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1  |  INTRODUC TION

Assessments of climate change effects on species distributions are 
largely driven by observational studies relating to changes in spe-
cies distributional shifts with geographic or climatic gradients (Chen 
et al., 2011; Pecl et al., 2017). When distributional shifts match ex-
pected gradients, it is assumed that climate change is the likely driver 
of such shifts. Besides issues with data quality, which often pervade 

under-replicated studies across spatial and temporal dimensions, 
there are two potential problems with such an approach. The first 
is one of pattern detection. How can one be sure that the observed 
patterns would not have arisen by chance? The second is one of at-
tribution. How can one be sure that the hypothesized drivers are the 
ones driving the observed pattern?

These are classical problems of inference based on correlations, 
and no easy solutions exist. Nevertheless, problems of pattern 
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Abstract
Species are reportedly shifting their distributions poleward and upward in several 
parts of the world in response to climate change. The extent to which other factors 
might play a role driving these changes is still unclear. Land-cover change is a major 
cause of distributional changes, but it cannot be discarded that distributional dynam-
ics might be at times caused by other mechanisms (e.g. dispersal, ecological drift). 
Using observed changes in the distribution of 82 breeding birds in Great Britain be-
tween three time periods 1968–72 (t1), 1988–91 (t2) and 2007–2011 (t3), we exam-
ine whether observed bird range shifts between t1-t2 and t1-t3 are best explained 
by climate change or land-cover change, or whether they are not distinguishable 
from what would be expected by chance. We found that range shifts across the rear 
edge of northerly distributed species in Great Britain are best explained by climate 
change, while shifts across the leading edge of southerly distributed species are best 
explained by changes in land-cover. In contrast, at the northern and southern edges 
of Great Britain, range dynamics could not be distinguished from that expected by 
chance. The latter observation could be a consequence of boundary effects limiting 
the direction and magnitude of range changes, stochastic demographic mechanisms 
neither associated with climate nor land-cover change or with complex interactions 
among factors. Our results reinforce the view that comprehensive assessments of 
climate change effects on species range shifts need to examine alternative drivers of 
change on equal footing and that null models can help assess whether observed pat-
terns could have arisen by chance alone.
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detection can often be handled within a null modelling framework 
that seeks to assess whether observed patterns in any given response 
variable (e.g. a species distributional change) could have arisen by 
chance (Gotelli & Graves, 1996). Null models are commonly used for 
testing ecological theory, but they are notoriously uncommon in stud-
ies assessing species distributional shifts and their underlying drivers 
(Taheri et al., 2021). Such models typically involve the use of random-
ized ecological data subject to sets of constraints and are designed to 
produce a pattern expected in the absence of a particular ecological 
mechanism. The generated (random) pattern can be compared with 
the real pattern of interest (Gotelli & McGill, 2006). Conceptually, null 
models help discern patterns in the data but they do not necessarily 
reveal the underlying causal mechanisms (Peres-Neto et al., 2001).

Problems of attribution are also inherent to the use of correla-
tions for inferring causation. Confidence in the inferences with 
correlative methods comes from accumulation of evidence and, 
ideally, from accumulation of evidence arising from multiple (and 
diverse) sources (e.g. Araújo et al., 2019). For any particular analy-
sis, the problem is particularly challenging when multiple candidate 
predictors covary, which limits the ability to discern the variables 
truly driving observed patterns or, more subtly, how they inter-
act to conform the observed pattern (Dormann, 2007). Testing 
model inferences requires independent replication but empirical 
data in many ecological problems are notoriously under-replicated 
(Lemoine et al., 2016). One approach to deal with uncertainty 
brought by covarying candidate predictors is to compare, on 

equal footing, inferences made with alternative sets of predictors 
(Burnham & Anderson, 2004). While such an approach is familiar 
in ecology (e.g. Araújo et al., 2008; Eglington & Pearce-Higgins, 
2012; Rangel et al., 2018), it is seldom used for studying mecha-
nisms driving observed species distributional dynamics (e.g. Rich 
& Currie, 2018). For example, a recent study demonstrated that 
previous analysis examining climate change signals on the distri-
butional shift of British birds (Thomas & Lennon, 1999), overes-
timated these signals by failing to examine distributional changes 
across multiple dimensions (Taheri et al., 2016).

