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Abstract. The Hill estimator, one of the most popular extreme value index (EVI)
estimators under a heavy right-tail framework, i.e. for a positive EVI, here denoted by
ξ, is an average of the log-excesses. Consequently, it can be regarded as the logarithm
of the geometric mean or mean of order p = 0 of an adequate set of systematic
statistics. We can thus more generally consider any real p, the mean of order p (MOp)
of those same statistics and the associated MOp EVI-estimators, also called harmonic
moment EVI-estimators. The normal asymptotic behaviour of these estimators has
been obtained for p < 1/(2ξ), with consistency achieved for p < 1/ξ. The non-regular
framework, i.e. the case p ≥ 1/(2ξ), will be now considered. Consistency is no longer
achieved for p > 1/ξ, but an almost degenerate behavior appears for p = 1/ξ. Results
are illustrated on the basis of large-scale simulation studies. An algorithm providing
an almost degenerate MOp EVI-estimation is suggested.
Keywords: Generalized Means, Non-regular Frameworks, Statistics of Extremes.

1 Introduction

Given X1, . . . , Xn, a sample of size n of independent, identically distributed
(IID), or possibly stationary weakly dependent random variables (RVs), with a
cumulative distribution function (CDF) F , let us consider the notation X1:n ≤
· · · ≤ Xn:n for the associated ascending order statistics (OSs). Let us fur-
ther assume that there exist real constants an > 0 and bn ∈ R such that the
linearly normalized maximum, (Xn:n − bn) /an, converges in distribution to a
non-degenerate RV. Then, with λ ∈ R, a location parameter, and δ > 0, a scale
parameter, the limit distribution is necessarily the general extreme value (EV)
CDF (von Misès[21], Jenkinson[20]), given by

EVξ
(
x−λ
δ

)
=

{
exp(−

(
1 + ξ(x−λ)

δ

)−1/ξ
), 1 + ξ(x−λ)

δ > 0, if ξ $= 0,

exp(− exp
(
− x−λ

δ )
)
, x ∈ R, if ξ = 0.

(1)

The CDF F is said to belong to the max-domain of attraction (MDA) of EVξ,
in (1), the unique max-stable laws, under the aforementioned framework, and,
as usual, the notation F ∈ DM (EVξ) is used. The parameter ξ is the extreme
value index (EVI), the primary parameter of extreme events.
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The EVI measures the heaviness of the right-tail function F (x) := 1−F (x),
and the heavier the right-tail, the larger ξ is. Let us further use the notation Ra

for the class of regularly varying functions at infinity, with an index of regular
variation equal to a ∈ R (see Seneta[25] and Bingham et al.[2], among others,
for details on regular variation theory). In this paper we work with Pareto-
type underlying models, with a positive EVI, or equivalently, CDFs such that
F (x) = x−1/ξL(x), ξ > 0, with L ∈ R0, a slowly varying function at infinity, i.e.
a regularly varying function with an index of regular variation equal to zero.
These heavy-tailed models are quite common in many areas of application,
like bibliometrics, biostatistics, computer science, finance, insurance, statistical
quality control and telecommunications, among others.

For Pareto-type models, the classical EVI-estimators are the Hill (H) EVI–
estimators (Hill[19]), which are the averages of the log-excesses,

Vik := lnXn−i+1:n − lnXn−k:n = ln
Xn−i+1:n

Xn−k:n
=: lnUik, 1 ≤ i ≤ k < n. (2)

We can thus write

H(k) :=
1

k

k∑

i=1

Vik =
k∑

i=1

lnU1/k
ik = ln

(
k∏

i=1

Uik

)1/k

, 1 ≤ k < n, (3)

i.e. the Hill estimator is the logarithm of the geometric mean (or mean-of-order-
0) of the statistics Uik, defined in (2). More generally, first Brilhante et al.[3],
for p ∈ R+

0 , and more recently Caeiro et al.[5], for p ∈ R, considered as basic
statistics the mean-of-order-p (MOp) of Uik, i.e. the class of statistics

