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A B S T R A C T   

It is essential to accurately model species distributions and biodiversity in response to many ecological and 
conservation challenges. The primary means of reliable decision-making on conservation priority are the data on 
the distributions and abundance of species. However, finding data that is accurate and reliable for predicting 
species distribution could be challenging. Data could come from different sources, with different designs, 
coverage, and potential sampling biases. In this study, we examined the emerging methods of modelling species 
distribution that integrate data from multiple sources such as systematic or standardized and casual or occasional 
surveys. We applied two modelling approaches, “data-pooling” and “ model-based data integration” that each 
involves combining various datasets to measure environmental interactions and clarify the distribution of spe-
cies. Our paper demonstrates a reliable data integration workflow that includes gathering information on model- 
based data integration, creating a sub-model of each dataset independently, and finally, combining it into a 
single final model. We have shown that this is a more reliable way of developing a model than a data pooling 
strategy that combines multiple data sources to fit a single model. Moreover, data integration approaches could 
improve the poor predictive performance of systematic small datasets, through model-based data integration 
techniques that enhance the predictive accuracy of Species Distribution Models. We also identified, consistent 
with previous research, that machine learning algorithms are the most accurate techniques to predict bird species 
distribution in our heterogeneous study area in the western Swiss Alps. In particular, tree-dependent ensembles 
of Random Forest (RF) contribute to a better understanding of the interactions between species and the 
environment.   

1. Introduction 

An effective conservation planning relies on reliable information on 
biodiversity distribution that has been widely available in the forms of 
species occurrences (Brooks et al., 2006; Carvalho et al., 2010; Liu et al., 
2013). Changes in species distributions and biodiversity have profound 
consequences for wildlife and species conservation planning (Brotons 
et al., 2007; Carvalho et al., 2011; Wilson et al., 2004). Confidence in 
conservation decisions depend on the type of data used in Species Dis-
tribution Models (SDMs) and most practical decisions mainly address 
the issue of how much data on species distribution is available (Carvalho 
et al., 2010; Hortal et al., 2007; Tulloch et al., 2016). Nonetheless, most 
species data documentation is still incomplete, if not unavailable 
(Araujo and Guisan, 2006; Braunisch and Suchant, 2010; Pressey, 2004). 
In particular, systematic surveys on species data are often not feasible in 

large geographic areas, restricting conservationists and environmental-
ists to effectively use such incomplete and imprecise species data 
(Braunisch and Suchant, 2010; Fajardo et al., 2014; Niel and Lebreton, 
2005). 

The occurrence (presence/absence) of species at various sites is 
normally associated with specific environmental variables, necessary to 
understand habitat preferences of species, predict their distributions, 
and inform conservation decisions (Ferrier et al., 2002; Guillera-Arroita 
et al., 2015; Rodríguez et al., 2007; Smeraldo et al., 2020; Wagner et al., 
2020). While researchers continue to use SDMs with imperfect presence- 
only data, mostly derived from opportunistic sampling based on 
museum collections, biological inventories, or citizens’ science, using 
such data may have some consequences in the models (Carvalho et al., 
2010; Dickinson et al., 2010; Fithian et al., 2015; Fletcher Jr et al., 
2019). Models with inappropriate data could waste valuable resources 
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and produce results that are unlikely to address the problem at hand 
(Guillera-Arroita et al., 2015; Hernandez et al., 2006; Wilson et al., 
2005). In the case of SDMs, they may perform differently depending on 
the source of data used to fit the models that may be systematic, stan-
dardized data sets within a restricted area, or “volunteer-based moni-
toring schemes” (VMS) collected imprecisely at a wide regional level 
with varying spatial resolution (Braunisch and Suchant, 2010; Dickinson 
et al., 2010; Isaac et al., 2020; Ratnieks et al., 2016; Steen et al., 2019). 

Although data integration from various sources is becoming 
increasingly popular as a potential solution, it can also be challenging 
(Carvalho et al., 2010; Fletcher Jr et al., 2019; Isaac et al., 2020) since 
each data source has major variations in assumptions, design, environ-
mental coverage, and potential sampling biases (Bird et al., 2014; 
Fletcher Jr et al., 2019; Pacifici et al., 2017). In SDMs, it is therefore 
important and challenging to properly integrate the various data sources 
so that predictions and statistical deductions are more precise (Dorazio, 
2014; Fithian et al., 2015; Pacifici et al., 2017; Talluto et al., 2016). 
Where there is a lack of data available for a given species, the data 
integration approach would be able to account for various sampling 
biases affecting the data and improve the models’ predictive perfor-
mance by increasing the quantity of available data and optimizing the 
useful information for predicting species distributions (Fithian et al., 
2015; Fletcher Jr et al., 2019; Isaac et al., 2020). 

