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Abstract
Aim: Reconstructing species' glacial refugial history and demographic changes over 
time has greatly relied on comparing inferences from multiple methods while not suf-
ficiently acknowledging their limitations. Here, we aim to integrate as fully as possible 
complementary methods in ecology, genomics and palaeobiology to improve the re-
construction of species biogeographical history.
Location: South- western Europe.
Taxon: Cabrera vole (Microtus cabrerae).
Methods: We compiled and mapped the raw fossil data of the Cabrera vole for the 
Last Glacial Maximum (LGM) and Mid- Holocene (MH). Alongside, we projected the 
calibrated ecological niche model (ENM) of the species' current distribution for the 
LGM, the Younger Dryas and the MH. Complementarily, we used previously obtained 
Genotyping- by- Sequencing data to evaluate the demographic history and range ex-
pansion patterns of all four Evolutionarily Significant Units of the species, in an inte-
grative framework.
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1  |  INTRODUC TION

The reconstruction of glacial refugial history and distribution 
changes of species over time contributes to our understanding of 
the dynamics of species' responses to environmental change and 
can shed light on evolutionary capacity (Svenning et al., 2011). 
Species generally respond to changes in climate with contractions 
and expansions of their distribution ranges, where contraction pe-
riods typically involve population isolation, potentially resulting in 
differentiation or extinction, while expansion periods typically in-
volve population homogenization or the formation of secondary 
contact zones (Hewitt, 2011a; Taberlet & Cheddadi, 2002). Range 
contractions and associated fragmentation processes in relation to 
the last glaciation are very well documented in temperate species 
in Europe (Hewitt, 2011b). Within refugial areas, populations can 
be further isolated in different refugia within the glacial refugium 
(Gómez & Lunt, 2007; Hewitt, 2000). While in isolation, populations 
can diverge and become locally adapted (Davis & Shaw, 2001; de 
Lafontaine et al., 2018). Therefore, the ecological niche of a spe-
cies can also change over time and vary depending on different 
selective pressures across multiple within- refugial areas (Abellán & 
Svenning, 2014; Hewitt, 1996; Marske et al., 2013). After periods 
of contraction, generally experienced by temperate species during 
glacial maxima, surviving populations usually expand out of their 
refugia, as previously occupied areas become available with the im-
proving conditions (Hewitt, 2000). The importance of local adapta-
tion for species future distribution is clearly shown in forecasting 
studies, which have found significant differences in the predicted 
ranges of adaptively differentiated populations as they are expected 
to expand into new areas (Razgour et al., 2019). Thus, whether pop-
ulations withstand the impacts of new environmental conditions will 

be a function of genetic factors (e.g. genetic drift), biological factors 
(e.g. demographic stochasticity) and ecological factors (e.g. biotic in-
teractions), which makes local extirpation a common phenomenon 
(Lasky et al., 2020).

Determining the geographical location of glacial/interglacial refu-
gia and the range changes during and after glaciations is especially im-
portant in understanding a species' ability to respond to environmental 
change and to evaluate their adaptive potential (Anadón et al., 2015; 
Razgour et al., 2019). Inferences on species' refugial history and diver-
sification have mostly been based on the existence of fossil records, 
on projecting the species' current niche to past climatic conditions, 
or on geographical tracing of genetic lineages including analysis 
of genetic diversity and demography (Gavin et al., 2014; Sommer & 
Nadachowski, 2006; Sommer & Zachos, 2009). However, no single 
method is likely to provide the complete history of the species distribu-
tion changes (e.g. Fernandez et al., 2021; Luna- Aranguré et al., 2020; 
Figure 1). More desirably, integrative approaches incorporate multiple 
lines of evidence in the same analysis to generate a result that best fits 
all input information (Fenderson et al., 2020). With multidisciplinary 
approaches integrating fossil record, ecological niche modelling and 
genetics, common patterns reflecting a closer approximation to the 
species' biogeographical history may emerge (Hoban et al., 2019).

The fossil record represents strong evidence of the species' 
presence in a given location in the past, and for that reason, it is 
frequently used to comparatively validate palaeo- distributions 
inferred from other approaches (Martínez- Meyer et al., 2004). 
However, the fossil record is constrained by several factors, such as 
(i) differential detectability due to variations in population density; 
(ii) differing propensity for fossilization, which can lead to biases in 
fossil abundance; (iii) dating accuracy or ability to identify fossil re-
mains; (iv) sampling bias favouring particular regions, and temporal 

Results: ENM- inferred refugial areas and genomic modelling consistently supported 
northern Iberian glacial refugia for the Cabrera vole. This contrasted with the higher 
fossil abundance of the species in southern and eastern Iberia and southern France 
from the LGM to the MH. Our results suggest that populations in areas with high fos-
sil abundance went extinct, and were later replaced by northern Iberian populations 
such that they did not contribute significantly to the current gene pool.
Main conclusions: Our integrative approach indicates how the range of the Cabrera 
vole fluctuated in response to environmental change during and following the LGM. 
Despite methodological limitations, the ENM and genomic approaches produced gen-
erally congruent results. Instead, the fossil record may misrepresent the ancestral dis-
tribution of this species and should be considered cautiously for ancestral distribution 
reconstruction, considering that it also reflects the fossilization conditions. Overall, 
our study supports the idea that integrative approaches are essential to provide an 
accurate and well- supported picture of historical refugial areas and range dynamics.

