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Abstract
Most of the estimators of parameters of rare and large events, among which we dis-
tinguish the extreme value index (EVI) for maxima, one of the primary parameters
in statistical extreme value theory, are averages of statistics, based on the k upper
observations. They can thus be regarded as the logarithm of the geometric mean, i.e.
the logarithm of the power mean of order p = 0 of a certain set of statistics. Only
for heavy tails, i.e. a positive EVI, quite common in many areas of application, and
trying to improve the performance of the classical Hill EVI-estimators, instead of the
aforementioned geometric mean, we can more generally consider the power mean of
order-p (MOp) and build associated MOp EVI-estimators. The normal asymptotic
behaviour of MOp EVI-estimators has already been obtained for p < 1/(2ξ), with
consistency achieved for p < 1/ξ , where ξ denotes the EVI.We shall now consider the
non-regular case, p ≥ 1/(2ξ), a situation in which either normal or non-normal sum-
stable laws can be obtained, together with the possibility of an ‘almost degenerate’
EVI-estimation.

Keywords Extreme value theory · Heavy right tails · Generalized means ·
Semi-parametric estimation · Sum-stable laws

1 Introduction and Preliminaries

1.1 A Brief Motivation for the Need of ExtremeValue Theory (EVT)

EVT helps us to control potentially disastrous events, of high relevance to society and
with a high social impact.Domains of applicationofEVTare quite diverse.Wemention
the fields of biostatistics, finance, insurance, seismology and structural engineering,
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amongmanyothers. Statistics of univariate extremes, aswell asmultivariate and spatial
extremes, have recently faced a huge development, partially due to the fact that rare
events can have catastrophic consequences for human activities, through their impact
on both natural and constructed environments. In the eighties, there has been a shift
from the area of parametric statistics of extremes, based on probabilistic asymptotic
results in EVT, towards semi-parametric or even nonparametric approaches. Despite
of the fact that parametric modeling is becoming again quite popular, particularly in
spatial applications of EVT, we shall here consider the semi-parametric framework,
placing ourselves in the situation briefly described in Sect. 1.2.

1.2 The EV Semi-Parametric Framework

In an univariate set-up, let us assume that, after a possible adequate transformation,
Xn = (X1, . . . , Xn) can be regarded as a random sample of n independent, identically
distributed or more generally stationary weakly dependent random variables (RVs)
from a cumulative distribution function (CDF) F . Let us denote by X1:n ≤ · · · ≤
Xn:n the associated ascending order statistics. Further assume that there exist real
constants {an > 0} and {bn ∈ R}, the so-called max-attraction coefficients, such that
the maximum, linearly normalized, i.e. (Xn:n − bn) /an , converges in distribution to a
non-degenerate RV. Then, the attraction coefficients can be chosen so that the limiting
CDF is the general extreme value (GEV) CDF, with the functional form,

GEVξ (x) =
{
e−(1+ξ x)−1/ξ

, 1 + ξ x > 0, if ξ �= 0,
e−e−x

, x ∈ R, if ξ = 0,
(1.1)

where ξ is the so-called extreme value index (EVI). The EVI, ξ , is the primary
parameter of extreme and large events, and measures the heaviness of the right-
tail function, F(x) := 1 − F(x). The underlying CDF F is then said to belong to
the max-domain of attraction of GEVξ , in (1.1), and we write F ∈ DM

(
GEVξ

)
.

Despite of the fact that similar results are valid for a general tail, we shall con-
sider heavy-tailed models, i.e. Pareto-type underlying CDFs, with a positive EVI,
working thus in D+

M := DM
(
GEVξ>0

)
. Note that, in an univariate framework,

F ∈ D+
M ⇐⇒ F = 1− F ∈ R−1/ξ , whereRa denotes the set of regularly varying

functions with an exponent a, i.e. positive functions r(t) such that r(t x)/r(t) → xa ,
for all x > 0 and as t → ∞ (see [1], for details on regular variation theory). We can
further consider the reciprocal tail quantile function, U (t) := F←(1 − 1/t), t ≥ 1,
with F←(x) := inf{y : F(y) ≥ x}. Then, the first-order condition can be written as:

F ∈ D+
M ⇐⇒ lim

t→∞
F(t x)

F(t)
= x−1/ξ ⇐⇒ lim

t→∞
U (t x)

U (t)
= xξ , (1.2)

for all x > 0. The first necessary and sufficient condition in (1.2) was due to Gnedenko
([2]) and the second one to de Haan ([3]).

The second-order parameter ρ (≤ 0) measures the rate of convergence in the afore-
mentioned first-order condition, in (1.2), and it is the non-positive parameter in the
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so-called second-order condition,

lim
t→∞

lnU (t x) − lnU (t) − ξ ln x

A(t)
= ϕρ(x) :=

{ xρ−1
ρ

, if ρ < 0,
ln x, if ρ = 0,

(1.3)

x > 0, where |A| must be of regular variation with an index ρ ([4]). For technical
simplicity, we further assume that ρ < 0, writing

A(t) = ξβtρ, ξ > 0, ρ < 0, β �= 0, (1.4)

and working thus in Hall–Welsh class of models ([5]), where U (t) =
Ctξ (1 + ξβtρ/ρ + o(tρ)), as t → ∞, with C > 0.