Tp(k) =






(
1
k

k∑
i=1

Up
ik

)1/p

, if p $= 0,

(
k∏

i=1
Uik

)1/k

, if p = 0,

and the class of functionals,

Hp(k) ≡ MOp(k) :=

{(
1− T−pp (k)

)
/p, if p $= 0,

lnT0(k) = H(k), if p = 0,
(4)

with H0(k) ≡ H(k), given in (3). This class of MOp functionals depends now
on this tuning parameter p ∈ R, which makes it highly flexible, and has been
studied asymptotically and for finite samples in the aforementioned articles,
and also, independently, in Paulauskas and Vaičiulis[22] and Beran et al.[1].
Consistency was shown for p < 1/ξ, with an asymptotic normal behaviour
holding for p < 1/(2ξ). See also Paulauskas and Vaičiulis[23], among others.

In Section 2 of this paper, apart from the introduction of a few technical
details in the field of extreme value theory (EVT), we provide a few details
on sum-stable laws and the asymptotic behaviour of the MOp EVI-estimators
under regular and non-regular frameworks is put forward. In Section 3 we
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provide a short illustration of the finite-sample behaviour of the MOp class of
functionals under regular and non-regular frameworks. In Section 4, a method
for the adaptive choice of the tuning parameters k and p, essentially on the basis
of sample path stability, is provided. The behaviour of the new adaptive EVI-
estimators is illustrated through an application to simulated random samples,
and in Section 5 some concluding remarks are presented.

2 Preliminary results in the area of EVT for heavy tails
and asymptotic behaviour of MOp functionals

In the area of statistics of univariate extremes and whenever working with large
values, i.e. with the right-tail of the model F underlying the data, a model F is
often said to be heavy-tailed whenever the right-tail function F ∈ R−1/ξ, ξ > 0.
Then, F ∈ DM (EVξ)ξ>0 =: D+

M and reciprocally, if F ∈ D+
M we necessarily

have F ∈ R−1/ξ (Gnedenko[8]).

2.1 A brief review of first and second-order conditions

If F ∈ D+
M, and with the notation F←(t) := inf{x : F (x) ≥ t} for the gen-

eralised inverse function of F , the reciprocal tail quantile function U(t) :=
F←(1− 1/t) is of regular variation with index ξ (de Haan[15]), i.e. we usually
work with any of the first-order conditions:

F ∈ D+
M ⇐⇒ F ∈ R−1/ξ ⇐⇒ U ∈ Rξ. (5)

The second-order parameter ρ (≤ 0) rules the rate of convergence in the
first-order condition, in (5), and can be defined as the non-positive parameter
appearing in the limiting relation

lim
t→∞

lnU(tx)− lnU(t)− ξ lnx

A(t)
= ψρ(x) :=

{
xρ−1
ρ , if ρ < 0,

lnx, if ρ = 0,
(6)

which is assumed to hold for every x > 0, and where |A| ∈ Rρ (Geluk and de
Haan[7]). This condition has been widely accepted as an appropriate condition
to specify the right-tail of a Pareto-type distribution in a semi-parametric way
and enables easily the derivation of the non-degenerate asymptotic bias of EVI-
estimators, under a semi-parametric framework.

2.2 Asymptotic behaviour of the Hill EVI-estimators

To have consistency of the Hill estimators, in all D+
M, we need to work with

intermediate values of k, i.e. a sequence of integers k = kn, 1 ≤ k < n, such
that

k = kn → ∞ and kn = o(n), as n → ∞. (7)

Under the aforementioned second-order framework, in (6), the asymptotic dis-
tributional representation

H(k)− ξ
d
=

ξ√
k

Zk +
A(n/k)

1− ρ
(1 + op(1)) (8)
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holds (de Haan and Peng[17]), where, with {Ei} a sequence of IID standard

exponential RVs, Zk =
√
k
( k∑

i=1
Ei/k− 1

)
is asymptotically standard normal.

