulated dataset, we obtain the estimates through the DA method for random
α and the LA method for random α (which in this case coincides with the “Exact
method”), denoting them by p̂k, k = 1, . . . ,K;
• The estimated standard deviations of the parameters are obtained by taking the square

roots of the diagonal elements of the inverted empirical Fisher information matrix;
• The sample means and the sample standard deviations of the 1000 estimates p̂k were

obtained;
• The sample means of the K = 1000 estimates of the parameter variances (obtained

approximately for each replication by the inverse of the empirical Fisher information
matrix) are also computed and their square roots will serve as estimates of the approx-
imated standard deviations based on the empirical Fisher information matrix.

Following the procedure described above, in Table 2 we present, for the case of random α
and this sample of 1000 parameter estimates, their sample mean values and standard deviations
(which are very precise approximations of the true expected values and standard deviations
of the parameter estimators), as well as the approximated standard deviations based on the
empirical Fisher information matrix.

Table 2. Mean values and standard deviations (SD) of the estimates obtained
through the DA method and the “Exact method”/LA method for random α case,
based on the 1000 simulated datasets, as well as the standard deviation estimate
based on the empirical Fisher information matrix (“SD. Fisher”). Instead of
showing the results for the modified weight µ, we show them for the weight
A = h−1(µ).

DA method Exact/LA method

True Mean estim. SD SD. Fisher Mean estim. SD SD. Fisher

A 632.70 637.17 6.4986 4.8735 632.69 5.9932 5.9059
θ 0.15 0.1179 0.0044 0.0043 0.1525 0.0075 0.0076
β 1.43 1.4118 0.0098 0.0097 1.4301 0.0096 0.0098
σ 0.33 0.3322 0.0015 0.0015 0.3300 0.0015 0.0015

Observing the results of Table 2, we can conclude that, on average, the parameter standard
deviation estimates (SD. Fisher) obtained approximately by the empirical information matrix
do not differ much (and with the exception of the parameter A = h−1(µ), practically coincide)
with the more precise standard deviations (SD) obtained from this extremely computer intensive
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and time-consuming procedure. This shows that the empirical Fisher information matrix is a
relatively reliable method to estimate the standard deviation of the parameters and therefore to
obtain approximate confidence intervals for them. Comparing the mean estimates of the DA
method with the true values, we can conclude that the DA method estimates very well all the
parameters, except for the parameter θ, which is slightly underestimated. For the LA method,
we can conclude that the standard deviations obtained from the empirical Fisher information
matrix are very reliable for all parameters. Looking at the mean estimates, we can see that
the LA method, which in this random α case coincides with the ”Exact method”, behaves, as
expected, very well for all parameters.

2.7.2. Model with random growth parameter
Here we repeat the approach taken in the previous subsection, but now for the model where

the growth parameter varies from animal to animal, considering β to be a Gaussian random
variable with mean λ and standard deviation ω. For the simulated data assuming β is a random
parameter, obtained as described at the beginning of Section 2.7, we present in Table 3 the re-
sults based on the DA and LA methods for the random parameter β, as well as the estimates
obtained through the mixedsde package. Here, we do not have an exact closed-form expression
for the log-likelihood function, so we can not present a comparison with an “Exact method”.
The maximum likelihood estimates and the 95% approximate confidence bands based on the
inverse of the empirical Fisher information matrix were computed for the DA method and the
LA method.

Table 3. Results for the simulated dataset assuming a random β. The table shows
the true parameter values used in the simulations, the maximum likelihood esti-
mates, and corresponding 95% asymptotic confidence bands using the DA and
the LA methods for a random β. Estimates obtained for the mixedsde R package
are shown. Instead of showing the results for the modified weight α, we present
for the weight A = h−1(α).

True DA method LA method mixedsde

A 632.70 640.70 ± 8.45 640.87 ± 7.88 639.32
λ 1.43 1.3451 ± 0.0216 1.4181 ± 0.0327 1.2765
ω 0.30 0.1925 ± 0.0105 0.3051 ± 0.0250 < 0.0001
σ 0.33 0.3360 ± 0.0030 0.3290 ± 0.0030 0.4661

From Table 3 we can conclude that the estimates obtained through the DA method and the
LA method for the mean of the random growth parameter λ are closer to the true value than
the estimate obtained from the mixedsde. For the standard deviation of the random growth
parameter ω, the estimates given by the LA method (the best one) and the DA method are much
better than those obtained with the mixedsde package. This last method was unable to detect the
random effect of the parameter β. For the estimate of the measure of the random fluctuations of
the environment, σ, the estimates obtained through the DA and LA methods are the closest to
the true value.

We must refer that also in this case, for the DA method, the asymptotic confidence intervals
failed to include the true values for parameters λ and ω. Proceeding similarly as in subsection
2.7.1, but now for the case where the parameter β is considered random, we performed a bias
analysis and an evaluation of the quality of the standard deviation estimates obtained from the
empirical Fisher information matrix. We have simulated K = 1000 datasets assuming that
the parameter β follows a Gaussian distribution with mean λ = 1.43 year−1 and a standard
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deviation ω = 0.30 year−1. For the fixed parameters we have considered α = 6.45 and σ = 0.33
year−1/2 (using the same procedure detailed in Section 2.7). In Table 4 we present, for the DA
method and the LA method with random β, the means and standard deviations of the parameter
estimates of the 1000 simulated datasets.

Table 4. Mean values and standard deviations (SD) of the estimates obtained
through the DA and the LA methods for random β, based on the 1000 simulated
datasets and the standard deviation estimate based on the empirical Fisher infor-
mation matrix (“SD. Fisher”). Instead of showing the results for the modified
weight α, we show them for the weight A = h−1(α).

DA method LA method

True Mean estim. SD SD. Fisher Mean estim. SD SD. Fisher

A 632.70 632.77 4.1616 4.1913 632.71 3.9484 3.9504
λ 1.43 1.3608 0.0218 0.0109 1.4301 0.0164 0.0165
ω 0.3 0.1979 0.0054 0.0053 0.2990 0.0123 0.0127
σ 0.33 0.3360 0.0017 0.0015 0.3301 0.0015 0.0015

Observing the results of Table 4, both for the DA method and for the LA method, we can
conclude that the estimates of the standard deviations obtained from the empirical Fisher infor-
mation matrix are practically the same as the more reliable (but extremely computer-intensive
and time consuming) standard deviation estimates obtained from the 1000 simulated datasets
showing that the empirical Fisher information matrix is a reliable method to estimate the vari-
ance of the parameters for the DA method and for the LA method with random β. Only for
the DA method and the parameter λ the empirical Fisher information matrix seems to under-
estimate its standard deviation. Comparing the mean estimates of both methods with the true
values, we can see that the DA method presents estimates that are very close to the true values
of the fixed parameters α (A) and σ and underestimates the mean λ and the standard deviation
ω of the random parameter, while for the LA method all the parameter estimates are very close
to the true values.

2.7.3. Model with two random effects
We repeat the approach used in previous sections but now for the model where both the

average asymptotic weight and the growth parameter are varying from animal to animal, with α
being a Gaussian random variable with parameters vector (µ, θ) and β being a Gaussian random
variable with parameters vector (λ, ω). A simulated dataset was obtained as described at the
beginning of Section 2.7, but assuming that both α and β are random and independent. In Table
5, the results based on the DA and LA methods are shown, as well as the estimates obtained
through the mixedsde package when both α and β are random. The goal is to evaluate if the
estimates obtained using the different methods are aligned. Here, we do not have an exact
closed-form expression for the log-likelihood function, so we cannot present a comparison with
an “Exact method”. The maximum likelihood estimates and the 95% approximate confidence
bands based on the inverse of the empirical Fisher information matrix were computed for the
DA and the LA methods.

To check for the consequences of ignoring that both parameters are random, Table 5 also
presents the parameter estimates under the DA and LA methods when we assume that only the
parameter α is random or when we assume that only the parameter β is random.
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Table 5. Results for the simulated dataset assuming both α and β are random.
The table shows the true parameter values used in the simulations, the maximum
likelihood estimates, and corresponding 95% asymptotic confidence bands using
the DA and the LA methods. Estimates obtained for the mixedsde R packages
are shown. Instead of showing the results for the modified weight α (or, when α
is random, for its mean µ), we present for the weight A = h−1(α) (or A = h−1(µ)).

True DA method LA method mixedsde

random (α, β)

A 632.70 651.52 ± 10.06 661.02 ± 12.97 643.82
θ 0.15 0.0944 ± 0.0130 0.0316 ± 0.1026 0.1556
λ 1.43 1.3216 ± 0.0209 1.3515 ± 0.0272 1.2745
ω 0.30 0.1809 ± 0.0124 0.3100 ± 0.0366 < 0.0001
σ 0.33 0.3407 ± 0.0030 0.3344 ± 0.0030 0.4690

random α

A 632.70 643.91 ± 10.86 634.71 ± 14.27 643.82
θ 0.15 0.1330 ± 0.0083 0.2068 ± 0.0173 0.1557
λ 1.43 1.3361 ± 0.0190 1.3816 ± 0.0195 1.2745
ω 1.43 − − −

σ 0.33 0.3425 ± 0.0031 0.3374 ± 0.0031 0.4690

random β

A 632.70 659.58 ± 9.26 665.06 ± 8.80 645.38
θ 0.15 − − −

λ 1.43 1.3034 ± 0.0211 1.3693 ± 0.0336 1.2644
ω 0.30 0.1969 ± 0.0098 0.3187 ± 0.0258 0.0276
σ 0.33 0.3416 ± 0.0030 0.3341 ± 0.0030 0.4690

From Table 5 we can conclude that, for the case of random (α, β), the mixedsde method
was unable to identify that the parameter β is a random parameter since the estimate of the
parameter ω is practically null (the same happens in last section for the case of the random
β). The LA and the DA methods estimate more accurately the parameters related to β with a
slight underestimation of the mean value λ. The standard deviation of the β distribution, ω, was
best estimated through the LA method. Regarding the estimation of the parameters related to
α (A), the DA and the LA methods underestimate the parameter θ and slightly overestimate the
weight at maturity A. The LA method even allows the value θ = 0 inside the 95% confidence
interval for θ, but one should keep in mind that this is an approximate confidence interval based
on the inverse of the empirical Fisher information matrix. The mixedsde was the best method to
estimate the parameter θ. All methods were able to correctly estimate the environmental random
fluctuations σ. Observing the estimates of the DA method when using the random (α, β), the
random α, and the random β, we can see that the estimates are very close. When in the presence
of a dataset with both parameters random and independent, the use of the DA method with
only one parameter considered random can correctly identify as random that same parameter,
and when using the DA method with both parameters considered random can correctly identify
both parameters as random. For the LA method only the parameter θwas not correctly estimated
when both parameters were random.

Proceeding similarly to subsections 2.7.1 and 2.7.2, but now for the case where both pa-
rameters α and β are considered random, we performed a bias analysis and an evaluation of the
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quality of the standard deviation estimates obtained from the empirical Fisher information ma-
trix. We have simulated K = 1000 datasets assuming that the parameter α follows a Gaussian
distribution with mean µ = 6.45 and a standard deviation θ = 0.15 and the parameter β fol-
lows an independent Gaussian distribution with mean λ = 1.43 year−1 and a standard deviation
ω = 0.30 year−1. For the fixed parameter we have considered σ = 0.33 year−1/2. In Table 6
we present, for the DA method and the LA method with both α and β random, the means and
standard deviations of the parameter estimates of the 1000 simulated datasets.

Table 6. Mean values and standard deviations (SD) of the estimates obtained
through the DA and the LA methods for both random α and β, based on the 1000
simulated datasets and the standard deviation estimate based on the empirical
Fisher information matrix (“SD. Fisher”). Instead of showing the results for the
modified weight α (or, when α is random, for its mean µ), we present for the
weight A = h−1(α) (or A = h−1(µ)).

DA method LA method

True Mean estim. SD SD. Fisher Mean estim. SD SD. Fisher

A 632.70 638.56 6.6072 5.0429 653.23 6.9991 4.3928
θ 0.15 0.0967 0.0067 0.0067 0.0059 0.0332 0.0075
λ 1.43 1.3387 0.0213 0.0110 1.3855 0.0171 0.0169
ω 0.30 0.1785 0.0073 0.0068 0.3085 0.0238 0.0129
σ 0.33 0.3394 0.0018 0.0015 0.3333 0.0015 0.0015

Observing the results of Table 6, we can conclude that the mean estimates under both meth-
ods are, in general, aligned with the true values. The DA method underestimates the parameters
related to β, λ and ω, and the parameter θ. The LA method slightly overestimates the parameter
A and the observation made above that the LA method allows the value θ = 0 inside the 95%
confidence interval for θ is now confirmed, and even reinforced when using a more reliable
estimate (SD) of the standard deviation of the θ estimator. Both methods estimate very well the
fixed parameter σ.

The estimates of the standard deviations obtained from the empirical Fisher information
matrix are practically the same as the more reliable standard deviation estimates obtained from
the 1000 simulated datasets for the DA method. However, for the LA method, the standard
deviations obtained from the empirical Fisher information matrix for the parameters A, θ, and
ω, are not close to the ones obtained from the standard deviation estimates of 1000 simulated
datasets. This shows that, in the scenario of random and independent α and β, the empirical
Fisher information matrix is a reliable method to estimate the variance of the parameters for the
DA method, but not so robust when considering the LA method.

2.7.4. Real data application
In this section we are going to use the DA method and the LA method to estimate the param-

eters for the stochastic Gompertz model using real cattle weight data, where each animal has its
weight measurements taken at different age instants, varying from animal to animal. For that
reason, other available R packages (for example [23–25]) cannot be used since they require the
same age vector for all the animals. Our real data was provided by the Associação de Criadores
de Bovinos Mertolengos (ACBM), which performs the growing and finishing phases of young
Mertolengo males, and by associated breeders, whose agricultural holdings are located in the
Alentejo region in Portugal. As mentioned in Section 2.1, the database contains information on
the weight of 10843 Mertolengo cattle males taken at heterogeneous ages and totalling 69782
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weight observations. We apply to this dataset the DA and the LA methods presented in Sections
2.4, 2.5, and 2.6 to the cases of random α, random β, and random both α and β, respectively.

Table 7 presents, for the real dataset, the estimates obtained through the LA and the DA
methods for the case where both parameters are random. The true parameter values are not
known for this dataset.

Table 7. Results for the real dataset. Maximum likelihood estimates and corre-
sponding 95% asymptotic confidence bands for the DA and LA methods for the
case where both parameters α and β are assumed random. Instead of showing
the results for the modified weight µ, we show them for the weight A = h−1(µ).

random (α, β)

DA method LA method

A 709.76 ± 9.70 688.70 ± 9.23
θ < 0.0001 ± 0.0108 < 0.0001 ± 0.0045
λ 1.3141 ± 0.0142 1.3741 ± 0.0163
ω 0.1769 ± 0.0055 0.2264 ± 0.0082
σ 0.2977 ± 0.0017 0.2910 ± 0.0018

Observing the results of Table 7, both methods present similar estimates of the parameters θ
and σ, allowing us to conclude that when both parameters are considered random the methods
were unable to identify a random effect on the weight at maturity of the animal’s, identifying
only a random effect on the animals growth rate. The LA method shows a higher estimate of
the animals growth rate mean value (λ) and standard deviation (ω). The estimate of the weight
at maturity of the animal is higher for the DA method. The 95% asymptotic confidence bands
are wider in the LA method for the parameters related to animal growth rate and to σ, and are
wider in the DA method for the parameters related to the weight at maturity of the animal.

Table 8 presents, for the real dataset, the estimates obtained for the random α case through
the LA method and the DA method, and the estimates obtained for the random β case through
the LA and the DA methods. Observing Table 8 for the random α case, we can conclude that,
despite having a large dataset with very heterogeneous data, the estimates of all parameters
through the “Exact method”/LA method and the DA method are similar, except for a slight
difference observed in θ, the standard deviation of the random parameter α. The approximate
confidence intervals based on the empirical Fisher’s information matrix are also very similar.
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Table 8. Results for the real dataset. Maximum likelihood estimates and cor-
responding 95% asymptotic confidence bands using the “Exact method”/LA
method and the DA method for the case where only α is assumed random, and
the LA and DA methods for the case where only β is assumed random. For the
cases of random α, instead of showing the results for the modified weight µ,
we show them for the weight A = h−1(µ). For the case of random β, instead of
showing the results for the modified weight α, we show them for the weight
A = h−1(α).

random α random β

DA method Exact/LA method DA method LA method

A 724.97 ± 10.54 726.99 ± 10.74 709.76 ±9.70 687.24 ± 9.16
θ 0.1091 ± 0.0089 0.1428 ± 0.0092 − −

λ 1.2959 ± 0.0141 1.3002 ± 0.0143 1.3141 ± 0.0142 1.3764 ± 0.0162
ω − − 0.1769 ± 0.0055 0.2259 ± 0.0082
σ 0.3039 ± 0.0018 0.3010 ± 0.0019 0.2977 ± 0.0017 0.2911 ± 0.0018

Since the DA and LA methods with α and β both random indicate that α should not be
considered random because the estimate of θ is almost zero, the appropriate action to improve
the estimates of the other parameters is to apply the DA and LA methods with only β considered
to vary randomly. This is done on the right side of Table 8 and the results are consistent with
those of Table 7 since the parameter estimates and their approximate confidence intervals are
indistinguishable from the ones obtained in Table 7.

However, for the case where only α is assumed random (left side of Table 8), the estimates
of common parameters for the DA method are practically the same as the ones obtained in
Table 7, except for the mean and standard deviation of the random parameter α. Surprisingly,
when both parameters are assumed random, the θ estimate is close to zero, while, when just
the parameter α is assumed random, the estimate is quite different from zero. However, for
the LA method the difference in estimates is presented in all parameters. This effect may be
due to parameters α and β being correlated in the real life dataset, which would impact the
correctness of the estimation of their standard deviations θ and ω when one forces α and β to
be independent as assumed on Table 7. The effect may also be due to the fact that on the left
side of Table 8 we may be wrongly forcing α to be random and β to be fixed, thus forcing the
methods to compensate the variability of β with a false variability on α. Whatever the reason,
further research is needed to extend the DA method to the case where the random parameters
are correlated.

The possible correlation explanation for this effect is worth considering since, in the case
of the simulated dataset with α and β both really random and really independent, the same
exercise (not shown) of using the DA and LA methods with the wrong assumption of α being
only random parameter, shows no such effect, i.e., the estimates of the common parameters are
in line with those obtained in Table 5 (which is based on the now correct assumption that α and
β are both random and independent). The same is true if we use the DA and LA methods with
the wrong assumption that β is the only random parameter. However, this is not the case if we
use the available R package for the same simulated dataset (we cannot use it for the real dataset)
since, when using the package with the wrong assumption of only one parameter being random,
parameter estimates differ noticeably.

For the real dataset we also present visual diagnostics. To obtain information on the dis-
tribution of model predictions, we have simulated 1000 trajectories (1000 simulated animals),
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with monthly observations from birth to 2.5 years of age, using the Gompertz SDE mixed model
with random α. We have used as “true” parameter values the ones obtained in Table 8 through
the DA method with random α. For each monthly age, we therefore have a sample of 1000
values for which we have obtained the empirical 2.5%, 50% (median), and 97.5% quantiles.
The left side of Figure 1 shows the corresponding quantile curves as a function of age. For a
visual check, we would like to superimpose on the same Figure the real observed trajectories
of the real 10843 animals, but that produces a confusing cloud where individual trajectories are
indistinguishable. So, we display instead just 100 real animal trajectories chosen at random
from the 10843 available trajectories. A similar procedure, now for the Gompertz SDE mixed
model with random β, was also performed and shown on the right side of Figure 1. We can
observe that for both cases (random α and random β) the real observed weights are almost all
contained in the empirical 95% interval. The plot for the case of both α and β random is not
shown since for our application to real cattle weight data the random effect on α was not iden-
tified as significant and so the case where both parameters are considered random is reduced to
the β random case.
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Figure 1. Real observed weight trajectories (in grey) of 100 animals (randomly
chosen among the 10843 available real trajectories) and estimated 2.5%, 50%
(median), and 97.5% quantile curves for the predictions of the Gompertz SDE
mixed model with random α (on the left) or with random β (on the right).

The findings presented in Section 2.7 concerning both simulated and real datasets high-
light the good performance of the DA method. Notably, the DA method exhibits versatility by
effortlessly handling large datasets with heterogeneous ages of observation. Furthermore, its
efficiency surpasses (except obviously for the random α case) that of the LA method. This is
due to the fact that, at each step of the numerical maximization of the likelihood, we use in the
DA method a closed-form expression for the approximate likelihood, while in the LA method
the approximate likelihood depends on an intermediate numerical maximization procedure of
one or two variables.

In scenarios where the estimation of the parameter α is considered a random variable, the
computational times of the LA method were comparable to those of the DA method. However,
when focusing on estimating only the parameter β as a random variable, the LA method required
50% more time than the DA method. Notably, when both α and β were treated as random
variables, the LA method needed ten times more computational time than the DA method.
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2.8. Conclusions
We have studied a general class of SDE mixed models to describe individual growth in a

randomly varying environment with a real application to the weight of male Mertolengo cattle.
A general model can be written as a variant of the Ornstein-Uhlenbeck model, where the param-
eter α (asymptotic modified weight) and/or the growth parameter β are assumed to be random.
For illustration purposes, we have worked with the logarithm of the weight, the transformation
that is revealed to be the most appropriate for the cattle weight data, leading to the stochastic
Gompertz model. Our interest in using SDE mixed models comes from the reasonable idea that
model parameters may vary from animal to animal, which, for instance, occurs due to different
individual characteristics of the animals such as genetic differences.

We apply the maximum likelihood estimation method to obtain the parameter estimates
of the SDE mixed models. For this type of model, in most cases it is not possible to obtain
a closed-form expression for the likelihood function and approximation methods are used to
overcome this problem. In this paper, we compare approximation methods used to obtain sim-
pler approximate expressions for the integral involved in the likelihood function. We study the
DA method and compare it with the LA method and with the mixedsde R package. The DA
method is a new approximation method we have developed, while the LA method is an already
known approach that we have implemented numerically, including for the case of previously
unconsidered datasets where animals have different age vectors of observations. To illustrate
and compare the performances of the DA and LA methods and of the existing mixedsde R pack-
age, which is based on different numerical approximation methods for the likelihood function,
we have to use data compatible with the mixedsde package requirement of having observation
times equidistant and common to all animals. So, for that comparative study, we have used sim-
ulated datasets satisfying that requirement. The DA and LA methods are presented for the case
where only α is considered random, for the case where only β is considered random, and for the
case where both parameters α and β are considered random and independent. The Gaussian dis-
tribution was assumed for the three situations. For the specific case where only the asymptotic
modified size α is assumed random, it is possible to obtain an exact expression for the likelihood
function and we have used the exact maximum likelihood estimates as a benchmark to evaluate
the results obtained by the DA method with random α and by the mixedsde R package. We have
also proven that, for this case, the LA method leads to the exact expression of the likelihood
function.

The results for the simulated datasets show a very good performance of the proposed ap-
proximate methods, having similar estimates for some parameters and often outperforming the
existing methods for the remaining parameters.

Since the DA method, a faster method than the LA method, is a new approximation method,
we have conducted a bias analysis and an evaluation of the quality of the standard deviation
estimates obtained from the empirical Fisher information matrix (which is not provided by the
mixedsde R package). We show that for all three cases, not only the estimates have a low bias,
but also the estimated standard deviations obtained by the empirical Fisher information matrix
are quite reliable.

In the literature, for this type of models, it is typical to see the methods developed under the
assumption of having a unique (sometimes evenly spaced) age vector of observations common
to all individuals and this is also a restriction in the R package available for the estimation of the
parameters of SDE mixed models. The DA method and the LA method expressions presented
in this paper have the advantage of not requiring such restrictions and so they can be used in real
situations where each animals size (weight, volume, height, or length) is measured at unique
age instants that need not to be evenly spaced. We illustrate the results also with real data, the
weight of Mertolengo cattle males from a large and heterogeneous sample, and concluded that
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either the DA method or the LA method are very good alternatives that have the advantage to
always result in simpler and closed-form approximate expressions for the likelihood function.

