
mathematics

Article

Clustering Vertex-Weighted Graphs by Spectral Methods

Juan-Luis García-Zapata 1,* and Clara Grácio 2

����������
�������

Citation: García-Zapata, J.-L.; Grácio,

C. Clustering Vertex-Weighted

Graphs by Spectral Methods.

Mathematics 2021, 9, 2841. https://

doi.org/10.3390/math9222841

Academic Editors: Shanhe Wu and

Frank Werner

Received: 5 September 2021

Accepted: 4 November 2021

Published: 9 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Matemáticas, Universidad de Extremadura, 10003 Cáceres, Spain
2 Departamento de Matematica, Universidad de Évora, 7004-516 Évora, Portugal; mgracio@uevora.pt
* Correspondence: jgzapata@unex.es

Abstract: Spectral techniques are often used to partition the set of vertices of a graph, or to form
clusters. They are based on the Laplacian matrix. These techniques allow easily to integrate weights
on the edges. In this work, we introduce a p-Laplacian, or a generalized Laplacian matrix with
potential, which also allows us to take into account weights on the vertices. These vertex weights
are independent of the edge weights. In this way, we can cluster with the importance of vertices,
assigning more weight to some vertices than to others, not considering only the number of vertices.
We also provide some bounds, similar to those of Chegeer, for the value of the minimal cut cost with
weights at the vertices, as a function of the first non-zero eigenvalue of the p-Laplacian (an analog of
the Fiedler eigenvalue).
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1. Introduction

Informally, a cluster in a graph is a subgraph whose vertices are tightly linked between
them, and loosely linked with other vertices, out of the subgraph. Such a vague concept is
useful in the description of several phenomena: walking, searching, and decomposition of
graphs [1]. The concept of a cluster is closely related to that of community [2]. Depending
on the intended application, the meaning of the concept can be specified either to better
reflect the aspects to be modeled or to ease its calculation. In our case, we were interested
in the subdivision of the set of vertices in two parts, of similar size, in such a way that the
number of edges between the two parts is kept to a minimum. To solve this problem, there
are many references in the literature about spectral tools, based on a certain eigenvector
of the Laplacian operator (Fiedler vector) [3]. These references also show how to consider
weights at the edges of the graph so that the minimization of the edges takes these weights
into account. In this work, we extended this tool in case there are also weights on the
vertices independent of those on the edges so that the partition is made in parts of similar
total weight, not necessarily a similar number of vertices, minimizing the total edge weight
of the cut. Other proposals in the literature deal with this problem using generalized
eigenvectors (see [4] and the references therein). In this article, we remain in the context of
the usual eigenvectors. Our interest in avoiding generalized eigenvalues is that one of the
possible applications is spectral clustering, along the lines of [5]. This method uses several
eigenvectors to build a template for each vertex and forms the clusters with these templates.
The eigenvectors are orthogonal to each other, but the generalized eigenvectors are not, so
the templates formed with these will be less effective. In other words, we needed larger
templates with generalized eigenvectors than with usual eigenvectors. An example of our
work related to spectral clustering is [6].

A similar problem is studied in [7], where a Laplacian that incorporates both weights at
the vertices and at the edges is defined. The vertex weights are multiplicatively integrated
directly as matrix factors. The novelty of our approach is that our weights (called ρ) derive
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from a potential p that is additively integrated on the diagonal. The relationship between
the potential p that must be introduced to obtain the desired weights ρ is specified in
Theorem 3. This is significant because it allows us to overcome a technical difficulty of
the cited work, obtaining error bounds (Theorem 4) as a function of the potential, not
of the weights. A case of application of this method of weights from a potential is our
contribution (Chapter 2.4) to the collective work [8]. In that work, we used the Laplacian
matrix with potentials to perform spectral graph partitioning for process placement on
heterogeneous computing platforms.