Remark 1. For the Hill estimator, and whenever needed, we often consider the
most common estimate of k0|0 ≡ k0|H(n) := argmink MSE(H0(k)) (Hall[18]),
given by

k̂0|0 = min
(
n− 1,

[(
(1− ρ̂)2n−2ρ̂/

(
− 2 ρ̂ β̂2

))1/(1−2ρ̂)]
+ 1
)
, (9)

with (β̂, ρ̂) adequate estimates of the vector (β, ρ) of second-order parameters.
References to the estimation of second-order parameters can be found in [5],

among others. But the estimate ξ̂0 := H(k̂0|0) has usually a high positive bias,
and alternatives are often needed.

2.3 Asymptotic behaviour of MOp EVI-estimators under a regular
framework

More generally that the distributional representation in (8), we refer the main
theorem in Brilhante et al.[3] (see also Gomes and Caeiro[11] and Caeiro et
al.[5]):

Theorem 1 ([3], [11], [5]). Under the validity of the first-order condition,
in (5), and for intermediate sequences k = kn, i.e. if (7) holds, the class of
estimators Hp(k), in (4), is consistent for the estimation of ξ, provided that
p < 1/ξ.

If we moreover assume the validity of the second-order condition in (6), the
asymptotic distributional representation

Hp(k)− ξ
d
=

σp(ξ) Z
(p)
k√

k
+ bp(ξ|ρ) A(n/k) + op(A(n/k))

holds for all p < 1/(2ξ) and ρ ≤ 0, with Z(p)
k asymptotically standard normal.

Remark 2. For details on the explicit expression of σp(ξ) and bp(ξ, ρ), see any
of the aforementioned articles.

2.4 A brief reference to additive stable laws

Given the sequence {Xn}≥1 of IID RVs, let us assume that for each n ∈ N
there exist normalizing constants An > 0, Bn ∈ R, such that the sum linearly
normalized converges in distribution to a non-degenerate RV, as n → ∞. Then,
such an RV is necessarily an additive or sum stable law, denoted by Sα,β =
Sα,β(λ, δ), i.e., as n → ∞,

∑n
i=1 Xi −Bn

An

d−→ Sα,β(λ, δ). (10)
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Among other books in the topic, see Gnedenko and Kolmogorov[10]. The scale
parameter α ∈ (0, 2] is the so-called characteristic exponent (CE), also related
to the tail weight of F and strongly linked to the EVI. The practical use of
additive stable laws has been seriously hampered by the fact that the unique so
far explicitly known additive stable probability density functions are the ones
corresponding to α = 2, the normal case, (α,β) = (1, 0), the Cauchy case, and
(α,β) = (1/2, 1), the Lévy case.

Regarding the common CDF F , the generalized central limit theorem (GCLT)
(Samorodnitsky and Taqqu[24]) states that, as n → ∞, the result in (10) holds
if and only if

1− F (x) + F (−x) ∈ R−α and
F (−x)

1− F (x) + F (−x)
−→
x→∞

1− β

2
. (11)

The particular Pareto case. Let us now consider a unit Pareto RV, Y ,
with CDF F1(y) = 1 − 1/y, y ≥ 1, and for ξ > 0, Y ξ, an RV with CDF
Fξ(y) = 1− y−1/ξ, y ≥ 1, with a right-tail function

F (y) = 1− F (y) = y−1/ξ, y ≥ 1.

On the basis of (11), since F ξ ∈ R−1/ξ and β = 1, Y ξ belongs to the additive
domain of attraction of a stable law with β = 1 and a CE given by α(ξ) =
min{2, 1/ξ}. Let us use the notation Sα = Sα,1. Then, and asymptotically,