However, further research is needed to allow for consideration of the existence of correla-
tion in the case of both parameters being random, since the correlation effect can impact the
estimates of the standard deviation of the distribution of the animal’s weight at maturity. Be-
sides this issue, as future work, we also intend to consider distributions other than the Gaussian
distribution for the random effects α and β.
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Abstract
Stochastic differential equations (SDE) appropriately describe a variety of phenomena occur-
ring in random environments, such as the growth dynamics of individual animals. Using ap-
propriate weight transformations and a variant of the Ornstein-Uhlenbeck model, we obtain
a general model for the evolution of cattle weight. The model parameters are α, the average
transformed weight at maturity, β, a growth parameter, and σ, a measure of environmental fluc-
tuations intensity. We briefly review our previous work on estimation and prediction issues for
this model and some generalizations, considering fixed parameters. In order to incorporate indi-
vidual characteristics of the animals, we now consider that the parameters α and β are Gaussian
random variables varying from animal to animal, which results in SDE mixed models. We es-
timate parameters by maximum likelihood, but, since usually a closed-form expression for the
likelihood function is not possible, we approximate it using our proposed delta approximation
method. Using simulated data, we estimate the model parameters and compare them with exist-
ing methodologies, showing that the proposed method is a good alternative. It also overcomes
the existing methodologies requirement of having all animals weighted at the same ages and so
we apply it to real data where such requirement fails.
Keywords delta approximation, maximum likelihood estimation method, mixed models, sto-
chastic differential equations.

3.1. Introduction
In previous works [13, 15, 32–35], we describe the individual growth of animals subject to ran-
dom fluctuations in the environment and study estimation, prediction and optimization problems
with applications to cattle weight data. Considering M animals, we have used the following gen-
eral SDE model:

dYi(t) = β (α − Yi(t)) dt + σ dWi(t), Yi(ti,0) = yi,0, i = 1, . . . ,M, (3.1)

where Yi(t) = h(Xi(t)) is the modified weight by a transformation function h, a known monot-
onous continuously differentiable function of the real weight Xi(t) of the animal i at age t, and
yi,0 = h(xi,0), where xi,0 is the assumed known size of animal i at an initial age of observation
ti,0. The parameter β > 0 is the growth coefficient and α is the mean asymptotic modified size
towards which the mean modified size converges as t → +∞; we denote by A = h−1(α) the
corresponding real asymptotic size. The intensity of the effect of environmental random fluctu-
ations on growth is measured by the parameter σ > 0, being Wi(t) (i = 1, . . . ,M) independent
realizations of the standard Wiener process. Adequate choices of the h function lead to stochas-
tic versions of well-known growth models. For instance, the monomolecular model corrsponds
to h(x) = x, the Bertallanfy-Richards model corresponds to h(x) = xc (with c > 0), the Gom-
pertz model corresponds to h(x) = ln x, and the logistic model corresponds to h(x) = 1/x, but
the theoretical treatment is valid for any monotonous C1 function h. Here, for comparison pur-
poses, we will illustrate with h(x) = ln x, corresponding to the stochastic Gompertz model.

It is natural to think that the model parameters may vary from animal to animal, and so
SDE models with fixed parameters as the one presented in (3.1) may not be a suitable model for
these applications. Parameter estimation for models where the parameters are considered ran-
dom, known as mixed models or mixed-effects models, are presented in [19,22,26,31,33,34,36].

For example, in [33, 34] the mixed model considers that different individuals may have
different values of A and consequently different values of α = h(A), i.e., the case where the
average asymptotic weight varies randomly from animal to animal has been considered. In
this particular case, it was considered that α was a random variable, independent of Wt, with a
Gaussian distribution with mean µ and variance θ2, and in [34] the maximum likelihood estima-
tion method was applied to estimate the model parameters. In this case, the likelihood function
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can be explicitly obtained, but it is extremely difficult or impossible to obtain a closed-form
expression for the likelihood function in other cases.

More recently, we have considered either α or β random, following a Gaussian distribution,
and for these cases we have solved the integral that appears in the likelihood function through
approximation methodologies, such as the Laplace and the delta approximation methods (to
appear in a forthcomming paper [37]). In [19, 31] for the general case where it is not possible
to obtain a closed-form expression for the likelihood function, as is the case of random β, a
numerical approximation based on an Hermite expansion was applied, whereas in [22], in addi-
tion to an Hermite expansion, a Gauss-Hermite quadrature was also applied and the parameters
of the SDE mixed model were estimated by the maximum likelihood method. In [26, 36], for
mixed-models with linear drift term, when a closed-form expression for the likelihood function
is not possible a different approximation technique is used, based on a discretized version of the
continuous-time data likelihood function.

In this work we consider that both parameters α and β are random variables and apply
an adaptation of the delta method to approximate the likelihood function, which we will call
delta approximation method. This method allowed us to approximate the parameter estimates,
through numerical maximization of the approximate likelihood function. Notice also that the
existing methods for SDE mixed models [26, 31, 36] assume that the age vector of the ob-
servations is the same for all trajectories and in some cases even require equidistant ages of
observation. When using real data of cattle weights, these assumptions are not adequate, since
the animals are not weighted at the same time instants (ages), not even with the same elapsed
times between weighings.

To compare our method with existing ones, like the one considered here and provided by
the MsdeParEst R package (see [23,26,36]), we have worked with simulated cattle weight data
with 50, 500 and 5000 animals with the same age vector and with consecutive weights taken
at equidistant intervals. We have also estimated the model parameters with our method using a
real dataset of 16029 animals with very heterogeneous ages of observations.

This paper is organized as follows. In Section 3.2 we present the SDE models with fixed
parameters, their main properties and the respective likelihood function, proceeding to the ex-
tension to mixed stochastic diferential equations models. In Section 3.3 we develop the delta
approximation applied to the likelihood function for the case where both parameters α and β
are independent Gaussian distributed random variables. In Section 3.4 we present the applica-
tion for both simulated and real datasets and, whenever possible, compare the results with the
existing methods. Based on those results, we present practical recommendations on how to deal
with real datasets on Section 3.5 and end up with the main conclusions on Section 3.6.

3.2. Stochastic differential equations models
Considering data from M individuals, we will denote by Xi(t) the size (some measure of weight,
volume, height, length,...) at age t of the ith individual (i = 1, . . . ,M). If the individual is grow-
ing in a randomly fluctuating environment, working with a modified size Yi(t) = h(Xi(t)), where
the transformation h is a monotonous continuously differentiable function, we can describe the
evolution of individual growth through an SDE of the form (3.1). The model solution Yi(t) is an
homogeneous diffusion process with drift coefficient a(y) = β (α − y) and diffusion coefficient
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b(y) = σ2, given by

Yi(t) = α − (α − yi,0)e−β(t−ti,0) + σe−βt
t∫

ti,0

eβsdWi(s), i = 1, . . . ,M, (3.2)

(see, for instance [27]).
Let ti, j (i = 1, ...,M, j = 1, ..., ni) be the age of the jth observation of individual number i and

let Yi, j = Yi(ti, j) = h(Xi(ti, j)) be the corresponding modified weight according to model (3.1). For
each individual i (i = 1, . . . ,M), denote by ti =

(
ti,0, ti,1, . . . , ti,ni

)
its age vector of observations

(which may differ from individual to individual), by Yi =
(
Yi,0,Yi,1, ...,Yi,ni

)
the corresponding

vector of modified sizes and by yi =
(
yi,0, yi,1, ..., yi,ni

)
the observed value of Yi. We assume

ti, j−1 < ti, j and make Ei, j = e−(ti, j−ti, j−1). We see that for Yi, j conditioned on Yi, j−1 = yi, j−1, the
transition distribution for animal i is Gaussian:

Yi, j| (Yi, j−1 = yi, j−1) ∼ N
(
α +

(
yi, j−1 − α

)
Eβi, j ,

σ2

2β
(1 − E2β

i, j)
)
. (3.3)

In [15, 33, 34] we have applied the maximum likelihood estimation method to estimate the
parameter vector p = (α, β, σ). From (3.3), using the fact that Yi(t) is a Markov process, we
know that, given Yi,0 = yi,0 (assumed known), the Yi joint probability density function for
indivifual i takes the form

pYi(yi|α, β, σ) =
ni∏
j=1

exp
(
−1

2

(
yi, j−α−(yi, j−1−α)Eβi, j

)2

σ2
2β (1−E2β

i, j )

)
√

2πσ2

2β (1 − E2β
i, j)

(3.4)

=

exp

−1
2

ni∑
j=1

(
yi, j − α − (yi, j−1 − α)Eβi, j

)2

σ2

2β (1 − E2β
i, j)


ni∏
j=1

√
2π
σ2

2β
(1 − E2β

i, j)

, i = 1, . . . ,M,

and by independence among individuals we obtain the likelihood function for the M animals

L(α, β, σ) =
M∏

i=1

pYi(yi|α, β, σ). (3.5)

The maximum likelihood estimate of the parameter vector p is obtained by maximization
of (3.5) or of the log-likelihood function LLY(α, β, σ) = ln L(α, β, σ).

LLY(α, β, σ) = ln L(α, β, σ) =
M∑

i=1

−
ni

2
ln (2π)

−
ni

2

M∑
i=1

ln
(
σ2

2β

)
−

M∑
i=1

1
2

ni∑
j=1

ln
(
1 − E2β

i, j

)
(3.6)

−
β

σ2

M∑
i=1

ni∑
j=1

(
yi, j − α −

(
yi, j−1 − α

)
Eβi, j

)2

1 − E2β
i, j

.

The maximum likelihood estimators are asymptotically Gaussian with mean p and variance-
covariance matrix V = F−1, where F is the Fisher information matrix with elements given by
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Fi, j = −E
[
∂2L(p)/∂pi∂p j

]
. We can estimate V by the inverse of the empirical information ma-

trix F̂, with elements F̂i, j = −∂
2L(p̂)/∂pi∂p j. From these values we can obtain the approximate

confidence bands for the parameters.

For these type of models, in terms of estimation methods, we have also developed and
applied parametric and nonparametric boostrap methods ( [34, 38]). Since the asymptotic con-
fidence intervals obtained from the empirical Fisher information matrix may be quite unreliable
for small sample sizes, the bootstrap methods can be used in such cases.

In [15, 34], nonparametric estimation methods were developed in order to estimate the drift
and difusion coefficients of a stochastic diferential equation model for the case of nonequidis-
tant data. For our application on cattle weight data, we had been working with models with
specific functional forms for the drift and the diffusion coefficients, for example, in the case
of model (3.1), with a drift coefficient of linear form a(y) = β(α − y) and a constant diffusion
coefficient b(y) = σ2. These nonparametric methods are useful to assess whether our specific
choice of functional forms is appropriate for our data or whether some alternative functional
forms for these coefficients are suggested.

Recently, weighted maximum likelihood estimation methods were studied and adapted to
overcome one very common limitation in the cattle weight data applications, that it is related
to the fact that usually animals are not weighted very frequently and there exists scarce number
of weight observations for older ages. In the weighted maximum likelihood estimation method,
the weights are built such that the times elapsed between consecutive observations are consid-
ered in the likelihood function ( [38]).

We have described the general SDE model (3.1) for the complete growth curve of the ani-
mals where the model’s parameters α, β and σ are assumed common to all individuals. In [16],
we present a generalization of (3.1) to a multiphasic model, where it is considered that the
growth coefficient β can assume different values for different phases of the animals’ growth
curve.

Here, we consider a different generalization to account for the fact that it is natural to think
that different animals, due to their specific genetical and other characteristics, may have differ-
ent values of the parameters. So, in this paper we will consider the situation where different
individuals may have different randomly assigned parameters.

In [19, 22, 26, 30, 34, 36], it has been shown that, to consider at least one of the two parame-
ters of the drift term, α or β, as random variables, the likelihood function can be obtained from
the transition density function conditioned on the respective random parameter.

Let b be the d-dimensional vector of parameters that vary randomly among animals and as-
sume that the distribution of b among animals has probability density function (p.d.f.) pB(b|Ψ),
where Ψ is the parameter vector that characterizes this distribution and needs to be estimated.
Assuming independence among the animals, the M parameter vectors bi of the different ani-
mals i (i = 1, . . . ,M) are independent identically distributed random variables with common
p.d.f. pB and assume the bi (i = 1 . . . ,M) are also independent of the Wiener processes that
characterize the environmental conditions under which the animals are growing. Let Λ be the
vector of the remaining model parameters (the ones not involved in pB), assumed to be common
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to all animals. The likelihood function for M trajectories (animals) is given by

L(Λ,Ψ) =
M∏

i=1

pYi(yi|Λ,Ψ)

=

M∏
i=1

∫
Rd

pYi(yi|bi,Λ)pB(bi|Ψ) dbi. (3.7)

The case of a single random parameter bi = (αi) has already been studied with αi ∼ N(µ, θ2).
When we have the special situation of a time vector of observations ti ≡ t = (t0, t1, . . . , tn),
i = 1, . . . ,M common to all animals, we can see it in [31] (for the particular situation of µ = 0
and uniform time spacings t j − t j−1 ≡ δ) and in [26]. For the general situation, with no such
restrictions, you can see it in [34]. In this case, it is possible to explicitly compute the integral
in the likelihood function, resulting in a final closed-form expression for this function. This is
shown in [34], where the log-likelihood function for all animals LLY(µ, θ, β, σ) = ln L(µ, θ, β, σ)
is given by

LLY(µ, θ, β, σ) =
M∑

i=1

(
−

ni

2
ln (2π) −

ni

2
ln

(
σ2

2β

)
−

1
2

ni∑
j=1

ln
(
1 − E2β

i, j

)
−

1
2

ln (Di)

−
β

Diσ2

ni∑
j=1

(
yi, j − µ −

(
yi, j−1 − µ

)
Eβi, j

)2

1 − E2β
i, j

+
2β2θ2

Diσ4

 ni∑
j=1

(
yi, j − yi, j−1Eβi, j

)
1 + Eβi, j


2

−
β(Di−1)

Diσ2

 ni∑
j=1

(
yi, j − yi, j−1Eβi, j

)2

1 − E2β
i, j


 ,

(3.8)

with Di =
2βθ2

σ2

ni∑
j=1

1 − Eβi, j
1 + Eβi, j

+ 1. However, despite the existence of a closed-form expression for

the likelihood function for this particular case, we have also applied approximation methods
(Laplace and delta approximations - to appear in a forthcomming paper [37]), showing that the
approximation methods also provide very good results when compared with the exact method.

Unfortunately, the integral in (3.7) does not always have a closed-form expression, for ex-
ample when the random parameter is β, corresponding to bi = (βi), and in such cases the
approximation methods are good alternatives.

In the following section, we present the study of the case where both α and β are considered
random variables and propose the aplication of the delta approximation to the integral in (3.7).

3.3. Mixed model for two random effects
The mixed model where both α and β are random variables can be written as

dYi(t) = βi (αi − Yi(t)) dt + σ dWi(t), Yi(ti,0) = yi,0, i = 1, . . . ,M, (3.9)

where we assume that the 2M random variables αi ∼ N(µ, θ2) (i = 1, . . . ,M) and βi ∼ N(λ, ω2)
(i = 1, . . . ,M) are independent. Now the random parameter vector is the 2-dimensional vector
bi = (αi, βi), the fixed effects parameter vector becomes the 1 × 1 vector Λ = (σ), the random
effects parameter vector is Ψ = (µ, λ, θ, ω), and the p.d.f. of the random effects pB is a bivariate
Gaussian distribution.
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To obtain the likelihood function in (3.7) for this two random parameters situation, notice
that, due to the assumed independence structure,

pYi(yi|Λ,Ψ) =
∫
R2

pYi(yi|bi,Λ)pB(bi|Ψ) dbi

=

+∞∫
−∞

+∞∫
−∞

pYi(yi|αi, βi,Λ)p(αi|µ, θ)p(βi|λ, ω) dαi dβi, (3.10)

with

p(αi|µ, θ) =
1
√

2πθ2
exp

(
−

(αi − µ)2

2θ2

)
, (3.11)

p(βi|λ, ω) =
1

√
2πω2

exp
(
−

(βi − λ)2

2ω2

)
. (3.12)

To determine pYi(yi|αi, βi,Λ) in (3.10), notice that, due to the Markov property of each
individual trajectory i when conditioned on αi and βi, we have

pYi(yi|αi, βi,Λ) =
ni∏
j=1

pYi(yi, j, ti, ti−1|yi, j−1, αi, βi,Λ), (3.13)

with the transition densities between consecutive observation ages of the animal i trajectory
given by

pYi(yi, j, ti, ti−1|yi, j−1, αi, βi,Λ) =

exp

−1
2

(
yi, j−αi−(yi, j−1−αi)E

βi
i, j

)2

σ2
2βi

(1−E2βi
i, j )

√
2π σ2

2βi
(1 − E2βi

i, j )
. (3.14)

We will apply the delta approximation to the integral in (3.7), which in this case is given
by (3.10) and does not have an explicit solution. This approximation method allows us to
obtain simpler expressions for the likelihood function. The method is also adapted to general
age vectors of observations, allowing to estimate the parameters of the models even when the
different animals have their weights observed at different ages and those ages may be non-
equidistant.

Let ui(αi, βi) = exp (gi(αi, βi)), where

gi(αi, βi) =
ni∑
j=1

− 1
2

(
yi, j − αi − (yi, j−1 − αi)E

βi
i, j

)2

σ2

2βi
(1 − E2βi

i, j )

−
1
2

ln
(
2π
σ2

2βi
(1 − E2βi

i, j )
))
. (3.15)
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Taken into account the previous expressions, the likelihood function (3.7) can be writen as
an expectation w.r.t. the bivariate Gaussian distribution with density pB:

L(µ, θ, λ, ω, σ) =
M∏

i=1


+∞∫
−∞

+∞∫
−∞

ui(αi, βi)pB(αi, βi|µ, λ, θ, ω) dαi dβi

 (3.16)

=

M∏
i=1

E[ui(αi, βi)].

The mathematical expectation of ui(αi, βi) in (3.16) can be obtained approximately by ap-
plying the delta approximation, which we obtain by adapting the delta method. The delta ap-
proximation consists in using the second-order Taylor series expansion about the point (µ, λ)

ui(αi, βi) ≈ ui(µ, λ) +
[
∂ui

∂αi
(µ, λ)

∂ui

∂βi
(µ, λ)

] [
αi − µ
βi − λ

]

+
1
2

[
αi − µ βi − λ

] 
∂2ui

∂α2
i

(µ, λ)
∂2ui

∂αiβi
(µ, λ)

∂2ui

∂βiαi
(µ, λ)

∂2ui

∂β2
i

(µ, λ)


[
αi − µ
βi − λ

] (3.17)

and applying mathematical expectations to obtain

E[ui(αi, βi)] ≈ ui(µ, λ) +
θ2

2
∂2ui

∂α2
i

(µ, λ) +
ω2

2
∂2ui

∂β2
i

(µ, λ). (3.18)

Finally, the log-likelihood function, LLY(µ, θ, λ, ω, σ) = ln L(µ, θ, λ, ω, σ), can be obtained
as

LLY(µ, θ, λ, ω, σ) ≈
M∑

i=1

ln
{

ui(µ, λ) +
θ2

2
∂2ui

∂α2
i

(µ, λ) +
ω2

2
∂2ui

∂β2
i

(µ, λ)
}
. (3.19)

The first and second-order derivatives with respect to αi are

∂gi(αi, βi)
∂αi

=

ni∑
j=1

−2βi(−1 + Eβi
i, j)

(
yi, j − αi − (yi, j−1 − αi)E

βi
i, j

)
(1 − E2βi

i, j )σ2


∂2gi(αi, βi)
∂α2

i

=

ni∑
j=1

−2βi(−1 + Eβi
i, j)

2

(1 − E2βi
i, j )σ2

 (3.20)

and the second-order derivative of ui(αi, βi) with respect to αi is

∂2ui(αi, βi)
∂α2

i

= ui (αi, βi)
∂2gi(αi, βi)
∂α2

i

+

(
∂gi(αi, βi)
∂αi

)2 . (3.21)
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The first two derivatives of gi(αi, βi) with respect to βi are

∂gi(αi, βi)
∂βi

=

ni∑
j=1

 1
2βi
+

2βiE
2βi
i, j (ti, j − ti, j−1)

(
yi, j − αi − (yi, j−1 − αi)E

βi
i, j

)2(
1 − E2βi

i, j

)2
σ2

−
E2βi

i, j (ti, j − ti, j−1)(
1 − E2βi

i, j
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Similarly the second-order derivative of ui(αi, βi) with respect to βi is given by

∂2ui(αi, βi)
∂β2

i

= ui (αi, βi)
∂2gi(αi, βi)
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+

(
∂gi(αi, βi)
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)2 . (3.24)

Replacing these derivatives in the expression (3.19), we obtain an approximate expression
for the log-likelihood function LLY(µ, θ, λ, ω, σ, ρ) = ln L(µ, θ, λ, ω, σ, ρ) for the case of two
random Gaussian parameters. Using it, we are going in the next Section to apply this approach
to obtain approximate maximum likehood parameter estimates for the mixed stochastic Gom-
pertz model with two random parameters using cattle weight data.
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3.4. Results
The main interest with the methodology proposed in the previous sections is to have an esti-
mation method that can be applied to real animal weight data, where the animals’ weights are
often not taken at the same age instants for all.

In our application we have worked with real cattle weight data provided by the Associação
de Criadores de Bovinos Mertolengos (ACBM), which performs the growing and finishing
phases of young Mertolengo males, and by associated breeders, from the Alentejo region in
Portugal. The available dataset contains a total of 96204 observations of the weight (in kg) of
16029 Mertolengo cattle males, where each animal has several observations with a minimum
of 3 and a maximum of 33 weights at ages varying from birth until a maximum age that ranges
between 0.2 and 16 years old. This is a case where indeed each animal has its weight measure-
ments taken at different (and even non-equidistant) age instants, varying from animal to animal.

We have obtained the estimation results implementing the proposed delta approximation
method (DA method) in the software R project [39]. However, since it is a new method, we first
will compare the results obtained with this DA method with the estimation methods available in
the R package MsdeParEst described in [23], which we will call the MPE methods. The package
includes, when closed-form likelihhod function expressions are not possible, tecnhiques based
on a discretized version of the continuous-time data maximum likelihood developed in [26,36].
The main drawback of this package (and, to the best of our knowledge, of other similar available
R packages [24,25]) is that all observations must be measured at the same age instants for all an-
imals and, in some cases, the age instants are even required to be equidistant. Therefore, in order
to compare the performance of the proposed approximation method DA with the methods avail-
able in the literature (in particular, the MPE method used here), we should also need datasets
where weights are observed at the same equidistant age instants for all the animals. Whenever
possible, we will also compare the DA and MPE methods, which consider approximations for
the likelihood function, with existing estimation methods that use exact closed-form expressions
for the likelihood function, in particular, when the likelihood function assumes both parameters
fixed or Non-Mixed (which we will call the NMSDE method, presented in [13, 15, 34]) or, if
appropriate, when the likelihood function assumes just the parameter α as random (which we
will call the Exact(α) method, presented in [34]).

For this purpose, we have worked with simulated datasets of equidistant monthly weights
for N animals, since birth until four years of age, totaling M*49 observations.

The animal’s weights were simulated based on the stochastic Gompertz model (Y(t) =
h(X(t)) = ln(X(t))). We have simulated four datasets:

• DM(α, β): Mixed SDE model with random independent αi and βi, where αi ∼ N(µ, θ2)
and βi ∼ N(λ, ω2) with µ = 6.45 (h−1(µ) = 632.70 kg), θ = 0.15, λ = 1.43 year−1,
ω = 0.30 year−1, and with fixed parameter σ = 0.33 year−1/2;
• DM(α): Mixed SDE model with random αi ∼ N(µ, θ2) with µ = 6.45 (h−1(µ) = 632.70

kg) and θ = 0.15, and with fixed parameters β = 1.43 year−1 and σ = 0.33 year−1/2;
• DM(β): Mixed SDE model with random β ∼ N(λ, ω2) with λ = 1.43 year−1 and
ω = 0.30 year−1, and with fixed parameters α = 6.45 (h−1(α) = 632.70 kg) and
σ = 0.33 year−1/2;
• DM: Non-mixed SDE model (3.1) with fixed parameters α = 6.45 (h−1(α) = 632.70 kg),
β = 1.43 year−1 and σ = 0.33 year−1/2.