1.3 The Class of Mean-of-Order-p EVI-Estimators

For heavy-tailed models, the classical EVI-estimators are the Hill estimators ([6]),
which are the average of the log-excesses Vik , 1 ≤ i ≤ k < n, i.e.

H(k) ≡ H(k;Xn) := 1

k

k∑
i=1

{ln Xn−i+1:n − ln Xn−k:n} =: 1
k

k∑
i=1

Vik, 1 ≤ k < n.

(1.5)

Note now that we can write

H(k) =
k∑

i=1

ln

(
Xn−i+1:n
Xn−k:n

)1/k

= ln

(
k∏

i=1

Xn−i+1:n
Xn−k:n

)1/k

=: ln
(

k∏
i=1

Uik

)1/k

.

(1.6)

The Hill estimator in (1.5) is thus the logarithm of the geometric mean (or mean-of-
order-0) of Uik = Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n, already defined in (1.6).

For the EVI-estimation, the authors in [7], and almost simultaneously the authors
in [8], and in [9], considered then as basic statistics, the power (or Hölder) mean-of-
order-p (MOp) ofUik , 1 ≤ i ≤ k, for p ≥ 0. More generally, the authors in [10], and
also in [11], considered those same statistics for any p ∈ R. Let us now think also on

Ap(k) ≡ Ap(k;Xn) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1
k

k∑
i=1

U p
ik

)1/p

, if p �= 0,(
k∏

i=1
Uik

)1/k

, if p = 0,

(1.7)

and the associated class of MOp ≡ Hp statistics,

MOp(k) ≡ Hp(k) ≡ Hp(k;Xn) :=
{(

1 − A−p
p (k)

)
/p, if p �= 0,

ln A0(k) = H(k), if p = 0,
(1.8)
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with H(k) and Ap(k), respectively, given in (1.5) and in (1.7).

1.4 Scope of the Article

In semi-parametric statistical EVT, working thus in the whole DM(GEVξ ), with
GEVξ (·) given in (1.1), we often look for consistency of statistics, like Hp(k), in
(1.8), as well as for the asymptotic normality of those same statistics in the whole max-
domainof attractionor in sub-classes of such amax-domainof attraction.Despite of the
fact that it is well-known that EVT is needed because the world is not always normal,
a simple model with quadratic exponential tails, we believe that even researchers
in EVT are quite ‘linked’ to an asymptotic normal behaviour of estimators of any
parameter of extreme events. And possibly this needs to change, due to reasons like
the one discussed in this paper. In Sect. 2, and on the basis of Monte Carlo simulation
experiments, the interesting behaviour of the Hp class of statistics when p = 1/ξ
is enhanced, motivating the need for the study of the asymptotic behaviour of those
statistics. First, in Sect. 3, a few indications on the asymptotic behaviour of sums of
Pareto RVs are given. Section 4 is devoted to the asymptotic behaviour of Hp(k),
in (1.8), for non-regular frameworks, i.e. for p > 1/(2ξ). Finally, a few overall
conclusions are drawn in Sect. 5.

2 TheMOp Statistics: A Small-Scale Simulation toMotivate the
Consideration of a Non-regular Framework

In order to have consistency of the Hill estimators in (1.5), in the wholeD+
M, we need

to work with intermediate values of k, i.e. a sequence of integers k = kn , 1 ≤ k < n,
such that

k = kn → ∞ and kn = o(n), as n → ∞. (2.1)

Under the aforementioned second-order framework, in (1.3), the asymptotic distribu-
tional representation

H(k)
d= ξ + ξ√

k
Zk + 1

1 − ρ
A(n/k)(1 + o

P
(1)) (2.2)

holds ([12]), where Zk is an asymptotically standard normal RV. More generally, we
can state the following theorem:

Theorem 2.1 ([7]). Under the validity of the first-order condition, in (1.2), and for
intermediate sequences k = kn, i.e. if (2.1) holds, the class of statisticsHp(k), in (1.8),
is consistent for the estimation of ξ provided that p < 1/ξ . If we moreover assume
the validity of the aforementioned second-order framework, in (1.3), the asymptotic
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distributional representation

Hp(k)
d= ξ + ξ(1 − pξ)Z (p)

k√
k
√
1 − 2pξ

+ 1 − pξ

1 − pξ − ρ
A(n/k)(1 + o

P
(1)) (2.3)

holds for p < 1/(2ξ), with Z (p)
k asymptotically standard normal.

Remark 2.1 As stated before, note that H0(k) ≡ H(k), and consequently, the replace-
ment in (2.3) of p by 0, and the notation Z (0)

k ≡ Zk leads to (2.2).