1

k

k∑

i=1

Y ξ
i =






1
1−ξ +

ξ
1−ξ

√
1

k(1−2ξ) S2,0(1 + oP(1)), if ξ < 1
2 ,

1
1−ξ +

√
ln k
k S2,0(1 + oP(1)), if ξ = 1

2 ,

1
1−ξ + kξ−1

{
ξΓ (2−1/ξ)| cos(π/(2ξ))|

1−ξ

}ξ
S1/ξ(1 + oP(1)), if

1
2 < ξ < 1,

ln k + 1− γ − ln(2/π) + π
2S1(1 + oP(1)), if ξ = 1,

kξ−1 {Γ (1− 1/ξ) cos(π/(2ξ))}ξ S1/ξ(1 + oP(1)), if ξ > 1.
(12)

2.5 Asymptotic behaviour of EVI-estimators under a non-regular
framework

We next state the main theorem in Gomes et al.[13], a generalization of The-
orem 1 to non-regular cases.

Theorem 2 ([13]). Under the validity of the first-order condition, in (5), and
for intermediate sequences k = kn, i.e. if (7) holds, the class of functionals
Hp(k), in (4), is consistent for the estimation of ξ, provided that p ≤ 1/ξ and
converges to 1/p (< ξ) if p > 1/ξ.

In the region of values of p out of the scope of Theorem 1, i.e. 1/(2ξ) ≤
p ≤ 1/ξ, if we assume the validity of the second-order condition in (6), the
following asymptotic distributional representations hold.
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(ii) If p = 1/(2ξ), with S2,0 ≡ N (0, 1), an asymptotically centered normal,

Hp(k)− ξ
d
=

S2,0

4p
√
k/ ln k

+
A(n/k)

1− 2ρ
+ op(A(n/k)).

(i) If 1/(2ξ) < p < 1/ξ, with Sα ≡ Sα,1 asymptotically stable with a CE α =
1/(pξ), we get the validity of the asymptotic distributional representation,

Hp(k)− ξ
d
=

σ∗p(ξ) Sα
k1−pξ

+ bp(ξ|ρ) A(n/k) + op(A(n/k)).

(iii) If p = 1/ξ, with S1 asymptotically sum-stable with a CE, α = 1, and with
ω = 1− γ − ln(2/π), γ denoting Euler’s constant,

Hp(k)− ξ
d
= − ξ

ln k
+ ξ

(
w + π/2 S1

ln2 k
− pA(n/k)

ρ ln k

)
(1 + oP(1)).

We now further state the following:

Theorem 3. Under the first order condition in (5), and for any k = kn → ∞,
not necessarily intermediate,

Hp(k)− ξ
d
= − ξ

ln k
(1 + oP(1)), if p = 1/ξ, (13)

and
Hp(k)− 1/p

d
= OP

(
1/kpξ−1

)
, if p > 1/ξ. (14)

Proof. For any 1 ≤ k < n, the distributional identity,

Hp(k)
d
=

1

p



1−
(
1

k

k∑

i=1

Y ξp
i (1 + oP(1))

)−1



holds. Just as mentioned in [5], the term oP(1) above is uniform in i, 1 ≤ i ≤ k.
This comes from the results in [6] (see Theorem B.2.18 in [16]), jointly with
the fact that for uniform order statistics Ui:n, 1 ≤ i ≤ n, we have that 1/Ui:n

can be uniformly bounded in probability by C[i/(n+ 1)]−1 (for some constant
C). From (12), (13) and (14) follow.

3 Finite-sample behaviour of MOp functionals

The Monte-Carlo simulations, already performed in Gomes et al.[13,14], were
extended to other models, like the Burrξ,ρ models, with CDF F (x) = 1 −
(
1 + x−ρ/ξ

)1/ρ
, x ≥ 0, with ξ > 0 and ρ < 0, the ones presented in this paper.