40



Each of the simulated datasets based on a Mixed SDE model were obtained in the following
way. First, the M random parameter values bi (i = 1, . . . ,M) of the M animals were simulated
based on the Gaussian distribution pB, and then, for each animal i (i = 1, . . . ,M), the simulated
values were incorporated in the transition density (3.3) as the true values of αi and/or βi for that
animal. Then, we have simulated the weights of each animal based on the Markov property and
the use of the transition densities between consecutive observation ages. For the non-mixed or
fixed parameters model, the simulation of the dataset is obtained without simulating the param-
eter values of αi and βi since they are fixed.

The advantage of using simulated data, besides the possibility of comparing the different
methods due to its common age vector of observations, is the knowledge of the true parameter
values, which allows us to compare the performances of the different methods when they can
be applied. We first consider a simulated dataset for weights of M = 5000 animals to evaluate
the behaviour of the methods for a large number of trajectories close to an asymptotic regimen.
However, in applications we usually do not have datasets with so many animals available and it
is important to evaluate the performance of the different methods for smaller data sets. For this
reason, we also present a comparison of the main methods considering datasets with M = 500
and M = 50 animals. To distinguish them we index the simulated datasets by the number of
animals M.

Tables 1-4 presents the results for each of the datasets D5000(α, β), D5000(α), D5000(β) and
D5000 simulated under the four stochastic Gompertz mixed and fixed models. In each table, we
present the results obtained using the different DA methods, DA(α, β) (the one that assumes
both parameters α and β random and is described in Section 3.3), DA(α) and DA(β) (the ones
that assume just α random or just β random as described in [37]), as well as the estimates
obtained by the different MPE methods, MPE(α, β), MPE(α) and MPE(β) (again when we con-
sider random both or just one of the parameters). We also present, for comparison purposes,
the results obtained when using the NMSDE estimation method (which assumes both param-
eters to be fixed). So, we can assess what happens when an appropriate estimation method is
applied [for instance, when applied to the D5000(α) dataset, the estimation method MPE(α) and
the estimation method DA(α, β) are appropiate] and when an inappropriate estimation method
is applied [for instance, when applied to the D5000(α, β) dataset, the MPE(α) method is inappro-
priate since it cannot estimate the parameters involved in the random β]; this may be important
since, in real non-simulated data, we may not know which parameters are random or not. Of
course, DA(α, β) and MPE(α, β) are appropriate for all datasets but, when the data has one or
both parameters non-random, they are overparametrized, and therefore, may not be so accurate
as non-overparametrized methods.

The maximum likelihood estimates and the approximate 95% confidence bands based on
the inverse of the empirical Fisher information matrix are presented only for the DA methods
and the NMSDE method, but not for the MPE methods since the confidence intervals of the
estimates are not provided by the R package MsdeParEst. Instead of presenting the results for
the overall mean of the modified asymptotic weight µ [which is = α when α is a fixed parame-
ter], we present them in terms of the corresponding actual weight value h−1(µ). On Tables 1-4,
we have also underlined the headings of the estimation methods that are appropriate to anal-
yse the corresponding dataset, in the sense of being able to estimate all the parameters of the
model used to simulate the dataset. Appropriate methods include the ones that use in the like-
lihood function or its approximation the same random parameters that were used in the dataset
generation (these would be the most appropriate methods when we know beforehand which
parameteres are random), but include as well overparametrized methods that also use additional
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random parameters in the likelihood function or its approximation.

The Tables also display the log-likelihood function values computed at the estimated param-
eter values. We display the log-likelihood values LLX in terms of the actual weights X, which
can be easily obtained by a simple conversion using the function h from the corresponding log-
likelihood values LLY (expressed in terms of the modified weights Y we have been working
with so far in all computations). However, although the displayed log-likelihood values use the
exact log-likelihood known expressions for the NMSDE and the Exact(α) methods, for the DA
methods they use the approximate log-likelihood expressions of those methods and possibly the
same is happening with the values delivered by the MsdeParEst Package for the MPE methods.
Since these approximations involve some uncomparable errors, the displayed log-likelihood
values LLX should, with rare exceptions, not be used for comparisons in which an approximate
method is involved.

When considering on Table 1 the D5000(α, β) dataset, the appropriate estimation methods are
the ones assuming α and β random, the DA(α, β) method we have proposed and the MPE(α, β)
method. We can observe that the DA(α, β) method provides a lower bias for all parameters than
the MPE(α, β) method, noticing that in the MPE(α, β) method the estimate of ω is extremely bi-
ased, close to zero. The use of an inappropriate method should obviously be avoided, but when
using real data we often do not know beforehand exactly which are the random parameters and
may make a wrong assumption, leading to the use of an inappropriate estimation method. These
simulated datasets in which we know exactly which parameters are random, give us the oppor-
tunity of assessing the consequences of a wrong assumption on the random parameters when
dealing with real data. Let us look at this issue, beyond the obvious fact that an inappropriate
method cannot estimate some of the parameters. When comparing the appropriate DA(α, β)
method with the inappropriate (for this dataset) NMSDE method, the former method leads to
less biased estimates. When comparing the appropriate DA(α, β) with the inappropriate (for this
dataset) DA(α) and DA(β) methods, the inappropriate methods estimate the standard deviation
of their own random parameter (resp. the standard deviation θ of the random α and the stan-
dard deviation ω of the random β) better than the appropriate method, which underestimates
both standard deviations. On the estimation of the noise intensity parameter σ, the appropriate
DA(α, β) method shows the better performance and it also outperforms the inappropriate DA(β)
method on the estimation of the means h−1(µ) and λ, but these means are curriously better es-
timated by the inappropriate DA(α) method. As for the inappropriate MPE(α) and MPE(β)
methods, besides the obvious impossibility of estimating one parameter, have a behaviour not
too different from the MPE(α, β) appropriate method.

Table 2 shows the results for the D5000(α) dataset. For this case, we have included the
Exact(α) method, where the maximum likelihood is obtained exactly in closed-form, and that
is certainly the best choice method for this dataset. The methods DA(α, β) and DA(α) are both
appropriate for this dataset, but the first is overparametrized, while the latter is the most ap-
propriate of the two and we expect it to be more accurate. Still, it is interesting to notice that
these two methods provide exactly the same parameter estimates, except naturally for ω = 0
(“parameter” obviously out of the DA(α) method). Comparing the MPE(α, β) with the MPE(α)
methods, they do not give exactly the same parameter estimates but their estimates are very
close. As expected, the most appropriate method for this dataset, the Exact(α) method, pro-
vides slightly better estimates than the DA(α) and the DA(α, β) methods and than the MPE(α)
and the MPE(α, β) methods. The estimates for h−1(µ) and θ are better when using the appropri-
ate MPE methods than the ones obtained with the corresponding DA methods, but the reverse
happens for the estimates of the mean λ and the standard deviations ω = 0 of parameter β. The
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Table 1. Results for the simulated dataset of 5000 animals when both α and β
are random - D5000(α, β). Besides the true parameter values used in the simula-
tions, the Table shows their maximum likelihood estimates and, when available,
approximate 95% confidence bands using the estimation methods: delta approx-
imation methods DA(α, β), DA(α) and DA(β), NMSDE method (using the exact
likelihood when both α and β are fixed), and MPE methods MPE(α, β), MPE(α)
and MPE(β), where the likelihoods or approximate likelihoods work with the in-
dicated parameters taken as random. Appropriate methods are underlined. No-
tice that the LLX values of approximate methods may differ from the true values
of the log-likelihood function at the parameter estimated values.

True DA(α, β) DA(α) DA(β)

h−1(µ) 632.70 640.87 ± 3.17 629.77 ± 3.16 651.31 ± 2.83
θ 0.15 0.1011 ± 0.0040 0.1397 ± 0.0024 −

λ 1.43 1.3316 ± 0.0067 1.3548 ± 0.0060 1.3036 ± 0.0065
ω 0.30 0.1786 ± 0.0042 − 0.2002 ± 0.0029
σ 0.33 0.3399 ± 0.0010 0.3414 ± 0.0010 0.3405 ± 0.0001
LLX −1191084 −1192146 −1191418

NMSDE MPE(α, β) MPE(α) MPE(β)

h−1(µ) 646.29 ± 2.92 623.77 624.34 622.40
θ − 0.2158 0.2127 −

λ 1.3208 ± 0.0061 1.3272 1.3249 1.3182
ω − 0.0001 − 0.0444
σ 0.3452 ± 0.0010 0.2983 0.3140 0.3155
LLX −1194145 −1209481 −1208249 −1208631

inappropriate methods DA(β) and MPE(β) give worse estimates than the appropriate methods
of the same type. The use of the inappropriate (for this data) NMSDE method performs quite
badly in the estimation of h−1(µ). Notice that the dataset was simulated for fixed β, i.e, ω = 0,
and this is better captured by the DA method.

Since the LLX values for the approximate methods are only approximations, we cannot
perform a likelihood ratio test for the randomness of the β parameter (null hypothesis ω = 0
corresponding to a non-random β). However, if one knows (or assumes) that β is fixed, one can
perform a likelihood-ratio test on whether α is fixed or random (null hypothesis θ = 0 corre-
sponding to a fixed α) by using the log-likelihood LLX values of the NMSDE method and the
Exact(α) method, which are exact values; the result is the rejection of the null hypothesis at the
usual significance levels (p-value < 0.001).

For the case of the D5000(β) dataset, Table 3 shows that again the appropriate (for this dataset)
DA(α, β) (which is overparametrized) and DA(β) methods provide very similar parameter esti-
mates. Curiously, the inappropriate NMSDE model performs surprisingly well. In this case, the
MPE methods, both appropriate and inappropriate ones, present very poor estimates. We also
highlight that the estimates of the standard deviations θ = 0 and ω = 0.30 using the appropriate
MPE methods severely fail, suggesting even that α is random and β is not when the reverse
is the true situation, while the DA(α, β) method captures very well the non-random nature of
parameter α and both DA(α, β) and DA(β) methods capture the random nature of β, although
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Table 2. Results for the simulated dataset of 5000 animals when α is random,
but β is fixed (ω = 0) - D5000(α). Besides the true parameter values used in
the simulations, the Table shows their maximum likelihood estimates and, when
available, approximate 95% confidence bands, using the estimation methods:
DA(α, β), DA(α), DA(β), NMSDE, MPE(α, β), MPE(α), and MPE(β). Appro-
priate methods are underlined. Notice that the LLX values of approximate meth-
ods may differ from the true values of the log-likelihood function at the parame-
ter estimated values.

True DA(α, β) DA(α) DA(β)

h−1(µ) 632.70 637.79 ± 3.01 637.79 ± 3.01 648.73 ± 2.70
θ 0.15 0.1180 ± 0.0027 0.1180 ± 0.0027 −

λ 1.43 1.4158 ± 0.0060 1.4158 ± 0.0060 1.3838 ± 0.0069
ω 0 < 0.0001 − 0.1190 ± 0.0059
σ 0.33 0.3328 ± 0.0009 0.3328 ± 0.0009 0.3343 ± 0.0010
LLX −1191370 −1191370 −1192336

NMSDE MPE(α, β) MPE(α) MPE(β)

h−1(µ) 644.13 ± 2.66 632.81 633.34 630.96
θ − 0.1439 0.1532 −

λ 1.3906 ± 0.0060 1.3517 1.3515 1.3494
ω − 0.0124 − 0.0042
σ 0.3359 ± 0.0010 0.3074 0.3085 0.3075
LLX −1192590 −1207378 −1207350 −1202663

Exact(α)

h−1(µ) 633.53 ± 3.66
θ 0.1523 ± 0.0047
λ 1.4332 ± 0.0061
ω −

σ 0.3307 ± 0.0009
LLX −1190931

somewhat underestimating its standard deviation ω.

In Table 4, the estimates using the D5000 dataset, with both parameters α and β fixed, i.e.
with θ = 0 and ω = 0, are presented. Now all the methods are appropriate: However, with
the exception of the NMSDE method, which in this case is the most appropriate one, they are
overparametrized. It is quite interesting to note that the different DA methods give practically
coincidental parameter estimates among them and practically coincidental with the parameter
estimates of the NMSDE model. This reveals robustness of the proposed DA method, which
also captures very well the non-random character of α and β. The MPE methods give reason-
able results, but not so good.

In this case, not only the NMSDE method and the DA methods give almost coincidental
parameter estimates, but also the LLX value of the the NMSDE method (which is the exact
maximum of the exact log-likelihood function) is almost coincidental with the LLX values for
the DA methods, so these LLX DA values, which are approximations, are likely to be good ap-
proximations. If these values were exact instead of just approximations, a likelihood ratio test
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Table 3. Results for the simulated dataset of 5000 animals when β is random,
but α is fixed (θ = 0) - D5000(β). Besides the true parameter values used in
the simulations, the Table shows their maximum likelihood estimates and, when
available, approximate 95% confidence bands, using the estimation methods:
DA(α, β), DA(α), DA(β), NMSDE, MPE(α, β), MPE(α), and MPE(β). Appro-
priate methods are underlined. Notice that the LLX values of approximate meth-
ods may differ from the true values of the log-likelihood function at the parame-
ter estimated values.

True DA(α, β) DA(α) DA(β)

h−1(µ) 632.70 630.64 ± 2.60 611.04 ± 3.3176 630.70 ± 2.60
θ 0 < 0.0001 0.1105 ± 0.0035 −

λ 1.43 1.3559 ± 0.0068 1.3852 ± 0.0061 1.3482 ± 0.0068
ω 0.30 0.1977 ± 0.0033 − 0.1972 ± 0.0031
σ 0.33 0.3362 ± 0.0010 0.3379 ± 0.0010 0.3360 ± 0.0009
LLX −1186396 −1187992 −1186334

NMSDE MPE(α, β) MPE(α) MPE(β)

h−1(µ) 630.12 ± 2.7063 620.22 619.63 620.66
θ − 0.1413 0.1458 −

λ 1.3624 ± 0.0061 1.3229 1.3252 1.3155
ω − 0.0001 − 0.0275
σ 0.3403 ± 0.0010 0.3271 0.3138 0.3153
LLX −1188686 −1203829 −1203643 −1203829

for θ = 0 (i.e, for the randomness of α) and/or the significance of ω = 0 (i.e., for the randomness
of β), would obtain non-significant results.

Since the typical situation when dealing with real data is not knowing beforehand whether
α and/or β are random or fixed, and since we have seen that, among the approximate methods
DA, the method DA(α, β) performs as well or almost as well as other appropriate DA methods
(in what concerns the estimation of the common parameters), even when it is overparametrized
with respect to the dataset, we will consider from now on, among the three delta approximation
methods, only the DA(α, β) method. For similar reasons, among the MPE methods, we will
consider from now on just the MPE(α, β) method. For comparison purposes, we also consider
the usual NMSDE method, which is the most appropriate method for the fixed-effects model
usually considered in most applications, but which is of course inappropriate when our datasets
have α randm and/or β random.

With the purpose of analysing the influence of smaller sample sizes on the estimates, Ta-
bles 5-8 present the results for the four mixed- and fixed-effects stochastic Gompertz models
for the datasets with smaller samples sizes, 50 and 500 animals. We will use the DA(α, β), the
MPE(α, β), and the NMSDE estimation methods. For comparison purposes, for the datasets
D50(α) and D500(α), we also present the results of the Exact(α) method.

We can conclude that the same main characteristic features observed in the estimates for the
large datasets with 5000 animals still hold. The DA(α, β) method is able to accurately identify
the fixed and the random effects, while the MPE(α, β) method usually fails (except, and not
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Table 4. Results for the simulated dataset of 5000 animals when α and β are both
fixed (θ = ω = 0) - D5000. Besides the true parameter values used in the simula-
tions, the Table shows their maximum likelihood estimates and, when available,
approximate 95% confidence bands, using the estimation methods: DA(α, β),
DA(α), DA(β), NMSDE, MPE(α, β), MPE(α), and MPE(β). Appropriate meth-
ods are underlined. Notice that the LLX values of approximate methods may
differ from the true values of the log-likelihood function at the parameter esti-
mated values.

True DA(α, β) DA(α) DA(β)

h−1(µ) 632.70 631.17 ± 2.49 631.16 ± 2.49 631.19 ± 2.47
θ 0 0.0067 ± 0.0407 0.0070 ± 0.0375 −

λ 1.43 1.4310 ± 0.0061 1.4310 ± 0.0061 1.4309 ± 0.0060
ω 0 0.0047 ± 0.1298 − 0.0074 ± 0.0796
σ 0.33 0.3295 ± 0.0009 0.3295 ± 0.0009 0.3295 ± 0.0009
LLX −1186643 −1186643 −1186643

NMSDE MPE(α, β) MPE(α) MPE(β)

h−1(µ) 631.19 ± 2.4747 630.31 631.07 630.96
θ − 0.0262 0.0186 −

λ 1.4309 ± 0.0060 1.3518 1.3493 1.3494
ω − 0.0071 − 0.0042
σ 0.3295 ± 0.0009 0.2920 0.3075 0.3075
LLX −1186643 −1202431 −1201744 −1201744

clearly, when both effects are fixed).

As expected, when comparing the confidence intervals of the parameter estimates for differ-
ent number of animals in the datasets (see tables 5-8 for 50 and 500 animals and Tables 1-4 for
500 animals), their amplitudes decrease as the number of animals in the dataset increases. In
general, the MPE(α, β) method have worst estimates than the DA(α, β) method, both for small
and large samples, except in estimating the standard deviation θ of the parameter α when this
parameter is random.

For the datasets D50(α) and D500(α), the results obtained with the DA(α, β) method are not
exactly the same as the ones obtained by the Exact(α) method, but they are quite close, even
very close for the 500 animals dataset D500(α).

For the fixed-effects datasets D50 and D500, the estimates of the DA(α, β) method replicate
the same results as the NMSDE method, which, for these datasets, is the most appropriate
method. The LLX values of the NMSDE method are exact maximum log-likelihood values and
they are again pratically equal to the LLX approximate values of the DA(α, β) method, sug-
gesting again that, for fixed-effects datasets, these are good approximations, in which case a
likelihood ratio test of θ = ω = 0 would accept this null hypothesis.

Finally, in Table 9 we used the real cattle weight dataset of 16029 Mertolengo cattle males
(totalling 96204 observations) and present the estimates obtained by the DA(α, β) method and
by the NMSDE method. The true parameter values are not known and we cannot use the R
package MsdeParEst since the real weight data from the 16029 animals presents a different age
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Table 5. Results for the simulated datasets of 50 and 500 animals when both α
and β are random - D50(α, β) and D500(α, β). Besides the true parameter values
used in the simulations, the Table shows their maximum likelihood estimates
and, when available, approximate 95% confidence bands, using the appropriate
estimation methods DA(α, β) and MPE(α, β) and the inappropriate estimation
method NMSDE. Notice that the LLX values of approximate methods may differ
from the true values of the log-likelihood function at the parameter estimated
values.

True DA(α, β) MPE(α, β) NMSDE

50 animals

h−1(µ) 632.70 648.87 ± 33.04 612.27 646.62 ± 32.22
θ 0.15 0.0392 ± 0.1214 0.2594 −

λ 1.43 1.2265 ± 0.0600 1.2703 1.2259 ± 0.0599
ω 0.30 0.2164 ± 0.0297 < 0.0001 −

σ 0.33 0.3418 ± 0.0096 0.3059 0.3474 ± 0.0099
LLX −11819.3 −11713.8 −11868.8

500 animals

h−1(µ) 632.70 651.52 ± 10.06 634.72 655.81 ± 9.52
θ 0.15 0.0944 ± 0.0130 0.2087 −

λ 1.43 1.3216 ± 0.0209 1.3061 1.3056 ± 0.0191
ω 0.30 0.1809 ± 0.0124 0.0002 −

σ 0.33 0.3407 ± 0.0030 0.3114 0.3458 ± 0.0031
LLX −119331.8 −120800.7 −119620.8

vector of observations for each animal. Analyzing the results of Table 9, we can conclude that,
despite the database being large and heterogeneous, the two estimation methods provide very
similar estimates. According to our findings obtained above, it is interesting to note that the
DA(α, β) method presents clear evidence of random effects on the α parameter and of strong
random effects on the β parameter. Although we cannot perform a likelihood ratio test to reject
the null hypothesis θ = ω = 0 because the displayed LLX value for the DA(α, β) method is
an approximation, the difference of LLX values between this method and the NMSDE method
(which displays an exact LLX value) is so striking to leave doubts about the random nature of α
and β.

3.5. Recommendations
Taking into account all the analyzed scenarios, it makes sense to present a summary of the ad-
vantages and disadvantages of each method and recommendations for its use with a real dataset
depending on the number of animals. If one has no information or strong reasons to consider a
given parameter as random, one should apply the DA(α, β) method, which, for all datasets con-
sidered here, was able to correctly identify which parameters are fixed and which are random.

If one concludes from this preliminary analysis that none of the parameters are fixed (by not
having small estimates of the standard deviations of θ and ω of α and β, resp., complemented
by the information given by the approximate confidence intervals of these parameters), the
DA(α, β) method is recommended to estimate the mean and standard deviation of the random β
whereas the MPE(α, β) method is recommended to estimate the mean and standard deviation of
the random α, either for small and large samples. However a good compromise will be achieved

47



Table 6. Results for the simulated dataset of 50 and 500 animals when α is ran-
dom, but β is fixed (ω = 0) - D50(α) and D500(α). Besides the true parameter val-
ues used in the simulations, the Table shows their maximum likelihood estimates
and, when available, approximate 95% confidence bands, using the appropriate
estimation methods DA(α, β), MPE(α, β) and Exact(α) and the inappropriate es-
timation method NMSDE. Notice that the LLX values of approximate methods
may differ from the true values of the log-likelihood function at the parameter
estimated values.

True DA(α, β) MPE(α, β) NMSDE Exact(α)

50 animals

h−1(µ) 632.70 641.87 ± 30.74 639.16 648.94 ± 26.51 640.20 ± 36.01
θ 0.15 0.1152 ± 0.0284 0.1446 − 0.1437 ± 0.0464
λ 1.43 1.4173 ± 0.0627 1.3501 1.3939 ± 0.0596 1.4385 ± 0.0608
ω 0 0.0637 ± 0.1213 < 0.0001 − −

σ 0.33 0.3284 ± 0.0093 0.3051 0.3318 ± 0.0094 0.3268 ± 0.0095
LLX −11892.8 −11767.1 −11905.6 −11659.9

500 animals

h−1(µ) 632.70 635.46 ± 9.56 635.62 636.59 ± 8.35 644.44 ± 37.87
θ 0.15 0.1197 ± 0.0085 0.1537 − 0.1493 ± 0.0484
λ 1.43 1.4037 ± 0.0188 1.3417 1.3781 ± 0.0.0189 1.3957 ± 0.0610
ω 0 < 0.0001 0.0064 − −

σ 0.33 0.3312 ± 0.0030 0.3067 0.3343 ± 0.0030 0.3308 ± 0.0096
LLX −118752.5 −120099.7 −118878.5 −11667.9

if one just uses the DA(α, β) method.

In the case the preliminary analysis indicates that ω = 0 (by having a very small estimate
of this parameter), we should then apply the Exact(α) method ( [34]), which is designed for the
case of α being the only random parameter and uses the exact log-likelikelihood function (3.8),
to get better estimates of all parameters.

If the preliminary analysis indicates θ = 0 (by having a very small estimate of this parame-
ter), we better remain with the DA(α, β) method (since its estimates are very similar with those
obatined under the DA(β) method) and provides better estimates of the mean and standard devi-
ation for the β random effect and also of the fixed effect α than the MPE method or the NMSDE
method.

Finally, in the case where the preliminary analysis indicatesω = 0 and θ = 0 (i.e., the dataset
only has fixed parameters), we can apply either the most appropriate and classical NMSDE
method ( [13, 15, 34]), designed for the fixed-effects model and using the exact log-likelihood
function (3.6), or the DA(α, β) method (which gives basically the same estimates).

Furthermore, the DA method has the big advantage of being usable for all real datasets, with
or without equidistant observations and whether or not the animal’s sizes have been obtained at
the same age instants for all animals.
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Table 7. Results for the simulated datasets of 50 and 500 animals when β is
random, but α is fixed (θ = 0) - D50(β) and D500(β). Besides the true param-
eter values used in the simulations, the Table shows their maximum likelihood
estimates and, when available, approximate 95% confidence bands, using the
appropriate estimation methods DA(α, β) and MPE(α, β) and the inappropriate
estimation method NMSDE. Notice that the LLX values of approximate methods
may differ from the true values of the log-likelihood function at the parameter
estimated values.