The matter of fact is that shifts in range edges toward higher 
latitude or elevation are often interpreted as a response of species 
to warming climate (e.g. Chen et al., 2011; Hickling et al., 2006; 
Parmesan et al., 1999). However, variation in magnitude and direction 
of such range shifts suggests that climate, particularly temperature, 
might not be the sole driver (e.g. Fei et al., 2017; Taheri et al., 2016). 
Shifts in geographic distributions of species may also reflect natural 
population dynamics (Bradshaw et al., 2014), or complex interactions 
with other factors such as human-mediated land-use change (e.g. Guo 
et al., 2018; Lehikoinen et al., 2013), dispersal limitations (Anderson 
et al., 2009) competition (Marion & Bergerot, 2018), biological inva-
sions (Sax & Gaines, 2008), disease (Hof et al., 2011) and interactions 
among several factors (e.g. Vicente et al., 2019).

Understanding range dynamics and their underlying causes 
thus requires more sophisticated analysis than is typically per-
formed. In this study, we illustrate these issues by examination of 

F I G U R E  1  Methodological framework. 
(a) Climate model, (b) Land-cover model, 
(c) Null model, (d) Analysis of range shifts. 
Presence/Absence map was generated 
for each species based on the three 
alternative models. The pattern of range 
shifts was compared with the observed 
data using the Wilcoxon signed-rank test. 
(e) Sections of the species ranges shows 
the different sections of the distributions. 
Leading and rear edges of southerly 
distributed species (n = 47), and rear and 
leading edge of northerly distributed 
species (n = 35) [Colour figure can be 
viewed at wileyonlinelibrary.com]
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historical range dynamics among 82 bird species in Great Britain 
against three alternative models: climate change model, assuming 
that distributions changed following climate changes; land-cover 
change model, assuming that species distributions changed fol-
lowing land-cover changes; and a null model that, while keeping 
the same quantities of observed distributional changes (expan-
sions and contractions), randomized the direction of the changes. 
Because drivers of species range shifts are unlikely to be equally 
important across different sections of species ranges and follow-
ing previous studies of range shifts in Great Britain (e.g. Hickling 
et al., 2006; Thomas & Lennon, 1999), we independently examine 
four sections of species distributions: leading and rear edges of 
the southern and northernmost edges of southerly and northerly 
distributed species (Figure 1e). The analysis is repeated across a 
20 year period (1968–72 vs. 1988–91) and a 40 year period (1968–
72 vs. 2007–11).

2  |  MATERIAL S AND METHODS

2.1  |  Species data

We used species distributional data from three Atlas of breeding 
Bird surveys compiled for Great Britain, providing presence and ab-
sence records at 10 × 10 km spatial resolution. The first atlas cov-
ered the period of 1968–72 (t1; Sharrock, 1976). The second covered 
the period of 1988–91 (t2; Gibbons et al., 1993). The third included 
records from 2007 to 2011 (t3; Balmer et al., 2013). The Atlases used 
the Ordnance Survey National Grid as a means of identifying loca-
tion of bird records. These standard inventory-type surveys aimed 
at generating ‘hectad’ (10 × 10 km) resolution distribution maps, and 
incorporated fixed-effort data using timed visits to a sample of ‘tet-
rads’ (2 × 2 km squares) in each hectad (Gillings et al., 2019).

We digitized the distribution data from online-published sources 
(https://www.bto.org/). We excluded marine species and restrict-
ed-range species with less than 20 records in the first atlas data since 
small range changes in restricted-range species can have a great 
relative effect even if driven by stochastic factors. We also excluded 
wide-ranging species with more than 2000 records (ubiquitous spe-
cies) in the first atlas (t1; Britain includes 2280 10 km grid cells), since 
the capacity to shift ranges biased towards range reduction. Using 
these criteria, we selected 82 species for analysis, involving species 
range comparisons between t1 and t2 (20 years) and t1 and t3 (40 years).