In the next section, we review standard notations and concepts about graph and
matrix representation. In the following Section 3, we describe known facts about the
spectral partition using a Laplacian matrix. Section 4 contains our contribution: we define
a Laplacian matrix with potential (p-Laplacian matrices) and show that certain matrix
of this type can be used to perform a partition on the set of vertices, in sizes of similar
weight, minimizing the edges cut (Theorem 3). It also contains a Cheeger-style bound on
the difference between the true value of the minimum partition and the approximated
value obtained using the Fiedler eigenvector of the p-Laplacian matrix (Theorem 4). The
value considered in this result is the ratio cut of the partition, instead of the total cut. Our
purpose was to show that it is possible to give bounds analogous to those that appear in
the literature but adapted to this approach of weights at the vertices with independence
from the weights at the edges. We emphasize that this bound is an improvement, similar
to that of Mohar, for vertex-and-edge-weighted graph spectral analysis.

2. Graphs and Transfer Matrices

A graph G = (V, E) consists of a set V of vertexes and a set E of subsets of two vertices
(the edges). That is, E ⊂ P2(V). For u, v ∈ V, the edge {u, v}, also noted u ∼ v, is said to go
between u and v. In this study, we used this definition of a graph, which does not model
the direction of the edge or loops.

A weight on edges is a map
w : E→ R.

The weight of the edge u ∼ v is noted w(u, v). If a weight on the edges is not specified,
implicitly, the constant unit weight must be considered (that is, w(u, v) = 1 for each
{u, v} ∈ E).

A weight on vertexes is a map

s : V → R.

The set of these maps, that is, the set of all vertex weights, is denoted RV . Clearly, it is a
vector space.

To represent graphs using matrices, we chose an ordering of the set of vertexes,
V = {v1, . . . , vn}. The adjacency matrix of G (for this conventional ordering) is the n× n
matrix A = (aij)i,j=1,...,n of values:

aij =

{
1 if vi ∼ vj
0 if not

We represent a vertex weight s ∈ RV as the vector (si)i=1,...,n of its values si = s(vi).
The adjacency matrix operates in RV , the set of vertex weights, as a right matrix product
(postmultiplication).

A : RV −→ RV

(si)i=1,...,n 7−→ sA =

(
n

∑
j=0

siaij

)
i=1,...,n

This is the transference (or shift) of the vertex weight (si) by the graph G.
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The postmultiplication of s, as a row vector, by A, is usual in matrix analysis of finite
Markov chains [9]. We can see the shift as the following action: the shift sA represents that
each edge vi ∼ vj takes the content of vi, that is, s(vi), and transports it to the vertex vj
(modifying its amount by the factor of transference aij). The sum of the values transferred
to vj is ∑ s(vi)aij, with a gain aij from each adjacent vertex vi. So, the vertex weight sA is:

(sA)(vj) = ∑
vi∼vj∈E

s(vi)aij

In the literature, the interest is focused on symmetrical matrices (because they are
modeling undirected graphs), so there is no difference between pre- and postmultiplication
by A. Besides, note that the main diagonal is zero because the graphs do not have loops.
In Section 4, we introduce potentials that can be viewed as a method to use the diagonal
entries to carry vertex weights, independently of the edge weights.

3. Laplacian and Partitions

This section summarizes standard notions about graphs, partitions, and the Laplacian
operator, which can be seen in [3] or [10], although the notation is adapted to our particular
purposes, and the Lemma 3 is proved in a novel way, without using summatories.

A partition of a set V is an array (V1, V2) of two subsets of V such that V1 ∪ V2 = V
and V1 ∩V2 = ∅. A partition of a graph G = (V, E) is a partition of the underlying set V of
vertices. An edge u ∼ v in G is cut by a partition (V1, V2) if u ∈ V1 and v ∈ V2 or vice versa.
If the graph is weighted, the total cut is

cut(V1, V2) = ∑
u∈V1
v∈V2

w(u, v).

Any subset U ⊂ V defines a cut, (U, Uc), which is called the cut of U.
It is usually preferable, between several partitions in a graph, that one has a minimum

number of cut edges (or total cut, if weighted). The cut of the graph is:

c(G) = min
U⊂V

cut(U, Uc)

In this study, we were interested in partitions with minimal cuts but with a balanced
number of vertices, that is, |V1| = |V2| for an even number of vertices or |V1| =

⌊
|V|
2

⌋
for

any number of vertices (a bipartition). The bipartition width [11] is:

b(G) = min
U⊂V

|U|=
⌊
|V|
2

⌋ cut(U, Uc)

We also used the cut ratio of U (the quotient i(U) = cut(U, Uc)/|U|) and the isoperimetric
number:

i(G) = min
U⊂V
|U|≤ |V|2

cut(U, Uc)

|U|

We expressed, using linear algebra, the combinatorial problem of finding the partitions
that realize these minimums.