True DA(α, β) MPE(α, β) NMSDE

50 animals

h−1(µ) 632.70 619.32 ± 23.98 613.94 618.43 ± 24.13
θ 0 0.0260 ± 0.1038 0.1026 −

λ 1.43 1.4725 ± 0.0730 1.3944 1.4591 ± 0.0618
ω 0.30 0.2043 ± 0.0359 0.0002 −

σ 0.33 0.3323 ± 0.0094 0.3036 0.3365 ± 0.0096
LLX −11881.2 −11765.4 −11902.1

500 animals

h−1(µ) 632.70 640.71 ± 8.45 626.32 639.20 ± 8.77
θ 0 < 0.0001 0.1602 −

λ 1.43 1.3451 ± 0.0215 1.3213 1.3497 ± 0.0191
ω 0.30 0.1923 ± 0.01051 < 0.0001 −

σ 0.33 0.3360 ± 0.0030 0.2947 0.3399 ± 0.0031
LLX −118814.8 −120401.4 −119038.4

3.6. Conclusion
To describe the individual growth of animals in a randomly varying environment, a general sto-
chastic differential equation (SDE) model was used and, in order to take into account that the
model parameters may vary from animal to animal, which, for instance, occurs due to different
individual genetical and other characteristics of the animals, we have consider SDE mixed mod-
els. Here we have studied the SDE mixed model where both parameters included in the drift
term, the parameter α (asymptotic modified weight) and the growth parameter β, were assumed
to be Gaussian distributed.

We have applied the maximum likelihood estimation method to obtain the estimates for the
parameters of the SDE mixed models. In most cases, for this type of models, it is difficult or
impossible to obtain a closed-form expression for the likelihood function and approximation
methods are used to cope with this issue. In this paper, we propose to use the delta approxi-
mation method (DA method) with both α and β random, in which we have adapted the delta
method, a classic in Statistics, to obtain approximate closed-form expressions for the likelihood
function when both parameters α and β are random. Of course, the DA method can be applied
also when only one of the two parameters is assumed random.

To evaluate the performance of the proposed method on parameter estimation we have used
simulated datasets from different mixed-effects models (with only α random, with only β ran-
dom, and with both parameters random) and from a fixed-effects model (both α and β fixed),
with different numbers of animals (5000, 500 and 50), datasets in which all animals were
weighted at the same ages so that we could use all the estimation methods considered here
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Table 8. Results for the simulated datasets of 50 and 500 animals when α and β
are both fixed (θ = ω = 0) - D50 and D500. Besides the true parameter values used
in the simulations, the Table shows their maximum likelihood estimates and,
when available, approximate 95% confidence bands, using the appropriate esti-
mation methods DA(α, β) and MPE(α, β) and the estimation method NMSDE,
which is the most appropriate for this dataset. Notice that the LLX values of ap-
proximate methods may differ from the true values of the log-likelihood function
at the parameter estimated values.

True DA(α, β) MPE(α, β) NMSDE

50 animals

h−1(µ) 632.70 624.23 ± 24.67 624.32 624.23 ± 24.13
θ 0 < 0.001 0.0013 −

λ 1.43 1.4465 ± 0.0616 1.3623 1.4465 ± 0.0616
ω 0.30 < 0.001 < 0.0001 −

σ 0.33 0.3362 ± 0.0096 0.3136 0.3362 ± 0.0096
LLX −11901.2 −11762.8 −11901.0

500 animals

h−1(µ) 632.70 628.22 ± 7.81 628.15 628.21 ± 7.81
θ 0 < 0.0001 0.0196 −

λ 1.43 1.4331 ± 0.0193 1.3511 1.4330 ± 0.0191
ω 0 0.0135 ± 0.1381 < 0.0001 −

σ 0.33 0.3309 ± 0.0030 0.2996 0.3309 ± 0.0030
LLX −118686.3 −119963.8 −118686.3

Table 9. Results for the real cattle weight data set. The maximum likelihood
estimates and approximate 95% confidence bands are shown when assuming
a mixed model with both α and β random and using the DA(α, β) estimation
method and when assuming a non-mixed model (α and β fixed) and using the
NMSDE method (which is the classical exact maximum likelihood method un-
der that assumption). Notice that the LLX values of the approximate method
DA(α, β) method may differ from the true value of the log-likelihood function at
the parameter estimated values.

DA(α, β) NMSDE

h−1(µ) 629.70 ± 6.30 631.27 ± 6.38
θ 0.0003 ± 0.0104 −

λ 1.4261 ± 0.0122 1.4198 ± 0.0116
ω 0.1998 ± 0.0050 −

σ 0.3273 ± 0.0016 0.3398 ± 0.0017
LLX −368732.10 −369753.20

and compare them. Since in real life we usually do not know which are the random parameters,
wrong assumptions may be made on that issue. In order to evaluate the consequences of wrong
assumptions on what parameters are random, we have included in the comparisons also the
methods designed under such assumptions. We have compared the DA method (in its variants
of assuming both or just one parameter random) with an existing method specifically designed
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for mixed-effects models (also with the same variants), referred here as the MPE method, which
is provided by the R package MsdeParEst. We have also included in the comparisons the esti-
mation methods for which we have exact log-likelihood expressions in closed-form, namely the
NMSDE method and, in some cases, the Exact(α) method, which are designed, respectively, for
the fixed-effects model and the mixed-effects model with only α random.

The results of these comparisons show a very good performance of the proposed DA method
with both α and β random, being globally the best method for all the simulated scenarios. This
method, unlike the MPE methods, was able to correctly identify, in each of the settings, the
fixed and the random parameters. It gives generally better parameter estimates than the MPE
method and the estimates are quite close to the true parameter values, with the exception of the
standard deviations of random effects, which were somewhat underestimated. The performance
of the proposed DA method was confirmed when using a simulated dataset with both parame-
ters fixed, since it provided the same results as the ones obtained when using the exact NMSDE
method.

For this type of SDE mixed models, it is usual to find in the literature estimation methods
developed under the assumption of having a unique (often also evenly spaced) age vector of
observations common to all individuals and this is also required when using available R pack-
ages such as the MsdeParEst package used in the MPE method. The delta approximation (DA)
method has the advantage of not requiring such restrictions and so it can be used in real situa-
tions where usually such restrictions do not hold. In our real data application we are precisely in
this situation, and we have applied the estimation methods to real weights of Mertolengo cattle
males from a large and heterogeneous dataset, reaching the conclusion that the proposed DA
method identifies both parameters α and (more strikingly) β as being random. This approach
revealed to be a very interesting alternative to the available estimation methods for SDE mixed
models.

As future work, we are undergoing the study of the case where we will incorporate the
genetic factors of the animals into the model to explain part of the variation in the random
parameters and we intend to implement the current methods in an R package.
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Abstract
In early work we have studied a class of stochastic differential equation (SDE) models, for
which the Gompertz and the Bertalanffy-Richards stochastic models are particular cases, to
describe individual growth in random environments, and applied it to model cattle weight evo-
lution using real data. We have started to work on these type of models considering that the
model parameters are fixed, i.e. the same for all the animals. Aiming to incorporate variability
among individuals, we consider that the model parameters can be random variables, resulting in
SDE mixed models. In additon, here we consider SDE mixed models, allowing the parameters
to be random and propose to incorporate each animal’s genetic characteristics considering the
transformed animal’s weight at maturity to be a function of its genetic values. The main objec-
tive is to extend the SDE mixed model to the more realistic case where the individual genetic
value becomes an important component in the estimated growth curve. For the estimation of the
model parameters we have used maximum likelihood estimation theory. Estimates and asymp-
totic confidence intervals of the parameters are presented. A comparison with SDE non-mixed
model and SDE mixed model without the inclusion of genetic characteristics is shown with the
conclusion that the incorporation of some genetic characteristics in the model parameters im-
proves the estimation of the animal’s growth curve.
Keywords genetic traits; individual growth; mixed models; stochastic differential equations.

4.1. Introduction
In the last four decades, Stochastic Differential Equations (SDE) have been studied and applied
to individual growth modeling by several authors using SDE non-mixed models [2, 13, 15, 35,
40–43] where, for instance, authors have modeled the growth dynamic of animals, trees or glu-
cose, and where the parameters of the SDE have fixed, although unknown, values that need to be
estimated from data. When the model parameters are considered random, SDE mixed models
are used to model individual growth, with applications in various fields, such as animal growth
and pharmacokinetics, among others [14, 19, 21, 22, 26, 36, 44].

Considering M animals, we have used the following general SDE model

dYi(t) = β (α − Yi(t)) dt + σ dWi(t), Yi(ti,0) = yi,0, i = 1, . . . ,M, (4.1)

where Yi(t) = h(Xi(t)) is the modified size by the transformation h, a monotonous continuously
differentiable function (which we assume known) of the real size Xi(t) at age t of the ith indi-
vidual (i = 1, . . . ,M). We have Yi(ti,0) = yi,0 = h(xi,0), where xi,0 is the size observed at age
ti,0 (initial observation) for individual i, and α = h(A), where A is the asymptotic size or size at
maturity. The growth parameter β is the rate of approach to maturity, σ measures the strength
of environmental fluctuations on growth, and Wi(t) (i = 1, . . . ,M) are independent standard
Wiener processes. Specific choices of the function h lead to stochastic versions of some mod-
els commonly used to describe growth, such as the monomolecular model for h(x) = x, the
Bertalanffy-Richards model for h(x) = xc (c > 0), the Gompertz model for h(x) = ln x and the
logistic model for h(x) = x−1 [2, 15]. We refer to model (4.1) as SDE non-mixed model, when
the parameters α, β and σ are fixed values common to all individuals. However, it is natural to
think that different individuals might have different values for these parameters, due to their in-
dividual characteristics. To take this into account we have studied SDE mixed models, where in
in model (4.1) we have considered that the parameters α and/or βwere random variables [14,37].

The maximum likelihood methods are the commonly used methods to estimate the model
parameters. Unlike the SDE non-mixed models, where it is usually possible to obtain a closed-
form expression for the likelihood function, that is not always the case when SDE mixed models
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are used. Recently we have made some developments in estimation methods for SDE mixed
models, when trend parameters can be considered random, [14,37], using approximation meth-
ods to solve estimation difficulties in SDE mixed models [22, 26, 36]. In our recent work, we
have introduced the delta approximation method (DA method), a new approach inspired by
the classical statistical delta method, and evaluated its performance with existing approxima-
tion methods, such as the Laplace approximation method (LA method) or other approximation
methods available in MsdeParEst and mixedsde R packages. The DA method has an advantage
over the available R packages by not requiring a common time vector of observations for all
individuals.

The inclusion of genetic values in animal growth allows breeders to develop targeted breed-
ing objectives and selection strategies. By prioritizing growth-related traits based on their esti-
mated genetic values, breeders can focus on enhancing specific aspects of animal growth. This
approach ensures that breeding efforts are directed towards maximizing growth potential, effi-
ciency, and overall productivity.

In this work we will include a genetic value of the animals in the mixed model, allowing
that each animal has a different growth curve influenced by its genetic information. Here, we
will consider the case where the asymptotic weight at maturity is random, allowing us to study
the influence of genetic values on this parameter of the SDE mixed model, particularly whether
they provide a significant contribution to the precision of the growth curve. Comparing the pa-
rameters estimation using the SDE non-mixed model (parameters are fixed values, common to
all individuals), the SDE mixed model without the inclusion of genetic values (parameters, in
this case α, vary randomly from animal to animal) and the SDE mixed model with inclusion of
the genetic values (parameter α is considered random and writen as a linear function of the an-
imal’s genetic values), we can evaluate if a random effect on the asymptotic weight at maturity
is needed, and if so if the animal’s specific genetic information would improve the parameters
estimation. A more precise parameters estimation, and as a consequence, a more precise growth
curve, will improve the farmers profit in livestock production.

We illustrate the results using real cattle weight (in kg) data of 10843 animals provided
by the Associação de Criadores de Bovinos Mertolengos (ACBM), which performs the grow-
ing and finishing phases of young Mertolenga breed males, and by associated breeders, whose
agricultural holdings are located in the Alentejo region in Portugal. Each animal has weight
measurements taken at different age instants, varying from animal to animal, contrary to what
is usually assumed in estimation methodologies.

The data regarding the genetic information of the animals results from the genetic evaluation
of the Mertolenga cattle breed that was carried out at the National Institute of Agricultural and
Veterinary Research (INIAV). Seven genetic traits were considered: growth capacity, maternal
capacity, calving interval, average daily weight gain, carcass weight per day of age, feed con-
version index and reproductive longevity. Seven models were fitted, each including a different
genetic trait. We then evaluate which genetic trait results in an increasing performance on the
model parameter estimates of the individuals.

We begin by describing the SDE mixed models with random α, in section 4.2, and discuss
their main properties. Then, in section 4.3, we extend the SDE mixed models to incorporate the
genetic values. In section 4.4, we apply our model to real cattle weight data and compare its
performance with other SDE models. Finally, in section 4.5, we summarize the main findings
and conclusions of our study.
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4.2. Stochastic differential equations models
Let us consider M individuals, where Xi(t) denotes the size of the ith individual (i = 1, . . . ,M) at
age t. In our application, the size refers to the animal’s weight, but in other cases, it can denote
another growth measure of the individual. We will consider a modified size Yi(t) = h(Xi(t)),
(i = 1, · · · ,M), and describe the evolution of individual growth through an SDE of the form
(4.1). For the real cattle weight data we used here for illustration, the transformation h(x) = ln x,
that leads to the Stochastic Gompertz model. revealed to be the most appropriate and so we will
use it in the application. The solution of this SDE is an ergodic diffusion process with drift and
diffusion coefficients β (α − yi) and σ2, respectively. The solution of (4.1), given by

Yi(t) = α + e−β(t−ti,0)(yi,0 − α) + σe−βt
∫ t

ti,0
eβsdW(s), (4.2)

follows a Gaussian distribution with mean α + e−β(t−ti,0)(yi,0 − α) and variance σ
2

2β (1 − e−2β(t−ti,0))
(see, for instance, [15, 27]).

Let ti, j (i = 1, ...,M, j = 1, ..., ni) be the age of the jth weight measurement of the ith animal
and let Yi, j = Yi(ti, j) = h(Xi(ti, j)) be the corresponding modified weight according to model (4.1).
For each animal i (i = 1, . . . ,M), denote by ti =

(
ti,0, ti,1, . . . , ti,ni

)
its age vector of observations

(which may differ from individual to individual), by Yi =
(
Yi,0,Yi,1, ...,Yi,ni

)
the corresponding

vector of modified sizes and by yi =
(
yi,0, yi,1, ..., yi,ni

)
the observed value of Yi. We assume

ti, j−1 < ti, j and make Ei, j = e−(ti, j−ti, j−1). We see that for Yi, j conditioned on Yi, j−1 = yi, j−1, the
transition distribution for animal i is Gaussian:

Yi, j| (Yi, j−1 = yi, j−1) ∼ N
(
α +

(
yi, j−1 − α

)
Eβi, j ,

σ2

2β
(1 − E2β

i, j)
)
, (4.3)

with i = 1, · · · ,M, j = 1, · · · , ni. We have applied the maximum likelihood estimation method,
[14, 15, 37], to estimate the parameter vector p = (α, β, σ). From (4.3), using the fact that Yi(t)
is a Markov process, we know that, given Yi,0 = yi,0 (assumed known), the Yi joint probability
density function for individual i takes the form

pYi(yi|α, β, σ) =
ni∏
j=1

exp
(
−1

2

(
yi, j−α−(yi, j−1−α)Eβi, j

)2

σ2
2β (1−E2β

i, j )

)
√

2πσ2

2β (1 − E2β
i, j)

(4.4)

=

exp

−1
2

ni∑
j=1

(
yi, j − α − (yi, j−1 − α)Eβi, j

)2

σ2

2β (1 − E2β
i, j)


ni∏
j=1

√
2π
σ2

2β
(1 − E2β

i, j)

, i = 1, . . . ,M,

and by independence among individuals we obtain the likelihood function for the M animals

L(α, β, σ) =
M∏

i=1

pYi(yi|α, β, σ). (4.5)
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The maximum likelihood estimate of the parameter vector p is obtained by maximization
of (4.5) or of the log-likelihood function

LLY(α, β, σ) = ln L(α, β, σ) =
M∑

i=1

−
ni

2
ln (2π)

−
ni

2

M∑
i=1

ln
(
σ2

2β

)
−

M∑
i=1

1
2

ni∑
j=1

ln
(
1 − E2β

i, j

)
(4.6)

−
β

σ2

M∑
i=1

ni∑
j=1

(
yi, j − α −

(
yi, j−1 − α

)
Eβi, j

)2

1 − E2β
i, j

.

We have described the general SDE model (4.1) for the complete growth curve of the ani-
mals where the model’s parameters α, β, and σ are assumed common to all individuals. In [14],
we consider a generalization to SDE mixed models to take into account that different animals,
due to their individual characteristics, may have different values of the parameters.

We have denoted by b the d-dimensional vector of parameters that vary randomly among
animals and assumed that the distribution of b among animals has probability density function
(p.d.f.) pB(b|Ψ), where Ψ is the parameter vector that characterizes this distribution and needs
to be estimated. Assuming independence among the animals, the M parameter vectors bi of the
different animals i (i = 1, . . . ,M) are independent identically distributed random variables with
common p.d.f. pB and we assume that bi (i = 1 . . . ,M) are also independent of the Wiener
processes that characterize the environmental conditions under which the animals are growing.
Let Λ be the vector of the remaining model parameters (those not involved in pB), assumed to
be common to all animals. The likelihood function for M trajectories (animals) is given by

L(Λ,Ψ) =
M∏

i=1

pYi(yi|Λ,Ψ)

=

M∏
i=1

∫
Rd

pYi(yi|bi,Λ)pB(bi|Ψ) dbi. (4.7)

The case of a single random parameter bi = (αi) with αi ∼ N(µ, θ2) has already been studied.
When we have the special situation of an age vector of observations ti ≡ t = (t0, t1, . . . , tn),
i = 1, . . . ,M common to all animals, we can see it in [21]. For the general situation, with
no such restrictions, we can see it in [37] and [14]. In this case, it is possible to explicitly
compute the integral in the likelihood function, resulting in a final closed-form expression for
this function. This is shown in [14, 37], where the log-likelihood function for all animals is
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given by

LLY(µ, θ, β, σ) =
M∑

i=1

(
−

ni

2
ln (2π) −

ni

2
ln

(
σ2

2β

)
−

1
2

ni∑
j=1

ln
(
1 − E2β

i, j

)
−

1
2

ln (Di)

−
β

Diσ2

ni∑
j=1

(
yi, j − µ −

(
yi, j−1 − µ

)
Eβi, j

)2

1 − E2β
i, j

+
2β2θ2

Diσ4

 ni∑
j=1

(
yi, j − yi, j−1Eβi, j

)
1 + Eβi, j


2

−
β(Di−1)

Diσ2

 ni∑
j=1

(
yi, j − yi, j−1Eβi, j

)2

1 − E2β
i, j


 ,

(4.8)

with Di =
2βθ2

σ2

ni∑
j=1

1 − Eβi, j
1 + Eβi, j

+ 1.

For the random β case, bi = (βi), it is not possible to obtain a closed-form expression for
the likelihood function, and we need to solve the integral that appears in the likelihood function
(4.7) through approximation methods. In [14] we propose a method to approximate the likeli-
hood function when both α and β are random variables, the delta method. This approach gives
simple and closed-form approximation formulas, making it easy to apply. This method also has
the advantage of not being restricted to the cases where the age vector of the observations is the
same for all trajectories nor does it require equidistant ages of observation, assumptions quite
common in most estimation techniques. In [37] the same method is used but for the particular
cases where just one of the parameters α or β is considered random, and a comparison of our
new proposed method with the known Laplace approximation method is performed.

Here, we consider a generalization of SDE mixed models that allows one to incorporate
each animal’s genetic value with the aim of obtaining a more realistic model and improve the
estimates of the model parameters at the individual level.

4.3. Mixed models with genetic values
It is natural to assume that the growth of an animal can depend on its individual characteristics,
in particular on the animal’s genetic information. We will develop the particular case where
the parameter α, which represents the transformed asymptotic maturity weight of the animal, is
considered random and can incorporate the animals genetic values. Consider that the genetic
characterization of each animal is determined by K genetic values. In the first stage, we are in-
terested in identifying the genetic values that can improve the estimation of the animal’s weight
at maturity and can lead to a significantly better model. So, for simplicity, we will consider
incorporating one genetic value at a time (K = 1).

Denoting by gi the genetic value of animal i, (i = 1, . . . ,M), let us consider αi to be defined
as a linear function of the genetic value in the form of

αi = c0 + c1gi + δi, (4.9)

where δi are independent and identically distributed with δi ∼ N(0, σ2
δ), (i = 1, . . . ,M). Then

αi follows a Gaussian distribution with mean c0 + c1gi and variance σ2
δ.

Using the parameter αi written as a linear function of the genetic value, we can adapt the
model presented in the previous section, but instead of αi ∼ N(µ, θ2), we will have αi ∼ N(c0 +

c1gi, σ
2
δ), (i = 1, . . . ,M). In fact, using the same simple math used to derive expression (4.8),

i.e. replacing in (4.7) the Gaussian density with mean µi = c0 + c1gi and standard deviation σδ
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for animal i and solving the resulting integral, we end up obtaining a closed-form expression
for the log-likelihood for all animals, similar to the expression (4.8), which will be given by
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with Di =
2βσ2

δ

σ2

ni∑
j=1

1 − Eβi, j
1 + Eβi, j

+ 1, where the models parameters are now c0, c1, σδ, β, σ.

In order to effectively verify if a genetic value can improve the estimation of the animal’s
weight, a comparison between the SDE mixed model and the SDE mixed model with the in-
clusion of the genetic value is made (using a likelihood ratio and also the Bayesian information
criterion (BIC) and the Akaike information criterion (AIC)). If the two models show no signif-
icant differences, the genetic value does not have a significant effect and we may conclude that
c1 is not significantly different from 0, i.e. the mean value of the parameter αi is common to all
animals and equal to µ = c0. On the other hand, if a significant difference between models is de-
tected, it reveals that the inclusion of the genetic value has a significant effect on the estimation
of the animal’s weight at maturity, i.e., c1 is significantly different from 0 and the mean value of
αi is different for each animal and given as a linear function of the specific genetic value gi as
µi = c0 + c1 gi.

4.4. Real data application
In this section we use the maximum likelihood method to estimate the parameters for the sto-
chastic Gompertz model using real cattle weight data, for the case where the parameter α is
considered random and a function of the genetic values. We compare the results with the ones
obtained when no genetic value is included, and using the likelihood ratio test (LRT) we com-
pare both models. In this way, we infer if the inclusion of the genetic values improves the
estimation of the model parameters. Since we have a different set of animals for each genetic
value, we also present the Akaike Information Criterion (AIC) and the Bayesian Information
Criterion (BIC) to compare different models. The database provided by ACBM has information
on the weights and ages of 10843 animals, totaling 69782 observations, with a minimum of 3
weight observations and a maximum of 33 observations.

4.4.1. The genetic information
Genetic evaluation of the Mertolenga cattle breed was carried out at the National Institute of
Agricultural and Veterinary Research, from all the data collected by ACBM, namely, records of
genealogies, births, weights and carcass information, taking into account the following charac-
teristics: growth capacity until weaning (GC), maternal capacity until weaning (MC), calving
interval (CI), average daily weight gain (WG), carcass weight per day of age (CW), feed conver-
sion index (FC) and reproductive longevity (RL). The estimation of the genetic values of each
animal for these seven types of traits, takes into account the animal’s performance, if known,
and the performances of all its relatives (ascendants, descendants and collateral’s), taking into
consideration the various environmental effects that affect the respective trait. Currently, at an
international level and in several livestock species (cattle, sheep, pigs poultry, goats, horses,
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etc.) the use of BLUP - Animal Model for the genetic evaluation is widespread [45–47].

Not all animals have the same age at the available genetic evaluations. Most of the ani-
mals had genetic evaluations taken at least at two different instants: at birth and at entrance on
ACBM for the finishing phase. We have compared the estimation results considering, for each
animal and each genetic characteristic, the first genetic value available, the genetic value closest
to 7 months of age (mean age of entrance in ACBM for the growing and finishing phases), and
also the mean of the mother and father genetic values. Comparing the estimates obtained using
these three different genetic information, we have concluded that, using the values from the
genetic evaluation closest and prior to the time of entrance in ACBM, results in the best choice
in terms of the likelihood of the mixed stochastic differential equations model. That is also the
most coherent decision, since the final objective is to give a tool to ACBM to better estimate the
animal’s growth and accurately estimate the profit obtained by raising and selling the animal.
Using the most recent animal’s genetic information available by the time of entrance on ACBM
will accomplish better that purpose.