K E Y W O R D S
demographic inference, ecological niche modelling, fossilization, hindcasting, palaeoclimate, 
palaeo- distribution, range expansion
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2066  |    MESTRE et al.

or geographical scenarios or taxa; and (v) displacement from their 
point of origin (e.g. through water and air, which is likely important 
for plants or aquatic animals, or through predator- induced move-
ments, for prey species, such as small mammals; Allison et al., 2011; 
Gavin et al., 2014; Lobo et al., 2010; Varela et al., 2011). Differences 
in the fossilization potential can affect the perception of abundances 
(Baker & Worley, 2014; Mitchell, 2015), which can be critical for 
the interpretation of refugial locations and their assumed contri-
bution to the current populations, and also might explain possible 
discrepancies between the fossil record and other lines of evidence 
(Figure 1). Moreover, fossils can represent populations that have 
been replaced and, consequently, might not be ancestral to those 
found today (Svenning et al., 2011).

Ecological niche models (ENMs) relate the species distribu-
tion with the environmental conditions and can be used to infer 
the species past distribution range (Guisan & Zimmermann, 2000; 
Peterson, 2011) while relying on the following assumptions: (i) the 
species occurs wherever it has suitable conditions and it is absent 
from unsuitable regions (equilibrium postulate); (ii) the niche is main-
tained across space and time (niche stability); and (iii) all variables 
that significantly impact species distributions are considered in the 
models (e.g. Elith & Leathwick, 2009; Randin et al., 2006). While 
these assumptions might be acceptable for time periods up to nearly 
22,000 years ago (ka BP; Svenning et al., 2011), different populations 

of a species may adapt locally over time, or rapidly through selective 
sweeps, resulting in intraspecific niche variation as a consequence of 
the interaction between dispersal, selection and demographic asym-
metries (Messer & Petrov, 2013; Pearman et al., 2010; Peterson & 
Holt, 2003; Voje, 2020). An additional source of uncertainty when 
projecting an ENM to a different period is the quality and variety 
of the Global Climate Models (GCMs; Beaumont et al., 2008). Thus, 
integration of the ENM with other sources of information is recom-
mended to evaluate the accuracy of projections on geographical 
space (Hoban et al., 2019).

Patterns of current genetic/genomic diversity and differentia-
tion add an additional line of evidence to infer demographic change 
and locations of refugia (Bertorelle et al., 2010; Csilléry et al., 2010; 
Pfenninger & Posada, 2002). To infer species demographic history, 
methods often use coalescence- based simulations to compare user- 
defined demographic models and determine patterns and timing of 
population divergence and merging (Excoffier et al., 2021). However, 
these methods are not geographically explicit, and thus do not allow 
glacial refugial areas to be determined. In contrast, range expan-
sion analyses can unveil the genomic patterns resulting from serial 
founder events to trace back the geographical origin of population 
expansions, but are unable to infer their timing and demographic 
fluctuations (Peter & Slatkin, 2013, 2015). The reliability of the 
patterns inferred from demographic and range expansion methods 

F I G U R E  1  Examination of the relative merits and potential shortcomings of the fossil record, ecological niche modelling (ENM), and 
genetics in biogeographical interpretation. At each intersection of two lines of evidence, we describe the factors that might cause them to 
agree in their spatial predictions and how they may disagree with the predictions of the third line of evidence. The intersection of the three 
lines of evidence (*) would result in the best prediction possible
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    |  2067MESTRE et al.

rests on several assumptions: (i) populations sampled are represen-
tative of the species genetic diversity; (ii) the genetic ancestral state 
of a genotype is known, to allow inferences on the directionality of 
expansion; and (iii) locations with higher genetic diversity are stable 
over time and have not changed due to, for example, drift or se-
lection (Gavin et al., 2014; Hoban et al., 2019; Potter et al., 2016). 
Currently, there are methods that can integrate demographic sum-
mary statistics with range expansion, to consider aspects of genetic 
diversity and divergence in the identification of the origin of range 
expansion, while also accommodating inferred ENMs in a spatially 
explicit coalescent modelling framework (He et al., 2017).

Here, we evaluate the fossil record, ENMs and genomic data to 
advance our understanding of the biogeographical history of the 
near- threatened, Iberian- endemic Cabrera vole (Microtus cabrerae, 
Thomas 1906), which is considered highly vulnerable to climate 
change (Araújo et al., 2012; Mestre et al., 2015; Mestre et al., 2017). 
The Cabrera vole is the sole extant representative of the Iberomys 

subgenus, which was widely distributed across the Iberian Peninsula 
and southern France in the Middle Pleistocene (Barbosa, Paupério, 
et al., 2018; Garrido- García & Soriguer- Escofet, 2012; Pita 
et al., 2014). Being a habitat specialist, the Cabrera vole is very de-
pendent on habitat quality and is thought to respond strongly to en-
vironmental change (Pita et al., 2014; Rivas- Martinez, 2011; Santos 
et al., 2006). Since the Late Pleistocene, the distribution of the 
Cabrera vole has globally decreased (Laplana & Sevilla, 2013), and 
today the species is divided into four main Evolutionarily Significant 
Units (ESUs) within the Iberian Peninsula (Barbosa, Mestre, 
et al., 2018; Garrido- García et al., 2013; Figure 2a).