Let us suppose we are given an ordering V = {v1, v2, . . . , vn} in the set of vertices.
A vector x ∈ RV has an entry xi for each vi. The characteristic vector cS of a set S ∈ V is
cS = (xi)i=1,...,n with:

xi =

{
1 if vi ∈ S
0 if vi 6∈ S
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Sometimes it is preferable to use other values than 0 or 1 in the vector expression
of a combinatorial object like a subset or partition [4]. For two real values b1, b2, the
(b1, b2)-indicator vector of a partition (V1, V2) is the vector x = (xi)i=1,...,n with

xi =

{
b1 if vi ∈ V1

b2 if vi ∈ V2

For example, the (0,1)-indicator is the characteristic of the second set of the partition.
We mainly use (1,−1)-indicators. We denote x · y, which is the standard scalar product in
Rn. In this way, a matrix A has associated the bilinear form x · Ay. The vector 1 has the
value 1 in each component. The degree vector is g = (d1, d2, . . . , dn) where di = deg(vi).

Lemma 1. Being S, T ⊂ V of characteristic vectors cS, cT :

(i) 1 · cS = |S|. Also cS · cS = |S|.
(ii) cS · cT = |S ∩ T|.
(iii) If A is the adjacency matrix of a graph, the vector A1 has, in the i-th entry, the degree

di = deg(vi). That is, A1 = g. Also 1 · A1 = ∑i di.
(iv) AcS has, in entry i-th, the number of edges to vi from vertices in S.

Proof. They are straightforward.

Lemma 2. Being c1 and c2 characteristic vectors of the sets of a partition (V1, V2):

cut(V1, V2) = c1 · Ac2

Proof. By Lemma 1 (iv), Ac2 contains in i-th entry the total weight of edges between vi and
V2. Hence, c1 · Ac2 is the sum of the weight of the edges in the set V1 ∼ V2, defined as

V1 ∼ V2 = {u ∼ v | u ∈ V1, v ∈ V2},

that is, cut(V1, V2).

Calling Dg = diag(g) the matrix with the degree vector g in the diagonal and zero
off-diagonal, we have 1 ·Dg1 = ∑i di. Being x the (1,−1)-indicator of any partition, we also
have x · Dgx = ∑i di, because the minus signs appear in pairs.

Defining the Laplacian as L = Dg − A, we have:

Lemma 3. If x is the (1,−1)-indicator of (V1, V2),

cut(V1, V2) =
x · Lx

4

Proof. If x is the (1,−1)-indicator of (V1, V2), x = c1 − c2 with c1 and c2 characteristic of V1
and V2, respectively, and:

x · Ax = (c1 − c2) · A(c1 − c2) = c1 · Ac1 + c2 · Ac2 − (c1 · Ac2 + c2 · Ac1) =

= c1 · Ac1 + c2 · Ac2 − 2cut(V1, V2)

Besides, as c1 + c2 = 1, that is, c1 = 1− c2, then c1 · Ac1 = c1 · A(1− c2) = c1 · A1−
c1 · Ac2. Likewise, c2 · Ac2 = c2 · A1− c2 · Ac1, hence

c1 · Ac1 + c2 · Ac2 = c1 · A1− c1 · Ac2 + c2 · A1− c2 · Ac1 =

= (c1 + c2) · A1− (c1 · Ac2 + c1 · Ac2) = 1 · A1− 2cut(V1, V2)
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So,

x · Ax = c1 · Ac1 + c2 · Ac2 − 2cut(V1, V2) =

= 1 · A1− 2cut(V1, V2)− 2cut(V1, V2) =

= ∑
i

di − 4cut(V1, V2).

That is, x · Ax = ∑i di − 4cut(V1, V2). Solving for the cut, we have 4cut(V1, V2) =

∑i di − x · Ax. As ∑i di = x · Dgx, and L = Dg − A, we can express ∑i di − x · Ax =
x · Dgx− x · Ax = x · (Dgx− Ax) = x · (Dg − A)x = x · Lx. Therefore,

cut(V1, V2) =
x · Lx

4
.