Therefore, in our analysis, we will use for each animal and genetic trait, the animal’s
available genetic value closest and prior to the mean entrance age at ACBM (approximately
7 months). Not all animals had the seven genetic values available. For that reason, depending
on the genetic value used in the model, the number of observations used to estimate the param-
eters vary.

The genetic value of an animal for a given trait represents the value of that animal as a
breeder (expressed in the respective units of measurement, i.e. kg, days, %, etc.) and should
be interpreted as the genetic superiority or inferiority for the trait relative to the population av-
erage. The accuracy of the genetic value estimate is also available and gives us an idea of how
confidently the genetic value of the animal for a given characteristic was estimated. However,
it is not an indicator of the genetic potential of the animal. The more information about the
animal (e.g., various records of birth intervals) and about their relatives (mother, sisters, daugh-
ters, grandparents, etc.) there are, the more accurate the estimate of their breeding value will be.

Regarding the seven genetic values in terms of genetic potential:
• For MC, RL, GC, WG and CW, the higher their values are, preferably positive, the

better.
• For CI and FC, the lower their values are, preferably negative, the better.

In Table 1 we present the minimum, the 25th quantile (Q1), the median, the mean, the 75th

quantile (Q3), the maximum, and the standard deviation as well as the number of animals with
the respective genetic value available and the total number of weight observations available for
that group of animals. Since, to achieve a high genetic potential, some of the genetic values
should be high and positive while others should be small and negative, and all genetic values
have a very high range (positive and negative) values, it is clear that some animals would have
a greater genetic potential that others.

The first five genetic values presented in Table 1 are the ones that should be as high as
possible and positive. The last two genetic values should be as small as possible and negative.
At the moment of the evaluation of the genetic values, they are usually centered to obtain an
evaluated population with a zero mean and making it easy to determine which animals have
higher potential and which have lower potential. In the results presented in Table 1, the mean
is not 0 because the animals used in the parameter estimation had their genetic values evaluated
at a wide variety of evaluation times and so belong to different evaluated populations. The CW,
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WG and CI values have higher variability.

Table 1. Descriptive statistics for the seven genetic values of the genetic evalua-
tion: minimum (min), 25th quantile (Q1), median, mean, 75th quantile (Q3), max-
imum (max), standard deviation (s.d.), number of animals (M) and total number
of weight observations (n).

Genetic value min Q1 median mean Q3 max s.d. M n

MC -22.82 -3.45 0.63 0.24 4.56 19.92 6.17 7981 45014
GC -39.44 -5.07 -0.02 -0.17 5.08 24.56 7.78 5186 34526
RL -11.66 -1.52 0.99 1.04 3.32 19.88 3.82 4234 21317
WG -45.00 -1.00 8.63 11.54 21.51 106.50 17.30 8302 45424
CW -99.27 -18.94 -6.18 -6.48 6.53 69.77 21.23 5184 26742

CI -67.15 -9.27 -0.75 -0.28 8.89 78.48 16.14 7960 44860
FC -0.73 -0.18 -0.07 -0.10 0.00 0.47 0.15 6952 36415

4.4.2. Parameters estimates
In Table 2 we can observe the parameter estimates using the stochastic differential equations
non-mixed model (NMSDE) - obtained by maximization of (4.6) - and the mixed model with
random α without the genetic characters (MSDE) - obtained by maximization of (4.8). We can
observe that the estimates of all parameters are quite similar in both models. The approximate
95% confidence bands based on the inverse of the empirical Fisher information matrix in both
models are also very similar. We present the maximum values of the log-likelihood in terms of
the actual weight, LLX. Comparing the two models through the LRT, we can conclude that they
differ significantly (p ≤ 0.001). This result shows that assuming the parameter α as a random
parameter should be considered as a better model for the growth data of the Mertolenga cattle
breed.

Table 2. Estimation results for the NMSDE and for the MSDE models assuming
random α. The table shows the values of the maximum likelihood estimates and
corresponding approximate 95% asymptotic confidence bands, as well as the
corresponding value of the log-likelihood. Besides showing the results for the
modified weight α, we present them for the weight A = h−1(µ) (for the NMSDE
model µ = α). The AIC and BIC values are also presented. The magnitude
of the p-values of the LRT test between the NMSDE and MSDE are shown: ns

(p > 0.05); ∗ (0.01 < p ≤ 0.05); ∗∗ (0.001 < p ≤ 0.01); ∗∗∗ (p ≤ 0.001).

NMSDE MSDE

µ 6.5867 ± 0.0142 6.5889 ± 0.0148
A 725.36 ± 10.28 726.98 ± 10.74
θ − 0.1428 ± 0.0092
β 1.2914 ± 0.0138 1.3002 ± 0.0143
σ 0.3078 ± 0.0018 0.3010 ± 0.0019
LLX −264443.2 −264281.0∗∗∗

AIC 528892.4 528570.0
BIC 528919.4 528606.0
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Let us now explore the mixed model with random α with the inclusion of genetic values
(MSDEG). We fit seven MSDEG models, one for each genetic trait, and compared them with
the MSDE and NMSDE models using the same datasets (for each trait, the number of animals M
and the number of weight observations n of the corresponding dataset can be seen on Table 1).
The parameter estimates were obtained by maximization of (4.10), (4.8) and (4.6), respectively.
First, we will compare the NMSDE models with the equivalent MSDE models, to evaluate the
relevance of considering a random effect on the parameter α, and then we compare the MSDE
models with the MSDEG models, to evaluate the effect of adding that specific genetic trait. Ta-
ble 3 and 4 present the estimates obtained through the maximum likelihood estimation method
and the 95% approximate confidence bands based on the inverse of the empirical Fisher infor-
mation matrix. The AIC and BIC are also presented to compare the models.

In Table 3 we can observe that, for all the genetic traits, the differences between NMSDE
and MSDE were significant at p ≤ 0.01 or p ≤ 0.001 and the AIC and BIC values were lower
on these MSDE models when compared to the NMSDE models. This shows that a random
effect should be present in all groups of animals.

When comparing the MSDEG and MSDE models of Table 3 for the genetic trait MC, we can
observe that c1 (the parameter that indicates the importance of the genetic trait on explaining the
variability in α) has a small estimate not significantly different from 0. But we should be aware
that such lack of significance was based on an approximation of the confidence interval of c1

obtained from the inverse of empirical Fisher information matrix. The LRT, however, confirms
the lack of significance of the maternal capacity until weaning. For the cases of the reproductive
longevity and calvin interval, a significance exists with a p-value of the LRT lower than 0.1%
(the AIC values are also lower for these two genetic traits). The maximum likelihood estimates
from the NMSDE, the MSDE and the MSDEG models are very similar for all common param-
eters. For the models with random α, it is interesting to compare the standard deviation of the
random effect, i.e. to compare the θ of the MSDE model with the σδ of the MSDEG model.
With the exception of the non-significant MC trait, we see that the incorporation of the genetic
trait, RL or CI, reduces the variability of the random effect.

In Table 4 for all genetic traits, the differences between NMSDE and MSDE were signifi-
cant at p ≤ 0.001. Also the AIC and BIC values were lower on the MSDE models, allowing us
to conclude that for these groups of animals we should consider a random asymptotic weight at
maturity. The maximum likelihood estimates from the NMSDE, the MSDE and the MSDEG
models are very similar for all parameters. For the models with random α, it is interesting to
compare the standard deviation of the random effect, i.e. to compare the θ of the MSDE model
with the σδ of the MSDEG model. With the exception of the non-significant GC trait, we see
that the incorporation of the genetic trait, Wg, CW or FC, reduces the variability of the random
effect. Regarding the AIC values we can see that the MSDE models provides lower values than
the NMSDE equivalent models, which in turn provides lower values that the equivalent MS-
DEG models.

In summary, comparing models with the same number of observations, the comparison be-
tween NMSDE and MSDE models shows that considering the parameter α to randomly vary
among animals provides a very significant improvement, and the comparison between MSDE
and MSDEG models shows a very significant improvement for the incorporation of some ge-
netic traits (which help explain part of the variability in α), but not for others (which seems
to have no or low influence on α). The genetic traits that are not significant are the maternal
capacity until weaning (MC) and the growth capacity until weaning (GC). The genetic traits
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Table 3. Estimation results for the NMSDE, MSDE and MSDEG models. The
table shows the values of the maximum likelihood estimates and corresponding
approximate 95% asymptotic confidence bands, as well as the corresponding
value of the log-likelihood. Estimates for the actual asymptotic weight (in kg) are
shown with A = h−1(α), A = h−1(µ) and A = h−1(c0 + c1g1), for NMSDE, MSDE
and MSDEG, respectively. The AIC and BIC values are also presented. The
magnitude of the p-values of the LRT test between the NMSDE and MSDE and
between the MSDE and MSDEG are shown: ns (p > 0.05); ∗ (0.01 < p ≤ 0.05);
∗∗ (0.001 < p ≤ 0.01); ∗∗∗ (p ≤ 0.001).

NMSDE

MC RL CI

α 6.5826 ± 0.0157 6.5892 ± 0.0281 6.2829 ± 0.0157
A 722.40 ± 11.32 727.17 ± 20.43 722.68 ± 11.36
β 1.2938 ± 0.0154 1.3099 ± 0.0272 1.2930 ± 0.0154
σ 0.3060 ± 0.0020 0.3395 ± 0.0033 0.3062 ± 0.0020
LLX −202064.0 −96107.3 −201397.3
AIC 404134.0 192220.5 402800.7
BIC 404160.1 192244.4 402826.8

MSDE

µ 6.5814 ± 0.0163 6.5872 ± 0.0284 6.5816 ± 0.0164
A 721.55 ± 11.78 725.75 ± 20.61 721.69 ± 11.82
θ 0.1452 ± 0.0102 0.0707 ± 0.0313 0.1450 ± 0.0102
β 1.3052 ± 0.0160 1.3143 ± 0.0277 1.3046 ± 0.0160
σ 0.2989 ± 0.0021 0.3381 ± 0.0035 0.2991 ± 0.0021
LLX −201924.8∗∗∗ −96104.7∗∗ −201259.7∗∗∗

AIC 403857.6 192217.3 402527.3
BIC 403889.2 192230.2 402514.0

MSDEG

c0 6.5826 ± 0.0164 6.5951 ± 0.0287 6.5799 ± 0.0163
c1 0.0010 ± 0.0011 −0.0059 ± 0.0026 0.0016 ± 0.0004
A 722.24 ± 11.839 727.18 ± 20.68 720.14 ± 11.74
σδ 0.1453 ± 0.0102 0.0679 ± 0.0325 0.1410 ± 0.0104
β 1.3045 ± 0.0160 1.3134 ± 0.0277 1.3076 ± 0.01610
σ 0.2989 ± 0.0021 0.3381 ± 0.0035 0.2993 ± 0.0021
LLX −201923.2ns −96095.2∗∗∗ −201235.6∗∗∗

AIC 403856.3 192200.3 402481.1
BIC 403899.9 192240.2 402524.7

reproductive longevity (RL), calving interval (CI), average daily weight gain (WG), carcass
weight per day of age (CW), and feed conversion index (FC) do have a very significant effect,
RL and FC with a negative effect c1 < 0 (i.e., α is high for low genetic values, preferably neg-
ative) and CI, WG and CW with a positive effect c1 > 0 (i.e., α is high for high genetic values,
preferably positive).
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Table 4. Estimation results for the NMSDE, MSDE and MSDEG models. The
table shows the values of the maximum likelihood estimates and corresponding
approximate 95% asymptotic confidence bands, as well as the corresponding
value of the log-likelihood. Estimates for the actual asymptotic weight (in kg) are
shown with A = h−1(α), A = h−1(µ) and A = h−1(c0 + c1g1), for NMSDE, MSDE
and MSDEG, respectively. The AIC and BIC values are also presented. The
magnitude of the p-values of the LRT test between the NMSDE and MSDE and
between the MSDE and MSDEG are shown: ns (p > 0.05); ∗ (0.01 < p ≤ 0.05);
∗∗ (0.001 < p ≤ 0.01); ∗∗∗ (p ≤ 0.001).

NMSDE

GC WG CW FC

α 6.5826 ± 0.0157 6.5884 ± 0.0165 6.6007 ± 0.0240 6.6241 ± 0.0210
A 722.40 ± 11.32 726.61 ± 12.01 735.60 ± 17.65 753.00 ± 15.84
β 1.2938 ± 0.0154 1.2998 ± 0.0161 1.2835 ± 0.0226 1.2553 ± 0.0192
σ 0.3060 ± 0.0020 0.3156 ± 0.0021 0.3308 ± 0.0028 0.3254 ± 0.0024
LLX −202050.7 −204171.3 −120058.1 −163493.7
AIC 404107.3 408348.7 240122.2 326993.5
BIC 404133.4 408374.8 240146.8 327019.0

MSDE

µ 6.5814 ± 0.0163 6.5846 ± 0.0170 6.5932 ± 0.0247 6.6216 ± 0.0216
A 721.55 ± 11.78 723.86 ± 12.33 730.11 ± 18.01 751.15 ± 16.23
θ 0.1452 ± 0.0102 0.1256 ± 0.0117 0.1241 ± 0.0175 0.1181 ± 0.0157
β 1.3052 ± 0.0160 1.3107 ± 0.0167 1.2988 ± 0.0237 1.2644 ± 0.0198
σ 0.2989 ± 0.0021 0.3106 ± 0.0022 0.3265 ± 0.0030 0.3216 ± 0.0025
LLX −201911.4∗∗∗ −204100.8∗∗∗ −120028.9∗∗∗ −163461.3∗∗∗

AIC 403830.9 408209.6 240065.7 326930.6
BIC 403864.9 408189.3 240081.6 326897.9

MSDEG

c0 6.5818 ± 0.0164 6.5667 ± 0.0175 6.5987 ± 0.0248 6.6040 ± 0.0218
c1 0.0004 ± 0.0008 0.0015 ± 0.0004 0.0010 ± 0.0005 −0.2223 ± 0.0534
A 721.64 ± 11.79 723.44 ± 12.31 729.4 ± 17.95 753.89 ± 16.34
σδ 0.1450 ± 0.0102 0.1215 ± 0.0120 0.1217 ± 0.0178 0.1131 ± 0.0163
β 1.3051 ± 0.0160 1.3087 ± 0.0166 1.2991 ± 0.0236 1.2608 ± 0.0198
σ 0.2989 ± 0.0021 0.3106 ± 0.0022 0.3265 ± 0.0030 0.3215 ± 0.0025
LLX −201911.0ns −204073.1∗∗∗ −120020.4∗∗∗ −163427.9∗∗∗

AIC 403832.1 408156.1 240050.8 326865.9
BIC 403875.6 408199.7 240091.8 326908.4

4.5. Conclusion
Incorporating genetic values in the animal growth process is a valuable approach that can lead
to significant improvements in livestock production. By considering the genetic potential of
animals, breeders can select individuals with desirable traits, resulting in enhanced growth, pro-
ductivity, and overall performance of the population.

We have studied a general class of SDE mixed models with the inclusion of genetic val-
ues to describe individual growth in a randomly varying environment with a real application
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to the weight of male Mertolengo cattle. A general model can be written as a variant of the
Ornstein-Uhlenbeck model, where the parameter α (asymptotic modified weight) is assumed to
be random and where the random effect is written as a linear function of the genetic values of
the animal. We have used, in the numerical application to Mertolengo cattle data, the weight of
the animals and the logarithmic transformation, which reveals to be the most appropriate to that
data, leading to the stochastic Gompertz model. Our interest in using SDE mixed models with
genetic values comes from the reasonable idea that model parameters may vary from animal
to animal, which, for instance, occurs due to different individual characteristics of the animals
such as genetic differences.

We apply the maximum likelihood estimation method to obtain the parameter estimates of
the SDE mixed models with inclusion of genetic values (MSDEG) and compare each model
with the correspondent ones without the inclusion of the genetic values (MSDE) and with the
fixed effects model (NMSDE). We compare the models using the likelihood ratio test and also
present the AIC and BIC values. The comparison between the SDE mixed model and the SDE
non-mixed model clearly shows that, just by assuming the asymptotic weight at maturity of
each animal to be a random variable, results in a highly significant improvement. The further
importance of considering a genetic value was evaluated by comparing the corresponding MS-
DEG model with the MSDE model. The results revealed that the incorporation of the genetic
values of reproductive longevity, calving interval, average daily weight gain, carcass weight per
day of age or feed conversion index, provides a highly significant improvement, while the incor-
poration of the maternal capacity until weaning and the growth capacity until weaning genetic
values shows non-significant improvement.

This study enables the identification of genetic values that contribute the most to describe
the animal growth asymptotic size. By incorporating these genetic values, breeders can im-
prove the efficiency and productivity of animal production systems, offering significant benefits
to livestock production.

In future work, we intend to implement MSDE and MSDEG models to improve the opti-
mization of the breeder’s profit by raising an animal. We should estimate the optimal selling
age and optimize the profit using SDE mixed models instead of SDE non-mixed models. We
also intend to extend the SDE mixed model by letting the random growth parameter β depend
on the genetic values. A combination of several genetic values simultaneously instead of just
one at a time should also be addressed, either for the SDE mixed effect model with a random α
and the SDE mixed model with a random β.
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CHAPTER 5

Conclusions

The study of MSDE models has provided valuable insights into the analysis and modeling of
dynamic systems subject to both deterministic and stochastic components. Throughout this re-
search, we have explored the unique characteristics and applications of these models in animal
growth, allowing a more realistic representation of growth dynamics accounting for unobserved
factors, measurement errors, or random fluctuations in the system.

While fixed effects describe the average or general trend of the system, random effects cap-
ture the individual variations or heterogeneity among different units or subjects. This integration
of fixed and random effects allows for a more comprehensive understanding of the underlying
dynamics and enables the estimation of both population-level and individual-level effects.

We have studied a general class of MSDE models to describe individual growth in a ran-
domly varying environment with a real application to the weight of male Mertolengo cattle. A
general model can be written as a variant of the Ornstein-Uhlenbeck (OU) model, where the
parameter α (asymptotic modified weight) and/or the growth parameter β (the rate of approach
to maturity) are assumed to be random. We have worked with the logarithm of the weight, the
transformation that reveals to be the most appropriate for our type of data, leading to the sto-
chastic Gompertz model.

We apply the maximum likelihood estimation method to obtain the parameter estimates of
the MSDE models. For this type of models, in most cases it is not possible to obtain a closed-
form expression for the likelihood function and approximation methods are used to overcome
this issue. We have developed approximation methods used to obtain simpler approximate ex-
pressions for the integral involved in the likelihood function. We propose the DA method, a new
approximation method we have developed, based in the classical delta method used in Statis-
tics. We compare this new method with an already known approach, the LA method, for which
we have explicitly derived the formulas to meet the needs of our real application (not available
in the literature) and we have implemented numerically and also compared with available R
packages (mixedsde and MsdeParEst). However these packages assume that the animals should
have the weight taken at the same ages. Our newly proposed DA method and the derived LA
method were implemented for datasets where animals can have different age vectors of obser-
vations, and simulated datasets with animals with the same age vector were created to compare
the DA and LA methods with the methods proposed in the mixedsde and MsdeParEst packages.

These approximation methods have provided robust and efficient means for estimating the
unknown parameters and evaluating model fit, enabling researchers to make more accurate in-
ferences and predictions. We have developed MSDE models for three specific cases, namely,
the random α case, the random β case and also the case where both α and β are random. The
random parameters were assumed to follow a Gaussian distribution.

For the random α case, we have proven that the LA method leads to an exact closed form
expression for the likelihood function. We also concluded that the DA method provides similar
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estimates of the parameters to those obtained by the R packages. For the random beta case, the
results obtained by the two methods (LA and DA) are very similar and better than the obtained
by the R packages. When both (α and β) are random, the DA method, for all simulated scenar-
ios, with several numbers of observations (50, 500 and 5000), was able to identify randomness
in the parameters, while the approach provided by the R packages has difficulty identifying the
variability of parameter β. When applied to real cattle weight data, the DA method was also
able to identify both parameters as random. The results showed good performance of the DA
method with both random parameters compared to the methods available through the R pack-
ages. The DA and LA approximation have the advantage over the methods presented in the R
packages for their ability to be used with different age vectors for each animal.

Finally in livestock production the genetic values of animals are very important elements to
take into account in their growth process due to their genetic potential that allows the breeder
to select animals with the characteristics desirable for productivity. We use real data of genetic
value, in the MSDE models, in the case where the α parameter is considered random, and α is
written as a linear function of the genetic values. The importance of considering a genetic value
was evaluated by comparing the MSDEG model and the MSDE model. The results revealed
that the incorporation of the genetic values of reproductive longevity, calving interval, average
daily weight gain, carcass weight per day of age or feed conversion index, provides a highly
significant improvement, while the incorporation of the maternal capacity until weaning and
the growth capacity until weaning genetic values shows non-significant improvement.