Then, as noticed in [13], and with RMSE denoting root mean square error, there
is an optimal value for p, given by

p∗ := argmin
(p,k)

RMSE(Hp(k)) = ϕρ/ξ,

with ϕρ := 1 − ρ/2 −
√

ρ2 − 4ρ + 2
/
2 ∈

(
0, 1 − √

2/2
]
, (2.4)

which maximizes the asymptotic efficiency of the class of estimators in (1.8) with
respect to the Hill estimator, leading to an optimal MOp class of random variables,
HpM

(k), dependent on the unknown parameters (ξ, ρ). Just as done in [11], we can also
estimate the optimal k-value for the H EVI-estimation, again in the sense of minimal
RMSE, but now in k, i.e. k0|H0 := argmin

k
RMSE(H0(k)), as given in [14], computing

k̂0|H0 = (
(1 − ρ̂)n−ρ̂/

(
β̂

√−2ρ̂
))2/(1−2ρ̂) and next computing HA := H(k̂0|H0).

With ϕρ given in (2.4) and p∗ ≡ p̂M = ϕρ̂/ HA, we can further consider the optimal
MOp EVI-estimators, H∗(k) := Hp∗(k).

Remark 2.2 We have so far advised the use of the ρ-estimators in [15] and the β-
estimators in [16], but more recent classes of (β, ρ)-estimators have been developed,
with the aim of bias reduction (see [11], for some references). Moreover, overviews
on reduced-bias estimation can be found in [17], Chapter 6.6 of [18], in [19] and in
[20].

2.1 Additional EVI-Estimators Related to theMOp Estimators

At optimal levels, in the sense of minimal RMSE as a function of p whenever (2.3)
holds, the optimal MOp class of EVI-estimators, above denoted by H∗(k), being a
generalization of H(k), obviously outperforms the optimal H EVI-estimator, again in
the sense of minimal RMSE but as a function of k, in the whole (ξ, ρ)-plane. And
as shown in [21], while the promising class of Pareto probability weighted moments
(PPWM≡P), studied in [22] and [23], beats H(k), at optimal levels, in a wide region
of the (ξ, ρ)–plane, it is beaten by H∗(k), also at optimal levels, in an even much wider
class of models.

Moreover, whenever working in Hall–Welsh class of models, i.e. under the validity
of (1.4), the aforementioned representation in (2.3) immediately suggested the con-
sideration of associated reduced-bias MOp (RBMOp) EVI-estimators, denoted by
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Table 1 Simulated mean values, at optimal levels, of the aforementioned statistics, for a few values of
p = �/(10ξ), � = 0, 2, 4, 5, 10, 11, 12, and for a GEV0.25 underlying parent

n 100 200 500 1000 2000 5000

H ≡ H0 0.427 0.391 0.365 0.348 0.335 0.321

H0.8 0.384 0.350 0.338 0.330 0.321 0.312

H∗ 0.340 0.335 0.330 0.323 0.317 0.308

H1.6 0.336 0.309 0.303 0.301 0.300 0.294

P ≡ PPWM 0.344 0.331 0.323 0.318 0.313 0.305

H 0.382 0.372 0.353 0.342 0.330 0.317

H
∗

0.354 0.345 0.335 0.327 0.319 0.310

H2(p = 1/(2ξ)) 0.312 0.295 0.293 0.289 0.288 0.284

H4(p = 1/ξ) 0.250 0.250 0.250 0.250 0.250 0.250

H4.4 0.227 0.227 0.227 0.227 0.227 0.227

H4.8 0.208 0.208 0.208 0.208 0.208 0.208

Hp(k), and associated optimal RBMOp (ORBMOp∗ ), now denoted by H
∗
(k) (see

[24], [25] and [11] for details on these estimators). Note that H0(k) is the simplest
class ofminimum variance reduced-bias (MVRB) EVI-estimators in [26]. These esti-
mators will not be discussed here, but will be taken into account in the simulation
study presented in the following. For the most common heavy tailed models, among
which the GEVξ model, in (1.1), we have run multi-sample Monte Carlo simulation
experiments (of size 5000×20, i.e. 20 independent replicates with 5000 runs each for
n = {100, 200, 500, 1000, 2000, 5000}, the most common size in the aforementioned
articles), including values of p ≥ 1/(2ξ). For details on multi-sample Monte Carlo
simulation, we refer [27] andmore recently, [28], among others. Note that in this paper,
and since we only present simulated mean values, it would be equivalent to perform a
single-sampleMonte Carlo simulation with a size equal to 100000 (= 5000×20). We
have been led to a quite astonishing but interesting result, which had indeed already
been mentioned in [7], where there appears the conjecture that the choice p = 1/ξ
could be an adequate one. The simulated mean values at optimal levels, of the afore-
mentioned EVI-estimators, for a few values of p, and for a GEV0.25 underlying parent,
are presented in Table 1.