We deduced this well-known identity in matrix form, instead of summatory form as
usual. So we not only avoided the index chasing but also made explicit the role of the

values b1, b2 used in indicators. For example, if x is a (
1
2

,−1
2
)-indicator of (V1, V2), then

cut(V1, V2) = x · Lx. In general [4], for (b1, b2)-indicators, the cut is x·Lx
(b2−b1)2 . This deduction

also clarifies the role of the diagonal degree matrix Dg.
In addition to the expression of the cost as a bilinear form L, we expressed the

requirement that the partition (V1, V2) be balanced as 1 · x = 0. So, the problem of finding
the bipartition of minimal cost is the following problem of combinatorial optimization:

Minimize
x

x · Lx

subject to

{
xi = ±1, i = 1, . . . , n
1 · x = 0

.

This combinatorial problem is an NP-complete problem [12]. To approximate a solu-
tion, with polynomial computational cost, it is customary to relax the constraints xi = ±1.
This relaxed problem is a numerical one that has several features that ease its resolution:
L is symmetrical, hence its eigenvalues are real, and there is an orthonormal basis of
eigenvectors [13]. Besides, 1 is an eigenvector of eigenvalue 0, because Dg1− A1 = 0.
Additionally, L is a weak diagonally dominant of positive diagonal, hence (by the theorem
of the Geršgorin discs [14]) its eigenvalues are nonnegative 0 = λ0 ≤ λ1 ≤ · · · ≤ λk. If G
is connected, λ0 < λ1 [3]. These features of L are generally deduced from its expression as
summatory of squares, which we have avoided. The result about diagonal dominance that
we used instead is also easy to see.

The Rayleigh quotient of a n× n symmetric matrix M is

RM(x) =
x ·Mx

x · x

defined for x 6= 0 inRn. It plays a role in the following min–max theorem of Courant-Weyl [13],
which we use without proof:

Theorem 1. Let Sk be the set of subspaces of Rn of dimension lesser or equal than k, for k =
1, 2, . . . , n, M symmetric with eigenvalues λ0 ≤ λ1 ≤ · · · ≤ λn−1 and corresponding eigenvectors
f0, f1, . . . , fn−1. Then

λk−1 = min
E∈Sk

max
x∈E
||x||=1

RM(x).

Besides, the argument E giving the minimum is E = span( f0, f1, . . . , fk−1), and an argument x
giving the maximum is fk−1.
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In particular, λ0 = min
x∈Rn

||x||=1

RM(x), because each x 6= 0 span an E ∈ S1. In the case that

M = L, the eigenvector x0 is (a scalar multiple of) 1, as commented above, and the others
are orthogonal to it: 1 · fi = 0, i = 1, . . . , k− 1. In the case i = 1,

λ1 = min
E∈S2

max
x∈E
||x||=1

RL(x) = min
x∈Rn

1·x=0, ||x||=1

RL(x)

because each x with 1 · x = 0 span a E = 〈1, x〉 ∈ S2. The minimum is reached in f1.
To relate this result with the cut value of partitions note that if x an indicator vector of

a partition (xi = ±1), the cut x·Lx
4 is proportional to the Rayleigh quotient. The minimum

λ1 = min1·x=0
x·Lx
x·x is reached in a vector f1 that is an eigenvector for λ1. That is, f1 is

a solution to the relaxed problem, although it may not be an indicator vector. The first
non-null eigenvalue λ1 is termed the Fiedler value, and its eigenvector f1 is the Fiedler vector.

There are several rounding or truncation methods to obtain an indicator vector
x = (xi)i (i.e., with integer values −1, 1 for xi) from f1 (whose entries are not necessarily
integers). The most direct rounding is the partition by sign: xi = 1 if ( f1)i > 0, xi = −1
otherwise. This rounding can give a partition that is not a bipartition. Another rounding
method uses the median, achieving precisely bipartitions: if m is the median value of the
entries of fi, xi = 1 if fi > m and xi = −1 otherwise.

For these rounding methods and others that appear in the literature [15], there is an
error bound. The error is the difference between the partition obtained by the rounding
and the partition that actually minimizes the cut, which is obtainable by combinatorial
methods. These bounds are known as discrete Cheeger bounds since they involve the
first nonzero eigenvalue. In particular, we use the following Cheeger bound developed by
Mohar [16]. It compares the cut ratio i(Us) =

cut(Us ,Uc
s )

|Us | of the partition induced by the sign
rounding, Us = {xi | ( f1)i > 0}, and the isoperimetric number i(G).