2.2  |  Climate

We used a time series of changes in maximum and minimum tempera-
tures and annual precipitation at a spatial resolution of 0.5 degrees 
from the updated version of the Climate Research Unit's database 
(http://www.cru.uea.ac.uk). The baseline covered the period of 
1958–2011, and then we sliced climate data for a 15 year interval be-
fore the last census in each period. The climate slices are as follows: 

For the t1 period, we used climate time series from 1958 to 1972; 
for t2, from 1977 to 1991; and for t3, from 1997 to 2011. We used 
15 years of climate data for each atlas on the assumption that spe-
cies’ ranges respond to the long-term average of climate conditions.

The climatic variables were processed using R BioCalc function 
(Ramirez, 2009). They included Maximum Temperature of Warmest 
Month, Minimum Temperature of Coldest Month and Annual 
Precipitation. Our choice of variables reflects those known to impose 
general constraints on bird distributions in Europe (Lennon et al., 
2000; Whittaker et al., 2007). We then downscaled climate data using 
Inverse Distance Weighting (IDW) following (Shepard, 1968) in raster 
package R (Hijmans et al., 2015). Inverse distance weighting (IDW) is 
a method of interpolation that estimates cell values by averaging the 
values of sample data points in the neighbourhood of each processing 
cell. The closer a point is to the centre of the cell being estimated, 
the more influence, or weight it has in the averaging process (Zhou & 
Zhang, 2014). The output cell size and other parameters of the new 
raster layers were matched to the 10*10 km of bird's atlas dataset.

To examine the climate-based prediction, we developed ensem-
ble species distribution models using the sdm package in R (Naimi 
& Araújo, 2016). We modelled each species presence/absence as a 
function of the three climate variables. We ran five different algo-
rithms for modelling the presence/absence of birds using an ensemble 
modelling framework (Araújo & New, 2007): generalized linear mod-
els (GLM; McCullagh & Nelder, 1989), generalized additive models 
(GAM; Hastie & Tibshirani, 2017), random forest (RF; Breiman, 2001), 
mixed effect modelling (FDA; Hastie et al., 1994), boosted regression 
tree (BRT; Friedman, 2001; Figure 1a). In order to avoid biases to the 
parameter estimation, we used a bootstrapping method (Fielding & 
Bell, 1997; Hastie et al., 2009) with 100 random replications for each 
species and modelling technique. Bootstrapping repeats a sampling 
with replacement, each time a sample with equal size as the original 
data is drawn and used for training data. The observations that are 
not selected are used for the evaluation at each run. Then we gener-
ated a consensus model, using weighted average probability for each 
species, where weights were obtained from the area under the curve 
(AUC) in evaluation data (Garcia et al., 2012; Marmion et al., 2009).

To assess habitat suitability based on climate constraints, we con-
verted probabilistic output to presence/absence using one of the rec-
ommended threshold techniques: Max (Sensitivity  +  Specificity; Liu 
et al., 2005). Values above or equal to the threshold are classified as 
predicted species presences, while values below the threshold are clas-
sified as predicted absences. When the presence/absence map was 
provided for each species, we measured the range shift and compared 
the results of climate related range shifts with observed range shifts.

2.3  |  Land-cover

We used land-cover change estimates from the Laboratory of 
Geo-information Sciences and Remote Sensing at the University of 
Wageningen (HILDA version 2.0). The HILDA dataset is available at 
a 1 km spatial resolution from 1900 to 2010 for the whole of Europe 

https://www.bto.org/
http://www.cru.uea.ac.uk
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(Fuchs et al., 2012, 2015). The temporal resolution of the dataset is 
decadal (10 years) and contains six land-cover classes:

1.	 Settlement (incl. green urban areas);
2.	 Cropland (incl. orchards and agroforestry);
3.	 Forest (incl. transitional shrub and woodlands, tree nurseries, re-

forested areas for forestry purposes);
4.	 Grassland (incl. natural grassland, wetlands, pasture and 

Mediterranean shrub vegetation);
5.	 Other land (incl. glaciers, sparsely vegetated areas, beaches, bare 

soil);
6.	 Water (incl. water bodies, sea, streams).