As can be seen, p = 1/ξ = 4 provides the best and very interesting results,
written in bold in Table 1, for all sample sizes n. But if we choose p > 1/ξ , we are
led to a simulated mean value quite close to 1/p < ξ . For instance, for p = 4.4,
1/p = 0.2(27) and for p = 4.8, 1/p = 0.208(3). An answer to the question,
‘What’s happening when 1/(2ξ) ≤ p ≤ 1/ξ?’, and even to ‘What’s happening when
p > 1/ξ?’, are thus needed and provided later on, in Sect. 4. Further note that this
happens also for other simulated models and for different values of ξ , as can be seen
in Tables 2 and 3, respectively, associated with a Student-t2 (ξ = 1/2 = 0.5) and a
generalized Pareto GP1 model (ξ = 1), where we present the simulated mean values
at optimal levels of Hp only, for several values of p. For each sample size, the smallest
absolute bias is written in bold in Tables 1, 2, 3
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Table 2 Simulated mean values, at optimal levels, of the Hp statistics, again for p = �/(10ξ), � =
0, 2, 4, 5, 10, 11, 12, and for a Student tν underlying parent, with ν = 2 (ξ = 1/2)

n 100 200 500 1000 2000 5000

H ≡ H0 0.602 0.577 0.556 0.544 0.536 0.526

H0.4 0.580 0.566 0.550 0.540 0.532 0.523

H0.8 0.555 0.549 0.539 0.533 0.526 0.518

H1 (p = 1/(2ξ)) 0.543 0.539 0.533 0.528 0.522 0.515

H2 (p = 1/ξ) 0.474 0.488 0.496 0.498 0.499 0.500

H2.2 0.438 0.448 0.453 0.454 0.454 0.454

H2.4 0.406 0.413 0.416 0.416 0.417 0.417

Table 3 Simulated mean values, at optimal levels, of the Hp statistics, also for p = �/(10ξ), � =
0, 2, 4, 5, 10, 11, 12, and for a GP1 underlying parent (ξ = 1)

n 100 200 500 1000 2000 5000

H ≡ H0 1.138 1.110 1.079 1.064 1.050 1.037

H0.2 1.118 1.097 1.073 1.060 1.047 1.035

H0.4 1.092 1.080 1.065 1.054 1.046 1.035

H0.5(p = 1((2ξ)) 1.075 1.065 1.057 1.048 1.042 1.034

H1(p = 1/ξ) 0.998 0.999 1.000 1.000 1.000 1.000

H1.1 0.908 0.909 0.909 0.909 0.909 0.909

H1.2 0.833 0.833 0.833 0.833 0.833 0.833

More extensive simulation results can be found in [33, 45]. Using the computer as a
laboratory in Statistics, we are then led to conjecture that even fo p = 1/ξ , Hp(k) can
provide a consistent estimation of ξ , and that we have convergence towards 1/p �= ξ ,
when p > 1/ξ , and for adequate values of k.

2.2 Competitive PORT EVI-Estimators and theMOp Statistics

All the aforementioned EVI-estimators, generally denoted by T(k), are NOT location-
invariant, as often desired, contrarily to what we call the PORT-T EVI-estimators,
similar in spirit to the PORT-H EVI-estimators, introduced in [29] and further studied
in [30], with PORT standing for peaks over random threshold. PORT-PEVI-estimation
has been considered in [31]. PORT-MOp EVI-estimators were introduced and studied
in [21] and have already exhibited a very competitive behaviour both asymptotically
and for finite samples. The class of PORT-RBMOp EVI-estimators was studied in
[32], for p = 0 (PORT-H), and later for a general p ([44]; [34]). All classes of PORT
EVI-estimators are based on a sample of excesses over a random threshold Xnq :n ,
nq := �nq� + 1, 0 ≤ q < 1, where �x� denotes the integer part of x , depending thus
on an extra tuning parameter q. We can have q = 0, only if the underlying CDF has
a finite left endpoint xF := inf{x : F(x) > 0} (the random threshold can then be
the minimum), and 0 < q < 1, for CDFs with finite or infinite left endpoint xF (the
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Fig. 1 Mean values (left) and RMSEs (right) of the EVI-estimators under consideration for a GEV0.25
underlying parent and a sample size n = 1000

random threshold is any empirical quantile). Notice that a tuning parameter q = 0,
i.e. the consideration of excesses over the minimum of the sample, is appealing but
should be used carefully. Indeed, if the underlying parent has not a finite left endpoint,
we are led to non-consistent estimators, with sample paths that may be erroneously
flat around a value quite far away from the real target. Further details can be found in
[29] and [30], among others.