Theorem 2. If G has more than three vertexes and its maximal degree is ∆, then

λ1

2
≤ i(G) ≤ i(Us) ≤

√
λ1(2∆− λ1)

This bound uses the sign rounding and the cut ratio, i(Us), instead of the median
rounding and the edge cut, cut(U, Uc), which we use to describe our framework. However,
we chose it because it is easier to present the generalization that we make for vertex-
weighted graphs in the next section. The cut ratio has also been studied in the stochastic
setting [17]. In principle, it is also possible to generalize for vertex-weighted graphs the
similar bounds that there are in the literature for median rounding and edge cut [18].

4. Laplacians with Potential

To motivate our contribution, we recall here the usual interpretation, for instance
in [19], of the values of a weight s on vertices using flows on graphs. The vertex weight
s(vi) corresponds to the amount or magnitude of some physical substance placed at vi. The
weights at the edges wij, i 6= j between different vertices correspond, in this interpretation,
to a transmission factor or gain that affects the substance when it flows from one vertex
vi to another vj, increasing or decreasing its amount. Following this interpretation of the
weight matrix as a transference or shift, the weights in the loop edges wii are the gain that
suffers the substance that stays in the same vertex vi.

In this diffusion process interpretation, the eigenvectors of a shift matrix are the
stationary substance distributions. In particular, the Laplacian matrix has a stationary
distribution that is uniform (corresponding to the null eigenvalue) because the degree
values on the diagonal make the total gain of substance equal to zero. In this sense, the
Laplacian process is conservative. Another example is the shift by the adjacency matrix
of a connected graph, which has a positive stationary distribution (the random walk limit
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distribution, corresponding to the Perron eigenvector [3]), with a substance gain given by
the Perron eigenvalue.

Following this vein, we show how to control the weights in the diagonal wii to obtain
any positive ρ : V −→ R as a stationary distribution, the eigenvector of a matrix similar to
the Laplacian.

As commented, a weight on vertices is a function p : V −→ R. Its diagonal form is
the matrix Dp = diag(p(xi)). The generalized Laplacian with potential p (or p-Laplacian) is:

Lp = L + Dp

That is, Lp = Dg − A + Dp. In particular, with p = 0, the 0-Laplacian is the ordinary
Laplacian. Some properties of p-Laplacians are similar to those of ordinary Laplacians,
as can be viewed in [20] under the name of generalized Laplacian. For our purposes, we
highlight the following ones, whose proof require some technicalities:

Lemma 4. If the graph G is connected and the potential p verifies

p(vi) ≥ −deg(vi),

then:

(a) The eigenvalues of Lp are real, and the minimum eigenvalue has multiplicity 1. That is,
λ0 < λ1 ≤ · · · ≤ λn−1.

(b) There is a positive eigenvector corresponding to λ0, unique up to a scalar multiple.

Proof. If p(vi) ≥ −deg(vi), then Lp = Dg − A + Dp is a symmetrical Z-matrix [21]. As G
is connected, Lp is irreducible. By Observation 1.4.3 of [21], the claims follow.

The minimum eigenvalue is the Perron eigenvalue λ0. It has multiplicity 1, and there is
an eigenvector of the Perron eigenvalue with all positive entries. To fix one such eigenvector,
we define the Perron eigenvector ρ as that with ‖ρ‖ = 1.

The min–max theorem for the operator Lp gives us that λ1 = minx 6=0
x·Lpx

x·x , and the
minimum is reached in an eigenvector of λ1 of norm 1 (the Fiedler vector φ).

With these properties, we can replicate the spectral partition methodology because
the spectral decomposition of Lp assures that φ · ρ = 0. This can be understood, as in the
ordinary Laplacian L above, that the positive and negative values of the Fiedler vector give
us an indicator of two sets of vertexes. This indicator cuts V in two parts of equal absolute
sum of Perron values. That is, ∑x∈V φ(x)ρ(x) = 0 and if V1 = {xi | φ(xi) > 0}, V2 = Vc

i ,
then

∑
x∈V1

φ(x)ρ(x) = ∑
x∈V2

|φ(x)|ρ(x)

However, in this case, the Perron vector is not the constant distribution, 1, but a
positive distribution ρ. We use the distribution ρ as a measure of the relative importance of
the vertexes in a partition or clustering.

