
Intelligent Decision Support for
Cybersecurity Incident Response Teams:

Autonomic Architecture and Mitigation Search?

Camilo Correa1, Jacques Robin1, Raul Mazo1,2, and Salvador Abreu1,3

1 CRI, University of Paris 1 Panthéon-Sorbonne, Paris, France
{camilo.correa-restrepo,jacques.robin}@univ-paris1.fr

2 Lab-STICC, ENSTA Bretage, Brest, France
raul.mazo@ensta-bretagne.fr

3 NOVA-LINCS, University of Évora, Évora, Portugal
spa@uevora.pt

Abstract. Critical infrastructures must be able to mitigate, at runtime, suspected
ongoing cyberattacks that have eluded preventive security measures. To tackle
this issue, we first propose an autonomic computing architecture for a Cyber-
Security Incident Response Team Intelligent Decision Support System (CSIRT-
IDSS) with a precise set of technologies for each of its components. We then
zoom in on the component responsible for proposing to the CSIRT, automatically
ranked sets of runtime actions to mitigate suspected ongoing cyber-attacks. We
formalize its task as a Constraint Optimization Problem (COP). We then propose
to implement it by a Constraint Object-Oriented Logic Program (COOLP) de-
ployed as a containerized web service through the integration of three orthogonal
extensions of Logic Programming (LP): Web Service Oriented LP (WSOLP) [34]
Constraint LP (CLP) [10] and Object-Oriented LP (OOLP) [23]. This integration
supports seamlessly reusing platform and task independent cybersecurity onto-
logical knowledge to dynamically build a mitigation action search COP that is
customized to an input suspected cyberattack action set. This customization then
allows the COP, to be solved by a generic CLP engine efficiently enough to pro-
pose mitigation actions to the CSIRT team while they can still be effective. To
validate this approach, we implemented a prototype called CARMAS (Cyber At-
tack Runtime Mitigation Action Search) and ran scalability tests on simulated
attacks with various COP construction strategies.

Keywords: Intelligent Decision Support System · Autonomic Computing · Cy-
bersecurity Incident Response· Object-Oriented Logic Programming · Constraint
Logic Programming.

? This work was partially funded by Fundação para a Ciência e Tecnologia under grant
UIDB/04516/2020 (NOVA-LINCS) and by the project C4IIoT funded by the European Com-
mission under Grant Agreement No. 833828. It reflects the views only of the authors. The
funding agencies cannot be held responsible for any use which may be made of the informa-
tion it contains.

2 C. Correa et al.

1 Introduction

Defending critical network infrastructures in industrial environments has become a
pressing need in recent years. The ongoing transition, from custom-built control sys-
tems to Industrial Internet of Things (IIoT) [29] based on low-cost, off-the-shelf, cloud
connected devices, has considerably grown the attack surface exploitable by malicious
agents [27]. Traditional approaches to cybersecurity emphasize attack prevention, lay-
ing out as many design-time defense mechanisms as is economically feasible. They
sometimes add post-mortem analysis processes [7] to uncover and recover from attacks
after they have occurred. These approaches are generally not automated and, in a way,
come too late. This leaves a large window of opportunity for attackers to continue caus-
ing damage. Some attacks may remain undetected for up to several months [2]. To
tackle this problem, new approaches are needed to detect an attack and apply counter-
measures swiftly or even before it has been fully completed to best minimize its impact.

In this paper, we make two original contributions towards solving this problem. We
first propose a concrete architecture for a CSIRT-IDSS shown in Fig. 1 as an Unified
Modeling Language (UML) [30] class diagram4. This architecture refines, with a pre-
cise set of technologies, each abstract component of the classic autonomic computing
architecture pattern MAPEK [17] shown on the top row of Fig. 1. It consists of a loop-
ing pipeline of Monitor (M), Analyzer (A), Planner (P) and Executor (E) components,
sharing a common Knowledge (K) base, to autonomically manage a system.

Fig. 1: MAPEK refinement for autonomic CSIRT-IDSS.

4 To avoid clutter, this diagram omits the UML stereotypes �component� and �interface�. It
uses the following color coding: yellow for the abstract MAPEK components, orange for the
refinements of which we are the sole (CARMAS) or main (Ontology) developer, grey for the
third-party Inference Engines (IE) and libraries reused by CARMAS, red for its input, blue
for its output and white for the refinements developed by C4IIoT project partners that either
generate this input or act upon this output.

Intelligent Decision Support for Cybersecurity Incident Response Teams 3

Our second contribution focuses on the P step, leaving the details of the M, A
and E steps for other publications. We show how P can be formalized as a COP and
propose a specific COOLP architectural pattern to solve it with practical performance. It
consists of generating, at runtime, a COP customized to the input attack to mitigate, for
then solving this COP using a generic CLP solver. Thanks to the taxonomic knowledge
representation features of OOLP, the COP generator reuses knowledge from the task-
independent cybersecurity ontology that refines the K component of the MAPEK loop.

We describe the prototype implementation of this mitigation engine search engine
architectural pattern by the CARMAS COOLP. We also present scalability simulations
comparing how various COP generation heuristics impact the performance of the com-
bined generation and solving pipeline for attack action sets of increasing size and con-
ceptual diversity. It shows that thanks to this approach, a declarative and generic CLP
solver such as the CLP(FD) library of SWI-Prolog [32] can solve the generated COP
efficiently enough to be usable in practice for cyberattack mitigation search.

2 Autonomic architecture for CSIRT-IDSS

Our proposed MAPEK refinement for a CSIRT-IDSS is shown in Fig. 1. It focuses on a
single autonomic self-management capability: self-protection. It is part of a larger cy-
bersecurity architecture framework under development within the H2020 project C4IIoT
(Cybersecurity for the Industrial Internet of Things). This framework includes a vari-
ety of preventive and post-mortem components developed by project partners that are
beyond the scope of the MAPEK architecture shown in Fig. 1, as they do not directly
interact with our CARMAS component.