For 0 ≤ q < 1 and k < n − nq , the PORT-T classes of EVI-estimators have the
same functional form of the T EVI-estimators, but with Xn = (X1, . . . , Xn) replaced
by the sample of excesses,

X(q)
n := (

Xn:n − Xnq :n, . . . , Xnq+1:n − Xnq :n
)
,

with a size n(q) = n − nq . For any of the aforementioned EVI-estimators, generally
denoted by T(k) ≡ T(k;Xn), possibly dependent on p, we have the PORT-T EVI-
estimator,

T(q)(k) ≡ T
(
k;X(q)

n
)
.

These estimators are now invariant for both changes of scale and location in the data
and depend on this tuning parameter q , that again provides a highly flexible class of
EVI-estimators.

Associated now with the first bulk of 5000 runs, and as an illustration of the sim-
ulation experiment, we present in Fig. 1 the simulated mean values (E) and RMSEs
of some of the aforementioned EVI-estimators, as a function of k, for a sample size
n = 1000, and for a GEV underlying parent, with an EVI ξ = 0.25. We put altogether
in the simulation experiment H (p = 0, in (1.8)), H∗, P, H, H∗

, the PORT-P (P|0),
the PORT-H (H|0) and the PORT- H

∗
(H

∗|0), associated with q = 0, and Hp for
p = �/(10ξ), � = 8 (p = 3.2) and � = 10 (p = 4).
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Generally, for all k and not only for this model, but for all other simulated models,
there is a clear reduction in RMSE, as well as in bias, for the ORBMOp∗

(
H

∗)
EVI-

estimators comparatively to the MVRB EVI-estimators
(
H ≡ H0

)
, with the obtention

of estimates closer to the target value ξ , and more reliable. The difference between
the PORT-P

(
P|0), the PORT-MVRB

(
H|0) and the PORT-ORBMOp∗

(
H

∗|0) is not
so clear, but still exists, being obviously in favour of the PORT-ORBMOp∗ . The
improvement is often even stronger than in the illustration above, it is valid for the
estimation of other parameters of extreme events, and the patterns of the estimates are
always of the same type, in the sense that, for all k, the MVRB clearly beat the H, the
ORBMOp∗ clearly beat the MVRB, the PORT-MVRB strongly beat the MVRB when
the sample has a negative left endpoint, like happens here, and the PORT-ORBMOp∗
moderately beat the PORT-MVRB EVI-estimators. We were thus totally in favor of a
PORT-ORBMOp∗–estimation, prior to the consideration of Hp for values of p close to
1/ξ , and not above 1/ξ . In the following section, we shall thus look at the asymptotic
behaviour of sums of the adequate powers of Pareto RVs and sum-stable laws.

3 Additive Stable Laws

Given the sequence {Xn}n≥1, if for each k ∈ N, up to an affine linear transformation,
the limit is standard additive stable, there exist normalizing constants Ak > 0, Bk ∈ R

and a non-degenerate RV, denoted by Sα,β , such that

k∑
i=1

Xi − Bk

Ak

d−→ Sα,β, (3.1)

where Sα,β is necessarily a standard additive stable (or sum stable) law. Among other
books, see [35], [36], [37] and [38], for details on sum-stable laws. The parameter
α ∈ (0, 2] is the so-called characteristic exponent, related to the tail weight of the CDF,
and strongly linked to the EVI ξ , in (1.1) and the parameter β ∈ [−1, 1] characterizes
the degree of skewness, i.e. if β > 0, the distribution is right skewed and if β < 0,
the distribution is left skewed. The unique sum-stable models with known and explicit
CDFs are the Lévy model (α = 1/2, β = 1), the Cauchy model (α = 1, β = 0) and
the Normal model (α = 2, β = 0). The stable distributions with α < 1 and β = 1
have support on the positive x-axis, whereas the stable distributions with α ≥ 1 and
β = 1 have support over the whole x-axis.

Regarding the common CDF F , the generalized central limit theorem ([37]; [38])
states that, as k → ∞, (3.1) holds if and only if

1 − F(x) + F(−x) ∈ R−α and
F(−x)

1 − F(x) + F(−x)
−→

x→+∞
1 − β

2
. (3.2)

In the lines of [39], we can write the normalization and shift coefficients in (3.1),
where μ(x) = ∫ x

−x y
2dF(y), as
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α Ak Bk

0 < α < 1 inf
{
x : kμ(x)

x2
≤ 1

}
−

α = 1 inf
{
x : kμ(x)

x2
≤ 1

}
k2E[sin(X/Ak)]

1 < α < 2 inf
{
x : kμ(x)

x2
≤ 1

}
kE[X ]

Remark 3.1 If S ≡ Sα,β is a standard additive stable law, then with σ > 0 being a
scale parameter and μ ∈ R a location (shift) parameter, σ S + μ is a Sα,β,σ,μ stable
law.

3.1 Sum-Stable Behaviour of Pareto CDFs

Let us now consider a unit Pareto RV, Y , with CDF F1(y) = 1 − 1/y, y ≥ 1, and
for ξ > 0, let us consider Y ξ , an RV with CDF Fξ (y) = 1 − y−1/ξ , y ≥ 1, and a
right-tail function

Fξ (y) := 1 − Fξ (y) = y−1/ξ , y ≥ 1.