Multi-sample Monte-Carlo simulations of size 5000× 20 (20 replicates of 5000
runs each) were performed. Details on multi-sample simulation can be seen in
Gomes and Oliveira[12].
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Apart from the simulated mean values, at optimal levels, in the sense of
minimal mean square error (MSE), presented in Table 1, we also present in
Table 2 an indicator of the relative efficiency (REFF), given by

REFFp|0 =
RMSE(H00)

RMSE(Hp0)
:=

√
MSE(H00)

MSE(Hp0)
=:

RMSE00

RMSEp0
,

where Hp0 is the Hp(k) EVI-estimator computed at the simulated value of
k0|p := argmink MSE(Hp(k)). For each model, the smallest bias, in Table 1,
and the highest REFF, in Table 2, are written in bold.

n 100 200 2000 5000

BURRξ,ρ parent, ξ = 1, ρ = −0.1

H0 3.256± 0.0088 2.814± 0.0069 2.100± 0.0137 1.947± 0.0101

H0.1 2.588± 0.0057 2.328± 0.0049 1.812± 0.0095 1.717± 0.0141

H0.4 1.949± 0.0030 1.824± 0.0028 1.523± 0.0031 1.435± 0.0028

H0.5 1.698± 0.0021 1.612± 0.0022 1.389± 0.0024 1.320± 0.0023

H0.9 1.084± 0.0019 1.080± 0.0014 1.063± 0.0011 1.057± 0.0009

H1 1.000± 0.0000 1.000± 0.0000 1.000± 0.0000 1.000± 0.0000

H1.1 0.909± 0.0000 0.909± 0.0000 0.909± 0.0000 0.909± 0.0000

H1.2 0.833± 0.0000 0.833± 0.0000 0.833± 0.0000 1.000± 0.0000

BURRξ,ρ parent, ξ = 1, ρ = −0.5

H0 1.295± 0.0086 1.242± 0.0048 1.131± 0.0027 1.102± 0.0022

H0.1 1.233± 0.0065 1.198± 0.0046 1.115± 0.0026 1.092± 0.0020

H0.4 1.156± 0.0047 1.142± 0.0035 1.098± 0.0018 1.083± 0.0018

H0.5 1.119± 0.0041 1.113± 0.0039 1.083± 0.0017 1.072± 0.0010

H0.9 1.028± 0.0008 1.023± 0.0006 1.014± 0.0002 1.012± 0.002

H1 1.000± 0.0000 1.000± 0.0000 1.000± 0.0000 1.000± 0.0000

H1.1 0.909± 0.0000 0.909± 0.0000 0.909± 0.0000 0.909± 0.0000

H1.2 0.833± 0.0000 0.833± 0.0000 0.833± 0.0000 1.000± 0.0000

BURRξ,ρ parent, ξ = 1, ρ = −1

H0 1.138± 0.0042 1.110± 0.0033 1.050± 0.0010 1.037± 0.0009

H0.1 1.111± 0.0027 1.093± 0.0030 1.045± 0.0010 1.033± 0.0006

H0.4 1.092± 0.0026 1.080± 0.0020 1.046± 0.0007 1.035± 0.0007

H0.5 1.075± 0.0024 1.065± 0.0018 1.042± 0.0008 1.034± 0.0006

H0.9 1.018± 0.0005 1.015± 0.0001 1.010± 0.0001 1.008± 0.0001

H1 0.998± 0.0001 0.999± 0.0000 1.000± 0.0000 1.000± 0.0000

H1.1 0.908± 0.0001 0.909± 0.0000 0.909± 0.0000 0.909± 0.0000

H1.2 0.833± 0.0000 0.833± 0.0000 0.833± 0.0000 1.000± 0.0000

Table 1. Simulated mean values, at optimal levels, of Hp(k)/ξ, pξ = 0, 0.1, 0.4,
0.5, 0.9, 1.0, 1.1, 1.2, for BURRξ,ρ underlying parents, ξ = 1, ρ = −0.1,−0.5,−1, together with
95% confidence intervals
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n 100 200 2000 5000