The fossil record suggests the first appearance of the Cabrera 
vole around 90 ka BP (Garrido- García & Soriguer- Escofet, 2012; 
Laplana & Sevilla, 2013; Pita et al., 2014), while previous phylogeo-
graphical studies using mitochondrial and single nuclear loci data 
estimated the time to the most recent common ancestor of ex-
tant populations to be around 22 ka BP (Barbosa et al., 2017). This 

F I G U R E  2  Summary of previous genetic studies on Cabrera vole, using the same samples analysed in this study, together with the 
described fossil distribution of the species across the Iberian Peninsula and France (these regions shown, respectively, as black and grey 
in the map of Europe included as an inset in part [c]). For parts (a) and (b), the Cabrera vole present- day distribution is represented in 
dark grey (ETRS89), while sampled populations are represented by circles of size proportional to the number of individuals analysed from 
each locality (min 1 − max 15). (a) Population structure and identification of the four evolutionarily significant units (ESUs) defined from 
clustering analyses of nuclear single nucleotide polymorphism (SNP) data generated in Barbosa, Mestre, et al. (2018) and used in this study. 
(b) Phylogenetic assignment to west or east mitochondrial lineages, with boxes limiting the population assignment to the two groups; west 
haplotypes in the east group were found to represent recent secondary contact (Barbosa et al., 2017). (c) Presence data of the Cabrera vole 
fossil record for the Mid- Holocene (MH) and Last Glacial Maximum (LGM) in the Iberian Peninsula and France (light grey area). The size of 
the symbols is proportional to the number of studies that identified Cabrera vole fossils in separate excavation events for a given deposit 
(min 1 − max 5). Shaded dark grey represents limestone/karstic areas where bones are prone to fossilization, and dashed lines represent the 
LGM coastlines (WGS84)
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2068  |    MESTRE et al.

suggests that the Cabrera vole has been contracting and expanding 
its range according to the climatic oscillations of the Quaternary 
(Garrido- García & Soriguer- Escofet, 2012; Laplana & Sevilla, 2013).

In our 2017 study, we assumed that the most recent common an-
cestor of extant Cabrera vole was an LGM refugial population located 
in the south of the Iberian Peninsula— basing this on the highest fossil 
abundance for the species in that specific geographical area. Studies 
using ancient mitochondrial DNA data have shown that the species 
range contracted again during the Younger Dryas (YD, c. 13 ka BP; 
Laplana & Sevilla, 2013; Rodríguez- Varela, 2016). Specifically, during 
the YD, the widely expanded population is thought to have con-
tracted into two sub- populations in east and west Iberia, and those 
are believed to represent the two main mitochondrial lineages that 
survived to the present (Barbosa et al., 2017; Figure 2b). The location 
of these LGM and YD refugia, however, has never been rigorously 
determined, given that it has so far been based only on the avail-
ability of the fossil record, and the genetic methods employed were 
not geographically explicit. In the present paper, we are rectifying 
that situation. By integrating an assessment of the fossil record, ENM 
and geographically explicit genomic analyses, we illustrate the im-
portance of integrative multidisciplinary approaches to detect the 
glacial refugia of species and to better understand the change in the 
distribution and niche of species through time.

2  |  MATERIAL S AND METHODS

2.1  |  Fossil record

We combined information from the fossil record of the Cabrera vole 
previously assembled by Garrido- García and Soriguer- Escofet (2012), 
and Laplana and Sevilla (2013), comprising 18 locations from the LGM, 
and 27 locations from the mid- Holocene (MH; Figure 2c).

The distribution of the species during the LGM and the MH was 
based on (i) the LGM being within the Marine Isotopic Stage 2, the last 
and most severe glacial period (29– 14.5 ka BP; Lisiecki & Raymo, 2005) 
and (ii) the MH being within the Atlantic Thermochron (7.9– 5.3 ka BP; 
Zubakov & Borzenkova, 1990) characterized archaeologically for the 
Iberian Peninsula by the presence of Neolithic cultures (Almagro- 
Gorbea, 2014). To evaluate the impact of variation in fossilization 
potential for fossil detection, we considered a map depicting regions 
favourable to fossilization as the combination of karstic areas and soil 
with high pH generated by the abundance of carbonates in the geo-
logic substrata (Baker & Worley, 2014; Schmidt et al., 2012; Figure 2c). 
Considering both the entire study area and the regions with fossiliza-
tion potential, we evaluated the presence of the fossils relative to the 
ENM suitability values using a Student's t- test.

2.2  |  Ecological niche modelling

For modelling the current distribution of the Cabrera vole, we 
used the most up to date records of species occurrence (Barbosa 

et al., 2017; Garrido- García et al., 2013; Mestre et al., 2015; Vale- 
Gonçalves & Cabral, 2014), with 467 presences, and double that 
number as pseudo- absences (five sets of pseudo- absences were gen-
erated, totalling 4670, see e.g. Barbet- Massin et al., 2012). For model 
calibration and the projections to the present, climatic variables were 
downloaded from the WorldClim website (Hijmans et al., 2005). The 
model was calibrated considering 10 × 10 km UTM square grids: the 
presences were the centroids of UTM square grids where the species 
was recorded, and the bioclimatic variables were averaged for each 
UTM square grid. To estimate the ENM, we performed a preliminary 
screening of the bioclimatic variables to guarantee that only uncor-
related and relevant variables were considered in model building, 
using a two- step process: first, logistic regression models were fitted 
relating the presence of Cabrera voles and each candidate variable, 
considering both linear and unimodal (quadratic) effects, guarantee-
ing that only significant variables (p < 0.05) were retained for the next 
step. Second, pairwise Spearman correlation coefficients (rs) were 
computed between all variables, and for each pair of highly correlated 
variables (|rs| > 0.7) the one considered to be potentially most influen-
tial for the species distribution, based on previous studies and knowl-
edge about the species ecology, was retained (Dormann et al., 2013; 
Mestre et al., 2015, 2017; Mira et al., 2008; Pita et al., 2011).