In addition to the data, there can also be uncertainties in the pre-
dictive functions of the algorithms (modelling techniques) that apply to 
connect the occurrence data (dependent data) to the independent vari-
able (environmental variables) (Moudrý and Šímová, 2012; Pearson 
et al., 2006; Watling et al., 2015). The most significant source of un-
certainty in SDMs’ performance and spatial predictions is the choice of 
modelling algorithm as each algorithm approaches the interaction be-
tween species occurrence and environment in different ways (Watling 
et al., 2015). As a result, deciding on the most effective SDM algorithm is 
challenging, as they are numerous and useful in many ways (Aguirre- 
Gutiérrez et al., 2013; Dormann et al., 2008; Elith et al., 2006; Watling 
et al., 2015). It is, therefore, necessary to find out which modelling 
approach performs better than others as applying inappropriate 
modelling technique could output an overestimation of species distri-
butions, affect environmental planning decisions negatively, and waste 
resources (Carvalho et al., 2010; Elith et al., 2006; Mendes et al., 2020; 
Segurado and Araujo, 2004; Watling et al., 2015). 

To achieve complementary advantages from different sources of 
data, some studies suggested a probabilistic model framework that 
integrate the presence-only and survey data from multiple sources. They 
pooled presence-only and presence-absence data and maximized joint 
likelihoods, calculating and correcting concurrently sampling bias 
impacting the presence-only data. They discovered that the data-pooling 
methodology significantly improves the model’s out-of-sample predic-
tive efficiency where there is a lack of available presence-absence data 
for a given species (see Fithian et al., 2015). Some developed a method 
of three modelling strategies of ‘shared,’ ‘correlation,’ and ‘covariates’ 
for the jointly modelling of two data sources (one of high quality and one 
of lesser quality) (Pacifici et al., 2017). The findings showed that all 
three of the methods which used the secondary data source could opti-
mize out-of-sample estimates compared to a single data source. They 
proposed that these approaches are robust alternatives when nothing is 
known about secondary data obtained opportunistically or by citizen 
scientists (see Pacifici et al., 2017). Other research involved integrating 
a variety of data sets with different sampling methodologies and 
amounts of data for species distribution. They highlighted the effects of 
data integration and how it can improve the accuracy in environmental 
relations, predictive performance, and address sample biases (see 
Fletcher Jr et al., 2019). 

In this paper, we compared the model performance using eight 
different bird datasets which were collected in systematic or casual 
ways. Additionally, we examined model performance in which different 
types of data were integrated in either a data-pooling process or model- 

based integration. Our objectives then would be, (a) is a data pooling 
technique better at modelling species distributions than just using a 
systematic or casual data set? And (b) which modelling algorithm per-
forms better with each dataset? Most studies compare findings from 
different techniques to similar data sets (Marmion et al., 2009; Par-
viainen et al., 2009; Pearson et al., 2006; Thuiller, 2003). However, it is 
essential to study the relative output of various modelling techniques 
through various data sources since it is an ongoing problem in ecology 
and conservation biology that demands more research. We propose the 
integration of different bird data sources with different modelling 
techniques to make wider and more rigorous use of species distribution 
information in wildlife conservation, both by raising the overall quality 
of the data and by expanding the number of species with sufficient in-
formation to be included in spatial analyses (Fithian et al., 2015; Merow 
et al., 2017; Zhang and Vincent, 2017). The interest, therefore, has 
emerged in developing different techniques for integrating different 
types of datasets to improve the estimation and comprehensive de-
scriptions of potential and realized species distributions in space and 
time (Fithian et al., 2015; Fletcher Jr et al., 2019; Isaac et al., 2020; 
Miller et al., 2019; Pacifici et al., 2017). 