In future work, we intend to implement MSDE and MSDEG models to improve the opti-
mization of the breeder’s profit by raising an animal. We intend estimate the optimal selling
age and optimize the profit using MSDE models instead of NMSDE models. We also intend
to extend the MSDE model by letting the random growth parameter β depend on the genetic
values. Another research topic is to develop MSDE models, where the choice of the distribution
for the positive random parameter β is e.g., log-normal. A combination of several genetic val-
ues simultaneously instead of just one at a time should also be addressed, either for the MSDE
model with a random α and the MSDE model with a random β.
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Appendix A: R codes for data Simulation

##---------------------------------##---------------------------------##

## R Code to simulate Log of animal’s weights at constant instants ##

## from birth (with 28 kgs) until X years old - monthly weights ##

##---------------------------------##---------------------------------##

#################

set.seed(123)

X<-4

# montly weights

pm<-1/12

# 15 days weights

pq<-1/24

# ages at montly weights

Im<-seq(0,X, by=pm)

# ages at every 15 days weights

Iq<-seq(0,X, by=pq)

n<-length(Im)

nq<-length(Iq)

# birth weight

P00m<-28

m<-500 # Define de number of animals

# random ALPHA

#alfa= 6.45; theta<-0.15; beta= 1.43; sigmaˆ2=0.33ˆ2

a<-rnorm(m,6.45,0.1531)

exp(6.45)

b<-1.43

s2<-0.33ˆ2

#Log weights - random alpha

PGm<-matrix(nrow=m,ncol=n)

PGm[,1]<-log(P00m)

for (i in 1:m){

for (j in 2:n){

PGm[i,j]<-rnorm(1,a[i]+(PGm[i,j-1]-a[i])*exp(-b*(Im[j]-Im[j-1])),

sqrt(((s2/(2*b))*(1-exp(-2*b*(Im[j]-Im[j-1]))))))

}}

69



randomalpha1<-rbind(Im,PGm)

#write.csv2(randomalpha1,file = "Data_randalpha_50anim.csv",row.names = FALSE)

# random BETA

#alfa= 6.45; lambda= 1.43; omega<-0.30; sigmaˆ2=0.33ˆ2

a<-6.45

exp(6.45)

b<-rnorm(m,1.43,0.30)

s2<-0.33ˆ2

#Log weights

PGm<-matrix(nrow=m,ncol=n)

PGm[,1]<-log(P00m)

for (i in 1:m){

for (j in 2:n){

PGm[i,j]<-rnorm(1,a+(PGm[i,j-1]-a)*exp(-b[i]*(Im[j]-Im[j-1])),

sqrt(((s2/(2*b[i]))*(1-exp(-2*b[i]*(Im[j]-Im[j-1]))))))

}}

randombeta1<-rbind(Im,PGm)

# write.csv2(randombeta1,file = "Data_randbeta_50anim.csv",row.names = FALSE)

# Random ALPHA and BETA independents

#alfa= 6.45; theta<-0.15; lambda= 1.43; omega<-0.30; sigmaˆ2=0.33ˆ2

a<-rnorm(m,6.45,0.1531)

exp(6.45)

b<-rnorm(m,1.43,0.30)

s2<-0.33ˆ2

#Log weights

PGm<-matrix(nrow=m,ncol=n)

PGm[,1]<-log(P00m)

for (i in 1:m){

for (j in 2:n){

PGm[i,j]<-rnorm(1,a[i]+(PGm[i,j-1]-a[i])*exp(-b[i]*(Im[j]-Im[j-1])),

sqrt(((s2/(2*b[i]))*(1-exp(-2*b[i]*(Im[j]-Im[j-1]))))))

}}

randomAlphaBeta<-rbind(Im,PGm)

#write.csv2(randomAlphaBeta,file = "Data_rndAlphaBeta_50anim.csv",

row.names = FALSE)

# Random ALPHA and BETA dependents

#alfa= 6.45; theta<-0.15; lambda= 1.43; omega<-0.30; sigmaˆ2=0.33ˆ2

rho <- 0.88

mu1 <- 6.45; s1 <- 0.15
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mu2 <- 1.43; s2 <- 0.3

s2<-0.33ˆ2

# Parameters for bivariate normal distribution

mu <- c(mu1,mu2) # Mean

sigma <- matrix(c(s1ˆ2, s1*s2*rho, s1*s2*rho, s2ˆ2),2) # Covariance matrix

library(MASS)

alfa_beta <- mvrnorm(m, mu = mu, Sigma = sigma)

a<-alfa_beta[,1]

b<-alfa_beta[,2]

#Log weights

PGm<-matrix(nrow=m,ncol=n)

PGm[,1]<-log(P00m)

for (i in 1:m){

for (j in 2:n){

PGm[i,j]<-rnorm(1,a[i]+(PGm[i,j-1]-a[i])*exp(-b[i]*(Im[j]-Im[j-1])),

sqrt(((s2/(2*b[i]))*(1-exp(-2*b[i]*(Im[j]-Im[j-1]))))))

}}

randomAlphaBetaCorr<-rbind(Im,PGm)

#write.csv2(randomAlphaBetaCorr,file = "Data_rndAlphaBetaCorr.csv",

row.names = FALSE)

##########################################################################

# No random effect simulation

# ALPHA e BETA fixos

#alfa= 6.45; theta<-0; lambda= 1.43; omega<-00; sigmaˆ2=0.33ˆ2

a<-rnorm(m,6.45,0)

exp(6.45)

b<-rnorm(m,1.43,0)

s2<-0.33ˆ2

# Log weights

PGm<-matrix(nrow=m,ncol=n)

PGm[,1]<-log(P00m)

for (i in 1:m){

for (j in 2:n){

PGm[i,j]<-rnorm(1,a[i]+(PGm[i,j-1]-a[i])*exp(-b[i]*(Im[j]-Im[j-1])),

sqrt(((s2/(2*b[i]))*(1-exp(-2*b[i]*(Im[j]-Im[j-1]))))))

}}

randomAlphaBeta<-rbind(Im,PGm)

#write.csv2(randomAlphaBeta,file = "Data_fixAlphaBeta_50anim.csv",

row.names = FALSE)

##########################################################################

# Simulation with estimates of exact MCV

# Estimates from 16029 animals for SGM
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mu<-6.45

exp(6.45)

theta<-0.1531

b<-1.432

s2<-0.33ˆ2

# Log weights

PGam<-matrix(nrow=m,ncol=n)

PGam[,1]<-log(P00m)

for (i in 1:m){

for (j in 2:n){

PGam[i,j]<-rnorm(1,mu+(PGam[i,j-1]-mu)*exp(-b*(Im[j]-Im[j-1])),

sqrt(((s2/(2*b))*(1-exp(-2*b*(Im[j]-Im[j-1]))))+(thetaˆ2)*

(1-exp(-b*(Im[j]-Im[j-1])))ˆ2))

}}

DaAlea_m<-rbind(Im,PGam)

#write.csv2(DaAlea_m,file = "DadosG2_aAlea_mensais.csv", row.names = FALSE)

###LogPesos quinzenais

PGaq<-matrix(nrow=m,ncol=nq)

PGaq[,1]<-log(P00m)

for (i in 1:m){

for (j in 2:nq){

PGaq[i,j]<-rnorm(1,mu+(PGaq[i,j-1]-mu)*exp(-b*(Iq[j]-Iq[j-1])),

sqrt(((s2/(2*b))*(1-exp(-2*b*(Iq[j]-Iq[j-1]))))+(thetaˆ2)*

(1-exp(-b*(Iq[j]-Iq[j-1])))ˆ2))

}}

DaAlea_q<-rbind(Iq,PGaq)

write.csv2(DaAlea_q,file = "DadosG2_aAlea_quinzenais.csv", row.names = FALSE)

##---------------------------------##---------------------------------##

## Code to call the DA or LA methods ##

##---------------------------------##---------------------------------##

## Data ##

##---------------------------------##---------------------------------##

## Dataset Simulated data

I <-read.csv("Mat_Time_500.csv",header=FALSE,sep=";",

dec=",",fill=TRUE) #reading the data

P <-read.csv("Sim_Obs_500_alpha.csv",header=FALSE,sep=";",

dec=",",fill=TRUE) #reading the data

P <-read.csv("Sim_Obs_500_beta.csv",header=FALSE,sep=";",

dec=",",fill=TRUE) #reading the data

P <-read.csv("Sim_Obs_500_alphabeta.csv",header=FALSE,sep=";",

dec=",",fill=TRUE) #reading the data
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## Datasets real data paper Mathematics

I <-read.csv("Idades16029.csv",header=FALSE,sep=";",

dec=",",fill=TRUE) #reading the data

P <-read.csv("Pesos16029.csv",header=FALSE,sep=";",

dec=",",fill=TRUE) #reading the data

## Datasets real data

I <-read.csv("Idades10843.csv",header=FALSE,sep=";",

dec=",",fill=TRUE) #reading the data

P <-read.csv("Pesos10843.csv",header=FALSE,sep=";",

dec=",",fill=TRUE) #reading the data

dim(I)

dim(P)
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Appendix B: Estimates throught the delta approximation (DA) method

## Estimates throught the DA method

start_time <- Sys.time()

DA.fit(I, P, 0, c(6.3,1.3,0.3))

end_time <- Sys.time()

end_time - start_time

start_time <- Sys.time()

DA.fit(I, P, 1, c(6.5,0.13,1.11,0.28))

end_time <- Sys.time()

end_time - start_time

start_time <- Sys.time()

DA.fit(I, P, 11, c(6.59205,1.30,0.1835, 0.30))

end_time <- Sys.time()

end_time - start_time

start_time <- Sys.time()

DA.fit(I, P, 2, c(6.592,0.1,1.30,0.183, 0.3))

end_time <- Sys.time()

end_time - start_time

## For real Dataset with 10843 animals

start_time <- Sys.time()

DA.fit(I, P, 2, c(6.4,0.03,1.36,0.21,0.29))

end_time <- Sys.time()

end_time - start_time
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Appendix C: Estimates throught the Laplace approximation (LA) method

## Estimates throught the LA method

start_time <- Sys.time()

LA.fit(I, P, 1, c(6.5,0.13,1.11,0.28))

end_time <- Sys.time()

end_time - start_time

start_time <- Sys.time()

LA.fit(I, P, 11, c(6.6,1.25,0.16, 0.28))

end_time <- Sys.time()

end_time - start_time

start_time <- Sys.time()

LA.fit(I, P, 2, c(6.5002,0.0001,1.2042,0.3288, 0.2503))

end_time <- Sys.time()

end_time - start_time

## For real Dataset with 10843 animals

start_time <- Sys.time()

LA.fit(I, P, 2, c(6.4,0.01,1.3,0.3,0.33))

end_time <- Sys.time()

end_time - start_time

## Simulated datasets

I <-read.csv("Mat_Time_100_sim.csv",header=FALSE,sep=";",

dec=",",fill=TRUE) #reading the data

P <-read.csv("Mat_Obs_100_sim.csv",header=FALSE,sep=";",

dec=",",fill=TRUE) #reading the data

I <-read.csv("Mat_Time_100_real.csv",header=FALSE,sep=";",

dec=",",fill=TRUE) #reading the data

P <-read.csv("Mat_Obs_100_real.csv",header=FALSE,sep=";",

dec=",",fill=TRUE) #reading the data

dim(I)

dim(P)

## Estimates throught the DA method

start_time <- Sys.time()

DA.fit(I, P, 0, c(6.3,1.3,0.3))

end_time <- Sys.time()

end_time - start_time
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start_time <- Sys.time()

DA.fit(I, P, 1, c(6.5,0.13,1.11,0.28))

end_time <- Sys.time()

end_time - start_time

start_time <- Sys.time()

DA.fit(I, P, 11, c(6.59205,1.30,0.1835, 0.30))

end_time <- Sys.time()

end_time - start_time

start_time <- Sys.time()

DA.fit(I, P, 2, c(6.4,0.03,1.36,0.21,0.29))

end_time <- Sys.time()

end_time - start_time

## Estimates throught the LA method

start_time <- Sys.time()

LA.fit(I, P, 1, c(6.5,0.13,1.11,0.28))

end_time <- Sys.time()

end_time - start_time

start_time <- Sys.time()

LA.fit(I, P, 11, c(6.4,1.30,0.01, 0.30))

end_time <- Sys.time()

end_time - start_time

start_time <- Sys.time()

LA.fit(I, P, 2, c(6.4,0.03,1.36,0.21,0.29))

end_time <- Sys.time()

end_time - start_time
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Appendix D: delta approximation (DA) codes

##---------------------------------##---------------------------------##

## Inference on SDE Stochastic Gompertz model: ##

## 1) The fixed effects closed formula ##

## 2) The delta approximation method for random alpha case ##

## 3) The delta approximation method for random beta case ##

## 4) The delta approximation method both alpha and beta random ##

##---------------------------------##---------------------------------##

## Data ##

##---------------------------------##---------------------------------##

## Usage

# DA.fit(Mat_Time, Mat_Obs, random, c(a,t,b,o,s))

## Mat_Time - matrix of m observation times. Each column represents the

observation time of an individual.

## Mat_Obs - matrix of m trajectories. Each column represents the

observations of an individual.

## Notes: Mat_Time and Mat_Obs must have the same dimensions. If different

animals had different observation times, the remain values should have NA

## random - the random effects in the drift. If random=0, no random effects. If

random=1, a random effect on alpha

## If random=11, a random effect on beta. If random=2, a random effect on both

alpha and beta

## starting parameter values for the minimization

## c(a,t,b,o,s): initial values for a - alpha, t - theta (give the value 0 if no

random effect is used)

## b - beta, o - omega (give the value 0 if no random effect is used)

## s - sigma (the diffusion coefficient assumed fixed)

## If random=0 use c(a,b,s). if random=1 use c(a,t,b,s). if random=11 use

## c(a,b,o,s). if random=2 use c(a,t,b,o,s).

DA.fit <- function(I,P,rnd, y) {

library("numDeriv")

d <- dim(I) # Matrix dimension ’D’;

n <- d[2] # Number of animals;

m <- d[1] # Number of weightings per animal;

Nc<-vector(length=n)

for (j in 1:n){
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for (i in 1:m){

ifelse(I[i,j] == ’NA’,Nc,Nc[j]<-Nc[j]+1)}}

N<-Nc-1

##---------------------------------##---------------------------------##

## Fixed effects case ##

##---------------------------------##---------------------------------##

if (rnd==0) {

if (length(y)!=3) {

print(paste("Error: wrong number of parameter"))

}

else {

# - Likelihood function

L<-function(I1,I2,P1,P2,N,x){

-(-(N/2)*log(2*pi)-(N/2)*log(x[3]ˆ2/(2*x[2]))-

(1/2)*(sum(log(1-(exp(-x[2]*(I2-I1)))ˆ2)))-

(x[2]/(x[3]ˆ2))*(sum((P2-x[1]-(P1-x[1])*(exp(-x[2]*(I2-I1))))ˆ2/

(1-(exp(-x[2]*(I2-I1)))ˆ2))))

}

LTG<-function(x){

LTG<-0

for (i in 1:n) {

LTG<-LTG+L(I[1:(Nc[i]-1),i],I[2:Nc[i],i],log(P[1:(Nc[i]-1),i]),

log(P[2:Nc[i],i]),N[i],c(x[1],x[2],x[3]))

}

return(LTG)

}

#LTG is the symmetric of the likelihood function and nlm (or nlminb)

minimizes symmetric of the likelihood function.

mLTG<-nlm(LTG,c(y[1],y[2],y[3]),hessian=TRUE)

uG <- mLTG$estimate[1]

UG <- exp(uG)

lG <- mLTG$estimate[2]

sG <- abs(mLTG$estimate[3])

# - Empirical Fisher information matrix; Inverse of the Hessian LT at

point (a,b1,b2,s)

vhG<-solve(mLTG$hessian)

MEuG <- sqrt(vhG[1,1])

MEUG <- sqrt(vhG[1,1])*exp(uG)

MElG <- sqrt(vhG[2,2])

MEsG <- sqrt(vhG[3,3])

print(paste("SDE with fixed effects estimates"))

print(paste("alpha", round(uG,5)))

print(paste("beta", round(lG,5)))
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print(paste("sigma", round(sG,5)))

print(paste("____"))

print(paste("Standard deviation estimate from the empirical Fisher

information matrix"))

print(paste("alpha", round(MEuG,5)))

print(paste("beta", round(MElG,5)))

print(paste("sigma",round(MEsG,5)))

}

}

##---------------------------------##---------------------------------##

## DA method for random alpha case ##

##---------------------------------##---------------------------------##

else if (rnd==1) {

if (length(y)!=4) {

print(paste("Error: wrong number of parameter"))

}

else {

# - Likelihood function

LG <- function(I1,I2,P1,P2,N,x){

f <- (-1/2)*sum((P2 - x[1] - (P1 - x[1])*(exp(- x[3]*(I2 - I1))))ˆ2/

((x[4]ˆ2/(2*x[3]))*(1 - (exp(- x[3]*(I2 - I1)))ˆ2)))

f1 <- (sum((1 - (exp(- x[3]*(I2 - I1))))*(P2 - x[1] - (P1 - x[1])*

(exp(- x[3]*(I2 - I1))))/((x[4]ˆ2/(2*x[3]))*(1 - (exp(- x[3]*(I2 - I1)))ˆ2))))

f2 <- (- sum((1 - (exp(- x[3]*(I2 - I1))))ˆ2/((x[4]ˆ2/(2*x[3]))*

(1 - (exp(- x[3]*(I2 - I1)))ˆ2))))

MV <- -((-1/2)*sum(log(2*pi*((x[4]ˆ2/(2*x[3]))*

(1 - (exp(- x[3]*(I2 - I1)))ˆ2)))) + f + log(1 + (1/2)*(x[2]ˆ2*(f2 + (f1)ˆ2))))

MV}

LTG <- function(x){

LTG <- 0

for (k in 1:n) {

LTG<-LTG+LG(I[1:(Nc[k]-1),k],I[2:Nc[k],k],log(P[1:(Nc[k]-1),k]),

log(P[2:Nc[k],k]),N[k],c(x[1],x[2],x[3],x[4]))

}

return(LTG)

}

#LTG is the symmetric of the likelihood function and nlm (or nlminb)

minimizes symmetric of the likelihood function.

mLTG<-nlm(LTG,c(y[1],y[2],y[3], y[4]),hessian=TRUE)

uG <- mLTG$estimate[1]

UG <- exp(uG)
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tG <- mLTG$estimate[2]

lG <- mLTG$estimate[3]

sG <- abs(mLTG$estimate[4])

# - Empirical Fisher information matrix; Inverse of the Hessian

LT at point (a,b1,b2,s)

vhG<-solve(mLTG$hessian)

MEuG <- sqrt(vhG[1,1])

MEUG <- sqrt(vhG[1,1])*exp(uG)

MEtG <- sqrt(vhG[2,2])

MElG <- sqrt(vhG[3,3])

MEsG <- sqrt(vhG[4,4])

print(paste("SDE with random effect on alpha estimates"))

print(paste("mu", round(uG,5), "theta", round(tG,5)))

print(paste("beta", round(lG,5)))

print(paste("sigma", round(sG,5)))

print(paste("___"))

print(paste("Standard deviation estimate from the empirical Fisher

information matrix"))

print(paste("mu", round(MEuG,5), "theta", round(MEtG,5)))

print(paste("beta", round(MElG,5)))

print(paste("sigma",round(MEsG,5)))

}

}

##---------------------------------##---------------------------------##

## DA method for random beta case ##

##---------------------------------##---------------------------------##

else if (rnd==11) {

if (length(y)!=4) {

print(paste("Error: wrong number of parameter"))

}

else {

# - Likelihood function

LG<-function(I1,I2,P1,P2,N,x){

f <- (-1/2)*sum((P2 - x[1] - (P1 - x[1])*(exp(- x[2]*(I2 - I1))))ˆ2/

(((x[4]ˆ2)/(2*x[2]))*(1 - (exp(- x[2]*(I2 - I1)))ˆ2)) +

log(2*pi*(((x[4]ˆ2)/(2*x[2]))*(1 - (exp(- x[2]*(I2 - I1)))ˆ2))))

f1 <- (sum(((I1 - I2)*(P1 - x[1])*(exp(- x[2]*(I2 - I1)))*(P2 - x[1] -

(P1 - x[1])*(exp(- x[2]*(I2 - I1)))))/(((x[4]ˆ2)/(2*x[2]))*(1 - (exp(- x[2]*

(I2 - I1)))ˆ2))) - sum((P2 - x[1] - (P1 - x[1])*(exp(- x[2]*(I2 - I1))))ˆ2/

(x[4]ˆ2*(1 - (exp(- x[2]*(I2 - I1)))ˆ2))) + 2*sum(((P2 - x[1] - (P1 - x[1])*

(exp(- x[2]*(I2 - I1))))ˆ2*(I2 - I1)*(exp(- x[2]*(I2 - I1)))ˆ2)/(((x[4]ˆ2)/

(x[2]))*(1 - (exp(- x[2]*(I2 - I1)))ˆ2)ˆ2)) + N/(2*x[2]) - sum(((I2 - I1)*

(exp(- x[2]*(I2 - I1)))ˆ2)/(1 - (exp(- x[2]*(I2 - I1)))ˆ2)))
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f2 <- (2*sum(((I2 - I1)ˆ2*(P1 - x[1])*(exp(- x[2]*(I2 - I1)))*(P2 - x[1] -

(P1 - x[1])*(exp(- x[2]*(I2 - I1)))))/(((x[4]ˆ2)/(x[2]))*(1 - (exp(- x[2]*

(I2 - I1)))ˆ2))) - 2*sum(((I2 - I1)ˆ2*(P1 - x[1])ˆ2*(exp(- x[2]*(I2 - I1)))ˆ2)/

(((x[4]ˆ2)/(x[2]))*(1 - (exp(- x[2]*(I2 - I1)))ˆ2))) - 4*sum(((I2 - I1)*

(P1 - x[1])*(exp(- x[2]*(I2 - I1)))*(P2 - x[1] - (P1 - x[1])*(exp(- x[2]*

(I2 - I1)))))/(x[4]ˆ2*(1 - (exp(- x[2]*(I2 - I1)))ˆ2))) + 8*sum(((I2 - I1)ˆ2*

(P1 - x[1])*(exp(- x[2]*(I2 - I1)))ˆ3*(P2 - x[1] - (P1 - x[1])*(exp(- x[2]*

(I2 - I1)))))/(((x[4]ˆ2)/(x[2]))*(1 - (exp(- x[2]*(I2 - I1)))ˆ2)ˆ2)) +

4*sum(((I2 - I1)*(exp(- x[2]*(I2 - I1)))ˆ2*(P2 - x[1] - (P1 - x[1])*(exp(- x[2]*

(I2 - I1))))ˆ2)/(x[4]ˆ2*(1 - (exp(- x[2]*(I2 - I1)))ˆ2)ˆ2)) -

4*sum(((I2 - I1)ˆ2*(exp(- x[2]*(I2 - I1)))ˆ2*(P2 - x[1] - (P1 - x[1])*

(exp(- x[2]*(I2 - I1))))ˆ2)/((x[4]ˆ2/x[2])*(1 - (exp(- x[2]*(I2 - I1)))ˆ2)ˆ2)) -

8*sum(((I2 - I1)ˆ2*(exp(- x[2]*(I2 - I1)))ˆ4*(P2 - x[1] - (P1 - x[1])*

(exp(- x[2]*(I2 - I1))))ˆ2)/((x[4]ˆ2/x[2])*(1 - (exp(- x[2]*(I2 - I1)))ˆ2)ˆ3)) +

2*sum(((I2 - I1)ˆ2*(exp(- x[2]*(I2 - I1)))ˆ4)/(1 - (exp(- x[2]*(I2 - I1)))ˆ2)ˆ2) +

2*sum(((I2 - I1)ˆ2*(exp(- x[2]*(I2 - I1)))ˆ2)/(1 - (exp(- x[2]*(I2 - I1)))ˆ2)) -

N/(2*x[2]ˆ2))

MV<- - ( f + log(1 + (1/2)*(x[3]ˆ2)*(f2 + (f1)ˆ2)))

MV}

LTG <- function(x){

LTG <- 0

for (k in 1:n) {

LTG <- LTG + LG(I[1:(Nc[k]-1),k],I[2:Nc[k],k],log(P[1:(Nc[k]-1),k]),

log(P[2:Nc[k],k]),N[k],c(x[1],x[2],x[3],x[4]))

}

return(LTG)

}

#LTG is the symmetric of the likelihood function and nlm (or nlminb)

minimizes symmetric of the likelihood function.

mLTG <- nlm(LTG,c(y[1],y[2],y[3], y[4]),hessian=TRUE)

uG <- mLTG$estimate[1]

UG <- exp(uG)

lG <- mLTG$estimate[2]

oG <- mLTG$estimate[3]

sG <- abs(mLTG$estimate[4])

# - Empirical Fisher information matrix; Inverse of the Hessian LT at

point (a,b1,b2,s)

vhG<-solve(mLTG$hessian)

MEuG <- sqrt(vhG[1,1])

MEUG <- sqrt(vhG[1,1])*exp(uG)

MElG <- sqrt(vhG[2,2])

MEoG <- sqrt(vhG[3,3])

MEsG <- sqrt(vhG[4,4])
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print(paste("SDE with random effect on beta estimates"))

print(paste("alpha", round(uG,5) ))

print(paste("lambda", round(lG,5), "omega", round(oG,5)))

print(paste("sigma", round(sG,5)))

print(paste("___"))

print(paste("Standard deviation estimate from the empirical Fisher

information matrix"))

print(paste("alpha", round(MEuG,5)))

print(paste("lambda", round(MElG,5), "omega", round(MEoG,5)))

print(paste("sigma",round(MEsG,5)))

}}

##---------------------------------##---------------------------------##

## DA method for both alpha and beta random ##

##---------------------------------##---------------------------------##

else if (rnd==2) {

if (length(y)!=5) {

print(paste("Error: wrong number of parameter"))

}

else {

# - Likelihood function

LG <- function(I1,I2,P1,P2,N,x){

f <- ((-x[3]/x[5]ˆ2)*sum((P2-x[1]-(P1-x[1])*(exp(-x[3]*(I2-I1))))ˆ2/

(1-(exp(-x[3]*(I2-I1)))ˆ2))-(1/2)*sum(log(((pi*x[5]ˆ2)/x[3])*

(1-(exp(-x[3]*(I2-I1)))ˆ2))))

fa1 <- (((-2*x[3])/x[5]ˆ2)*sum(((P2-x[1]-(P1-x[1])*

(exp(-x[3]*(I2-I1))))*((exp(-x[3]*(I2-I1)))-1))/(1-(exp(-x[3]*(I2-I1)))ˆ2)))

fa2 <- (((-2*x[3])/x[5]ˆ2)*sum(((exp(-x[3]*(I2-I1)))-1)ˆ2/

(1-(exp(-x[3]*(I2-I1)))ˆ2)))

fb1 <- (((-2*x[3])/x[5]ˆ2)*sum(((I2-I1)*(P1-x[1])*(exp(-x[3]*(I2-I1)))*

(P2-x[1]-(P1-x[1])*(exp(-x[3]*(I2-I1)))))/(1-(exp(-x[3]*(I2-I1)))ˆ2)) -

(1/x[5]ˆ2)*sum((P2-x[1]-(P1-x[1])*(exp(-x[3]*(I2-I1))))ˆ2/

(1-(exp(-x[3]*(I2-I1)))ˆ2)) +

((2*x[3])/x[5]ˆ2)*sum(((I2-I1)*(exp(-x[3]*(I2-I1)))ˆ2*(P2-x[1]-(P1-x[1])*

(exp(-x[3]*(I2-I1))))ˆ2)/(1-(exp(-x[3]*(I2-I1)))ˆ2)ˆ2) -

sum(((I2-I1)*(exp(-x[3]*(I2-I1)))ˆ2)/(1-(exp(-x[3]*(I2-I1)))ˆ2)) + N/(2*x[3]))

fb2 <- (((2*x[3])/x[5]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[1])*(exp(-x[3]*(I2-I1)))*