Following the recommendations of Nogués- Bravo (2009), the 
inferred past distribution of the species, hindcasted using models 
calibrated with present distribution data, was projected to several 
climatic reconstructions, resorting to a multi- algorithm approach 
(Araújo & New, 2007; for modelling options, see Table S1). This 
was fundamental to account for the uncertainty in the modelling 
approach since different climatic reconstructions and modelling 
algorithms produce different results. To evaluate the models, the 
dataset was randomly split into calibration (70%) and evaluation 
subsets (30%) in a multiple cross- validation procedure, replicating 
the data splitting procedure five times (Guisan et al., 2017). The 
relative weight of each model in the ensemble was proportional to 
its evaluation scores, as given by true skill statistics (TSS; Allouche 
et al., 2006). TSS values range from −1 to +1, where +1 indicates 
perfect agreement, while TSS values ≤0 are indicative of a perfor-
mance no better than random. Thus, only models with TSS values 
>0.5 were kept in the final ensemble model (Mestre et al., 2015). 
The contribution of each variable to the final model was evaluated 
through the variable importance metric, ranging from zero (no im-
portance) to one (highest importance; Thuiller et al., 2013).

The area used for calibration of the ENM was the same used for 
model projection, the Iberian Peninsula and France. For the LGM and 
MH, the ENM was projected to three and nine GCMs, respectively 
(Table S2), using the variables of past climate reconstructions avail-
able in the WorldClim website (Hijmans et al., 2005). For the YD, the 
ENM was projected to one GCM, downloaded from the PalaeoClim 
website (Fordham et al., 2017). The individual geographical projec-
tions of alternative GCMs in the LGM and MH were compared using 
Schoener's D (Schoener, 1968), Warren's I (Warren et al., 2008) and 
Hellinger distance (van der Vaart, 1998) statistics as computed by 
the ‘fuzzySim’ R package, version 1.7.6 (Barbosa, 2015).
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    |  2069MESTRE et al.

To conduct the GIS pre- analysis, we used the R packages ‘raster’ 
(Hijmans, 2020) and ‘maptools’ (Bivand et al., 2021). The ensemble 
modelling approach was run using the ‘biomod2’ package (Thuiller 
et al., 2013) of the R statistical software, version 3.3.1 (R Core 
Team, 2016). Details regarding the commands used can be found in 
a Figshare repository.

2.3  |  Genomic data and range expansion analysis

We used Genotyping- by- Sequencing data from 107 Cabrera voles 
from 22 populations (Figure 2a), generated in Barbosa, Mestre, 
et al. (2018). For read mapping and single nucleotide polymorphism 
(SNP) calling, we used ‘bwa’ version 0.7.17 (Li, 2013) and ‘samtools’ 
version 1.9 (Li et al., 2009), using the prairie vole (M. ochrogaster, 
GCA_000317375.1) genome as reference. The prairie vole genome 
also served as an outgroup to polarize SNP variation, that is, deter-
mine the ancestral state, which is essential for the demographic analy-
ses. We considered only biallelic positions and loci with more than 1% 
minor allele frequency to ensure that SNPs were informative for de-
mographic analyses, as well as a minimum of two reads per genotype 
per sample, no missing data, and kept only SNPs located more than 
10,000 bp apart, to minimize Linkage Disequilibrium. These filters 
were employed using VCFtools version 0.1.16 (Danecek et al., 2011).

To re- evaluate the demographic history of the Cabrera vole 
using genomic data, previously analysed in Barbosa et al. (2017) 
using mitochondrial and single nuclear gene data, we first performed 
a demographic analysis to compare models potentially representing 
the demographic history of the current populations based on the 
current genetic diversity patterns (Barbosa et al., 2017; Barbosa, 
Mestre, et al., 2018; Figure 2a,b). These models represent different 
possible demographic scenarios (SC, Figure S1) considering a neutral 
hypothesis of a single splitting event within continuous migration 
between ESUs, likely representing an expansion from a central loca-
tion in Iberia (SC1); two expansion models from the south of Iberia, 
consistent with the fossil record, with splitting events considering 
eastern and western lineages (SC2 and SC3, respectively); four ex-
pansion models from the north of Iberia, with splitting events from 
eastern (SC4 and SC5) and western lineages (SC6 and SC7), and also 
testing within each scenario for a model of isolation with migration 
leading to current incomplete lineage sorting (SC4 and SC6), vs. a 
model of population isolation with recent secondary contact (SC5 
and SC7). For models representing secondary contact, migration 
was only allowed after TSEC (Figure S1).

