Development of easy made low cost bindless monolithic electrodes from biomass with controlled properties to be used as electrochemical capacitors

J.M. Valente Nabais *, Jorge Ginia Teixeira, I. Almeida

Centro de Química do Ínoco & Departamento de Química, Universidade de Évora, Escola de Ciências e Tecnologia, Rua Romão Ramalho s/n, 7000-671 Évora, Portugal

ARTICLE INFO

Received 27 September 2010
Revised version received from 18 November 2010
Accepted 19 November 2010
Available online 25 November 2010

Keywords:
Activated carbon
Supercapacitor
Electrochemistry
Biomass
Chemical structure

ABSTRACT

The aim of the work now reported is the development of low cost electrodes in the monolithic shape without the need for a post-production step with potential to be used in supercapacitors. The tested materials were activated carbon fibres prepared and activated carbons made from coffee endocarp. The main functional groups identified were quinine, lactone, Si-N, phenol, hydroxyl, carboxyl and ether for activated carbon samples and amine, amide, pyrone, lactone, carboxyl and hydroxyl for activated carbon fibres samples. The nanostructure of the materials is predominantly microporous but with a significant variety of porosity development with BET surface area and pore volume given by a method ranging from 89 to 1950 m² g⁻¹ and 0.04 to 0.50 cm³ g⁻¹, respectively. The electrochemical properties of the materials were investigated using cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. The higher specific capacitance achieved was 176 F g⁻¹.