2. Material and methods 

2.1. Study area and species data 

The study area is in the western Swiss Alps in Vaud (46◦10′ to 
46◦30′N; 6◦50′ to 7◦10′E; Fig. 1). Since 2013, it has been an interdisci-
plinary and transdisciplinary research site for the University of Lau-
sanne, and it currently belongs to the Interdisciplinary Centre for 
Mountain Studies (CIRM) (http://rechalp.unil.ch). It covers an area of 
approximately 700 km2 and an elevational gradient extending from Lake 
Geneva at 372 m a.s.l. to Pointe des Diablerets at 3210 m a.s.l. (Amini 
Tehrani et al., 2020, 2021; Descombes et al., 2017; Scherrer et al., 
2019). Due to anthropogenic activities such as the dense population and 
intensive farming in the Rhône Valley, tourism and outdoor activities, 
and more extensive farming in the subalpine regions, this area has been 
dominated by a mosaic of meadows, pastures, and forest and woodland 
patches (see http://rechalp.unil.ch; Randin et al., 2009; Scherrer et al., 
2019; Amini Tehrani et al., 2020, 2021). The Swiss Ornithological 
Institute (Monitoring Häufige Brutvögel [MHB]; Schmid et al., 2004) 
provided us with the bird data (presence-only), which has been recorded 
annually since 1999 (for more information on the survey, see http 
s://www.vogelwarte.ch/de/projekte/monitoring/monitoring-h 
aeufige-brutvoegel). 

Based on the sampling strategy, we classified the data into two cat-
egories: systematic and standardized surveys, and casual and occasional 
ones (Fig. 2, Table 1) (more information in supplementary). 

Fig. 1. Study area in the western Swiss Alps.  
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2.2. Mixed data sets 

We created two “mixed data sets” (Ghysels et al., 2004) because 
statistical models developed upon the bird datasets with small sample 
size and potential biases may become unreliable (if data are not large 
enough and are not well-collected to cover all environmental gradients 
in the study area) (Abadi et al., 2010; Moudrý and Šímová, 2012). 

2.2.1. Mixed data set 1 (107 species) 
Mixed data set 1 combines all systematically recorded data including 

“BDM ≥ 2013”, “MHB ≥ 2013”,” MHB + BDM ≥ 2013′′, and “MF, TMO” 

(Fig. 3). We mixed these bird data sets since they were recorded sys-
tematically in squares of 1*1 km and were supported by the online tool 
«Terri map online» which applies the standardization process and help 
avoid mistakes (Birrer, 2019) (see Table 1 for more information on the 
survey https://www.vogelwarte.ch/assets/files/projekte/ueberwach 
ung/datenabgabe/Directives%20fz%202019.pdf). 

2.2.2. Mixed data set 2 (177 species) 
We combined three casual bird datasets, “T” (complete observation 

list), “V” (single observation), and “W” (complete observation list) 
which were recorded using non-systematic methods (Table 1). As step 1 

Fig. 2. Sampling points (presence points) for each dataset across the study 
area. The number of sites for each dataset is: Atlas data = 12,580, BDM 
2013 = 712, MHB 2013 = 658, MHBBDM 2013 = 13,661, MF, TMO = 1204, 
T = 371, V = 14,290, W = 2272. 

Table 1 
Bird data collected using different strategies (systematic and casual).  

Category Name Description Remarks Number of bird 
species in each 
group of data 

Geography 
precision ID 

Description 

Systematic Atlas 2013-2016 Swiss Breeding Bird Atlas 
2013–2016  

79 1–3 1 precise per meter 
(precise per hectare in 
case of aggregation) 
3 flying bird 

BDM ≥ 2013 Swiss Biodiversity Monitoring Since 2013 surveys are 
obtained through the online 
tool “Terrimap Online” for 
1x1km2 surveys 

23 1–5 1 precise per meter 
5 inside this 1 × 1 km 
square 

MHB ≥ 2013 Common Breeding Bird Survey Since 2013 surveys are 
obtained through the Online 
tool “Terrimap Online” 

9 1–3 1 precise per meter 
(precise per hectare in 
case of aggregation) 
3 flying bird 

MHB + BDM ≥ 2013 

combination of BDM and MHB data, 
Monitoring of widespread breeding 
birds + Swiss biodiversity 
monitoring 

Since 2013 surveys are 
obtained through the Online 
tool “Terrimap Online” 

60 1–3 

1 precise per meter 
(precise per hectare in 
case of aggregation) 
3 flying bird 