Recall that, E(Y ξ ) = 1/(1 − ξ), for ξ < 1, and since VaR(Y ξ ) = ξ2/((1 − ξ)2(1 −
2ξ)) < ∞ only if ξ < 1/2, the CLT applies under such a condition, and

(1 − ξ)
√
k(1 − 2ξ)

ξ

(
1

k

k∑
i=1

Y ξ
i − 1

1 − ξ

)
d−→ N (0, 1).

The case ξ = 1/2, where E(Y ξ ) = 1/(1− ξ) = 2, is also of particular interest due to
the fact that the variance is infinite but

Eτ (Y
2ξ ) := E(Y 2ξ |Y 2ξ < τ) = ln τ ∈ R0,

and we are in the non-standard additive domain of attraction of the normal CDF, i.e.
α = 1/ξ = 2, and

1√
ln k/k

(
1

k

k∑
i=1

Y ξ
i − 1

1 − ξ

)
d−→ S2,0 ≡ N (0, 1). (3.3)

For values of ξ > 1/2, we can apply the generalized central limit theorem, and
from (3.2), we have β = 1 and Fξ ∈ R−1/ξ . Consequently, Y ξ belongs to the additive
domain of attraction of a stable law with β = 1 and a characteristic exponent given
by α(ξ) = min{2, 1/ξ}, i.e. the properly normalized sum

∑k
i=1 Y

ξ
i of a large number

k of independent, identically distributed Pareto(1/ξ) RVs can be approximated by a
stable RV Smin{2,1/ξ}, and we use the notation Sα = Sα,1,

∑k
i=1 Y

ξ
i − Bk

Ak

d−→
k→∞ Sα, α = min(2, 1/ξ).
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Following [40] and [39], the normalization coefficients Ak := kξCξ are such that

Cξ =
⎧⎨
⎩

(�(1 − 1/ξ) cos(π/(2ξ)))ξ , if ξ > 1,
π/2, if ξ = 1,
(ξ �(2 − 1/ξ) |cos(π/(2ξ))| /(1 − ξ))ξ , if 1/2 < ξ < 1,

and the shift coefficients

Bk =
⎧⎨
⎩
0, if ξ > 1,
πk2
2

∫ ∞
1 sin

( 2x
πk

)
dF(x), if ξ = 1,

k/(1 − ξ), if 1/2 < ξ < 1,

where �(·) is the gamma function. The integral for ξ = 1 can be expanded as ([41],
Eqs. 3.761.3, 8.230.2)

Bk = k ln k + k

(
πk

2
sin

(
2

πk

)
− γ − ln

2

π
−

∫ 2/(πk)

0

cos t − 1

t
dt

)
, (3.4)

where, with �′(·) the derivative of the gamma function, γ = −�′(1) ≈ 0.5772 . . .

is usually known as the Euler’s constant. We can further write the asymptotic equiva-
lence,

Bk � k ln k + k(1 − γ − ln(2/π)) = k(ln k + 1 − γ − ln(2/π)) =: B ′
k, (3.5)

in the sense that (Bk − B ′
k)/Ak → 0, as k → ∞, i.e. (Ak, Bk) and (Ak, B ′

k) are

equivalent attraction coefficients for
∑k

i=1 Y
ξ
i .

Remark 3.2 Note that when 1/2 < ξ < 1, cos(π/(2ξ)) < 0 and thus, the need to
use |cos(π/(2ξ))|. The coefficient Cξ for 1/2 < ξ < 1, (ξ�(2 − 1/ξ) |cos(π/(2ξ))|
/(1 − ξ))ξ can be rewritten as (�(1 − 1/ξ) |cos(π/(2ξ))|)ξ .

Consequently, and asymptotically,

1

k

k∑
i=1

Y ξ
i

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
1−ξ

+ ξ
1−ξ

√
1

k(1−2ξ)
S2,0(1 + o

P
(1)), if ξ < 1/2,

1
1−ξ

+
√

ln k
k S2,0(1 + o

P
(1)), if ξ = 1/2,

1
1−ξ

+ kξ−1 {ξ�(2 − 1/ξ)| cos(π/(2ξ))|/(1 − ξ)}ξ S1/ξ (1 + o
P
(1)), if 1/2 < ξ < 1,

ln k + 1 − γ − ln(2/π) + π
2 S1(1 + o

P
(1)), if ξ = 1,

kξ−1 {�(1 − 1/ξ) cos(π/(2ξ))}ξ S1/ξ (1 + o
P
(1)), if ξ > 1.

(3.6)
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4 Asymptotic Behaviour of the Class of MOp EVI-Estimators Under
Non-regular Frameworks

We now state a generalization of Theorem 2.1 to non-regular cases.