(P2-x[1]-(P1-x[1])*(exp(-x[3]*(I2-I1)))))/(1-(exp(-x[3]*(I2-I1)))ˆ2)) -

((2*x[3])/x[5]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[1])ˆ2*(exp(-x[3]*(I2-I1)))ˆ2)/

(1-(exp(-x[3]*(I2-I1)))ˆ2)) - (4/x[5]ˆ2)*sum(((I2-I1)*(P1-x[1])*

(exp(-x[3]*(I2-I1)))*(P2-x[1]-(P1-x[1])*(exp(-x[3]*(I2-I1)))))/

(1-(exp(-x[3]*(I2-I1)))ˆ2)) + ((8*x[3])/x[5]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[1])*

(exp(-x[3]*(I2-I1)))ˆ3*(P2-x[1]-(P1-x[1])*(exp(-x[3]*(I2-I1)))))/

(1-(exp(-x[3]*(I2-I1)))ˆ2)ˆ2) + (4/x[5]ˆ2)*sum(((I2-I1)*(exp(-x[3]*(I2-I1)))ˆ2*

(P2-x[1]-(P1-x[1])*(exp(-x[3]*(I2-I1))))ˆ2)/(1-(exp(-x[3]*(I2-I1)))ˆ2)ˆ2) -

((4*x[3])/x[5]ˆ2)*sum(((I2-I1)ˆ2*(exp(-x[3]*(I2-I1)))ˆ2*(P2-x[1]-(P1-x[1])*

(exp(-x[3]*(I2-I1))))ˆ2)/(1-(exp(-x[3]*(I2-I1)))ˆ2)ˆ2) -

84



((8*x[3])/x[5]ˆ2)*sum(((I2-I1)ˆ2*(exp(-x[3]*(I2-I1)))ˆ4*(P2-x[1]-(P1-x[1])*

(exp(-x[3]*(I2-I1))))ˆ2)/(1-(exp(-x[3]*(I2-I1)))ˆ2)ˆ3) +

2*sum(((I2-I1)ˆ2*(exp(-x[3]*(I2-I1)))ˆ4)/(1-(exp(-x[3]*(I2-I1)))ˆ2)ˆ2) +

2*sum(((I2-I1)ˆ2*(exp(-x[3]*(I2-I1)))ˆ2)/(1-(exp(-x[3]*(I2-I1)))ˆ2)) -

N/(2*x[3]ˆ2))

MV <- -(-sum(P2)+f+log(1+(x[2]ˆ2/2)*(fa2+(fa1)ˆ2)+(x[4]ˆ2/2)*(fb2+(fb1)ˆ2)))

MV}

# - Sum of likelihood functions

LTG<-function(x){

LTG<-0

for (k in 1:n) {

LTG <- LTG + LG(I[1:(Nc[k]-1),k],I[2:Nc[k],k],log(P[1:(Nc[k]-1),k]),

log(P[2:Nc[k],k]),N[k],c(x[1],x[2],x[3],x[4],x[5]))

}

return(LTG)

}

#LTG is the symmetric of the likelihood function and nlm (or nlminb)

minimizes symmetric of the likelihood function.

mLTG <- nlm(LTG,c(y[1],y[2],y[3], y[4],y[5]),hessian=TRUE)

uG <- mLTG$estimate[1]

UG <- exp(uG)

tG <- mLTG$estimate[2]

lG <- mLTG$estimate[3]

oG <- mLTG$estimate[4]

sG <- abs(mLTG$estimate[5])

# - Empirical Fisher information matrix; Inverse of the Hessian LT at

point (a,b1,b2,s)

vhG<-solve(mLTG$hessian)

MEuG <- sqrt(vhG[1,1])

MEUG <- sqrt(vhG[1,1])*exp(uG)

MEtG <- sqrt(vhG[2,2])

MElG <- sqrt(vhG[3,3])

MEoG <- sqrt(vhG[4,4])

MEsG <- sqrt(vhG[5,5])

print(paste("SDE with random effect on alpha and beta estimates"))

print(paste("mu", round(uG,5), "theta", round(tG,5)))

print(paste("lambda", round(lG,5), "omega", round(oG,5)))

print(paste("sigma", round(sG,5)))

print(paste("___"))

print(paste("Standard deviation estimate from the empirical Fisher

information matrix"))

print(paste("mu", round(MEuG,5), "theta", round(MEtG,5)))

print(paste("lambda", round(MElG,5), "omega", round(MEoG,5)))

print(paste("sigma",round(MEsG,5)))

}}
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else {

print("Choice of parameter rnd incorrect")

}}
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Appendix E: Laplace approximation (LA) codess

##---------------------------------##---------------------------------##

## Inference on SDE Stochastic Gompertz model: ##

## 2) The Laplace approximation method for random alpha case ##

## 3) The Laplace approximation method for random beta case ##

## 4) The Laplace approximation method both alpha and beta random ##

##---------------------------------##---------------------------------##

## Data ##

##---------------------------------##---------------------------------##

## Usage

# LA.fit(Mat_Time, Mat_Obs, random, c(a,t,b,o,s))

## Mat_Time - matrix of m observation times. Each column represents the

##observation time of an individual.

## Mat_Obs - matrix of m trajectories. Each column represents the

##observations of an individual.

## Notes: Mat_Time and Mat_Obs must have the same dimensions. If different

##animals had different observation times, the remain values should have NA

## random - the random effects in the drift. If random=1, a random effect on

##alpha

##If random=11, a random effect on beta. If random=2, a random effect on

##both alpha and beta

## starting parameter values for the minimization

## c(a,t,b,o,s): initial values for a - alpha, t - theta (give the value 0 if

##no random effect is used)

## b - beta, o - omega (give the value 0 if no random effect is used)

## s - sigma (the diffusion coefficient assumed fixed

## If random=0 use c(a,b,s). if random=1 use

## c(a,t,b,s). if random=11 use c(a,b,o,s). if random=2 use c(a,t,b,o,s).

LA.fit <- function(I,P,rnd, y) {

library(’maxLik’)

library("numDeriv")

d <- dim(I) # Matrix dimension ’D’;

n <- d[2] # Number of animals;

m <- d[1] # Number of weightings per animal;

Nc<-vector(length=n)

for (j in 1:n){
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for (i in 1:m){

ifelse(I[i,j] == ’NA’,Nc,Nc[j]<-Nc[j]+1)}}

N<-Nc-1

##---------------------------------##---------------------------------##

## LA method for random alpha case ##

##---------------------------------##---------------------------------##

if (rnd==1) {

if (length(y)!=4) {

print(paste("Error: wrong number of parameter"))

}

else {

LG <- function(I1,I2,P1,P2,N,x){

x[5] <- ((2*x[3]/x[4]ˆ2)*sum(((exp(- x[3]*(I2-I1))) - 1)ˆ2/

(1 - (exp(- x[3]*(I2-I1)))ˆ2)) + 1/x[2]ˆ2)ˆ{-1}*

((2*x[3]/x[4]ˆ2)*sum((P2-P1*(exp(- x[3]*(I2-I1))))*

(1 - (exp(- x[3]*(I2-I1))))/(1 - (exp(- x[3]*(I2-I1)))ˆ2)) + x[1]/x[2]ˆ2)

MV <- -(-sum(P2)- log((x[2])) - (1/2)*sum(log(((pi*x[4]ˆ2)/x[3])*

(1 - (exp(- x[3]*(I2 - I1)))ˆ2))) -

(1/2)*sum((P2 - x[5] -(P1 - x[5])*(exp(- x[3]*(I2 - I1))))ˆ2/

((x[4]ˆ2/(2*x[3]))*(1 - (exp(- x[3]*(I2 - I1)))ˆ2))) -

(x[5] - x[1])ˆ2/(2*(x[2])ˆ2) - (1/2)*log(abs(sum((1 - (exp(- x[3]*(I2 - I1))))ˆ2/

((x[4]ˆ2/(2*x[3]))*(1 - (exp(- x[3]*(I2 - I1)))ˆ2))) + 1/(x[2])ˆ2)))

MV}

LTG<-function(x){

LTG<-0

for (i in 1:n) {

LTG<-LTG+LG(I[1:(Nc[i]-1),i],I[2:Nc[i],i],log(P[1:(Nc[i]-1),i]),

log(P[2:Nc[i],i]),N[i],c(x[1],x[2],x[3],x[4]))

}

return(LTG)

}

#LTG is the symmetric of the likelihood function and nlm (or nlminb)

minimizes symmetric of the likelihood function.

mLTG<-nlm(LTG,c(y[1],y[2],y[3], y[4]),hessian=TRUE)

uG <- mLTG$estimate[1]

UG <- exp(uG)

tG <- mLTG$estimate[2]

lG <- mLTG$estimate[3]

sG <- abs(mLTG$estimate[4])

# - Empirical Fisher information matrix; Inverse of the Hessian LT at

#point (a,b1,b2,s)

vhG<-solve(mLTG$hessian)
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MEuG <- sqrt(vhG[1,1])

MEUG <- sqrt(vhG[1,1])*exp(uG)

MEtG <- sqrt(vhG[2,2])

MElG <- sqrt(vhG[3,3])

MEsG <- sqrt(vhG[4,4])

print(paste("SDE with random effect on alpha estimates"))

print(paste("mu", round(uG,5), "theta", round(tG,5)))

print(paste("beta", round(lG,5)))

print(paste("sigma", round(sG,5)))

print(paste("___"))

print(paste("Standard deviation estimate from the empirical Fisher

#information matrix"))

print(paste("mu", round(MEuG,5), "theta", round(MEtG,5)))

print(paste("beta", round(MElG,5)))

print(paste("sigma",round(MEsG,5)))

}}

##---------------------------------##---------------------------------##

## LA method for random beta case ##

##---------------------------------##---------------------------------##

else if (rnd==11) {

if (length(y)!=4) {

print(paste("Error: wrong number of parameter"))

}

else {

A <- matrix(c(0, 0, 0, 0, 1), 1, 5)

B <- 0

betaP<-vector(length=n)

for (k in 1:n) {

beta <- function(param){

I1 <- I[1:(Nc[k]-1),k]

I2 <- I[2:Nc[k],k]

P1 <- P[1:(Nc[k]-1),k]

P2 <- P[2:Nc[k],k]

alpha <- param[1]

beta <- param[5]

lambda <- param[2]

omega <- param[3]

sigma <- param[4]

ll <- - (1/2)*sum((P2 - alpha - (P1 - alpha)*(exp(- beta*(I2 - I1))))ˆ2/

((sigmaˆ2/(2*beta))*(1 - (exp(- beta*(I2 - I1)))ˆ2))) - (1/2)*

(beta - lambda)ˆ2/omegaˆ2

- (1/2)*sum(log((sigmaˆ2/(2*beta))*(1 - (exp(- beta*(I2 - I1)))ˆ2)))

ll

}

resFix <- maxLik(beta,grad = NULL,hess = NULL, method = "CG",

start=c(alpha = 6.5, lambda = 1.3, omega =0.00001, sigma = 0.5ˆ2, beta = 1.4),
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fixed = c("alpha", "lambda", "omega", "sigma"),

constraints=list(ineqA=A, ineqB=B))

suppressWarnings(summary(resFix))

suppressWarnings(betaP[k] <- resFix$estimate[5])

}

# - Likelihood function

LG <- function(I1,I2,P1,P2,betaP,N,x){

x[5] <- (betaP-(((-2*betaP)/x[4]ˆ2)*sum(((I2-I1)*(P1-x[1])*

(exp(-betaP*(I2-I1)))*(P2-x[1]-(P1-x[1])*(exp(-betaP*(I2-I1)))))/

(1-(exp(-betaP*(I2-I1)))ˆ2)) - (1/x[4]ˆ2)*sum((P2-x[1]-(P1-x[1])*

(exp(-betaP*(I2-I1))))ˆ2/(1-(exp(-betaP*(I2-I1)))ˆ2)) + ((2*betaP)/x[4]ˆ2)*

sum(((I2-I1)*(exp(-betaP*(I2-I1)))ˆ2*(P2-x[1]-(P1-x[1])*(exp(-betaP*

(I2-I1))))ˆ2)/(1-(exp(-betaP*(I2-I1)))ˆ2)ˆ2) - sum(((I2-I1)*(exp(-betaP*

(I2-I1)))ˆ2)/(1-(exp(-betaP*(I2-I1)))ˆ2)) - (betaP-x[2])/x[3]ˆ2 +

N/(2*betaP))/(((2*betaP)/x[4]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[1])*

(exp(-betaP*(I2-I1)))*(P2-x[1]-(P1-x[1])*(exp(-betaP*(I2-I1)))))/

(1-(exp(-betaP*(I2-I1)))ˆ2)) - ((2*betaP)/x[4]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[1])ˆ2*

(exp(-betaP*(I2-I1)))ˆ2)/(1-(exp(-betaP*(I2-I1)))ˆ2)) -

(4/x[4]ˆ2)*sum(((I2-I1)*(P1-x[1])*(exp(-betaP*(I2-I1)))*(P2-x[1]-(P1-x[1])*

(exp(-betaP*(I2-I1)))))/(1-(exp(-betaP*(I2-I1)))ˆ2)) +

((8*betaP)/x[4]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[1])*(exp(-betaP*(I2-I1)))ˆ3*

(P2-x[1]-(P1-x[1])*(exp(-betaP*(I2-I1)))))/(1-(exp(-betaP*(I2-I1)))ˆ2)ˆ2) +

(4/x[4]ˆ2)*sum(((I2-I1)*(exp(-betaP*(I2-I1)))ˆ2*(P2-x[1]-(P1-x[1])*

(exp(-betaP*(I2-I1))))ˆ2)/(1-(exp(-betaP*(I2-I1)))ˆ2)ˆ2) -

((4*betaP)/x[4]ˆ2)*sum(((I2-I1)ˆ2*(exp(-betaP*(I2-I1)))ˆ2*(P2-x[1]-(P1-x[1])*

(exp(-betaP*(I2-I1))))ˆ2)/(1-(exp(-betaP*(I2-I1)))ˆ2)ˆ2) -

((8*betaP)/x[4]ˆ2)*sum(((I2-I1)ˆ2*(exp(-betaP*(I2-I1)))ˆ4*(P2-x[1]-(P1-x[1])*

(exp(-betaP*(I2-I1))))ˆ2)/(1-(exp(-betaP*(I2-I1)))ˆ2)ˆ3) +

2*sum(((I2-I1)ˆ2*(exp(-betaP*(I2-I1)))ˆ2)/(1-(exp(-betaP*(I2-I1)))ˆ2)) +

2*sum(((I2-I1)ˆ2*(exp(-betaP*(I2-I1)))ˆ4)/(1-(exp(-betaP*(I2-I1)))ˆ2)ˆ2) -

1/x[3]ˆ2 - N/(2*betaPˆ2)))

MV <- -(-sum(P2)- log(x[3]) - (N/2)*log(2*pi) -

0.5*log(abs(((2*x[5])/x[4]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[1])*(exp(-x[5]*(I2-I1)))*

(P2-x[1]-(P1-x[1])*(exp(-x[5]*(I2-I1)))))/(1-(exp(-x[5]*(I2-I1)))ˆ2)) -

((2*x[5])/x[4]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[1])ˆ2*(exp(-x[5]*(I2-I1)))ˆ2)/

(1-(exp(-x[5]*(I2-I1)))ˆ2)) -

(4/x[4]ˆ2)*sum(((I2-I1)*(P1-x[1])*(exp(-x[5]*(I2-I1)))*(P2-x[1]-(P1-x[1])*

(exp(-x[5]*(I2-I1)))))/(1-(exp(-x[5]*(I2-I1)))ˆ2)) +

((8*x[5])/x[4]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[1])*(exp(-x[5]*(I2-I1)))ˆ3*

(P2-x[1]-(P1-x[1])*(exp(-x[5]*(I2-I1)))))/(1-(exp(-x[5]*(I2-I1)))ˆ2)ˆ2) +

(4/x[4]ˆ2)*sum(((I2-I1)*(exp(-x[5]*(I2-I1)))ˆ2*(P2-x[1]-(P1-x[1])*(exp(-x[5]*

(I2-I1))))ˆ2)/(1-(exp(-x[5]*(I2-I1)))ˆ2)ˆ2) -

((4*x[5])/x[4]ˆ2)*sum(((I2-I1)ˆ2*(exp(-x[5]*(I2-I1)))ˆ2*(P2-x[1]-(P1-x[1])*

(exp(-x[5]*(I2-I1))))ˆ2)/(1-(exp(-x[5]*(I2-I1)))ˆ2)ˆ2) -

((8*x[5])/x[4]ˆ2)*sum(((I2-I1)ˆ2*(exp(-x[5]*(I2-I1)))ˆ4*(P2-x[1]-(P1-x[1])*

(exp(-x[5]*(I2-I1))))ˆ2)/(1-(exp(-x[5]*(I2-I1)))ˆ2)ˆ3) +

2*sum(((I2-I1)ˆ2*(exp(-x[5]*(I2-I1)))ˆ2)/(1-(exp(-x[5]*(I2-I1)))ˆ2)) +
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2*sum(((I2-I1)ˆ2*(exp(-x[5]*(I2-I1)))ˆ4)/(1-(exp(-x[5]*(I2-I1)))ˆ2)ˆ2) -

1/x[3]ˆ2 - N/(2*x[5]ˆ2))) -

0.5*sum((P2-x[1]-(P1-x[1])*(exp(-x[5]*(I2-I1))))ˆ2/((x[4]ˆ2/(2*x[5]))*

(1-(exp(-x[5]*(I2-I1)))ˆ2))) - 0.5*(x[5]-x[2])ˆ2/x[3]ˆ2 - 0.5*sum(log((x[4]ˆ2/

(2*x[5]))*(1-(exp(-x[5]*(I2-I1)))ˆ2))))

MV}

LTG <- function(x){

LTG <- 0

for (k in 1:n) {

LTG <- LTG + LG(I[1:(Nc[k]-1),k],I[2:Nc[k],k],log(P[1:(Nc[k]-1),k]),

log(P[2:Nc[k],k]),betaP[k],N[k],c(x[1],x[2],x[3],x[4]))

}

return(LTG)

}

#LTG is the symmetric of the likelihood function and nlm (or nlminb) minimizes

symmetric of the likelihood function.

mLTG <- nlm(LTG,c(y[1],y[2],y[3], y[4]),hessian=TRUE)

uG <- mLTG$estimate[1]

UG <- exp(uG)

lG <- mLTG$estimate[2]

oG <- mLTG$estimate[3]

sG <- abs(mLTG$estimate[4])

# - Empirical Fisher information matrix; Inverse of the Hessian LT at

point (a,b1,b2,s)

vhG<-solve(mLTG$hessian)

MEuG <- sqrt(vhG[1,1])

MEUG <- sqrt(vhG[1,1])*UG

MElG <- sqrt(vhG[2,2])

MEoG <- sqrt(vhG[3,3])

MEsG <- sqrt(vhG[4,4])

print(paste("SDE with random effect on beta estimates"))

print(paste("alpha", round(uG,5) ))

print(paste("lambda", round(lG,5), "omega", round(oG,5)))

print(paste("sigma", round(sG,5)))

print(paste("___"))

print(paste("Standard deviation estimate from the empirical Fisher

information matrix"))

print(paste("alpha", round(MEuG,5)))

print(paste("lambda", round(MElG,5), "omega", round(MEoG,5)))

print(paste("sigma",round(MEsG,5)))

}}

##---------------------------------##---------------------------------##
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## LA method for both alpha and beta random ##

##---------------------------------##---------------------------------##

else if (rnd==2) {

if (length(y)!=5) {

print(paste("Error: wrong number of parameter"))

}

else {

A <- matrix(c(0, 0, 0, 0, 1), 1, 5)

B <- 0

alphaP <- vector(length=n)

for (k in 1:n) {

llalpha <- function(parama){

I1 <- I[1:(Nc[k]-1),k]

I2 <- I[2:Nc[k],k]

P1 <- P[1:(Nc[k]-1),k]

P2 <- P[2:Nc[k],k]

mu <- parama[1]

alpha <- parama[5]

theta <- parama[2]

beta <- parama[3]

sigma <- parama[4]

ll <- - (1/2)*sum((P2 - alpha - (P1 - alpha)*(exp(- beta*(I2 - I1))))ˆ2/

((sigmaˆ2/(2*beta))*(1 - (exp(- beta*(I2 - I1)))ˆ2))) - (1/2)*(alpha - mu)ˆ2/

thetaˆ2

ll

}

resFix1 <- maxLik(llalpha,grad = NULL,hess = NULL, method = "CG",

start=c(mu = 6.45, theta = 0.15,beta =1.43, sigma = 0.33, alpha = 6.45),

fixed = c("mu", "theta", "beta", "sigma"),

constraints=list(ineqA=A, ineqB=B))

suppressWarnings(summary(resFix1))

suppressWarnings( alphaP[k] <- log(resFix1$estimate[5]))

}

E <- matrix(c(0, 0, 0, 0, 1), 1, 5)

F <- 0

betaP<-vector(length=n)

for (k in 1:n) {

LLbeta <- function(paramb){

I1 <- I[1:(Nc[k]-1),k]

I2 <- I[2:Nc[k],k]

P1 <- P[1:(Nc[k]-1),k]

P2 <- P[2:Nc[k],k]

alpha <- paramb[1]

beta <- paramb[5]

lambda <- paramb[2]

omega <- paramb[3]

sigma <- paramb[4]
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LL <- - (1/2)*sum((P2 - alpha - (P1 - alpha)*(exp(- beta*(I2 - I1))))ˆ2/

((sigmaˆ2/(2*beta))*(1 - (exp(- beta*(I2 - I1)))ˆ2))) - (1/2)*

(beta - lambda)ˆ2/omegaˆ2 - (1/2)*sum(log((sigmaˆ2/(2*beta))*

(1 - (exp(- beta*(I2 - I1)))ˆ2)))

LL

}

resFix2 <- maxLik(LLbeta,grad = NULL,hess = NULL, method = "CG",

start=c(alpha = 6.5, lambda = 1.3, omega =0.00001, sigma = 0.5ˆ2, beta = 1.4),

fixed = c("alpha", "lambda", "omega", "sigma"),

constraints=list(ineqA=E, ineqB=F))

suppressWarnings(summary(resFix2))

suppressWarnings(betaP[k] <- resFix2$estimate[5])

}

# - Likelihood function

LG <- function(I1,I2,P1,P2,alphaP,betaP,N,x){

x[6] <- (alphaP - (2*x[3]/x[5]ˆ2*sum(((P2 - alphaP - (P1 - alphaP)*

(exp(- x[3]*(I2-I1))))*((exp(- x[3]*(I2-I1))) - 1))/(1 - (exp(- x[3]*

(I2-I1)))ˆ2)) +

(alphaP - x[1])/(x[2]ˆ2))/(2*x[3]/x[5]ˆ2*sum(((exp(- x[3]*(I2-I1))) - 1)ˆ2/

(1 - (exp(- x[3]*(I2-I1)))ˆ2)) + 1/(x[2]ˆ2)))

x[7] <- (betaP-((-2*betaP/x[5]ˆ2)*sum(((I2-I1)*(P1-x[1])*(exp(-betaP*(I2-I1)))*

(P2-x[1]-(P1-x[1])*(exp(-betaP*(I2-I1)))))/(1-(exp(-betaP*(I2-I1)))ˆ2)) -

(1/x[5]ˆ2)*sum((P2-x[1]-(P1-x[1])*(exp(-betaP*(I2-I1))))ˆ2/(1-(exp(-betaP*

(I2-I1)))ˆ2)) +

(2*betaP/x[5]ˆ2)*sum(((I2-I1)*(exp(-betaP*(I2-I1)))ˆ2*(P2-x[1]-(P1-x[1])*

(exp(-betaP*(I2-I1))))ˆ2)/(1-(exp(-betaP*(I2-I1)))ˆ2)ˆ2) -

sum(((I2-I1)*(exp(-betaP*(I2-I1)))ˆ2)/(1-(exp(-betaP*(I2-I1)))ˆ2)) +

N/(2*betaP) - (betaP-x[3])/x[4]ˆ2)/

((2*betaP/x[5]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[1])*(exp(-betaP*(I2-I1)))*(P2-x[1] -