Casual 

MF, TMO Wetland monitoring Terrimap Online (online tool 
for 1x1km2 surveys) 

15 1 
1 precise per meter 
(precise per hectare in 
case of aggregation) 

T Complete observation list  14 1–4-5 

1 precise per meter 
4 data attributed to the 
nearest locality 
(precision unknown) 
5 inside this 1 × 1 km 
square 

V Single observation  108 1–4-5 

1 precise per meter 
4 data attributed to the 
nearest locality 
(precision unknown) 
5 inside this 1 × 1 km 
square 

W Complete observation list  55 1–4-5 

1 precise per meter 
4 data attributed to the 
nearest locality 
(precision unknown) 
5 inside this 1 × 1 km 
square  

Fig. 3. Combination of all systematic data (Mixed dataset1) and casual data 
(Mixed dataset2). 
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of the analysis, we integrated all the eight bird data sets separately 
including both systematic (“Atlas 2013–2016”, “BDM ≥ 2013”, 
“MHB ≥ 2013”,” MHB + BDM ≥ 2013′′ and casual ones (“MFTMO”, “T”, 
“V”, and “W”). These datasets are all presence-only data, meaning they 
only contain presence records (Fig. 3). 

2.3. Species distribution modelling 

2.3.1. Step 1: initial evaluation of predictive accuracy of eight bird datasets 
and improvement of the datasets with unreliable model evaluations values 

We used species distribution models across eight datasets (Atlas 
2013–2016, BDM 2013, MHB 2013, MHBBDM 2013, MFTMO, T, V, and 
W) to better understand the interactions between sampling methods, the 
various types of bird species data, modelling techniques, and modelling 
accuracy (Edwards Jr et al., 2006; Guisan and Thuiller, 2005; Jiménez- 
Valverde et al., 2009; Parviainen et al., 2009). For each dataset, we fitted 
SDMs using different environmental variables at 100 m spatial resolu-
tion (more information in supplementary) and manipulated them in 
ARCGIS 10.2 (Environmental System Research Institute, Inc.) or in R3.3 
(R Core Team, 2016) because each dataset has a different geographic 
distribution area (Fig. 2) and distribution of sample location (distribu-
tion of species) has an important effect on model accuracy (Brotons 
et al., 2007; Hirzel and Guisan, 2002). Therefore, for each dataset, we 
selected different sets of environmental variables from various sources 
(Gama et al., 2016; Parra et al., 2004), assumed to be ecologically 
meaningful and influential on bird species (see more details about 
environmental variables in supplementary information). We tested the 
pairwise correlations for all predictors (Table S1) to derive the simplest 
probable distributions for each dataset based on uncorrelated variables 
(Spearman correlation >0.7; Dormann et al., 2013) and reduce 
collinearity. 

We applied eight modelling techniques to each of the eight data sets 
to identify the most important modelling techniques with the highest 
predictive accuracy (Barbet-Massin et al., 2012; Grenouillet et al., 2011; 
Marmion et al., 2009; Parviainen et al., 2009). Modelling techniques 
include Flexible Discriminant Analysis (FDA; Grenouillet et al., 2011; 
Reiss et al., 2011), Classification Tree Analysis (CTA; Marini et al., 
2010), Multivariate Adaptive Regression Splines (MARS) (Marini et al., 
2010), Generalized Linear Models (GLM) (Bikkina, 2014), Random 
Forest (RF) (Tonini et al., 2020), Artificial Neural Networks (ANN) 
(Manel et al., 1999), Generalized Boosting Model (GBM) also known as 
Boosted Regression Trees/BRT (Heikkinen et al., 2012), and Surface 
Range Envelop (SRE) equivalent to BIOCLIM (Barbet-Massin et al., 
2012; Booth et al., 2014; Thuiller et al., 2016). We compared all these 
SDM techniques using different environmental variables for each group 
of the bird dataset (More information in Supplementary). We employed 
the biomod2 package (Thuiller et al., 2016) in R v3.3 (R Core Team, 
2016) to fit the species distribution models across the eight bird datasets. 