We considered three decadal land-cover survey periods ap-
proximately matching species atlas surveys: 1960; 1980; and 2000. 
The proportion of individual land-cover classes present within each 
10 km Bird Atlas grid cell (Figure 1b) was then calculated. In order to 
determine the signal of land-cover changes on species range shifts, 
we run the same species modelling techniques used for climate but 
with land-cover variables instead (Thuiller et al., 2004). Specifically, 
we modelled each species presence/absence as a function of the six 
land-cover predictors. Following the procedure used with climate 
variables, we ran five different algorithms to model the presence and 
absence of bird species within an ensemble modelling framework. We 
used the land-cover predictors for the 1960s (t1) as baseline. Then, we 
projected distributions using land-cover predictors in 1980s (1960 vs. 
1980, 20 years) and 2000s (1960 vs. 2000, 40 years). Like with the 
climate models, we generated 100 random replications using boot-
strapping (sampling with replacement) for each species and modelling 
technique. We used AUC in evaluation data, to obtain the probability 
of distribution for each species and used the same threshold method 
implemented with the climate model to convert the probabilities gen-
erated from the land-cover model into presence and absences.

To address the link between the magnitude of the land-cover 
change and species range shifts, we first selected all persistence 
cells (cells where species remained present from the first to the sec-
ond survey (Presence in t1 ∩ Presence in t2 or t3). Then, we treated 
all persistence cells as static, while randomizing newly occupied cells 
in t2 or t3 within the potential cells that had a high probability of oc-
currence as projected by the ensemble models using the land-cover 
predictors. Here, the constrained randomization ensures that each 
novel presence has an equal chance of occupying any of the suitable 
sites predicted by the land-cover model. In order to estimate the 
variability of the results, we replicate the randomization process 100 
times for each species. We used the average of these replications to 
measure the range shifts constrained by land-cover and compared 
the results with observed range shifts.

2.4  |  Null model

We developed a patch-occupancy null model to infer expected 
range shifts in the absence of climate change or land-cover change 

but with the geographical constraints imposed by the geometry of 
Great Britain, while maintaining the observed rates of expansion or 
contraction of the 82 species in the intervals t1-t2 and t1-t3. In a given 
interval, the model computes the null expected range shift of each 
species as follows.

First, denote as Pt1 the set of cells in which the species is present 
at the first atlas. Likewise, Pt2 is the set of cells with presence of the 
species in the second census (either time t1 or t2). Further, denote as 
Ps the set of cells in which the species persists from the first to the 
second census, and with Pc the set of cells newly colonized by the 
species in the second census. Thus, the number of occupied cells in 
the second census is simply |Pt2| = |Ps| + |Pc| where the double bars 
indicate the cardinality of a set, i.e. the number of elements it con-
tains. If the species has expanded its distribution, |Pt2| > |Pt1|, which 
implies |Pc| > 0 but allows for |Ps| to reach 0, in the limit case in which 
a species changes its whole range between censuses. On the other 
hand, if the species has suffered a contraction between censuses, it 
means |Pt2| < |Pt1|, in this case implying |Ps| < |Pt1|.

The null model keeps the number of persisting occurrences and 
colonized cells of each species fixed, and simply distributes these 
quantities stochastically (|Ps| and |Pc|) across the appropriate sets 
of cells. In particular, for each realization of the model for a given 
species, the first step is to assign the cells in which the species per-
sist. Since we assume that all cells are equivalent, we expect spe-
cies to persist with equal probability in any of the cells occupied in 
the first census. Therefore, we randomize the number of persisting 
cells, |Ps|, among the set of occupied cells at T1, Pt1. Using set op-
erations, the randomized Ps ⊆ Pt1 (panel i) of Figure 1c. The second 
step is assigning the colonized cells, Pc. Again, as we assume no 
other constraints, any cell of the whole territory can be assigned a 
presence. Thus, if T is the set of cells of the whole territory, in each 
realization we randomize Pc ⊆ T (panel ii) of Figure 1c.