The automation of the K-based M, A, P and E sub-task loop of an autonomic sys-
tem self-management is very similar to the knowledge-based sense, reason, decide and
act loop of autonomous agents [26]. However, while the latter aims to perform all deci-
sion steps without requiring any human intervention, the former rather provides a very
high-level User-Interface (UI) to a human-in-the-loop. Through this UI, this human ex-
pert can partition decisions between, on the one hand, those that the autonomic system
can take without supervision, and, on the other hand, those for which the autonomic
system proposes alternative, automatically executable, high-level plans for the human
to choose from. Autonomic computing is inspired from the nervous system where some
functions are carried automatically without requiring conscious intervention (i.e., heart-
beat), whereas others are consciously triggered (i.e., hyperventilating). This automation
continuum it a particularly good fit for a CSIRT-IDSS.

As shown in the second row of 1, at its highest level, our MAPEK refinement for a
CSIRT-IDSS proposes that (a) M consists of probes that snoop network packet traffic
and host activities data (such as API and OS calls), (b) A consists of attack detec-
tion from the probe generated data, (c) P (CARMAS) consists of finding the network
reconfiguration actions that can best mitigate the suspected attack, (d) E consists of ex-
ecuting these actions and (e) the shared K is a cybersecurity ontology. In this ontology,
the choice of the bounded integer values ranging from 1 to 5 shown in Fig. 1 for the
attributes of the classes rooting the attack and mitigation taxonomies were motivated by
the requirement that they be easy to estimate and understand by the CSIRT members.

4 C. Correa et al.

A outputs a set of suspected ongoing attack actions targeting a set of network assets
that it passes to CARMAS. The plausibility attribute of each action comes from the
attack detector while the impact attribute comes from the ontology. To mitigate the at-
tack, CARMAS searches and ranks action sets and sends them to the CSIRT UI. Among
these ranked action sets, the CSIRT then chooses which one to execute by calling sub-
components of E (or none if it judges the attack alert input to CARMAS is a false
positive). These sub-components are general management automation tools, already in
place for normal network operations, that E reuses for its specific cyberattack runtime
mitigation purposes. They include Software Defined Network (SDN) controllers [13] to
reconfigure network parameters and routes, container orchestrators [25] to reconfigure
technological stacks installed on network hosts with alternative, updated elements with
no known vulnerabilities, and authentication certificate managers to reconfigure access
rights to the hosted applications running on top of these stacks. Note that only the E
component of our proposed MAPEK refinement depends on the use of these specific
network management technologies. The CSIRT UI is also a sub-component of E since
it controls the calls to its other sub-components.

3 IIoT Cybersecurity Ontology

The shared ontology, refining K, provides a reusable, task-independent and platform-
independent reference conceptual model for the cybersecurity challenges of a given
industry. The MAPEK refinement that we propose assumes that both the managed sys-
tem and its autonomic self-protection components uniformly consist of containerized
web services communicating through an SDN. The payload schema of the communi-
cation API between these services can be automatically generated from the ontology to
support simultaneously rigorous and agile API evolution.

While the top-level concepts of a cybersecurity ontology, such as attack action, net-
work asset, vulnerability and mitigation action are industry-independent, their refine-
ments quickly become specific to a particular industry, a set of technologies and even
a specific network, for the main operating mode of attackers is to spot the devil in the
details. To illustrate such refinements, we show in Fig. 2 a snippet of the ontology under
development for IIoT networks in the C4IIoT project. We are developing it in cooper-
ation with the partners developing the refinements of the M, A and E components. It
shows concepts from an attack action taxonomy (in red), a mitigation action taxonomy
(in blue) and the many-to-many mitigatedBy role relations between them.

The C4IIoT ontology adopted a dual, synchronized representation: a high-level,
graphical one in UML and a fully detailed, textual one as a COOLP. UML was a nat-
ural choice for both the overall architecture model of Fig. 1 and the shared conceptual
model refining K because, while the components of the architecture run on different
programming platforms, they all follow the OOP paradigm. Adopting a standard on-
tology language such as OWL [11], rather than UML, would have been a far steeper
learning curve for a typical CSIRT. In addition, OWL’s Open-World Assumption (OWA)
is a semantic mismatch with OOP’s Closed-World Assumption (CWA) [1]. However,
while UML can intuitively represent taxonomies of concepts and local role relations
between them, it cannot represent arbitrarily complex and possibly long-distance con-

Intelligent Decision Support for Cybersecurity Incident Response Teams 5

Fig. 2: Attack and mitigation action taxonomy snippet

straints among them. Nor does it provide formal semantics to support automated rea-
soning about them. This is why a refined, formal, executable, textual version of the on-
tology as a COOLP was also developed for components such as CARMAS that perform
such reasoning. In the current implementation, we have so far synchronized the UML
and COOLP versions of the ontology manually. We have however, specified a UML
profile for COOLP as a first step towards automating it. The common OOP paradigm
and CWA shared by the two languages make this translation far easier than a translation
from UML to OWL would have been.

The snippet shown in Fig. 2 only aims to provide some illustrative context for the
CARMAS running example presented in Section 6. The current attack taxonomy is
primarily inspired by concepts proposed by MITRE [22] and Hindy et al. [14]. The
current mitigation taxonomy is mostly inspired by the current focus of the project on (a)
SDN controlled traffic rerouting actions and (b) network administration scripts remotely
executable by the CSIRT.