For each dataset, we ran SDMs 10 times with 5 replications of 
pseudo-absence records with a size of 10,000 (Barbet-Massin et al., 
2012), for a total of 50 runs. At each run, we selected 70% of the records 
at random to train the model. For the remaining 30%, we used an 
evaluation dataset (a combination of the systematic datasets MHB, BDM, 
and MHBBDM) with high precision geography identification (Table 1) 
from the similar study area to evaluate the models (Edwards Jr et al., 
2006; Graham et al., 2008; Hallman and Robinson, 2020). For model 
evaluations, we used several indices such as the area under the receiver 
operating characteristic curve (AUC; Jiménez-Valverde, 2012; Fer-
nandes et al., 2019), the true skills statistic (TSS; Allouche et al., 2006; 
Fernandes et al., 2019), and Cohen’s Kappa Statistic (KAPPA; Cohen, 
1960; Fernandes et al., 2019) (Li et al., 2020; Smeraldo et al., 2021). 

We applied equal weighting to pseudo-absence and presence records 
to arrive at an overall prevalence of 0.5 (Amini Tehrani et al., 2020; 
Ferrier et al., 2002; Scherrer et al., 2019; Thuiller et al., 2016) because 
the accuracy of the models is reduced by unbalanced prevalence (Guisan 
et al., 2017). We selected the best values of model evaluation indices for 

each dataset based on the highest model evaluation scores. Then, we 
identified the datasets with the reliable model evaluation values to be 
used later in step 2 (Data-pooling technique) and step 3 (Model-based 
data integration). 

2.3.2. Data combining in species distribution 
Integrated SDMs, models that simultaneously combine different data 

sources on species locations to quantify environmental relationships that 
contribute to the understanding of species distribution, tackled many of 
the data integration challenges (Carvalho et al., 2010;Fithian et al., 
2015; Fletcher Jr et al., 2019; Isaac et al., 2020). Data integration could 
increase the quantity of available data and contribute to enhanced 
predictions of species distributions (Miller et al., 2019; Pacifici et al., 
2017). We identify two ways in which multiple sources of data are 
typically combined for modelling species distributions. 

2.3.3. Step 2: data-pooling technique 
Data pooling refers to a common method that incorporates obser-

vations (presence-only data) from different sources, regardless of data 
source and/or sampling issues (Barbet-Massin et al., 2012; Fithian et al., 
2014, 2015; Tsoar et al., 2007) that could be based on a single obser-
vation model that may fail to identify the specification of data sources, 
ignore their discrepancies, or reduce data to a standard in the model 
(Fithian et al., 2015; Fletcher Jr et al., 2019; Isaac et al., 2020). It implies 
that all variations between datasets are minimal enough which could be 
discarded or lowered to a lowest common denominator (Isaac et al., 
2020). This method could boost the out-of-sample predictive perfor-
mance of the model if the data available for a species are insufficient 
(Fithian et al., 2014, 2015; Fletcher Jr et al., 2019; Saracco et al., 2008). 

We applied the data pooling method to the bird datasets that had 
small distribution across the study area and were not technically suitable 
for making reliable SDM (Fithian et al., 2015; Fletcher Jr et al., 2019; 
Picard et al., 2009). They were obtained from the step 1 of the analysis 
(initial evaluating predictive accuracy). These datasets included sys-
tematic datasets of “BDM ≥ 2013”, “MHB ≥ 2013”,” 
MHB + BDM ≥ 2013′′, and casual ones “MF, TMO”. All these datasets are 
pooled and combined to make ‘mixed data set 1’ (107 species) (Fig. 2). 
We included “MF, TMO” data in “mixed data set 1” because these data 
are supported by the online tool «Terrimap online» that applies the 
standardization process and helps avoid mistakes (Birrer, 2019). 
Therefore, it could be a reliable dataset like systematic data. To make 
“mixed data set 2” (177 species), we used a combination of three casual 
bird data “T” (complete observation list), “V” (single observation), and 
“W” (complete observation list) that were collected in a non-systematic 
strategy (Fig. 3). We built SDMs separately for the final datasets ‘mixed 
data set 1′ (107 species) and ‘mixed data set 2’ (177 species) in the 
“biomod2” (Thuiller et al., 2016) in R3.3 software (R Core Team, 2016) 
with uncorrelated variables as predictors (see supplementary). Much 
like step 1 of the analysis, we applied eight modelling techniques (FDA, 
CTA, MARS, GLM, RF, ANN, GBM, SRE) separately to each of the two 
mixed data sets. We calibrated and evaluated all models by techniques 
identical to those in the previous step (Initial evaluation of predictive 
accuracy of eight bird datasets and improvement of the datasets with 
unreliable model evaluations values). 