We evaluated different splitting events and respective timings 
for current ESUs based on the site frequency spectrum (SFS). For 
that, we used the ‘easySFS’ tool implemented in ‘dadi’ (Gutenkunst 
et al., 2009), based on the unfolded SFS, given that the ancestral state 
of each variant is known. To obtain the SFS, we used all segregating 
sites, given that our dataset had no missing data. We then used these 
SFSs in the software ‘fastsimcoal2’ (Excoffier et al., 2021) to com-
pare the seven demographic models (Figure S1), with different split-
ting patterns and admixture events, while allowing for divergence 

time estimation. For each model we ran 100 replicates, each with 
200,000 coalescent simulations to approximate the expected SFS in 
each cycle, and 50 optimization cycles to estimate the parameters. 
Parameter priors are found in Table S3. We then performed model 
comparison by calculating the Akaike information criterion (AIC) for 
the maximum estimated likelihood of the best run for each model. 
The best model was determined as the one with the lowest AIC and 
with more than 2 AIC units difference from the next best model.

To determine whether there was an expansion signal worth ex-
ploring in the genomic data, we first performed range expansion 
tests using the ‘rangeExpansion’ R package (Peter & Slatkin, 2013, 
2015) using three different datasets: all populations combined (all), 
which refers to the origin of expansion of the current populations of 
the species; then dividing the populations based on the mitochon-
drial subdivision into west (ESU1) and east (ESU2, ESU3 and ESU4) 
lineages, and finally testing each ESU separately (Figure 2), resulting 
in a total of six tests.

We then used the ‘X- ORIGIN’ pipeline (He et al., 2017) to in-
tegrate the ENMs at the four different time points (LGM, YD, MH 
and present day) with summary statistics from the genomic data 
to perform a coalescent analysis of the origin of expansion of the 
current population. Briefly, this pipeline infers refugial or source 
populations accounting for the effects of temporal and spatial en-
vironmental heterogeneity, which may impact migration routes and, 
thus, present- day location of derived populations. For this analy-
sis, the four ENMs corresponding to the four different timescales 
were statistically downscaled to 10 × 10 km per cell. Considering a 
generation time of 1 year, we defined the following temporal cor-
respondence for the Cabrera vole: LGM— 22,000 generations ago, 
YD— 13,000 generations ago; MH— 6000 generations ago; and pres-
ent— 10 generations ago. As sampling locations, we used a median 
coordinate of each of the four ESUs identified for the Cabrera vole 
(Barbosa, Mestre, et al., 2018), and simulated the origin of expan-
sion using the software SPLATCHE2 (Ray et al., 2010). Simulation 
parameters are shown in Table S4. We also determined a minimum 
and maximum potential origin in terms of latitude and longitude that 
encompassed the entire area of the Iberian Peninsula and southern 
France, including all known fossil locations for the LGM (Figure 2c). 
The empirical summary statistics used in X- ORIGIN were generated 
using ARLSUMSTAT (Excoffier & Lischer, 2010) including Tajima's 
D and Fu's FS for the entire dataset, heterozygosity (H) and num-
ber of segregating sites (S) for each ESU, genetic divergence (FST) 
and mean number of differences between pairs of populations (Pi) 
and between ESUs, and the directionality index from rangeExpan-
sion, ѱ (Peter & Slatkin, 2013). We used ABCSAMPLER (Wegmann 
et al., 2010) to explore the parameter space and iterate over the de-
mographic simulations and corresponding calculation of summary 
statistics, using 20,000 simulations for each of the replicate runs. 
We excluded simulations that did not result in the final colonization 
of the present- day populations and then combined all remaining sim-
ulations from the 100 replicate runs for the post- processing analysis. 
Details regarding the commands used in all analyses can be found in 
the Figshare repository.
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3  |  RESULTS

3.1  |  Fossil record

The fossil record highlighted a concentration of Cabrera vole fossils on 
the eastern coast of the Iberian Peninsula, both during the LGM and 
MH, and in southern France during the MH, mostly associated with 
areas of higher fossilization potential (Figure 2c). To a lesser extent, 
fossils were also found across all the Iberian Peninsula for the LGM 
period and (minimally) in central Iberia for the MH. For some of the ex-
treme northern regions of the Iberian Peninsula (Basque- Cantabrian 
mountains), there was strong support for the absence of Cabrera voles 
at both time periods, given the high fossilization potential and the 
numerous excavations performed in that area (Schmidt et al., 2012), 
which have not resulted in the identification of any M. cabrerae fossils 
(Garrido- García & Soriguer- Escofet, 2012; Laplana & Sevilla, 2013).

Fossils occurring in regions of, apparently, lower fossilization po-
tential, such as in north- western Iberia (Galicia) and central or west-
ern Iberia (Extremadura) are also located in karstic areas, which are 
not visible on the map as they are very small and coincident with the 
fossil locations (Figure 2c).

3.2  |  Ecological niche modelling

After the environmental variable pre- screening, the model retained 
bio4 (Temperature Seasonality), bio8 (Mean Temperature of Wettest 
Quarter), bio12 (Annual Precipitation) and bio18 (Precipitation of 
Warmest Quarter; Table S5). The most and least important variables 
explaining the current species distribution were bio18 and bio8, re-
spectively (Table S6).