4 Designing CARMAS as a COOLP web service

Let us now detail the design of CARMAS. Its main requirements are the following:
(R1) solve a COP, formalized in Section 5, with practical performance, (R2) reuse
the taxonomic knowledge of K for inheritance reasoning, (R3) be able to clearly ex-
plain its reasoning to the CSIRT and (R4) be deployed as a containerized web service
inter-operating with the A and E components refinements. Each of these requirements
suggest a different paradigm as the best fit to satisfy them: Constraint Programming

6 C. Correa et al.

(CP) [10] for R1, Object-Oriented Programming (OOP) for R2, rule-based LP [10] for
R3 and Web Service Oriented Programming (WSOP) for R4. This led us to develop
CARMAS as a COOLP integrating those four paradigms.

As its input is a suspected attack action set of unknown size, CARMAS cannot just
instantiate a predefined parametric COP. We therefore decomposed CARMAS into a
pipeline of two components as shown in Fig. 1. The first generates a COP problem in-
stance from the output of the attack detector specializing A. The second solves this COP
and passes the solution as input to the runtime mitigation action executor specializing
A. As the P component of the MAPEK pattern, CARMAS has access to knowledge
encapsulated in the K component, the cybersecurity ontology. Both its COP Generator
and COP Solver components thus also have access to this knowledge through inheri-
tance and composition. Both are declaratively implemented as a COOLP interpreted by
a COOLP Inference Engine (COOLPIE) that answers COOLP queries.

The multi-paradigm COOLPIE that interprets both COP generation and COP solv-
ing COOLP queries is assembled by three orthogonal extensions to the LP engine SWI-
Prolog [34]: the CLP library CLP(FD) [32], the WSOLP library HTTP [35] and the
OOLP extension Logtalk [23]. This is seamlessly done by putting Prolog module im-
port directives use_module(library(clpfd)) and use_module(library(http))

in a Logtalk source file.
Logtalk is an object-oriented extension of Prolog. It transpiles Logtalk programs

and queries into Prolog programs and queries and reuses the Prolog engine to answer
the queries given the program. Logtalk is itself implemented in Prolog. As shown in
Fig. 1, a Logtalk program is composed of three main top-level code entities: objects,
and what OOP languages usually call interfaces and mixins (respectively called proto-
cols and categories in Logtalk). Faithful to the spirit of OOP, a Logtalk object or mixin
represents both a concept in a generalization taxonomy and a unit of code encapsula-
tion. But rather than encapsulating both a computation state and a set of state altering
operations as in imperative OOP, Logtalk encapsulates a declarative LP, or a CLP when
used with a CLP library. Both objects and mixins can realize interfaces. Logtalk ob-
jects and mixins can thus both be viewed as extensions of Prolog modules. Mixins
can be imported into objects to support a simple form of reuse by composition. Like
JavaScript, Logtalk supports both class-based and prototype-based inheritance by pro-
viding specializes, instantiates and extends relations between objects. It does not make
class a first-class concept. Instead, it makes it a role that an object plays in an instanti-
ates relation with another object, which allows Logtalk to easily support, like Python,
both meta-classes and multiple inheritance. Similarly, the concept of prototype is a role
that an object plays in an extends relation with another object. Logtalk also supports
inheritance down extension hierarchies defined over interfaces and mixins. Logtalks
thus allows combining JavaScript and/or Python style OOP for structural code with the
declarative, formal yet executable rule-based specification of CLP for behavioral code.

Using COOLP rather than CLP alone, allows simultaneously leveraging the built-in
inheritance reasoning services provided by OOLP, down the cybersecurity ontology tax-
onomies, with the built-in heuristic optimization reasoning services provided by CLP. It
also allows following a model-driven, object-oriented development methodology [11].
This is handy in the software engineering context of CARMAS, as a component in

Intelligent Decision Support for Cybersecurity Incident Response Teams 7

an heterogeneous, multi-platform framework such as C4IIoT. The web server built in
SWI Prolog’s HTTP library and its seamless integration with Logtalk eased the deploy-
ment of CARMAS as a web service. Its built-in JSON serialization and deserialization
predicates eased programming the data exchange between the inward-facing Logtalk
interfaces of CARMAS and its outward-facing Web API interface to the other C4IIoT
components. CARMAS is provided as a Docker image stacking two COOLPs, the COP
Generator and the COP Solver, on top of Logtalk, CLP(FD) and SWI-HTTP, themselves
on top of SWI-Prolog itself on top of Linux.

5 Formalizing attack mitigation search

The following definitions formalize attack mitigation search.

– Set definitions:
1. A: the possible attack actions;
2. Ap ⊂ A: input attack actions to a given mitigation search problem p;
3. T : possible network assets targeted by members of A;
4. Tp ⊂ T : target assets for a given problem p;
5. M: the possible mitigation actions;
6. M(ai)⊂M with ai ∈ Ap, the possible actions to mitigate a given attack action

ai
7. M(ti) ⊂M with ti ∈ Tp, the possible actions to mitigate the attack actions tar-

geting a given asset ti.
8. Ap(ti)⊂ Ap with ti ∈ Tp, the attack actions targeting a given asset ti.

– Function definitions:
1. at : Ap→ Tp, asset target of a given attack action;
2. clA : A→P(A) (respectively clM : M→P(M), clT : T →P(T)) ontological

class of a given attack action (respectively mitigation action, target asset);
3. p : Ap→{1, ...,5} plausibility of a given attack suspicion;
4. i : P(A)×P(T)→{1, ...,5} negative business impact, if left unmitigated, of

an attack of a given action class targeting a given asset class;
5. r : P(M)×P(A)×P(T)→{1, ...,5}: negative business impact reduction of

mitigation actions from a given class for a given attack class targeting a given
asset class;

6. u : P(M)×P(A)→ N: utility of mitigation action set M′ ⊂M for attack ac-
tion set A′ ⊂ A s.t.

u(M′,A′) = ∑
mi∈M′,a j∈A′

5−|p(a j)− r(clM(mi),clA(a j),clT (at(a j)))|.