2.3.4. Model-based data integration 
Model-based data integration (Isaac et al., 2020; Merow et al., 2017) 

or integrated SDMs (ISDMs) (Fletcher Jr et al., 2019; Schank et al., 2019; 
Simmonds et al., 2020) has been developed by integrating data sets in a 
way that the strengths of each dataset are retained (Isaac et al., 2020). 
Model-based data integration has its strength in spreading parameters 
across sub-models, which offers more reliable estimation of de-
mographic parameters in comparison to the independent models 
(Fletcher Jr et al., 2019; Isaac et al., 2020; Miller et al., 2019). We 
applied a model-based data integration method to each systematic bird 
dataset “BDM ≥ 2013”, “MHB ≥ 2013”, “MHB + BDM ≥ 2013”, and 
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casual “MF, TMO”. We made a single SDM model (small model) for each 
data set and then ensembled all predictions of the small models across all 
bird datasets based on the average AUC. We repeated this process 
(making a small model for each dataset and then ensembling predictions 
across all bird data) for each casual bird dataset “T” (Complete obser-
vation list), “V” (single observation) and “W” (complete observation 
list). We applied eight modelling techniques (FDA, CTA, MARS, GLM, 
RF, ANN, GBM, SRE) to each of the data set separately to find the most 
important modelling techniques (data-pooling technique). We cali-
brated and evaluated all models using techniques identical to those in 
the previous step (data-pooling technique). 

3. Results 

3.1. Step 1: initial evaluation of predictive accuracy of eight bird datasets 
and improvement of the datasets with unreliable model evaluations values 

Model accuracies were estimated for the three evaluation techniques 
(ROC, KAPPA and TSS) by taking average across the eight technique 
models and showed considerably different across the eight groups bird 
datasets. Data sets “MHB2013” ROC (0.98), kappa (0.94), TSS (0.95), 
“MF-TMO” ROC (0.98), KAPPA (0.93), TSS (0.95), “MHB, BDM2013” 
ROC (0.88), KAPPA (0.71), TSS (0.70), “BDM2013” ROC (0.88), KAPPA 
(0.47), TSS (0.71), “W” ROC (0.81), KAPPA (0.45), TSS (0.54), 
“Atlas2013-16” ROC (0.75), KAPPA (0.41), TSS (0.42), “T” ROC (0.76), 
KAPPA (0.31), TSS (0.49), “V” ROC (0.74), KAPPA (0.40), TSS (0.42) 
showed higher prediction accuracy respectively across eight bird data-
sets (Fig. 4). There were also distinguishing differences in projections of 
the species distribution among the eight modelling techniques across 
eight bird datasets and the results showed that RF and GBM predict 
distribution of bird species in the study area better than other modelling 
techniques, MHB2013 (RF = 1, GBM = 0.99), MFTMO (RF = 0.98, 
GBM = 0.98), MHBBDM (RF = 0.96, GBM = 0.92), BDM2013 
(RF = 0.80, GBM = 0.79), Atlas (RF = 0.76, GBM = 0.63), T (RF = 0.72, 
GBM = 0.66), V (RF = 0.61, GBM = 0.56), W (RF = 0.55, GBM = 0.63) 
(Fig. 5) except for W dataset that ANN (0.86) and CTA (0.74) had the 
highest AUC among other modelling techniques (Fig. 5). Overall, 
Random Forest algorithm was clearly the most effective modelling 
techniques for predicting bird distribution in the study area, according 
to our findings. The results obtained with the Random Forest are very 
encouraging for predicting habitat suitability, presenting the highest 
accuracy among the other algorithms tested in this study. 