This approach accounts for expansions and contractions in the 
number of cells with persistent occurrences (t1 = 0, t2 = 1) or colonized 
cells (t1 = 0, t2 = 1), thus including the whole variability of range shifts 
observed. In this study, we generated 1000 draws of the null model 
for each one of the 82 bird species considered, totalizing 82,000 null 
model distributions. The final analysis of range shifts was carried out 
with averaged shifts across these 1000 replicates for each species.

2.5  |  Analysis of range shifts

To relate observed species range shifts to our three alternative mod-
elled shifts (constrained by climate, land-cover or random dynamics), 
and following Thomas and Lennon (1999), we first split species into 
northerly and southerly distributed depending on whether their dis-
tributional core lies to the north or to the south of the mean position 
of the all 100 km2 grid cells in Great Britain respectively (Figure 1e; 
Table S4). Overall, we obtained 47 and 35 southerly and northerly 
distributed species respectively.

We then examined range changes along leading and rear edges. 
Shifts in range margins between two atlases were calculated as 
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the mean distance of 20 most marginal records in the southern 
and northern margins in t2 or t3 minus t1; positive values indicate 
a move toward the boundary (expansion) and negative values in-
dicate a move toward the core of the distribution (contraction; 
Figure 1d). Then we provided Presence/Absence map for three al-
ternative models (climate, land-cover, null) and compared shifts at 
the leading and rear edge with observed data using the Wilcoxon 
signed-rank test.

3  |  RESULTS

Comparison of observed range shifts with projections arising from 
the three alternative models revealed that determinants of species 

range shifts were seemingly variable across each one of the four pre-
defined sections of the range (Figure 1e).

At both the southern and northern tips of Great Britain (i.e. the 
rear edge of southerly distributed species and the leading edge of 
northerly distributed species), observed range shifts were no differ-
ent from expected by chance; this being true for both the t1 vs. t2 
and t1 vs. t3 comparisons (Figures 2c,d and 3c,d). Observed trends 
were also no different than expected by chance with respect to both 
the climate and land-cover change models, making it difficult to at-
tribute observed changes to any specific driver.

At the rear edge of northerly distributed species, observed 
range shifts were inconsistent with range changes obtained with 
the null model (Wilcoxon signed-rank test p  <  0.001; Figures 
2b and 3b) as well as with the land-cover model (p  <  0.01 and 

F I G U R E  2  Violin plots depicting the 
frequency distribution of range shifts 
between (1968–72 and 1988–91) among 
leading (a) and rear (c) edges of southerly 
distributed species (n = 47), and rear (b) and 
leading edge (d) of northerly distributed 
species (n = 35). The degree of mismatch 
between observed shifts (yellow) and range 
shifts predicted by the null model (blue), 
land-cover model (green) and climate model 
(red). The black dots inside the violin plots 
show the median and the vertical line shows 
the deviation from the mean. *** and * 
indicate if there is any significant difference 
from observed shifts p < 10–3 and p < 0.05 
respectively using (Wilcoxon sign rank test). 
Maps in the centre show different sections 
of the distribution and are an example of 
leading and rear edges of southerly and 
northerly distributed species [Colour figure 
can be viewed at wileyonlinelibrary.com]