– Relation definition: mtg ⊂ P(M)×P(A)×P(T), the mitigation actions of a
given class can mitigate attack actions of a given class targeting network assets of
a given class.

– Definition of integrity constraints for input problem instance and the ontology:
1. ∀ai ∈ Ap,∃(x,y) ∈ {1, ...,5}2

[
x = p(ai)∧y = i(clA(ai),clT (at(ai)))

]
(each at-

tack action must have a plausibility and an impact);

8 C. Correa et al.

2. ∀ai ∈ Ap,∃(m j,x) ∈ M×{1, ...,5} x = r(clM(m j),clA(ai),clT (at(ai))) (each
attack action must have mitigation actions with an impact reduction);

3. ∀ai ∈ Ap,∀m j ∈M,∃(x,y) ∈ {1, ...,5}2
[
mtg(clM(m j),clA(ai),clT (at(ai)))

∧x = r(clM(m j),clA(ai),clT (at(ai)))∧y= i(clA(ai),clT (at(ai)))]⇒ x < y (the
impact reduction of a mitigation action cannot exceed the impact of the attack
action that it reduces).

– Definition of output solution sets:
1. FM(Ap)=

{
Msat ⊂M | ∀ai ∈Ap,∃!m j ∈Msat

[
mtg(clM(m j),clA(ai),clT (at(ai)))

]}
family of all solution mitigation action sets;

2. Mmax(Ap) = argmax
Msat∈FM(Ap)

u(Msat ,Ap) solution that maximizes utility of the mit-

igation actions.

The formal notation just defined relates to the the UML model elements of Fig. 1 as
follows. The Attack Action set that the Attack Detector component passes as input to
the COP Generator is formalized by the sets Ap and Tp, and the functions at and p.
The knowledge encapsulated in the ontology that enriches this input is formalized by
the sets A, T and M, the functions clA, clM , clT , i and r, the relation mtg and the three
integrity constraints. The Mitigation Action set output by the COP Solver is formalized
by the Mmax(Ap) function.

The u function is constructed by the COP Generator and used by the COP Solver. Its
formula favors choosing mitigation actions with higher (respectively mid-range, lower)
reduction impact r for suspected attack actions with higher (respectively mid-range,
lower) plausibility p. The rationale behind this choice is that mitigations with higher
attack impact risk reduction generally tend to come with a higher negative impact on
other factors such as service availability. Consider for example a DOS attack; the ontol-
ogy snippet of Fig. 2 shows three possible mitigations for it: host isolation, rate limiting
and packet filtering. While the first one has a higher attack risk impact reduction that
the two others, it also more severely reduces the availability of the service running on
the host suspected as the attack source. Thus, when the plausibility of this host being
the source of a DOS attack targeting another network host is low, choosing packet fil-
tering and/or rate limiting over host isolation is better for the overall availability of the
network services. The u formula allows CARMAS to implicitly carry out such trade-off
while still only building and solving a single objective COP, rather than a more complex
multi-objective COP.

COP generation starts by creating the variable set:

V = D∪R∪P∪{up}

where:

D =
{

d(m j,ai) ∈ {0,1}
∣∣ ai ∈ Ap∧m j ∈M′

}
M′ =

{
m j ∈M

∣∣ ai ∈ Ap∧mtg(clM(m j),clA(ai),clT (at(ai)))
}
.

P =
{

p(ai) ∈ {1, ...,5}
∣∣ a j ∈ Ap

}

Intelligent Decision Support for Cybersecurity Incident Response Teams 9

R =
{

r(clM(m j),clA(ai),clT (at(ai))) ∈ {1, ...,5}∣∣ ai ∈ Ap∧m j ∈M′∧mtg(clM(m j),cl(ai),cl(at(ai)))
}

up = ∑
δ∈D,ρ∈R,π∈P

δ ∗ (5−|π−ρ|)

In the set definitions above, d(m j,ai) = 1 when the COP solver selects m j to miti-
gate ai among the set M′ of candidates, and d(m j,ai) = 0 otherwise. D is thus a set of
decision Boolean variables that represents the COP solver’s mitigation action choices.
P and R are sets of integer variables with values in {1, ..., 5}. P is a set of parameter
variables containing the plausibility of each input suspected attack action to mitigate. R
is a set of parameter variables that comes from the ontology and contains the expected
business impact reduction of each mitigation action on the attack action it is selected
to mitigate. up is a positive integer optimization variable that the COP solver tries to
maximize to guide its choices of value for the decision variables. With the variable de-
fined above, the COP consists in choosing the allocation of decision variables D that
maximizes the optimization variable up given the values of parameter variables P and
R.

The worst-case complexity of a Boolean COP is 2 to the power of the number
of its decision variable (cf. [26] p.199). The most straightforward COP generation
strategy yields a COP with ∑ai∈Ap |M(ai)| decision variables. Its complexity is thus:

SF = O(2∑ai∈Ap |M(ai)|).
To improve the performance of the COP solver we propose two simple heuristics to

generate equivalent COPs with less variables. The first is asset-based decomposition. It
consists of building one sub-COP per targeted asset in the input, solving each of them
and taking the union of the solutions as the global COP solution. With this heuristic,
the number of variables for each sub-COP is upper-bounded by maxt∈TP |M(t)|. The
total complexity of the union of all the sub-COPs is thus upper-bounded by: ABD =
O((2maxt∈TP |M(t)|).(∑ai∈Ap |M(ai)|)/(maxt∈TP |M(t)|))) (cf. [26] p.199 again) whose growth
rate is less than that of SF since maxt∈TP |M(t)| ≤ ∑ai∈Ap |M(ai)|. This is because the
set of actions attacking a given asset is a subset of the whole attack action input set.
Thus, the size of the search space of the sub-problems will necessarily be smaller than
or equal to that of the whole problem. This heuristic can be used by CARMAS because,
in the COP that it must generate and solve, the value choice for any given decision
variable is independent from the choices for all other decision variables.