BURRξ,ρ parent, ξ = 1, ρ = −0.1

RMSE00 2.592± 0.2304 2.133± 0.2287 1.326± 0.2224 1.134± 0.2197

H0.1 1.188± 0.0013 1.163± 0.0009 1.113± 0.0030 1.092± 0.0022

H0.2 1.475± 0.0027 1.408± 0.0016 1.291± 0.0042 1.249± 0.0037

H0.4 2.535± 0.0065 2.323± 0.0039 1.960± 0.0080 1.855± 0.0057

H0.5 3.467± 0.0097 3.133± 0.0062 2.555± 0.0112 2.390± 0.0077

H0.9 26.030± 0.1132 22.231± 0.0936 15.580± 0.0810 14.011± 0.0708

H1 ∞ ∞ ∞ ∞
H1.1 28.514± 0.1025 23.464± 0.0777 14.588± 0.0757 12.469± 0.0453

H1.2 15.553± 0.0559 12.798± 0.0424 7.957± 0.0413 6.801± 0.0247

BURRξ,ρ parent, ξ = 1, ρ = −0.5

RMSE00 0.478± 0.1981 0.381± 0.1917 0.193± 0.1679 0.150± 0.1579

H0.1 1.074± 0.0011 1.059± 0.0008 1.034± 0.0008 1.029± 0.0006

H0.4 1.484± 0.0047 1.375± 0.0047 1.159± 0.0043 1.110± 0.0055

H0.5 1.761± 0.0058 1.603± 0.0063 1.260± 0.0051 1.175± 0.0073

H0.9 8.404± 0.0343 7.448± 0.0411 4.998± 0.0141 4.277± 0.0230

H1 ∞ ∞ ∞ ∞
H1.1 5.253± 0.0225 4.196± 0.0231 2.128± 0.0090 1.654± 0.0083

H1.2 2.865± 0.0123 2.289± 0, 0126 1.160± 0.0049 0.9020± 0.0045

BURRξ,ρ parent, ξ = 1, ρ = −1

RMSE00 0.266± 0.1740 0.205± 0.1656 0.090± 0.1356 0.066± 0.1231

H0.1 1.047± 0.0013 1.038± 0.0011 1.023± 0.0009 1.020± 0.0009

H0.4 1.257± 0.0048 1.178± 0.0056 1.025± 0.0071 0.985± 0.0074

H0.5 1.415± 0.0063 1.288± 0.0068 1.018± 0.0081 0.943± 0.0090

H0.9 5.743± 0.0331 4.924± 0.0231 2.849± 0.0170 2.268± 0.0134

H1 88.50± 0.782 151.87± 10.13 ∞ ∞
H1.1 2.894± 0.0140 2.2433± 0.0112 0.994± 0.0039 0.724± 0.0029

H1.2 1.590± 0.0077 1.228± 0.0062 0.542± 0.0021 0.395± 0.0016

Table 2. Simulated RMSE of H00 /ξ (first row of any model) and REFF-indicators of Hp, pξ =
0.1, 0.4, 0.5, 0.9, 1.0, 1.1, 1.2, for BURRξ,ρ underlying parents, ξ = 1, ρ = −0.1,−0.5,−1, together
with 95% confidence intervals

A visualization of both tables is provided in Figure 1.

On the basis of the first replica of size 5000, we finally present, in Figure
2, the simulated mean values and root mean squared errors (RMSE’s), as a
function of k, and also for a BURRξ,ρ model with ξ = −ρ = 1.
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Fig. 1. Simulated optimal mean values (left) and REFF-indicators (right), as a func-
tion of n for a BURRξ,ρ parent with ξ = 1 and ρ = −0.5.

7

7

7

7

8

 

0.8

1

1.2

1.4

1.6

0 250 500 750

0

0.2

0.4

0 250 500 750

 

E[.]

 

RMSE[.]

 k

 
! = 1

H0 ! H

H1/! " H1

H1/(2!) " H1/2

H0.9

H0 ! H

H1/! " H1

H1/(2!) " H1/2

H0.9

 k
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4 A non-regular adaptive choice of p and k

It seems sensible to take k = n − 1 and p = 1/ξ, but ξ is not known. And
if pξ > 1, Hp(k) converges to 1/p < ξ. Let us thus consider the following
procedure:

Algorithm

• Compute an initial EVI-estimate, ξ̂0 = H(k̂0|0), with k̂0|0 given in (9);

• For p=0.01(0.01) · · · , compute pmin := argmin
p

(Hp(n− 1)− ξ̂0)2;

• Consider the estimate ξ̂ = 1/pmin.