F I G U R E  3  Violin plots depicting the 
frequency distribution of range shifts 
between (1968–72 and 2007–11) among 
leading (a) and rear (c) edges of southerly 
distributed species (n = 47), and rear (b) and 
leading edge (d) of northerly distributed 
species (n = 35). The degree of mismatch 
between observed shifts (yellow) and range 
shifts predicted by the null model (blue), 
land-cover model (green) and climate model 
(red). The black dots inside the violin plots 
show the median and the vertical line shows 
the deviation from the mean. *** and * 
indicate if there is any significant difference 
from observed shifts p < 10–3 and p < 0.05 
respectively using (Wilcoxon sign rank test). 
Maps in the centre show different sections 
of the distribution and are an example of 
leading and rear edges of southerly and 
northerly distributed species [Colour figure 
can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com
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p < 0.001 for the 20 years and 40 years comparison respectively; 
Figures 2b and 3b), which predicted a shift of opposite direction 
as observed. Observed range shifts were, in turn, consistent with 
that estimated with the climate model (Figures 2b and 3b). Such 
consistency between observation and modelled shifts can be in-
terpreted as indicating the existence of a climate change signal 
in species distributional dynamics in this geographical section of 
the range. More specifically, observed data showed a general ten-
dency for northward shift with a mean of 14 km (median = −1.5) 
during the 20  years comparison and a mean of 30.8  km (me-
dian = 5.5) during the 40 years comparison. Climate models pro-
jected a northward range shift of greater magnitude with a mean 
of 23  Km (median  =  44.5; Figure 2b) during the 20  years and a 
mean of ~72.9 km (median = 52.5; Figure 3b) during the 40 years.

At the leading edges of southerly distributed species, range 
dynamics were again inconsistent with the null model (p < 0.001; 
see Figures 2a and 3a) and with the climate model projections 
(p  <  0.001; Figures 2a and 3a), which predicted shifts of oppo-
site direction as observed. The land-cover model generated, in 
contrast, projections that were consistent with observed range 
shifts (Figures 2a and 3a). Specifically, observed trends indicate a 
northward shift by average of 14.4 km (median = 7.5) during the 
20 years and 45.6 km (median = 35) during the 40 years. The land-
cover model inferred the same trend of northward expansion by 
52.9  km (median  =  67.5; Wilcoxon signed-rank test, p  =  0.008, 
Figure 2a) during the 20  years and 85  km during the 40  years 
(median  =  86.5; Wilcoxon signed-rank test, p  =  0.1; Figure 3a) 
respectively.

4  |  DISCUSSION

We show that different mechanisms are likely implicated in shap-
ing bird range dynamics across Great Britain and that the impor-
tance of such mechanisms (e.g. climate change versus land-cover 
change) varies across sections of species ranges. While rear edges 
of northerly distributed species have shifted consistently with 
projections from a climate-driven model, shifts at the leading edge 
of southerly distributed species carry a stronger imprint of land-
cover change. In contrast, shifts at the leading edges of northerly 
distributed species and the rear edges of southerly distributed 
species—that is, distributions at both the northern and southern 
tips of Great Britain—were no different from that expected by 
chance.

One question arising when interpreting range shifts in a geo-
graphically bounded area, such as Great Britain, is the extent to 
which the magnitude and direction of range changes are con-
strained by the geometry of the region (see Gillings et al., 2014; 
Groom, 2013). For example, suppose that a species is distributed in 
the easternmost corner of the Island and that climate change would 
drive species to expand north. Since north of that region there is 
boundary with the sea, the species would be blocked from moving 
north having to first move west and then north. Such constraints 

could have played a role in species distributional dynamics at the 
leading margins of northerly distributed species and rear margins 
of southerly distributed species, where the northern and south-
ern terrestrial boundary of Great Britain restricts movement. In 
addition to the shape of the boundary, there can be other natural 
boundaries (e.g. mountain ranges, rivers, fragmented habitats) that 
prevent dispersal and reduce the rate of species adaptation to cli-
mate change through shifting ranges.

Geometric constraints on the spatial distribution of species is not 
an entirely new topic (see Colwell & Lees, 2000). For example, Keith 
et al. (2011) showed that physical barriers have restricted disper-
sal of pelagic larvae in the south coast of England. Another study 
showed that the absence of Mecistogaster modesa in South America 
is strongly related to physical barriers such as the Andes mountain 
range and oceanic barriers (Amundrud et al., 2018).