The second heuristic is uniform mitigation where the following constraint is added
to the COP: all actions that mitigate attack actions of a given class must all belong to
the same mitigation class. Or formally:

∀ai ∈ Ap,∀m j ∈M′
[[

d(m j,ai) = 1∧ clM(m j) = cm∧ clA(ai) = ca
]

⇒∀al ∈ Ap,∀mq ∈M′ \{m j}
[
(d(mq,al) = 1∧ clM(mq) = cm)⇒ clA(al) = ca

]]
It assumes that if a given mitigation action is appropriate for an attack action of a

given attack class, actions of the same mitigation class are likely to be effective for all
other actions of that attack class. It dramatically reduces the number of decisions to be

10 C. Correa et al.

taken by the COP solver from ∑ai∈Ap |M(ai)| to just
d =∑kA∈{cl(ai)|ai∈Ap} |{kM|∃t ∈Tp[mtg(kM,kA,clt(t))]}|, where (kM,kA)∈P(M)×P(A);
that is, the sum, over the classes of attacks given as input, of the number of classes that
can mitigate them. The resulting COP complexity is thus UM =O(2d). The price to pay
for this performance gain is to give up the guarantee that the solver always return at the
top of its list of proposed mitigation action sets, the one that maximizes the reduction
of the attack impact.

6 CARMAS Running Example

To illustrate how our CARMAS prototype implementation works, at a very high-level,
we now provide and explain four code listings. Listing 1.1 shows a snippet of the top-
level CARMAS COOLP web service object that generates an HTTP response from
an HTTP request. Listing 1.2 shows a request payload: a JSON object containing an
example input set of two reconnaissance attack actions, one targeting an Android tablet
and the other a Linux server. Listing 1.3 contains a snippet from a logged trace of the
logical variable bindings resulting from the COOLPIE evaluating the goals of line 7
in listing 1.1. Listing 1.4 shows the JSON payload generated by CARMAS as answer
to the request. It contains the actions to mitigate the attack actions from the client’s
request.

Let us now explain each listing a bit further in turn. In listing 1.1, lines 1 and 11
shows that the CARMAS web server is encapsulated in a COOLP object. Line 2 routes
the request URL to the appropriate predicate handler of that object. Lines 4 to 10 shows
the COOLP rule defining this predicate. Lines 5 and 6 extract the JSON payload from
the request and convert it to a SWI-Prolog logical term. On line 7, the web server in-
vokes the COP generating then solving predicates of the carmas COOLP object. The
arguments DVars and U of these predicates respectively contain the decision variable
set D and the optimization variable up defined in Section 5. Line 8 builds a term con-
taining the mitigation action set chosen by the decision variables and line 9 converts it
to a JSON object. Line 10 sends the object as payload of the HTTP response.

In listing 1.3, lines 1-4 show the COP logical variable once bound by the COOLPIE
by evaluating the gen_cop goal predicate of the carmas object on line 7 of listing 1.1.
It contains a set of candidate actions, retrieved from the ontology, to mitigate the input
attack action set shown in listing 1.2. Each such candidate action is associated with a
pair of logical variables, one, DVarN for the decision to choose this action, and the other,
IVarN, for the contribution of this choice to the optimization variable. In this example,
COP contains two candidate actions to mitigate each attack action from listing 1.2: one
port closure and one packet filtering. Continuing with listing 1.3, lines 5 and 8 of show
DVars before and after the COOLPIE evaluates the solve_cop goal predicate of the
carmas object on line 7 of listing 1.1. Also in listing 1.3, lines 6-7 show the mitigation
action set logical variable Ms bound by the COOLPIE by evaluating the solve-cop

goal predicate of the carmas object on line 7 of listing 1.1. Ms then contains the choice
of a port closure action to mitigate the reconnaissance targeting the Android tablet and
of a packet filtering action to mitigate the reconnaissance targeting the Linux server.

Intelligent Decision Support for Cybersecurity Incident Response Teams 11

Listing 1.1: CARMAS COOLP web service code snippet
1 :- object(server).
2 {:- http_handler(root(ap), [Request]>>(server :: handle_attack(Request)),

↪→ [])}.
3 ...
4 handle_attack(Request) :-
5 {http_json:http_read_json(Request , Data , [json_object(dict),

↪→ value_string_as(atom)])},
6 serialization :: deserializeAttackActionSet(Data , AASetTerm),
7 carmas :: gen_cop(AASetTerm , COP , DVars , U), carmas :: solve_cop(DVars ,U),
8 carmas :: selectMitigationActions(COP , Ms), carmas :: mitigationTerm(Ms,

↪→ MASetTerm),
9 serialization :: serialize(MASetTerm , MADict),

10 {http_json:reply_json(MADict , [status (200), json_object(term)])}.
11 :- end_object.