Note that the Perron eigenvector ρ is defined up to a constant factor, in the sense that
ρ′ = kρ, for k > 0, is also a positive eigenvector of the same eigenvalue. Our choice of
‖ρ‖ = 1 is conventional.

Note also that, as in the ordinary case commented in Section 3, the Fiedler vector φ
does not necessarily have ±1 components and should be considered as an approximation
to the optimal partition.

To build a potential p such that the Perron distribution of Lp will be a predefined
given ρ, we apply the formula of the following theorem. Note that it is scale-invariant, in
the sense that ρ and kρ, for k > 0, will produce the same potential p.

Remember that for a vector x, we denote its i-th component as xi, and a function
x : V → R is identified with the vector xi = x(vi). We can build a potential p such that the
Perron vector ρ of Lp have predetermined positive values ρi:
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Theorem 3. For any vector ρ such that ρi > 0 for i = 1, . . . , n, if

p(vi) =
(Aρ)i

ρi
− deg(vi),

being A = (aij) the adjacency matrix, then the Perron vector of Lp is ρ, and the Perron value is 0.

Proof. As p verifies the hypothesis of Lemma 4, Lp has a Perron eigenvalue. Note that for
each i = 1, . . . , n, (Dgρ)i = deg(vi)ρi. Also

(Dpρ)i = p(vi)ρi = (Aρ)i − deg(vi)ρi.

Therefore

(Lpρ)i = ((Dg − A + Dp)ρ)i = (Dgρ)i − (Aρ)i + (Dpρ)i =

= deg(vi)ρi − (Aρ)i + ((Aρ)i − deg(vi)ρi) = 0.

So, Lpρ = 0. To conclude that 0 and ρ are the Perron eigenvalue and eigenvector, we use the
fact that in a symmetrical matrix the eigenvectors of different eigenvalues are orthogonal.
Consequently, only one eigenvalue can have associated a positive eigenvector as ρ, and
this is 0.

With this result, we can do spectral partition with preassigned weights ρ on the
vertexes. By the above discussion, the p-Laplacian for the potential p corresponding to
the given ρ has a Fiedler vector orthogonal to the Perron vector ρ (that is, it produces a
partition in parts of equal total weight at the vertices). The value of the cut is also well
expressed by the p-Laplacian, in the following lemma. For a vertex set U ⊂ V, we denote
p(U) = ∑

v∈U
p(v).

Lemma 5. If x is the (1,−1)-indicator of (V1, V2),

cut(V1, V2) =
x · Lpx

4
− p(V)

4

Proof. As Lp = L + Dp,

x · Lpx = x · (L + Dp)x = x · (Lx + Dpx) = x · Lx + x · Dpx

By Lemma 3, x · Lx = 4cut(V1, V2), and x · Dpx = ∑i p(vi) = p(V), hence the claim.

Therefore, to find a partition (i.e., an indicator x) that minimizes x · Lpx is equivalent
to minimizing cut(V1, V2), because p(V)/4 is a constant, given the potential p.

For a predefined weight on vertices ρ = (ρ1, ρ2, . . . ρn), we build the potential p by
Theorem 3. The p-Laplacian Lp specifies the vertex ρ-weighted bipartition problem:

Minimize
x

x · Lpx

subject to

{
xi = ±1, i = 1, . . . , n
ρ · x = 0

.

This combinatorial problem is at least NP-complete as the conventional bipartition
problem, which includes it as a subproblem. In any case, we consider the relaxed problem
(without the restriction xi = ±1) that has as solution, by the min–max Theorem 1, the
Fiedler vector φ of Lp.

By taking this Fiedler vector as an approximation to the combinatorial solution, that
is, the unrelaxed problem, the error can be bounded with a Chegeer expression similar to
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that of Mohar (Theorem 2). To express this bound, in the following Theorem 4, we define
the cut ratio of U with respect to p as

ip(U) =
cut(U, Uc)

p(U)
,

and the isoperimetric number with respect to p as

ip(G) = min
U⊂V

p(U)≤ p(V)
2

cut(U, Uc)

p(U)
.