Theorem 4.1 Under the validity of the first-order condition, and for intermediate
sequences k = kn, the class of functionals Hp(k) is consistent for the estimation
of ξ , provided that p ≤ 1/ξ and converges to 1/p (< ξ) if p > 1/ξ . In the region
of values of p that guarantee consistency and out of the scope of Theorem 2.1, i.e.
1/(2ξ) ≤ p ≤ 1/ξ , if we assume the validity of the second-order framework, and with
Sα an asymptotically sum-stable standard law with a characteristic exponent, α, the
following asymptotic distributional representations hold.

(i) If 1/(2ξ) < p < 1/ξ , with α = 1/(pξ), and σ ∗
p(ξ) = (1 − pξ)2Cp(ξ)/p, with

Cp(ξ) = [pξ�(2 − 1/(pξ))| cos(π/(2pξ))|/(1 − pξ)]pξ , we get

Hp(k)
d= ξ + σ ∗

p(ξ) Sα

k1−pξ
+ 1 − pξ

1 − pξ − ρ
A(n/k) + o

P
(A(n/k)), (4.1)

withHp(k) in (4.1) having the same bias termas in (2.3), but a rate of convergence
of the order of k1−pξ , 0 < 1 − pξ < 1/2, towards a sum-stable RV, with
1 < α = 1/(pξ) < 2.

(ii) If p = 1/(2ξ),

Hp(k)
d= ξ + S2,0

4p
√
k/ ln k

+ A(n/k)

1 − 2ρ
+ o

P
(A(n/k)), (4.2)

with Hp(k) in (4.2) having again the same bias term as in (2.3), but a rate
of convergence of the order of

√
k/ ln k, and towards a sum-stable RV, with

α = 1/(pξ) = 2.
(iii) If p = 1/ξ , with w = 1 − γ − ln(2/π), and on the basis of (3.5),

Hp(k)
d= ξ

(
1 − 1

ln k
+

(
w + π/2 S1

ln2 k
− pA(n/k)

ρ ln k

)
(1 + o

P
(1))

)
. (4.3)

Proof Since Xi
d= Yi , with Y1, . . . ,Yn independent, identically distributed unit Pareto

RVs (i.e. with CDF G(y) = 1 − 1/y, y > 1), the associated order statistics are

such that Yn−i+1:n/Yn−k:n
d= Yk−i+1:k , 1 ≤ i ≤ k. Moreover, kYn−k:n/n

p−→
n→∞ 1, i.e.

Yn−k:n
p∼ n/k. With k → ∞ and k/n → 0, as n → ∞, we have from equation (1.2),

Uik := Xn−i+1:n
Xn−k:n

d= U (Yn−i+1:n)
U (Yn−k:n)

= U (Yn−k:nYk−i+1:k)
U (Yn−k:n)

d= Yk−i+1:k(1 + o
P
(1)).

Just as mentioned in [11], the term o
P
(1) above is uniform in i , 1 ≤ i ≤ k. This

comes from the results in [42] (see Theorem B.2.18 in [43]), jointly with the fact that
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for uniform order statistics Ui :n, 1 ≤ i ≤ n, we have that 1/Ui :n can be uniformly
bounded in probability by C[i/(n+ 1)]−1 (for some constant C). With Ap(k) defined
in (1.7), we can write

p ln Ap(k) = p ln

(
1

k

k∑
i=1

(
Xn−i+1:n
Xn−k:n

)p
)1/p

d= ln

(
1

k

k∑
i=1

(
U (Yn−i+1:n)
U (Yn−k:n)

)p
)

.

Consequently,

p ln Ap(k)
d= ln

(
1

k

k∑
i=1

Y pξ
i (1 + o

P
(1))

)
.

Let’s go back to the functional in (1.8):

Hp(k) = 1 − exp
(−p ln Ap(k))

)
p

d= 1

p

⎛
⎝1 −

(
1

k

k∑
i=1

Y ξ p
i (1 + o

P
(1))

)−1⎞⎠ .

(4.4)

If p < 1/ξ , and on the basis of (3.6) and (4.4), Hp(k), in (1.8), converges weakly to
ξ , as n → ∞. For p = 1/ξ , we can write (4.4) as

Hp(k)
d= ξ

⎛
⎝1 −

(
1

k

k∑
i=1

Yi (1 + o
P
(1))

)−1⎞⎠ .

Then, on the basis of (3.6), Hp(k) = ξ(1+O
P
(1/ ln k)) is consistent for the estimation

of ξ even if p = 1/ξ .
But if p > 1/ξ , we see from (3.6) that

∑k
i=1 Y

pξ
i /k = O

P
(k pξ−1) → ∞, as

k → ∞. Then, from (4.4), Hp(k) converges to 1/p < ξ , i.e. Hp(k) is no longer
consistent for the estimation of ξ .