3.2. Step 2: data-pooling technique 

Data-pooling approach, without regard for the data source, showed 
that “mixed data set 1” with ROC (0.81), KAPPA (0.55), TSS (0.54) 

(Figs. 6, 7) had a more dependable and unbiased model accuracy than 
that of the single systematic data (Figs. 4, 5). It could be the best bird 
dataset for predicting bird species distribution in the study area as 
compared to other datasets such ad “Atlas 2013–2016”, ROC (0.76), 
KAPPA (0.42), TSS (0.43) and “mixed data set 2” (177 species), ROC 
(0.74), KAPPA (0.40), TSS (0.40) (Fig. 6). The pooling approach, in 
contrast to the single dataset (W, T, V) (Fig. 4), could not improve model 
accuracy (ROC (0.74), KAPPA (0.40), TSS (0.40) (Fig. 6)) of the casual 
datasets like “mixed data set 2” (177 species) as the values of model 
evaluations decreased in combining and pooling data. The results also 
identified RF as the most important modelling technique across “mixed 
data set 1”, with ROC (0.99), KAPPA (0.91), TSS (0.91) and “mixed data 
set 2”, with ROC (0.81), KAPPA (0.53), TSS (0.52) respectively (Fig. 7). 

3.3. Step 3: model-based data integration 

Model-based data integration of all systematic bird datasets 
(BDM ≥ 2013, MHB ≥ 2013) and casual datasets (MF, TMO), which 
involved constructing distinct data models for each source and then 
integrating the data, increased model accuracy with ROC (0.94), KAPPA 
(0.78), and TSS (0.91). (0.86) (Fig. 8). This is also true for casual dataset 
“T” (complete observation list), “V” (single observation), and “W” 
(complete observation list) with ROC (0.77), kappa (0.42), TSS (0.49) 
(Fig. 8). It outperformed the data-pooling strategy with ROC (0.74), 
KAPPA (0.40), TSS (0.40) (Fig. 6) in predicting species distribution. The 
findings of model-based data integration revealed that RF outperforms 
all other algorithms in terms of model evaluation: “mixed data set 1” 
with ROC (0.98), KAPPA (0.90), TSS (0.93), and “mixed data set 2” with 
ROC (0.88), KAPPA (0.64), TSS (0.66). Therefore, it could be considered 
as the most efficient algorithm (Fig. 9). 

Fig. 4. Initial evaluation of predictive accuracy of the eight bird datasets based 
on receiver operating characteristic curve (ROC), KAPPA, True Skill Statistic 
(TSS), and improving dataset with low AUC (Area Under the Curve). See 
Table 1 for further information on each bird dataset. 

Fig. 5. Initial evaluation of predictive accuracy of the eight bird datasets across 
eight different algorithms: Artificial Neural Networks (ANN), Classification 
Tree Analysis (CTA), Flexible Discriminant Analysis (FDA), Generalized 
Boosting Model (GBM), Generalized Linear Models (GLM), Multivariate Adap-
tive Regression Splines (MARS), Random Forest (RF), Surface Range 
Envelop (SRE). 

Fig. 6. Model evaluation for the final two different bird data (Mixed dataset 1, 
Mixed dataset 2) by pooling techniques and Atlas data. 
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4. Discussions 

In this study, we proposed two different methods that enabled the 
integration and combination of multiple sources of presence-only data to 
examine how they affect the performance of SDMs and then determine 
the most accurate bird dataset for predicting bird species distribution in 
the western Swiss Alps as the study area (Dorazio, 2014; Fithian et al., 
2015; Miller et al., 2019). These methods illustrate how different types 
of data can be effectively combined in SDMs to produce accurate 

predictions of bird habitats suitability (Domisch et al., 2016; Koshkina 
et al., 2017). The combination of different sources of datasets showed 
that it can be appropriate especially if the quantity of data on species 
sites is limited in the planned surveys. Combining data could increase 
the sample size and consequently improve model accuracy (Fletcher 
et al., 2016; Fletcher Jr et al., 2019). We observed that SDMs can predict 
with greater accuracy and reliability when model-based data integration 
is applyed since this method takes into account the data obtained from 
different sampling designs (Fletcher Jr et al., 2019; Isaac et al., 2020; 
Merow et al., 2017). 

We observed that models developed on a systematic collection of 
data with a small sample size performed poorly (with unreliable values 
of model evaluations). However, they can be enhanced by using data- 
integration approaches such as model-based data integration (Fithian 
et al., 2015; Isaac et al., 2020; Koshkina et al., 2017; Tenan et al., 2017). 
Model-based data integration approach is flexible because a broader 
variety of data types can be accommodated (Fletcher Jr et al., 2019; 
Isaac et al., 2020; Merow et al., 2017). It could clarify the differences in 
the integration of datasets hence retain their strengths and correct their 
weaknesses (Fletcher Jr et al., 2019; Isaac et al., 2020; Miller et al., 
2019). 