Given a vector x ∈ RV , xi = x(vi), we order the set of its values as t1 > t2 > · · · > tm.
That is, for each i in 1, . . . , n there is one j in 1, . . . , m and only one with tj = x(vi). The
level sets of x are, for each k = 1, . . . , m, Vk = {v ∈ V | x(v) ≥ tk}. The sweep cut hp(x) is the
minimum cut following level sets of x, that is:

hp(x) = min
k=1,...,m

cut(Vk, Vc
k )

p(Vk)

It is clear that, for any x, ip(G) ≤ hp(x). We define also S(x), the increment of square
values along x, as

S(x) = ∑
vi∼vj

|x2
i − x2

j |.

Lemma 6. Let L be the ordinary Laplacian, for any x:

(a) hp(x) x · Dpx ≤ S(x).
(b) S(x) ≤

√
x · Lx

√
2x · Dgx.

Proof. For (a), consider the level sets of x, that is, vertices sorted such that x1 ≥ x2 ≥ · · · ≥
xn, being t1 > t2 > · · · > tm the different values of x. For each level set Vk, by the definition
of sweep cut we have:

hp(x)p(Vk) ≤ cut(Vk, Vc
k ) (1)

Besides

x · Dpx =
n

∑
i=1

p(vi)x2
i =

= ∑
vi∈V1

p(vi)t2
1 + ∑

vi∈V2\V1

p(vi)t2
2 + ∑

vi∈V3\V2

p(vi)t2
3 + · · ·+ ∑

vi∈Vm\Vm−1

p(vi)t2
m =

= ∑
vi∈V1

p(vi)t2
1 + ∑

vi∈V2

p(vi)t2
2 − ∑

vi∈V1

p(vi)t2
2 + ∑

vi∈V3

p(vi)t2
3 − ∑

vi∈V2

p(vi)t2
3 + · · ·

· · ·+ ∑
vi∈Vm

p(vi)t2
m − ∑

vi∈Vm−1

p(vi)t2
m =

= p(V1)(t2
1 − t2

2) + p(V2)(t2
2 − t2

3) + · · ·+ p(Vm−1)(t2
m−1 − t2

m) + p(Vm)t2
m =

=
m

∑
k=1

p(Vk)(t2
k − t2

k+1) (2)

extending with a value tm+1 = 0 to ease the notation.
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Combining (1) and (2):

hp(x)x · Dpx =
m

∑
k=1

hp(x)p(Vk)(t2
k − t2

k+1) ≤
m

∑
k=1

cut(Vk, Vc
k )(t

2
k − t2

k+1) =

=
m

∑
k=1

∑
vi∼vj
xi∈Vk
xj∈Vc

k

(t2
k − t2

k+1) =
m

∑
k=1

∑
vi∼vj
xi≥tk
xj<tk

(t2
k − t2

k+1) = ∑
vi∼vj

|x2
i − x2

j | = S(x).

The last equality is because, for each pair of vertices vi ∼ vj, if xi = tk0 and xj = tk1

with 1 ≤ k0 < k1 ≤ m, the double summation includes a chain of terms (t2
k0
− t2

k0+1) +

(t2
k0+1 − t2

k0+2) + · · ·+ (t2
k1−1 − t2

k1
) that collapses to t2

k0
− t2

k1
= |x2

i − x2
j |.

For (b), we consider vectors u, v ∈ RE, that is, indexed by the edges

u = (u1, u2, . . . , u|E|) = (ui,j)vi∼vj .

If we apply the Cauchy–Schwarz inequality u · v ≤ ‖u‖‖v‖ to the particular vectors
of RE u = (|xi − xj|)vi∼vj and v = (xi + xj)vi∼vj , as u · v = (|xi − xj|(xi + xj))vi∼vj =

(|x2
i − x2

j |)vi∼vj , we have:

S(x) = ∑
vi∼vj

|x2
i − x2

j | = ∑
vi∼vj

|xi − xj|(xi + xj) ≤
√

∑
vi∼vj

|xi − xj|2
√

∑
vi∼vj

(xi + xj)2

For the first root factor, it is known that x · Lx = ∑
vi∼vj

(xi − xj)
2 being L the ordinary

Laplacian (see for example [15]). For the second root factor, by the trivial fact that (a+ b)2 ≤
2(a2 + b2) we have:

∑
vi∼vj

(xi + xj)
2 ≤ 2 ∑

vi∼vj

(x2
i + x2

j ) = 2 ∑
i

deg(vi)x2
i = 2x · Dgx.