Listing 1.2: CARMAS COOLP web service JSON input example
1 {" attack_actions ": [
2 {" plausibility ": 4, "attack_type ": "reconnaissance", "attack_id ": 1,
3 "target ": {" target_id ": "tt", "os": "android", "ip ":"1.1.1.1" , "

↪→ target_type ":" tablet "}},
4 {" plausibility ": 5, "attack_type ": "reconnaissance", "attack_id ": 2,
5 "target ": {" target_id ": "td", "os": "linux", "ip": "1.1.1.2" , "

↪→ target_type ":" appServer "}}],
6 "attack_id ": "ap1"}

Listing 1.3: CARMAS COOLP internal logical variable binding log snippet for example
input/output
1 COP = [[portClosure(tablet(tt, "1.1.1.1" , android), 1, reconnaissance) -(

↪→ DVar1 -IVar1),
2 packetFiltering(tablet(tt, "1.1.1.1" , android), 1, reconnaissance)

↪→ -(DVar2 -IVar2)],
3 [portClosure(appServer(td, "1.1.1.2" , linux), 2, reconnaissance)-(

↪→ DVar3 -IVar3),
4 packetFiltering(appServer(td , "1.1.1.2" , linux), 2, reconnaissance

↪→)-(DVar4 -IVar4)]],
5 DVars = [DVar1 , DVar2 , DVar3 , DVar4],
6 Ms = [portClosure(tablet(tt , "1.1.1.1" , android), 1, reconnaissance),
7 packetFiltering(appServer(td , "1.1.1.2" , linux), 2, reconnaissance)

↪→],
8 DVars = [1, 0, 0, 1], U = 23,

Listing 1.4: CARMAS COOLP web service JSON output example
1 {" mitigationActions ": [
2 {" mitigation_action_type ": "portClosure", "attack_type ": "

↪→ reconnaissance", "attack_id ": 1,
3 "target ": {" target_id ": "tt", "os": "android", "ip ":"1.1.1.1" , "

↪→ target_type ":" tablet "}},
4 {" mitigation_action_type ": "packetFiltering", "attack_type ": "

↪→ reconnaissance", "attack_id ": 2,
5 "target ": {" target_id ": "td", "os": "linux", "ip": "1.1.1.2" , "

↪→ target_type ":" appServer "}}],
6 "id": "mp1"}

12 C. Correa et al.

7 Experimental Evaluation

To empirically evaluate the scalability of CARMAS, we carried out a set of execution
time measurements with synthetic input attack sets of growing size in terms of number
of attack actions and/or number of assets targeted by these attacks. Those two numbers
are not always aligned. Although we assume that each input attack action only targets
a single asset, multiple input attacks actions can nevertheless target the same asset. The
synthetic attack sets were randomly generated from the classes of the attack taxonomy
while ensuring that they satisfied all the integrity constraints of the ontology. To draw
practical usability conclusions from the measurements presented below, one must note
that in the current version of C4IIoT, CARMAS is used in a reactive manner, searching
for a mitigation action set as soon as an attack is suspected and assuming that some
of these actions will be immediately carried out by the CSIRT. Therefore, it does not
reason on a history of attack actions, but rather only considers newly arriving attack
actions. This considerably limits the current practical size of its input. However, we felt
it was interesting to assess its scalability to larger inputs, if it becomes required to take
as input the attack history in a future version of C4IIoT.

In the first experiment, we compared the time CARMAS takes to propose to the
CSIRT from one to six alternative action sets to mitigate attack action sets of growing
size. For an IDSS such as CARMAS performing heuristic search on the basis of an
uncertain input, providing a few alternatives to human experts to choose from is im-
portant. However, too many alternatives is counterproductive to support a swift choice
by the CSIRT. For single attack inputs, CARMAS took 0.06s to propose a one solution
and 0.13s to propose six alternative solutions. Its response time remains practical up to
about 10 attack inputs with 5.26s for one solution and 13.32s for six solution.

In the second experiment we compared execution time without and with the uniform-
mitigation heuristic described in Section 5. Unsurprisingly, both these times grow expo-
nentially with input size but with a different exponent. Using this heuristic reduces the
response time for input of size 1, 5, 10 and 15 from 0.06s, 0.44s, 5.26s and 51s down to
0.07s, 0.74s, 0.105s and 0.134s respectively.

Table 1: Asset-based decomposition heuristic performance
Actions/Asset Number of Assets

1 Asset 2 Assets 5 Assets 10 Assets 15 Assets
1 Action 0.001(s) 0.002(s) 0.004(s) 0.009(s) 0.117(s)
2 Actions 0.002(s) 0.004(s) 0.011(s) 0.019(s) 0.090(s)
5 Actions 0.020(s) 0.041(s) 0.112(s) 0.121(s) 0.222(s)

10 Actions 0.545(s) 1.977(s) 3.260(s) 6.692(s) 7.355(s)
15 Actions 18.746(s) 25.360(s) 181.974(s) 293.632(s) 476.140(s)

In the third experiment we compared execution time with the asset-based decompo-
sition heuristic described in Section 5 for both a growing number of target assets and a
growing number of attack actions for each target. The results are shown in Table. 1. The

Intelligent Decision Support for Cybersecurity Incident Response Teams 13

main take away from this table is that with this heuristic, CARMAS responds quickly
even for inputs much larger than expected in practice.

8 Related work

To show the originality of our proposal, we now compare it with previous work closely
related to either (a) its application, runtime cyberattack mitgation or (b) its approach,
leveraging ontological knowledge to dynamically build a COP so as to solve it effi-
ciently by a generic solver.

Concerning (a), we only found one previous work (Nespoli et al. [24]) to propose
and evaluate an approach to search a many-to-many mapping space from attack ac-
tion classes to mitigation action classes. It presents a runtime mitigation search system
based on the artificial immune system metaphor. The search is done by an iterative al-
gorithm that refines and modifies mitigation actions that fit detected attacks on a class
of a system.

All the other previous works tackle simpler search problems by only focusing on a
single mitigation class (Marsa-Maestre et al. [21]), a one-to-one mapping from attack
action classes to mitigation action classes (Sandor et al. [28]) or a one-to-many mapping
from the former to the latter (Lysenko et al. [19], Huertas-Celdran et al. [5], [20]).
While Gonzales-Granadillo et al. [12], Kanoun et al. [16], Javornik et, al. [15], Yuan et
al. [36], and Vieira et al. [33] make other original proposals, they either do not discuss
their implementation or do not evaluate it through an experiment or simulation, making
it difficult to assess their practical applicability.