The projections of the ENM to the MH (Figure 3c) were reasonably 
similar across the nine GCMs, although some (e.g. BCC- CSM1- 1) showed 
higher suitability to the north of the Iberian Peninsula, while others (e.g. 
MIROC- ESM) showed higher suitability in the south- western portion of 
the Peninsula (Figure S2; Table S7). Despite these differences, all mod-
els estimated that central Iberia had very low environmental suitability 
for the species during the MH. For the YD (c. 13 ka BP), the regions of 
highest suitability were restricted to two narrow strips, one in the north- 
western portion of the Iberian Peninsula and another in western France 
(Figure 3b). The projections to the LGM (c. 22 ka BP) also showed a rea-
sonable similarity across the three GCMs considered (Figure 3a). The 
north- central and various southern portions of the Iberian Peninsula 
retained suitable environmental conditions for the Cabrera vole during 
the LGM, especially for two of the three GCMs (Figure S3; Table S8).

Comparing the ENMs and the fossil record for the MH, the suit-
ability in the fossil locations was significantly higher only for one of the 
nine GCMs if we consider the entire study area as background; and 
in five out of nine, if we consider the area favourable to fossilization 
(Figure 3c; Table S8). For the YD, the lack of fossil records precluded 
the comparison between fossil location and ENM suitability. Finally, for 
the LGM, the ENM suitability values at the fossil locations were always 
higher than the background, whether considering the whole study re-
gion or only the areas favourable to fossilization (Figure 3a; Table S9).

3.3  |  Genomic data demography and range 
expansion analysis

We identified 4677 biallelic SNPs that were used for the demographic 
and range expansion analyses. For the demographic analyses, the es-
timates for the best run of each model varied greatly between models 

F I G U R E  3  Schematic representation of the habitat suitability for the Cabrera vole during the Last Glacial Maximum (a), Younger Dryas (b), 
Mid- Holocene (c) and Present (d) in the Iberian Peninsula and France; low suitability (0, light yellow) to high suitability (1000, dark orange); Last 
Glacial Maximum: ENM and genetics suggest a potential refugium in the northern Iberian Peninsula (represented by an X as per the X- ORIGIN 
results), and the fossil record (represented by black circles) suggest a southern location; Younger Dryas— ENM suggests two narrow strips of higher 
suitability (north- western Iberia and western coastal France), no information concerning the fossil record, but genetics suggests a division into two 
populations (origin of expansion represented by X for each lineage as per rangeExpansion results); Mid- Holocene— Genetics suggests an expansion 
to the south, that might have occurred through the higher suitability regions identified by the ENM, while fossil record (represented by black 
circles) suggests the species presence in the south; and Present— Current range of the species (WGS84)
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(Table S4). The best model was SC4, which was 20 AIC units lower 
than the second- best model (SC3), representing divergence of all 
ESUs through gradual isolation with migration (Figure S1; Table S4). 
Models representing secondary contact showed the highest AIC val-
ues. The estimates for time of divergence between lineages for SC4 
were ~22 ka BP for ESU1, ~13 ka BP for ESU4 and ~1900 years BP 
for ESU2 and ESU3. Effective population size was estimated as the 
largest in ESU1 (2651 voles), which is also the ESU with the largest 
geographical breadth, and for all models, migration rates were high-
est (0.002– 0.004) between ESU2 and ESU3 (Table S4).

For the range expansion analyses, we did not detect an expansion 
signal for the entire dataset (‘all’, Table S10). However, the expansion 
model was strongly supported (p < 0.0001) over natural isolation- 
by- distance considering the west (ESU1) and east (ESU2, ESU3 and 
ESU4) populations, for which we found a likely origin of both groups 
in western and north- eastern areas of the Iberian Peninsula, with an 
effective founder distance (‘d1’, representing the distance at which 
1% of the founding population is lost) of c. 11 and 22 km, respec-
tively (Figure S4a,b; Table S10). Of all ESUs analysed individually, we 
found a significant expansion signal in ESU3 alone (p < 0.01), with 
d1 = 5.1 km (Figure S4c; Table S10).

For the X- ORIGIN analysis, the summary statistics showed 
that both Tajima's D and Fu's FS across all populations were zero 
(Table S11). In terms of genetic diversity, ESU4 was the least di-
verse group across metrics (Table S12). Concerning genetic diver-
gence, ESU4 was the most divergent population (Table S13). For 
the SPLATCHE2 simulations, we obtained a combined dataset of 
236,429 replicates. Using this dataset, we estimated the origin of 
this dataset to be located at latitude 42 and longitude −6, represent-
ing a location in north- western Spain (‘X' in Figure 3a; Figure S4).

In short, we estimated the time to the most recent common an-
cestor is around 22 ka BP, consistent with a single population at the 
LGM (Figure 3a; Figures S1 and S4; Tables S3 and S10). Our demo-
graphic models and previous genetic and genomic results suggest 
that populations were restricted to at least two separate locations 
during the YD (Figure 3b; Figure S4), leading to the divergence be-
tween the two main mitochondrial lineages found today, named west 
and east (Figure 2b). These models support a divergence of ESU4 
from other east lineage populations during this time (Figure S1; 
Table S3), consistent with a signal of southwards expansion of the 
west and east lineage from western and north- eastern areas, respec-
tively (Figure S4a,b).

4  |  DISCUSSION

Our study combining information on the fossil record, ecological 
niche modelling and genomics provides a novel integrative case study 
on the biogeographical history of a near- threatened small mammal, 
endemic to the Iberian Peninsula. When looking at and comparing all 
three lines of evidence, we found that the distribution of the Cabrera 
vole has been highly dynamic in response to environmental changes 
occurring since the LGM, with colder periods resulting in vicariance 

of populations, likely due to population isolation, followed by range 
expansions during warmer periods, as expected for temperate spe-
cies, particularly in southern European refugia such as the Iberian 
Peninsula (Hewitt, 2004, 2011b).