Our research methods provide an efficient solution for systematically 
collected data with a small sample size, allowing us to predict the dis-
tributions of birds more precisely and accurately in the mountainous 
area of the study (Fithian et al., 2015; Fletcher Jr et al., 2019). Here, a 
combined systematic bird dataset (mixed data set 1) could serve as a 

Fig. 7. Model evaluations by receiver operating characteristic curve (ROC), KAPPA, True Skill Statistic (TSS)) for the final two different bird data by pooling 
techniques and Atlas data across eight different algorithms (Artificial Neural Networks (ANN), Classification Tree Analysis (CTA), Flexible Discriminant Analysis 
(FDA), Generalized Boosting Model (GBM), Generalized Linear Models (GLM), Multivariate Adaptive Regression Splines (MARS), Random Forest (RF), Surface Range 
Envelop (SRE)). 

Fig. 8. Model evaluation for the final two different bird data using model-based 
data integration technique and Atlas data. 

Fig. 9. Model evaluation by Receiver Operating Characteristic curve (ROC), KAPPA, True Skill Statistic (TSS) for the final two different bird data using model-based 
data integration technique and Atlas data across eight different algorithms (Artificial Neural Networks (ANN), Classification Tree Analysis (CTA), Flexible 
Discriminant Analysis (FDA), Generalized Boosting Model (GBM), Generalized Linear Models (GLM), Multivariate Adaptive Regression Splines (MARS), Random 
Forest (RF), and Surface Range Envelop (SRE)). 
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truly appropriate dataset and provide a better prediction of assessing the 
species-environment relationships. Our study has shown that collecting 
information on the model-based data integration, making a separate 
sub-model of each dataset, and then integrating them into a single final 
model could be more accurate than that of data-pooling technique 
where different data sources were combined and a single model was 
fitted (Fletcher Jr et al., 2019; Isaac et al., 2020). We examined how 
various bird data sources can be treated differently in SDMs applying 
two different techniques of data combination. 

Our result also showed that machine-learning algorithm particularly 
tree-based ensembles Random Forest (RF) (Tonini et al., 2020) is the 
most accurate modelling technique for predicting bird species distribu-
tion and could offer a more precise prediction of assessing the species- 
environment interactions comparing to other modelling techniques (Li 
et al., 2017; Mi et al., 2017; Wellmann et al., 2020). This recent algo-
rithm is one of the most accurate techniques in ecological modelling 
(Bradter et al., 2013; Li and Wang, 2013) that can better model and 
implement complex non-linear interactions between species and the 
ecosystem (Garzon et al., 2006; Heikkinen et al., 2012; Oliver et al., 
2012). Random Forest is an effective technique for incomplete data and 
unbalanced databases (Breiman, 2001; Li, 2013) and is reliable to 
overfit, and commonly produces better predictive models (Howard 
et al., 2014; Tonini et al., 2020). 

5. Conclusions 

Our analysis offers robust data-integration approaches to limited, 
low-distribution structural data, resulting in a more accurate prediction 
of bird distribution across a large mountain area of the western Swiss 
Alps. Data-integration has a tremendous ability to better explain the 
distributions of species and statistical models (Fithian et al., 2015; 
Fletcher Jr et al., 2019; Miller et al., 2019). For instance, by combining 
several sources of data in development of a model, a researcher can 
obtain a better understanding of the environmental relations and 
mechanisms that affect the species distribution (Fukaya et al., 2020; 
Isaac et al., 2020; Pacifici et al., 2017). Where there is a lack of data 
available for a given species, the data integration approach would be 
able to account for various sampling biases affecting the data and 
improve the models’ predictive performance by increasing the quantity 
of available data and optimizing the useful information for predicting 
species distributions (Fithian et al., 2015; Fletcher Jr et al., 2019; Isaac 
et al., 2020). With rising access to a growing amount of data, an data- 
integrating approach is expected to offer an increasingly widespread 
and effective solution to species distribution concerns and emerging 
issues of environmental change (Miller et al., 2019; Pacifici et al., 2017). 
We concentrated exclusively on integrating bird distributional data, 
while other types of data could also be integrated to help predict the 
species distribution processes more precisely. 
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