Concerning (b) we also only found a single previous work (Zhu et al. [37]) similar to
our approach. Taking as input an F-Logic [18] ontology that models a database schema
evolution, their approach translates it into a Prolog and Constraint Handling Rules [9]
CLP that declaratively models, as a COP, a wrapper allowing database queries following
a new schema to be run on historical data following an old schema. The similarity with
our approach is that both their ontology and ours are specified in an OOLP language un-
der CWA, F-Logic for them and Logtalk for us. The key design difference between these
two languages is that in F-Logic, objects appear inside rules taking the place of Prolog
atomic formulas, whereas in Logtalk, it is the other way around, as rules appear inside
objects which replace Prolog modules. Another difference is that while we leverage the
seamless integration of OOLP with CLP provided by Logtalk and CLP(FD), they, in
contrast, implemented a translation from OOLP to CLP. Furthermore, they build COPs
for a completely different application than ours.

In all other previous works leveraging ontologies and COPs in concert, the respec-
tive roles of the former, the latter and the combination differed notably from our pro-
posal. Camacho et al. [4] use an ontology to represent the state of a smart home and
specify as a COP the resolution of user preferences conflicts on such states. Fowler et
al. [8] follows a similar approach for a mechanical engineering design assistant. In these
works, ontological knowledge merely instantiates parameters of a fixed structure COP
rather than dynamically generating that structure as we do. Chesani et al. [6] use an
ontology for pre-processing and validating requests, formulated as COPs, to aid in the

14 C. Correa et al.

management of food items in a smart warehouse. Torta et al. [31] encode constraints
directly into their ontology, to filter geographic information system queries.

9 Conclusion

In this paper, we made four original contributions to advance the state-of-the-art in
CSIRT-IDSS. The first is a detailed architecture pattern for such system with runtime
attack detection and mitigation capabilities. It is a refinement of the classic MAPEK
autonomic architecture in which M is a set of network traffic and host activity data
probes, A is an attack detector, P is a mitigation search engine, E is a mitigation ex-
ecutor that reuses SDN, container orchestration and certificate management tools, and
K is a cybersecurity ontology. In this architectural context, we then made three more
contributions focused on the mitigation search engine. The first is a formal definition of
its task as a COP. The second is its decomposition into a COP generator, that heavily
relies on knowledge from the ontology, pipelined into a COP solver. The third is the
proposal of COOLP as a parsimonious unifying paradigm implementing both the gen-
erator and the solver. We showed the practical efficiency of this approach through a set
of scalability experiments for runtime attack mitigation searches.

One limitation of our approach is that it formalizes mitigation search as a single
objective COP: maximizing the business impact reduction of the attack. In future work,
we intend to rethink this task as a multi-objective COP taking into account other crite-
ria to choose among mitigation actions such as their impact on the availability of the
various services deployed on the network to protect and the cost of their execution.

Another limitation is that both the attack action input set and the mitigation action
output set are unstructured. In future work, we intend to extend our cybersecurity on-
tology to include temporal and causal relations between these actions, as well as spatial
relations in terms of network topology. This will allow the CSIRT-IDSS to represent
and reason about the spatio-temporal progression of a multi-stage attack, hypothesize
the plan behind the observed anomalies and in some cases mitigate some plan actions
before they are executed. This is a major endeavor since leveraging such richer on-
tology will require both extending the attack detector with a probabilistic adversarial
plan recognition capability and extending CARMAS with a probabilistic adversarial
planning capability [3].

References

1. Baset, S., Stoffel, K.: Object-oriented modeling with ontologies around: A survey of exist-
ing approaches. International Journal of Software Engineering and Knowledge Engineering
28(11n12), 1775–1794 (2018)

2. Bilge, L., Dumitraş, T.: Before we knew it: an empirical study of zero-day attacks in the
real world. In: Proceedings of the 2012 ACM conference on Computer and communications
security. pp. 833–844 (2012)

3. Braynov, S.: Adversarial planning and plan recognition: Two sides of the same coin. In:
Secure Knowledge Management Workshop. vol. 3, pp. 67–70 (2006)

Intelligent Decision Support for Cybersecurity Incident Response Teams 15

4. Camacho, R., Carreira, P., Lynce, I., Resendes, S.: An ontology-based approach to con-
flict resolution in home and building automation systems. Expert systems with applications
41(14), 6161–6173 (2014)

5. Celdrán, A.H., Karmakar, K.K., Mármol, F.G., Varadharajan, V.: Detecting and mitigating
cyberattacks using software defined networks for integrated clinical environments. Peer-to-
Peer Networking and Applications pp. 1–16 (2021)

6. Chesani, F., Cota, G., Lamma, E., Mello, P., Riguzzi, F., et al.: A decision support system for
food recycling based on constraint logic programming and ontological reasoning. In: 33rd
Italian Conference on Computational Logic. vol. 2214, pp. 117–131. CEUR-WS. org (2018)

7. Cichonski, P., Millar, T., Grance, T., Scarfone, K., et al.: Computer security incident handling
guide. NIST Special Publication 800(61), 1–147 (2012)

8. Fowler, D.W., Sleeman, D., Wills, G., Lyon, T., Knott, D.: The designers’ workbench: Us-
ing ontologies and constraints for configuration. In: International Conference on Innovative
Techniques and Applications of Artificial Intelligence. pp. 209–221. Springer (2004)

9. Frühwirth, T.: Constraint handling rules. Cambridge University Press (2009)
10. Frühwirth, T., Abdennadher, S.: Essentials of constraint programming. Springer (2003)
11. Gaševic, D., Djuric, D., Devedžic, V.: Model driven engineering and ontology development.