Comparatively, the patterns observed were not always consis-
tent between fossils, the ENM and genomic data, mainly because 
the fossil record appears greatly biased towards areas with high fos-
silization potential. Overall, our results strongly support the need 
to integrate different lines of evidence to describe and understand 
the range dynamics of species in relation to past climate fluctuations 
while accounting for their strengths and limitations.

4.1  |  An integrated approach for ENM and 
genomic data

Integration of ENM and genomic data is becoming the stand-
ard for refugial inference and biogeography due to limitations 
and biases in interpretation based on any single line of evidence 
(Bemmels et al., 2019; Fenderson et al., 2020; He et al., 2017; Hoban 
et al., 2019). In our previous molecular studies, we suggested that 
the Cabrera vole contracted to a single population as late as the Last 
Glacial Maximum (LGM, c. 22 ka BP; Barbosa et al., 2017). At that 
time, we inferred the single LGM refugium to be in southern Iberia, 
based on the abundance of the fossil record (Figure 2).

The results of our demographic modelling and analyses of the 
geographical origin of expansion inferred from genomic data sug-
gest that this single population or LGM refugium was probably 
located in northern Iberia, which is also an area of known fossil 
records of this and many other small and large vertebrates during 
that time period (Kotlík et al., 2022; Martínez- Freiría et al., 2020; 
Queirós et al., 2019; Querejeta et al., 2017). Through an integra-
tive analysis of ENM and genomic data, which considers the full 
extent of the fossil record for localization, a northern LGM refu-
gium was supported. This latter interpretation accounts for hab-
itat suitability at the four different time points analysed in this 
study, and thus provides an integrated assessment of the origin 
of the post- LGM expansion considering both genetic and ecolog-
ical data over time. It seems likely therefore that fossilization bias 
could mislead inferences of the location of the LGM refugium, es-
pecially when viewed in the context of extinction events with con-
comitant changes in the ecological niche of the species (Hinojosa 
et al., 2016). Contrarily, during the Early- MH, the increased fossil 
record throughout the Iberian Peninsula is in line with an increase 
in population genetic diversity, supporting the hypothesis that 
population expansion continued throughout the Late Holocene 
(Laplana & Sevilla, 2013; Rodríguez- Varela, 2016).

4.2  |  Fossil data strengths and limitations

The fossil record of the Iberian Peninsula is fairly well docu-
mented and has been used to infer refugial history and population 
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bottlenecks using palaeodemography (Fernández- López de Pablo 
et al., 2019; Sommer & Zachos, 2009). In the present study focused 
on the Cabrera vole, there was a significant overlap between ENM 
suitability and the fossil record during the LGM, showing that the 
models identify regions with fossil presence as those with higher 
suitability, particularly when considering areas with high fossilization 
potential as background (Table S9). However, this overlap was not 
observed across the remaining time points, nor did it show concord-
ance to the inferred refugial areas from genomic data.

Regions associated with a high fossilization potential might only 
represent a perceived high abundance, biasing the identification of po-
tential refugia. Specifically, fossils located in south- eastern Iberia in re-
gions with low habitat suitability (and high fossilization potential) might 
represent populations that became locally extinct. This was further 
supported by the lack of a genomic expansion signal from those south-
ern populations. Although we argue that LGM populations from that 
region went locally extinct, the fact that it still has Cabrera vole pop-
ulations could be explained by either a temporary decrease of habitat 
suitability at the LGM, allowing expanding populations to subsequently 
colonize the vacant habitat as conditions improved; or a permanent 
change in habitat condition may have allowed the establishment of 
different, and better adapted, populations (de Lafontaine et al., 2018).

It is, however, important to note that the fossil record, as it was 
used in our analyses, is a raw source of information. Thus, it may suf-
fer from biases to a greater extent than model- derived results, such 
as the genomic and demographic analysis and ENM. Modelling of the 
potential areas of occurrence based on fossilization could in principle 
be considered by integrating fossil abundance with geological char-
acteristics, producing a probabilistic fossil distribution landscape 
considering high absence certainty in excavation areas of high fos-
silization potential where the species was not found, and vice versa. 
This landscape would then need to be corrected for (i) sampling bias, 
as larger or more accessible fossil assemblages tend to concentrate 
most sampling efforts and (ii) taxonomic bias, as some species are 
more easily identified or preserved than others (Allison et al., 2011). 
Such layers could then be integrated with the ENM modelling to in-
crease or decrease support of habitat suitability at each time point.