Despite previous insights on geometrical constraints, only a few 
studies have compared observed species distributional changes with 
null models to discriminate between directional patterns of range 
change and non-directional ones (e.g. potentially arising from sto-
chastic processes). One such examples involves the use of Monte 
Carlo simulations to generate distributions of species across eleva-
tion under the null hypothesis (Forero-Medina et al., 2011). In that 
study, the authors found that by chance alone, 55 birds in Peruvian 
mountains could have moved on average ~40 m upward in elevation 
during 40 years.

Although a great deal of research on species range shifts has fo-
cused on climate change and its signals (e.g. Hanberry et al., 2011; 
Hickling et al., 2005; Parmesan et al., 1999; Thomas & Lennon, 1999) 
population declines have also been linked to agricultural intensifi-
cation and fragmentation, fertilizer application or pesticide use 
through time (Chamberlain et al., 2000; Eglington & Pearce-Higgins, 
2012; Reino et al., 2018). There is also evidence that land-cover or 
agricultural practices can cause varying types of range shifts de-
pending on behavioural and trophic characteristics of the species 
(e.g. Gaüzère et al., 2020; Reino et al., 2018). For example, Spiza 
americana, a grassland bird from North America, displayed north-
ward expansions during 1960–1980 owing to changes in winter food 
supply associated with changing agricultural practices from rice 
growing to cattle raising (MacArthur, 1972).

In our study, we had no detailed information on agricultural 
practices at the cell level and analyses were based on patterns of 
change across six broad types of land-cover classes. Including more 
detailed information on agricultural practices can provide a more 
reliable estimation of the magnitude of species range shifts under 
land-use (rather than coarse land-cover) change. Our results are 
consistent with previous studies showing that expansions at lead-
ing edges of species ranges can arise as a consequence of land-
cover change (Groom, 2013; Lima et al., 2007). In the Italian Alps, 
for example, the upward shifts of 21 bird species between 1982 
and 2017 have been attributed to shrub and forest cover expansion 
(Bani et al., 2019), and range expansion among 10 out of 23 birds 
in the Czech Republic seems to be affected by habitat change (Reif 
et al., 2010).



    |  1315TAHERI et al.

We have considered the independent role of individual models 
(climate, land-cover and null) by comparing their outputs against ob-
served trends, on equal footing. However, global change drivers do 
not act independently from each other. Indeed, some recent studies 
detected these synergistic and antagonistic interactions between 
climate change and human disturbances or land-use change (e.g. 
Dainese et al., 2017; Elsen et al., 2020; Guo et al., 2018). Although 
a detailed analysis of the synergistic effects among different driv-
ers is beyond the scope of this paper, we examined the presence of 
potential interactions between climate and land-cover change using 
an ANOVA framework and found significant interaction effects 
(Supplementary material; Figure S1). At the rear edge of northerly 
distributed species, for example, maximum temperature interacts 
with forest loss and may be underlie northward shifts, while max-
imum temperature in interaction with forest gain covaries with 
southward shifts (Figure S2c). Another example of interaction ef-
fects was between open-lands and minimum temperature at the 
leading edge of southerly distributed species. The results show that 
minimum temperature interacts with open-lands loss and potentially 
drives species to move further to the north with higher magnitude 
(Figures S2a and S3a). Such post hoc analysis of interactions among 
drivers of range change reveals that, although we could successfully 
identify variation in the main drivers contributing to range shifts 
of birds in Great Britain, the interaction among predictor variables 
should be also taken into account when possible.

To our knowledge, we provide the first empirical assessment of 
alternative mechanisms underlying range changes in different sec-
tions of the species ranges, on equal footing. Moving forward to as-
sess the where and when of climate change effects on biodiversity is 
crucial to guide the timing and magnitude of human adaptation strat-
egies for biodiversity. We highlight the substantial need for methods 
that are able to distinguish between directional and non-directional 
changes, thus being able to help tease apart distributional changes 
driven by natural population dynamics from changes driven by ex-
ternal forcing (climatic or non-climatic).
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