To ilustrate the performance of the Algorithm, sample sizes from n = 100 until
n = 5000 were simulated from a set of underlying models that include the
Burrξ,ρ models with ξ = {0.5, 1} and ρ = {−0.5,−1}, the Student-tν , with
ν = 2 degrees-of-freedom (ξ = 1/ν = 0.5), the Cauchy model, ξ = 1, the
Generalised Pareto model, GPξ, with ξ = {0.5, 1} and the Fréchet model with
ξ = 0.5. The results are summarized in Table 3.

n 100 200 1000 2000 5000

Burrξ,ρ parent, ξ = 0.5, ρ = −0.5

|ξ̂ − ξ| 0.0098 0.0074 0.0291 0.0051 0.0098

Burrξ,ρ parent, ξ = 0.5, ρ = −1

|ξ̂ − ξ| 0.0435 0.0348 0.0076 0.0098 0.0051

Burrξ,ρ parent, ξ = 1, ρ = −0.5

|ξ̂ − ξ| 0.1364 0.1111 0.0204 0.0989 0.0417

Burrξ,ρ parent, ξ = 1, ρ = −1

|ξ̂ − ξ| 0.0638 0.0204 0.01010 0.0291 0.0291

Student t2 parent, ξ = 0.5

|ξ̂ − ξ| 0.0076 0.0102 0.0025 0.0098 0.0051

Cauchy parent, ξ = 1, ρ = −2

|ξ̂ − ξ| 0.0417 0.0638 0.0196 0.0101 0.0099

GPξ parent, ξ = 0.5

|ξ̂ − ξ| 0.0263 0.0128 0.0128 0.0025 0.0025

GPξ parent, ξ = 1

|ξ̂ − ξ| 0.0870 0.0870 0.0309 0.0000 0.0204

Fréchetξ parent, ξ = 0.5

|ξ̂ − ξ| 0.0025 0.0098 0.0122 0.0283 0.0902

Table 3. Absolute bias of the adaptive MOp EVI-estimates provided by the Algorithm for several
selected models

The results obtained for the simulated samples show that the Algorithm
performs well for most of the models. However, the performance of the Algo-
rithm is strongly dependent of the initial EVI-estimate and if the bias of the
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initial EVI estimate is small then the bias of the MOp EVI-estimate will also
be small. Other initial EVI-estimates, like the reduced bias EVI-estimates in
Caeiro et al.[4] could be considered. These results claim for a simulation study
of the Algorithm comparatively to other adequate adaptive algorithms, a topic
out of the scope of this paper.

5 A few concluding remarks

It has been clear for a long time that the H EVI-estimators lead often to a
high over-estimation of the EVI, even at optimal levels, in the sense of minimal
MSE. The use of the extra uning parameter p ∈ R and the MOp methodol-
ogy can thus provide a much more adequate EVI-estimation, with asymptotic
normality achieved for p ≤ 1/(2ξ). But we can now go up to p = 1/ξ, getting
then a sum-stable behavior, with an index of sum-stability α = 1/(pξ). And
for p = 1/ξ, we get, for Hp(k)− ξ, a deterministic dominant component, of the
order of 1/ ln k. The challenge is not to go beyond p = 1/ξ. But the algorithm
discussed in Section 4 is able to perform such a goal in a great variety of situ-
ations. Further notice that for the adaptive choice of (p, k) a double-bootstrap
algorithm, of the type of the one in [3], can be used, with some minor modifi-
cations. However, such an algorithm relies too much on the finite variance of
the normal asymptotic RV associated with the asymptotic behaviour of Hp(k),
needs to be slightly modified, being still under study. And the simple heuris-
tic algorithm presented above seems to work adequately in a great variety of
situations.
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