4.3  |  ENM strengths and limitations

In this study focused on the Cabrera vole, ENM assigned high suit-
ability to those regions where the genomic approach estimated the 
LGM refugia to be. However, the ENM also identified the regions 
with fossil presence as having higher suitability, in particular when 
compared with areas of high fossilization potential. While the fossil 
record indicates areas of known species presence in the past, cau-
tion should be taken when comparing it to ENMs developed from 
present- day populations, especially considering projections to in-
creasingly early time periods. The presence of fossils in some sites 
with low ENM suitability may reveal the past presence of popula-
tions with particular niche requirements not captured by the ENM; 
while high ENM suitability in areas with no fossils might indicate 

past occupied regions where no fossil trace of the species presence 
was preserved (Castellanos- Frías et al., 2018; Hinojosa et al., 2016; 
Hoban et al., 2019). Further integration of evidence can be achieved 
where it is possible to measure the genetic diversity of ancient DNA 
from fossils. This could allow a test of niche conservatism, by iden-
tifying which fossils represent ancestral individuals to the current 
populations, and thus are potentially representative of their niche, 
and the two lines of evidence can be integrated into a phylogenetic 
framework (Theys et al., 2019). In our system, fossils were present 
in southern France from the LGM until the MH, which suggests that 
the populations of Cabrera vole persisted in these locations until 
very recently. However, we found very little habitat suitability for 
that geographical area using ENM, suggesting that the ecological 
requirements from those populations are not comprehensively rep-
resented by the extant populations. In summary, those populations 
may represent distinct genetic lineages with slight variations in their 
ecological niche not fully captured by our models, and that recently 
went extinct. Studies of ancient DNA in Cabrera vole have shown 
continuity of mitochondrial DNA haplotypes from the Mesolithic 
until about a thousand years ago, not found in the extant Iberian 
populations, supporting the hypothesis of a replacement of the fos-
sil populations by current populations (Rodríguez- Varela, 2016). In 
fact, Castellanos- Frías et al. (2018) suggested the possibility that 
the ecological niche of the Cabrera vole has changed with the cli-
matic oscillations of the Quaternary, becoming broader during gla-
cial times. Our results did not contradict this hypothesis, since the 
fossil record— namely in the MH— documents the species presence 
in regions outside the projected ecological niche calibrated with the 
current species distribution. However, as mentioned in the introduc-
tion, other explanations are also possible (Figure 1). Taken together, 
our data suggest that the surviving populations of a given species 
might not represent the complete ancestral ecological niche breath, 
and that therefore the niche conservatism postulate should be con-
sidered on a lineage- by- lineage basis both in hindcasting and in fore-
casting (Napier et al., 2020; Razgour et al., 2019).

4.4  |  Genomic data strengths and limitations

In this study, we found that glacial refugia for the ancestors of the 
current populations were located in northern regions of the species 
current distribution. The hypothesis of a north- to- south gradual ex-
pansion in an isolation- with- migration framework does not imply 
that other areas of the species' distribution had not been colonized 
previously. In fact, given the existence of other areas of the Iberian 
Peninsula with evidence of large populations at the time, inferred from 
the high fossil density in the south- eastern coast, there were likely 
refugia- within- refugia for this temperate species in Iberia during the 
LGM. This pattern has also been detected for many other small ver-
tebrates during the same time period (García et al., 2020; Gómez & 
Lunt, 2007). The proposed north- to- south expansion simply means 
that local populations of the Cabrera vole located other than in the 
inferred origin of expansion did not contribute significantly to the 
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current gene pool. This is the greatest strength of the genetic data: to 
provide an unbiased snapshot of genetic diversity patterns (assuming 
that all major genetic units of the species have been sampled). There 
are, however, some potential limitations that need to be accounted for. 
Natural selection can change directionality of founder events by alter-
ing patterns of geographical distribution of genetic diversity (Peter & 
Slatkin, 2015). In our case, this limitation could be excluded as a po-
tential bias, given that there are very few outlier loci that could be po-
tentially under selection in our genomic dataset (as shown by Barbosa, 
Mestre, et al., 2018). Similarly, demographic changes (population ex-
pansions and contractions) can influence the patterns of genetic di-
versity through genetic drift, which would also bias the inference of 
origin of expansion to areas where larger and more diverse popula-
tions are found. In the present study system, given that smaller popu-
lations are located in the north (ESU4) and larger and more diverse 
populations in the south (ESU2 and ESU3), we would expect genetic 
drift to bias against our current predictions of a northern refugium 
(Barbosa, Mestre et al. 2018). There are also limitations associated 
with the demographic analysis itself, which, although not impacting 
the timing of splitting events, could bias our perception of how the 
patterns of genetic diversity were established. A recent study from 
Momigliano et al. (2021) showed that demographic inferences not ac-
counting for changes in effective population size (Ne) tend to favour 
secondary contact (SC) over isolation with migration (IM) models. As 
we did not infer changes in Ne over time, this could have caused a 
bias in model selection. However, in our results, we saw the opposite 
pattern, where IM models were favoured over those representing SC. 
We believe that, by allowing for changes in Ne with multiple events of 
population splitting, generally coinciding with times of Ne changes, we 
were able to avoid such bias across models.

4.5  |  Concluding remarks

By presenting the strengths and limitations of each line of evidence 
and integrating them, we have developed an alternative hypothesis on 
the glacial distribution of the Cabrera vole compared to those previ-
ously proposed (Barbosa et al., 2017; Barbosa, Mestre, et al., 2018; 
Laplana & Sevilla, 2013). Taken together, our results support the view 
that inferences based on a single line of evidence may provide an in-
complete understanding of the palaeo- distribution and refugial lo-
cations of a species and highlight the importance of considering the 
merits and limitations of each data type. Moreover, we were able to 
identify specific sources of error that need to be considered by other 
researchers using similar approaches. Overall, we show that there is 
a need for this type of integrative frameworks, explicitly accounting 
for the uncertainties linked to each source of information for a robust 
assessment of biogeographical patterns and population dynamics over 
extended time periods and large spatial scales.
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