Working under the second-order framework in (1.3), we can write, for all x > 0,
with t → ∞, U (t x)/U (t) = xξ (1 + A(t)(xρ − 1)/ρ)(1 + o(1)), and (4.4) can be
written as

Hp(k)= 1

p

(
1−

(1
k

k∑
i=1

Y pξ
i + pA(n/k)

1

k

k∑
i=1

Y pξ
i (Y ρ

i − 1)/ρ+o
P
(A(n/k))

)−1
)

.

For p < 1/ξ , and for any a < 0,

E
(
Y pξ (Ya − 1)/a

) = 1

a

(
1

1 − pξ − a
− 1

1 − pξ

)
= 1

(1 − pξ)(1 − pξ − a)
.

Let us now consider separately the three regions in the statement of the theorem:
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1. If 1/2 < pξ < 1, from (3.6), with Cp(ξ) =
[pξ�(2 − 1/(pξ))| cos(π/(2pξ))|/(1 − pξ)]pξ and α = 1/(pξ), we can write

pHp(k)

= 1 − (1 − pξ)/

(
1 + (1 − pξ)Cp(ξ)Sα

k1−pξ
+ pA(n/k)

1 − pξ − ρ
+ o

P
(A(n/k))

)

= pξ + (1 − pξ)2Cp(ξ)Sα

k1−pξ
+ p(1 − pξ)A(n/k)

1 − pξ − ρ
+ o

P
(A(n/k)),

and (4.1) follows.
2. If pξ = 1/2, from (3.3) and (3.6), we can write

pHp(k) = pξ + (1 − pξ)2S2√
k/ ln k

+ p(1 − pξ)A(n/k)

1 − pξ − ρ
+ o

P
(A(n/k)),

and (4.2) follows.
3. If pξ = 1, E(Y 1+ρ/ρ) = −1/ρ2, ρ < 0, and

Hp(k) = ξ

(
1 − 1/

(
1

k

k∑
i=1

Yi − pA(n/k)
1

k

k∑
i=1

Yi
ρ

+pA(n/k)
1

k

k∑
i=1

Y ρ+1
i

ρ
+ o

P
(A(n/k))

))
.

From (3.6), with w = 1 − γ − ln(2/π), we have

Hp(k)

d= ξ

(
1 − 1/

((
1 − pA(n/k)/ρ

)
(ln k + w + π/2 S1)

−pA(n/k)/ρ2 + o
P
(A(n/k))

))

d= ξ

⎛
⎝1− 1

ln k

⎛
⎝ 1(

1 − pA(n/k)
ρ

) (
1 + w+π/2 S1

ln k

)
− pA(n/k)

ρ2 ln k
+ o

P

(
A(n/k)
ln k

)
⎞
⎠

⎞
⎠ ,

and (4.3) follows.

��
Remark 4.1 Note that, contrarily to the random behaviour, either normal or non-
normal, ofHp(k)−ξ , as k → ∞, when p < 1/ξ (see items (i) and (ii) of Theorem4.1),
for p = 1/ξ , item (iii) of the same theorem enables us to conclude that, despite of at
the slow rate of 1/ ln k, Hp(k) − ξ converges in a degenerate way to zero, as k → ∞,
a point that is obviously in favour of what has been detected by simulation in Sect. 2.
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5 Overall Comments

It has been clear for a long time that the H EVI-estimators lead often to a high over-
estimation of the EVI, even at optimal levels, in the sense of minimal MSE. The use of
the extra tuning parameter p ∈ R and the MOp methodology can thus provide a much
more adequateEVI-estimation,with the PORTMOp , and a fortiori the PORT-RBMOp

EVI-estimation, providing even better results. But for a consistent EVI-estimation we
can now go up to p = 1/ξ , getting then a sum-stable behaviour, with an index of sum-
stability α = 1/(pξ). Under non-regular frameworks, an improvement similar to the
one obtained for GEV0.25, Student t4 andGP1 underlyingmodels happens for the great
majority of simulated models, with no need to go further to a PORT-RBMOp EVI-
estimation being theMOp EVI-estimation highly reliable, provided thatwe adequately
choose the tuning parameter p. Several algorithms have been conceived for an ‘almost
degenerate’ EVI-estimation. The obvious challenge is not to go beyond p = 1/ξ , and
the devised algorithms are often able to perform such a goal, being their comparative
performance still under study, and out of the scope of this article. Notice that a double-
bootstrap algorithm, of the type of the one in [7], can be used, with some minor
modifications. However, such an algorithm relies too much of the finite variance of
the normal asymptotic RV associated with the asymptotic behaviour of Hp(k), needs
to be slightly modified, being still under study. But very simple heuristic algorithms,
like the one associated with argmin

(p,k)
(Hp(k) − 1/p)2, seem to work adequately in a

great variety of situations. For an adaptive choice of the tuning parameters p and k,
essentially on the basis of sample path stability, see [33].

Acknowledgements Research partially supported by FCT—Fundação para a Ciência e a Tecnologia,
projects UIDB/MAT/00006/2020 (CEA/UL) and UIDB/04674/2020 (CIMA).
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