To prove the following claim, we apply the above lemma to φ, the Fiedler eigenvalue
of Lp.

Theorem 4. Being mp = mini(p(vi)), ∆ = maxi(deg(vi)), λ1 and φ the Fiedler eigenvalue
and eigenvector of Lp, then:

nλ1 − p(V)

4
≤ ip(G) ≤ hp(φ) ≤

√
2∆(λ1 −mp)

m2
p

Proof. For the first inequality, calling xb the (−1,1)-indicator of the minimal bipartition
(V1, V2), that is, such that ip(G) = cut(V1, V2), by Lemma 5 we have:

ip(G) = cut(V1, V2) =
xb · Lpxb − p(V)

4
,

that is, xb · Lpxb = 4ip(G) + p(V). Besides, being λ1 = minx 6=0
x·Lpx

x·x for each x is λ1x · x ≤
x · Lpx. In particular, λ1n = λ1xb · xb ≤ xb · Lpxb, hence λ1n ≤ 4ip(G) + p(V) and:

nλ1 − p(V)

4
≤ ip(G)
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For the second inequality, being hp(φ), a particular cut (the sweep cut of φ) the minimal
cut ip(G) is lesser or equal than it.

Finally, for the third inequality, we use Lemma 6 inequalities for the particular case
x = φ, that is

(a) hp(φ) φ · Dpφ ≤ S(φ)
(b) S(φ) ≤

√
φ · Lφ

√
2φ · Dgφ.

From (a) we have hp(φ) ≤ S(φ)
φ·Dpφ , that from (b) is lesser or equal than

√
φ·Lφ
√

2φ·Dgφ

φ·Dpφ .

The value of these terms are φ ·Dgφ = ∑i deg(vi)φ
2
i and φ ·Dpφ = ∑i p(vi)φ

2
i . Additionally,

as Lp = L + Dp and Lpφ = λ1φ, we have

φ · Lφ = φ · Lpφ− φ · Dpφ = λ1 ∑
i

φ2
i −∑

i
p(vi)φ

2
i = ∑

i
(λ1 − p(vi))φ

2
i .

Substituting those values in the inequalities:

hp(φ) ≤
S(φ)

φ · Dpφ
≤
√

2φ · Lφ φ · Dgφ

φ · Dpφ
≤

√
2 ∑i(λ1 − p(vi))φ

2
i ∑i deg(vi)φ

2
i

∑i p(vi)φ
2
i

≤

≤

√
2

∑i(λ1 − p(vi))φ
2
i

∑i p(vi)φ
2
i

∑i deg(vi)φ
2
i

∑i p(vi)φ
2
i
≤

√
2
(λ1 −mp)∑i φ2

i
mp ∑i φ2

i

∆ ∑i x2
i

mp ∑i φ2
i
=

=

√
2∆(λ1 −mp)

m2
p

The last inequality is because, by definition of mp and ∆, for each i = 1, . . . , n, we have
deg(vi) ≤ ∆, p(vi) ≥ mp and also (λ− p(vi)) ≤ (λ−mp).

This result is similar to the above Theorem 2, in this case bounding the cost of the
minimal cut ip(G) and the sweep cut hp(φ) of the Fiedler eigenvector of Lp.

5. Conclusions

We introduced a spectral partitioning method for arbitrary (positive) vertex weights
not related to edges’ weights or vertex degrees. We also provided a bound of the Cheeger
type for the error in taking the eigenvector numerical solution as an approximation for the
combinatorial problem. This bound is similar to others that appear in the literature for cuts
with uniform vertex weights.

In this work, we did not take into account a distribution of weights on the edges. The
usual methods of considering ordinary Laplacians with edge weights (for example, [3]) can
be extended to generalized Laplacians as we exposed (that is, including a vertex potential
that induces vertex weighting in the spectral partitioning). The two types of weights, on
vertices and on edges, are independent. This was not considered for simplicity, but it will
be the content of future work.
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