Springer Science & Business Media (2009)
12. Gonzalez-Granadillo, G., Doynikova, E., Kotenko, I., Garcia-Alfaro, J.: Hypergraph-driven

mitigation of cyberattacks. Internet Technology Letters 1(3), e38 (2018)
13. Goransson, P., Black, C., Culver, T.: Software defined networks: a comprehensive approach.

Morgan Kaufmann (2016)
14. Hindy, H., Brosset, D., Bayne, E., Seeam, A.K., Tachtatzis, C., Atkinson, R., Bellekens,

X.: A taxonomy of network threats and the effect of current datasets on intrusion detection
systems. IEEE Access 8, 104650–104675 (2020)

15. Javornı́k, M., Komárková, J., Husák, M.: Decision support for mission-centric cyber defence.
In: Proceedings of the 14th International Conference on Availability, Reliability and Security.
pp. 1–8 (2019)

16. Kanoun, W., Cuppens-Boulahia, N., Cuppens, F., Araujo, J.: Automated reaction based on
risk analysis and attackers skills in intrusion detection systems. In: 2008 Third International
Conference on Risks and Security of Internet and Systems. pp. 117–124. IEEE (2008)

17. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50
(2003)

18. Kifer, M., Lausen, G.: F-logic: a higher-order language for reasoning about objects, inheri-
tance, and scheme. In: Proceedings of the 1989 ACM SIGMOD international conference on
Management of data. pp. 134–146 (1989)

19. Lysenko, S., Savenko, O., Bobrovnikova, K., Kryshchuk, A.: Self-adaptive system for the
corporate area network resilience in the presence of botnet cyberattacks. In: International
Conference on Computer Networks. pp. 385–401. Springer (2018)

20. Maati, B., Saidouni, D.E.: Ciotas protocol: Cloudiot available services protocol through au-
tonomic computing against distributed denial of services attacks. Journal of Ambient Intelli-
gence and Humanized Computing pp. 1–30 (2020)

21. Marsa-Maestre, I., Gimenez-Guzman, J.M., Orden, D., de la Hoz, E., Klein, M.: React: Re-
active resilience for critical infrastructures using graph-coloring techniques. Journal of Net-
work and Computer Applications 145, 102402 (2019)

22. MITRE: Att&ck® for industrial control systems (2021), https://collaborate.mitre.
org/attackics/index.php/Main_Page

23. Moura, P.: Logtalk-Design of an Object-Oriented Logic Programming Language. Ph.D. the-
sis, Department of Computer Science, University of Beira Interior, Portugal (2003)

24. Nespoli, P., Mármol, F.G., Vidal, J.M.: A bio-inspired reaction against cyberattacks: Ais-
powered optimal countermeasures selection. IEEE Access (2021)

16 C. Correa et al.

25. Rice, L.: Container Security: Fundamental Technology Concepts that Protect Containerized
Applications. O’Reilly Media (2020)

26. Russel, S., Norvig, P.: Artificial Intelligence; A Modern Approach. Pearson, 4th edn. (2020)
27. Sadeghi, A.R., Wachsmann, C., Waidner, M.: Security and privacy challenges in industrial

internet of things. In: 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC).
pp. 1–6. IEEE (2015)

28. Sándor, H., Genge, B., Szántó, Z., Márton, L., Haller, P.: Cyber attack detection and mitiga-
tion: Software defined survivable industrial control systems. International Journal of Critical
Infrastructure Protection 25, 152–168 (2019)

29. Serpanos, D., Wolf, M.: Industrial Internet of Things, pp. 37–54. Springer International Pub-
lishing, Cham (2018). https://doi.org/10.1007/978-3-319-69715-4 5, https://doi.org/
10.1007/978-3-319-69715-4_5

30. The Object Management Group: Unified modeling language (UML) version 2.5.1. Standard
(Dec 2017), [Online; accessed 21-April-2021]

31. Torta, G., Ardissono, L., Fea, D., La Riccia, L., Voghera, A.: A semantic approach to
constraint-based reasoning in geographical domains. In: International Joint Conference on
Knowledge Discovery, Knowledge Engineering, and Knowledge Management. pp. 202–227.
Springer (2018)

32. Triska, M.: The finite domain constraint solver of SWI-Prolog. In: FLOPS. LNCS, vol. 7294,
pp. 307–316 (2012)

33. Vieira, K.M., Schubert, F., Geronimo, G.A., de Souza Mendes, R., Westphall, C.B.: Auto-
nomic intrusion detection system in cloud computing with big data. In: Proceedings of the
International Conference on Security and Management (SAM). pp. 173–178. The Steering
Committee of The World Congress in Computer Science, Computer Engineering and Ap-
plied Computing (WorldComp) (2014)

34. Wielemaker, J., Huang, Z., Van Der Meij, L.: Swi-prolog and the web. Theory and practice
of logic programming 8(3), 363–392 (2008)

35. Wielemaker, J., Schrijvers, T., Triska, M., Lager, T.: SWI-Prolog. Theory and Practice of
Logic Programming 12(1-2), 67–96 (2012)

36. Yuan, E., Malek, S., Schmerl, B., Garlan, D., Gennari, J.: Architecture-based self-protecting
software systems. In: Proceedings of the 9th international ACM Sigsoft conference on Qual-
ity of software architectures. pp. 33–42 (2013)

37. Zhu, H., Madnick, S.E., Siegel, M.D.: Reasoning about temporal context using ontology
and abductive constraint logic programming. In: International Workshop on Principles and
Practice of Semantic Web Reasoning. pp. 90–101. Springer (2004)