(P1-x[1])*(exp(-betaP*(I2-I1)))))/(1-(exp(-betaP*(I2-I1)))ˆ2)) -

(2*betaP/x[5]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[1])ˆ2*(exp(-betaP*(I2-I1)))ˆ2)/

(1-(exp(-betaP*(I2-I1)))ˆ2)) -

(4/x[5]ˆ2)*sum(((I2-I1)*(P1-x[1])*(exp(-betaP*(I2-I1)))*(P2-x[1]-(P1-x[1])*

(exp(-betaP*(I2-I1)))))/(1-(exp(-betaP*(I2-I1)))ˆ2)) +

(8*betaP/x[5]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[1])*(exp(-betaP*(I2-I1)))ˆ3*(P2-x[1]-

(P1-x[1])*(exp(-betaP*(I2-I1)))))/(1-(exp(-betaP*(I2-I1)))ˆ2)ˆ2) +

(4/x[5]ˆ2)*sum(((I2-I1)*(exp(-betaP*(I2-I1)))ˆ2*(P2-x[1]-(P1-x[1])*(exp(-betaP*

(I2-I1))))ˆ2)/(1-(exp(-betaP*(I2-I1)))ˆ2)ˆ2) -

(4*betaP/x[5]ˆ2)*sum(((I2-I1)ˆ2*(exp(-betaP*(I2-I1)))ˆ2*(P2-x[1]-(P1-x[1])*

(exp(-betaP*(I2-I1))))ˆ2)/(1-(exp(-betaP*(I2-I1)))ˆ2)ˆ2) -

(8*betaP/x[5]ˆ2)*sum(((I2-I1)ˆ2*(exp(-betaP*(I2-I1)))ˆ4*(P2-x[1]-(P1-x[1])*

(exp(-betaP*(I2-I1))))ˆ2)/(1-(exp(-betaP*(I2-I1)))ˆ2)ˆ3) +

2*sum(((I2-I1)ˆ2*(exp(-betaP*(I2-I1)))ˆ4)/(1-(exp(-betaP*(I2-I1)))ˆ2)ˆ2) +

2*sum(((I2-I1)ˆ2*(exp(-betaP*(I2-I1)))ˆ2)/(1-(exp(-betaP*(I2-I1)))ˆ2)) -

1/x[4]ˆ2 - N/(2*betaPˆ2)))

dfAA <- abs(-(2*x[7]/x[5]ˆ2)*sum(((exp(-x[7]*(I2-I1)))-1)ˆ2/(1-(exp(-x[7]*

(I2-I1)))ˆ2)) - 1/(x[2]ˆ2))

dfBB <- abs((2*x[7]/x[5]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[6])*(exp(-x[7]*(I2-I1)))*

(P2-x[6]-(P1-x[6])*(exp(-x[7]*(I2-I1)))))/(1-(exp(-x[7]*(I2-I1)))ˆ2)) -
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(2*x[7]/x[5]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[6])ˆ2*(exp(-x[7]*(I2-I1)))ˆ2)/

(1-(exp(-x[7]*(I2-I1)))ˆ2)) -

(4/x[5]ˆ2)*sum(((I2-I1)*(P1-x[6])*(exp(-x[7]*(I2-I1)))*(P2-x[6]-(P1-x[6])*

(exp(-x[7]*(I2-I1)))))/(1-(exp(-x[7]*(I2-I1)))ˆ2)) +

(8*x[7]/x[5]ˆ2)*sum(((I2-I1)ˆ2*(P1-x[6])*(exp(-x[7]*(I2-I1)))ˆ3*(P2-x[6]-

(P1-x[6])*(exp(-x[7]*(I2-I1)))))/(1-(exp(-x[7]*(I2-I1)))ˆ2)ˆ2) +

(4/x[5]ˆ2)*sum(((I2-I1)*(exp(-x[7]*(I2-I1)))ˆ2*(P2-x[6]-(P1-x[6])*(exp(-x[7]*

(I2-I1))))ˆ2)/(1-(exp(-x[7]*(I2-I1)))ˆ2)ˆ2) -

(4*x[7]/x[5]ˆ2)*sum(((I2-I1)ˆ2*(exp(-x[7]*(I2-I1)))ˆ2*(P2-x[6]-(P1-x[6])*

(exp(-x[7]*(I2-I1))))ˆ2)/(1-(exp(-x[7]*(I2-I1)))ˆ2)ˆ2) -

(8*x[7]/x[5]ˆ2)*sum(((I2-I1)ˆ2*(exp(-x[7]*(I2-I1)))ˆ4*(P2-x[6]-(P1-x[6])*

(exp(-x[7]*(I2-I1))))ˆ2)/(1-(exp(-x[7]*(I2-I1)))ˆ2)ˆ3) +

2*sum(((I2-I1)ˆ2*(exp(-x[7]*(I2-I1)))ˆ4)/(1-(exp(-x[7]*(I2-I1)))ˆ2)ˆ2) +

2*sum(((I2-I1)ˆ2*(exp(-x[7]*(I2-I1)))ˆ2)/(1-(exp(-x[7]*(I2-I1)))ˆ2)) -

1/x[4]ˆ2 - N/(2*x[7]ˆ2))

dfAB <- 0

HESSIANA <- -matrix(c(dfAA,dfAB,dfAB,dfBB),nrow = 2)

SIGMA <- solve(HESSIANA)

MV <- -(-sum(P2)-(1/2)*log((x[2]ˆ2))-(1/2)*log(x[4]ˆ2)-(N/2)*log(2*pi)+(1/2)*

log(det(SIGMA)) -

(x[7]/x[5]ˆ2)*sum((P2-x[6]-(P1-x[6])*(exp(-x[7]*(I2-I1))))ˆ2/(1-(exp(-x[7]*

(I2-I1)))ˆ2))-(1/2)*sum(log((x[5]ˆ2/(2*x[7]))*(1-(exp(-x[7]*(I2-I1)))ˆ2)))-

(x[6]-x[1])ˆ2/(2*(x[2]ˆ2))-(x[7]-x[3])ˆ2/(2*x[4]ˆ2))

MV}

# - Sum of likelihood functions;

LTG <- function(x){

LTG <- 0

for (k in 1:n) {

LTG <- LTG + LG(I[1:(Nc[k]-1),k],I[2:Nc[k],k],log(P[1:(Nc[k]-1),k]),

log(P[2:Nc[k],k]),alphaP[k],betaP[k],N[k],c(x[1],x[2],x[3],x[4],x[5]))

}

return(LTG)

}

#LTG is the symmetric of the likelihood function and nlm (or nlminb)

#minimizes symmetric of the likelihood function.

mLTG <- nlm(LTG,c(y[1],y[2],y[3], y[4],y[5]),hessian=TRUE)

uG <- mLTG$estimate[1]

UG <- exp(uG)

tG <- mLTG$estimate[2]

lG <- mLTG$estimate[3]

oG <- mLTG$estimate[4]

sG <- abs(mLTG$estimate[5])

# - Empirical Fisher information matrix; Inverse of the Hessian LT at point

#(a,b1,b2,s)

vhG<-solve(mLTG$hessian)

MEuG <- sqrt(vhG[1,1])

MEUG <- sqrt(vhG[1,1])*exp(uG)

MEtG <- sqrt(vhG[2,2])

94



MElG <- sqrt(vhG[3,3])

MEoG <- sqrt(vhG[4,4])

MEsG <- sqrt(vhG[5,5])

print(paste("SDE with random effect on alpha and beta estimates"))

print(paste("mu", round(uG,5), "theta", round(tG,5)))

print(paste("lambda", round(lG,5), "omega", round(oG,5)))

print(paste("sigma", round(sG,5)))

print(paste("___"))

print(paste("Standard deviation estimate from the empirical Fisher information

matrix"))

print(paste("mu", round(MEuG,5), "theta", round(MEtG,5)))

print(paste("lambda", round(MElG,5), "omega", round(MEoG,5)))

print(paste("sigma",round(MEsG,5)))

}}

else {

print("Choice of parameter rnd incorrect")

}}
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Appendix F: R code for results in stochastic differential equation (SDE)
with genetic values

##---------------------------------##---------------------------------##

## Code of results presented in chapter 4 ##

##---------------------------------##---------------------------------##

I <-read.csv("Idades10843.csv",header=FALSE,sep=";",

dec=",",fill=TRUE) #reading the data

P <-read.csv("Pesos10843.csv",header=FALSE,sep=";",

dec=",",fill=TRUE) #reading the data

D <-read.csv("Genetic_values.csv",header=TRUE,sep=";",

dec=",",fill=TRUE) #reading the data

I<-as.data.frame(I)

P<-as.data.frame(P)

Nc<-vector(length=dim(P)[2])

for (j in 1:dim(P)[2]){

for (i in 1:dim(P)[1]){

ifelse(P[i,j] == ’NA’,Nc,Nc[j]<-Nc[j]+1)}}

N<-Nc

### Choice of the Genetic to be tested (Uncomment the GV of interest)

## The D$X1VG_xxxx - represents the first genetic value obtained

## The D$UltimVG_xxxx - represents the genetic value closest to 7months

## The D$Medvg_xxxx - represents the mean value of the mother and father

#genetic values

#VGen<-D$X1VG_cap_crescimento

#VGen<-D$X1VG_capacidade_maternal

#VGen<-D$X1VG_gmd_estacao

#VGen<-D$X1VG_carcaca_dia_idade

#VGen<-D$X1VG_Intervalo_Entre_partos

#VGen<-D$X1VG_indice_conversao

#VGen<-D$X1VG_longevidade_produtiva

#VGen<-D$X1VG_consumo_alim_residual

#VGen<-D$UltimVG_cap_crescimento

#VGen<-D$UltimVG_capacidade_maternal
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# VGen<-D$UltimVG_gmd_estacao

#VGen<-D$UltimVG_carcaca_dia_idade

#VGen<-D$UltimVG_Intervalo_Entre_partos

#VGen<-D$UltimVG_indice_conversao

#VGen<-D$UltimVG_longevidade_produtiva

VGen<-D$UltimVG_consumo_alim_residual

#VGen<-D$Medvg_cap_crec_directo

#VGen<-D$Medvg_cap_cresc_materno

#VGen<-D$Medvg_gmd

#VGen<-D$Medvg_carcaca_dia_idade

#VGen<-D$Medvg_intervalo_ent_partos

#VGen<-D$Medvg_Ind_conversao

#VGen<-D$Medvg_longevidade_prod

#VGen<-D$Medvg_consumo_alim_residual

#To clean for possible missing values and to center the GV

MVGen<-round(mean(VGen,na.rm=T),4)

IdxNA<-which(is.na(VGen))

VGenf<-na.omit(VGen)

Pf<-P[,-IdxNA]

If<-I[,-IdxNA]

Ncf<-Nc[-IdxNA]

Nf<-Ncf-1

summary(VGen)

sum(Nf)

sd(VGen, na.rm=T)

length(Nf)

VGen<-VGen-MVGen

##---------------------------------##---------------------------------##

## SDE mixed Model with VGs ##

##---------------------------------##---------------------------------##

###################################################

#####GOMPERTZ - Exact Maximum likelihood with random alpha

#- maximum likelihood

LG_VG<-function(If1,If2,Pf1,Pf2,VGenf,Nf,x){

MV<- -(-sum(Pf2)-(Nf/2)*log(2*pi)-(Nf/2)*log((x[5]ˆ2)/(2*x[4]))-(1/2)*

sum(log(1-(exp(-x[4]*(If2-If1)))ˆ2))-(1/2)*

log((((2*x[4]*x[3]ˆ2)/(x[5]ˆ2))*(sum((1-(exp(-x[4]*(If2-If1))))/(1+exp(-x[4]*
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(If2-If1)))))+1))-

((x[4])/((((2*x[4]*x[3]ˆ2)/(x[5]ˆ2))*(sum((1-(exp(-x[4]*(If2-If1))))/

(1+exp(-x[4]*(If2-If1)))))+1)*

(x[5]ˆ2)))*sum((Pf2-(x[1]+x[2]*VGenf)-(Pf1-(x[1]+x[2]*VGenf))*(exp(-x[4]*

(If2-If1))))ˆ2/(1-(exp(-x[4]*(If2-If1)))ˆ2))+

((2*(x[4]ˆ2)*x[3]ˆ2)/((x[5]ˆ4)*(((2*x[4]*x[3]ˆ2)/(x[5]ˆ2))*(sum((1-(exp(-x[4]*

(If2-If1))))/(1+exp(-x[4]*

(If2-If1)))))+1)))*((sum((Pf2-Pf1*(exp(-x[4]*(If2-If1))))/(1+(exp(-x[4]*

(If2-If1))))))ˆ2)-

((x[4]*((((2*x[4]*x[3]ˆ2)/(x[5]ˆ2))*(sum((1-(exp(-x[4]*(If2-If1))))/

(1+exp(-x[4]*(If2-If1)))))+1)-1))/((((2*x[4]*x[3]ˆ2)/

(x[5]ˆ2))*(sum((1-(exp(-x[4]*(If2-If1))))/(1+exp(-x[4]*(If2-If1)))))+1)*

(x[5]ˆ2)))*(sum((Pf2-Pf1*(exp(-x[4]*(If2-If1))))ˆ2/

(1-(exp(-x[4]*(If2-If1)))ˆ2))))

MV}

#-Sum of the Likelihoods

LTG_VG<-function(x){

LTG_VG<-0

for (k in 1:dim(Pf)[2]) {

LTG_VG<-LTG_VG+LG_VG(If[1:(Ncf[k]-1),k],If[2:Ncf[k],k],

log(Pf[1:(Ncf[k]-1),k]),log(Pf[2:Ncf[k],k]),VGenf[k],Nf[k],

c(x[1],x[2],x[3],x[4],x[5]))}

return(LTG_VG)}

# Parameters estimates

c0G<-round(mLTG$estimate[1],4)

c1G<-round(mLTG$estimate[2],4)

c0G_c<-c0G+c1G*MVGen #c0 centrado

AG<-round(exp(c0G+c1G*MVGen),2) #hˆ-1(c0G+c1G*MVen)

seG<-mLTG$estimate[3]

bG<-round(mLTG$estimate[4],4)

sG<-round(mLTG$estimate[5],4)

# Fisher empirical matrix

vhG<-solve(mLTG$hessian)

MEc0G<-round(1.96*sqrt(vhG[1,1]),4)

MEc1G<-round(1.96*sqrt(vhG[2,2]),4)

MEAG<-round(1.96*sqrt(vhG[1,1]+(MVGenˆ2)*vhG[2,2]+2*MVGen*vhG[1,2])*AG,3)

MEseG<-round(1.96*sqrt(vhG[3,3]),4)

MEbG<-round(1.96*sqrt(vhG[4,4]),4)

MEsG<-round(1.96*sqrt(vhG[5,5]),4)

c0G;c1G;AG;seG;bG;sG

MEc0G;MEc1G;MEAG;MEseG;MEbG;MEsG

- mLTG$minimum ## ML value

-2*(- mLTG$minimum)+2*5 ## AIC value

-2*(- mLTG$minimum)+5*log(sum(Nf)) ## BIC value
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##---------------------------------##---------------------------------##

## SDE Mixed without VGs ##

##---------------------------------##---------------------------------##

###################################################

#####GOMPERTZ MSDE PAPER

N <- Nf;Nc <- Ncf;I <- If;P <- Pf

# maximum likelihood

LG<-function(I1,I2,P1,P2,N,x){

MV<- -(-sum(P2)-(N/2)*log(2*pi)-(N/2)*log((x[4]ˆ2)/(2*x[3]))-(1/2)*

sum(log(1-(exp(-x[3]*(I2-I1)))ˆ2))-(1/2)*

log((((2*x[3]*x[2]ˆ2)/(x[4]ˆ2))*(sum((1-(exp(-x[3]*(I2-I1))))/(1+exp(-x[3]*

(I2-I1)))))+1))- ((x[3])/((((2*x[3]*x[2]ˆ2)/(x[4]ˆ2))*(sum((1-(exp(-x[3]*

(I2-I1))))/(1+exp(-x[3]*(I2-I1)))))+1)* (x[4]ˆ2)))*sum((P2-x[1]-(P1-x[1])*

(exp(-x[3]*(I2-I1))))ˆ2/(1-(exp(-x[3]*(I2-I1)))ˆ2))+ ((2*(x[3]ˆ2)*x[2]ˆ2)/

((x[4]ˆ4)*(((2*x[3]*x[2]ˆ2)/(x[4]ˆ2))*(sum((1-(exp(-x[3]*(I2-I1))))

/(1+exp(-x[3]*(I2-I1)))))+1)))*((sum((P2-P1*(exp(-x[3]*(I2-I1))))/

(1+(exp(-x[3]*(I2-I1))))))ˆ2)-

((x[3]*((((2*x[3]*x[2]ˆ2)/(x[4]ˆ2))*(sum((1-(exp(-x[3]*(I2-I1))))/

(1+exp(-x[3]*(I2-I1)))))+1)-1))/((((2*x[3]*x[2]ˆ2)/

(x[4]ˆ2))*(sum((1-(exp(-x[3]*(I2-I1))))/(1+exp(-x[3]*(I2-I1)))))+1)*(x[4]ˆ2)))*

(sum((P2-P1*(exp(-x[3]*(I2-I1))))ˆ2/(1-(exp(-x[3]*(I2-I1)))ˆ2))))

MV}

LTG<-function(x){

LTG<-0

for (k in 1:dim(P)[2]) {

LTG<-LTG+LG(I[1:(Nc[k]-1),k],I[2:Nc[k],k],log(P[1:(Nc[k]-1),k]),

log(P[2:Nc[k],k]),N[k],c(x[1],x[2],x[3],x[4]))}

return(LTG)}

mLTG<-nlm(LTG,c(6.1,0.09,1.747,0.33),hessian=TRUE)

# parameters estimates

aG<-round(mLTG$estimate[1],4)

AG<-round(exp(aG),2)

tG<-mLTG$estimate[2]

bG<-round(mLTG$estimate[3],4)

sG<-round(mLTG$estimate[4],4)

vhG<-solve(mLTG$hessian)

MEaG<-round(1.96*sqrt(vhG[1,1]),4)

MEAG<-round(1.96*sqrt(vhG[1,1])*AG,3)

MEtG<-round(1.96*sqrt(vhG[2,2]),4)

MEbG<-round(1.96*sqrt(vhG[3,3]),4)

MEsG<-round(1.96*sqrt(vhG[4,4]),4)

aG;AG;tG;bG;sG

MEaG;MEAG;MEtG;MEbG;MEsG
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- mLTG$minimum ## ML value

-2*(- mLTG$minimum)+2*4 ## AIC value

-2*(- mLTG$minimum)+4*log(sum(N)) ## BIC value

############################################ GOMPERTZ NMSDE PAPER

#-Log-likelihood function for a trajectry :

L<-function(I1,I2,P1,P2,N,x){

MV<- +sum(P2)+(N*log(2*pi)/2)+((N/2)*log((x[3]ˆ2)/(2*x[2])))+

(sum(log(1-exp(-2*x[2]*(I2-I1))))/2)+(x[2]/(x[3]ˆ2))*

(sum(((P2-x[1]-(P1-x[1])*exp(-x[2]*(I2-I1)))ˆ2)/

(1-exp(-2*x[2]*(I2-I1)))))

MV}

LTG<-function(x){

LTG<-0

for (k in 1:dim(P)[2]) {

LTG<-LTG+L(I[1:(Nc[k]-1),k],I[2:Nc[k],k],log(P[1:(Nc[k]-1),k]),

log(P[2:Nc[k],k]),N[k],c(x[1],x[2],x[3]))

}

return(LTG)}

minLTG<-nlm(LTG,c(6.6,1.2837,0.400),hessian=TRUE)

aG<-minLTG$estimate[1]

AG<-exp(aG)

bG<-minLTG$estimate[2]

sG<-minLTG$estimate[3]

aG;AG;bG;sG

vhG<-solve(minLTG$hessian)

MEaG<-1.96*sqrt(vhG[1,1])

MEAG<-1.96*sqrt(vhG[1,1])*exp(aG)

MEbG<-1.96*sqrt(vhG[2,2])

MEsG<-1.96*sqrt(vhG[3,3])

MEaG;MEAG;MEbG;MEsG

- minLTG$minimum ## ML value

-2*(- minLTG$minimum)+2*3 ## AIC value

-2*(- minLTG$minimum)+3*log(sum(N)) ## BIC value
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[36] M. Delattre, V. Genon-Catalot, and C. Larédo. Parametric inference for discrete observations of diffusion
processes with mixed effects. Stochastic Processes and their Applications, 128(6):1929–1957, 2018.

[37] N. T. Jamba, G. Jacinto, P. A. Filipe, and C. A. Braumann. Estimation for stochastic differential equations
mixed models using approximation methods. AIMS Mathematics, 9(4):7866–7894, 2024.

[38] P. A. Filipe and C. A. Braumann. Modelling individual animal growth in random environments. In Proceed-
ings of the 23rd International Workshop on Statistical Modelling; Eilers, P.H.C., Ed., Utrecht, Netherlands,
pages 232–237, 2009.

[39] R. C. Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Com-
puting, Vienna, Austria, 2019.

[40] Q. Lv and J. W. Pitchford. Stochastic von bertalanffy models, with applications to fish recruitment. Journal
of Theoretical Biology, 244(4):640–655, 2007.

[41] U. Picchini, S. Ditlevsen, and A. D. Gaetano. Modeling the euglycemic hyperinsulinemic clamp by stochastic
differential equations. Journal of Mathematical Biology, 53:771 – 796, 2006.

[42] U. Picchini, S. Ditlevsen, and A. D. Gaetano. Maximum likelihood estimation of a time-inhomogeneous
stochastic differential model of glucose dynamics. Mathematical medicine and biology : a journal of the
IMA, 25 2:141–55, 2008.

[43] K. Rennolls. Forest height growth modelling. Forest Ecology and Management, 71(3):217–225, 1995. Growth
and yield estimation from successive forest inventories.

[44] M. Delattre, V. Genon-Catalot, and A. Samson. Estimation of population parameters in stochastic differential
equations with random effects in the diffusion coefficient. ESAIM: Probability and Statistics, 19:671–688,
2015.

[45] N. Carolino and L. T. Gama. Indicators of genetic erosion in an endangered population: The Alentejana cattle
breed in Portugal1. Journal of Animal Science, 86(1):47–56, 2008.

[46] N. Carolino, A. Vitorino, I. Carolino, J. Pais, N. Henriques, M. Silveira, and A. Vicente. Genetic diversity in
the Portuguese Mertolenga cattle breed assessed by pedigree analysis. Animals, 10(11):1990, 2020.

[47] J. Ruane and J. J. Colleau. Marker assisted selection for genetic improvement of animal populations when a
single qtl is marked. Genetics Research, 66(1):71–83, 1995.

104


	Acknowledgments
	Resumo
	Abstract
	List of Tables
	Chapter 1. Introduction
	Chapter 2. Estimation for stochastic differential equation mixed models using approximation methods
	2.1. Introduction
	2.2. Stochastic differential equations for non-mixed models
	2.3. Stochastic differential equation for mixed models
	2.4. Mixed models with random asymptotic average size
	2.5. Mixed models with random growth parameter
	2.6. Mixed models with random asymptotic average size and random growth parameter
	2.7. Performance comparison of the methods
	2.8. Conclusions

	Chapter 3. Likelihood Function through the delta approximation in Mixed SDE models
	3.1. Introduction
	3.2. Stochastic differential equations models
	3.3. Mixed model for two random effects
	3.4. Results
	3.5. Recommendations
	3.6. Conclusion

	Chapter 4. Stochastic differential equations mixed model for individual growth with the inclusion of genetic characteristics
	4.1. Introduction
	4.2. Stochastic differential equations models
	4.3. Mixed models with genetic values
	4.4. Real data application
	4.5. Conclusion

	Chapter 5. Conclusions
	Appendix A: R codes for data Simulation
	Appendix B: Estimates throught the delta approximation (DA) method
	Appendix C: Estimates throught the Laplace approximation (LA) method
	Appendix D: delta approximation (DA) codes
	Appendix E: Laplace approximation (LA) codess
	Appendix F: R code for results in stochastic differential equation (SDE) with genetic values
	Bibliography

