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Abstract

A methodology was developed and validated to quantify the uncertainty for advanced progres-

sive damage models for composites. It relies on a pragmatic approach entailing the definition

of efficient emulators, the use of state-of-the-art computational models, and the employment

of bootstrapping statistic techniques. The proposed methodology was calibrated on numerical

results obtained running a limited amount of virtual experiments (five for each configuration)

of unnotched and open-hole specimens in tension and compression. The structural strength

was taken as the quantity of interest, and a methodology was proposed and validated to

determine its distribution and associated statistics.

Keywords: Statistical properties/methods, Analytical modelling, Computational modelling,

Strength

1. Introduction

Advanced Finite Element Analysis (FEA) tools for composite materials (based on Cohesive

Elements [1–7], Continuum Damage Mechanics [8–11], Discrete Damage Modeling [12, 13],

Smeared Crack Model [14, 15], among others) permit the modelling of inter- and intra-laminar

damage and thus allow the behaviour of complex material systems to be simulated at micro-

[16, 17], meso- [18], and macro-scales [19]. These computational models are state-of-the-art,

the result of years of research and collaboration between the aerospace industry and academia,

and represent the most powerful tools that engineers have available.
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Physical experiments are necessary for characterisation, validation, and certification pur-

poses. Apart from the elastic properties, the use of the aforementioned computational models

require the definition of the softening laws or, in other words, the experimental determination

of the strength and fracture toughness (or resistance curve) associated with each failure mech-

anism. While determining the strength is a common (often standardised) practice, measuring

the fracture toughness is more complex since standardised test methods exist for interlaminar

fracture toughness (i.e. delamination) but not for intralaminar. Hence, the need to propose

test methods for intralaminar fracture toughness adapting test methods available for metals

([20], among others) or extending the size effect method [21–23] to composite laminates. Recent

developments in characterisation experiments have been focusing on defining methodologies

to measure the intralaminar fracture toughness at extreme loading scenarios [24–27] and on

quantifying uncertainty for different loading conditions [28]. Recent advances in experimental

mechanics, especially in full-field optical techniques [29, 30], have created conditions for the

establishment of new experimental protocols, which, when used with current standardised pro-

cedures, allow the collection and analysis of a significantly larger set of valuable experimental

data and allow the reduction of the uncertainty of the experimental measurement.

If the numerical input parameters (material properties, geometry, and boundary condi-

tions) are considered deterministic values, as normally done, the output of the computational

model will be deterministic. Comparing this deterministic numerical prediction with the result

of a validation experiment says little about the agreement between the two, and does not allow

for a proper assessment of the performance of the computational model. In turn, this detracts

engineers from using it confidently, either for calibration purposes, to explore the design space,

or to optimise the system under consideration. Model evaluation can only be done correctly

if its input parameters are considered stochastic values and if an Uncertainty Quantification

and Management (UQ&M) analysis is performed.

A proper UQ&M framework should include the following tasks [31]:

• The quantification of the sources of uncertainty, which will provide an appropriate prob-

abilistic description for the input parameters, and whose result will consist of a random

vector of input parameters that will be fed into the computational model;

• The propagation of uncertainty, which will allow the determination of the Quantity of In-

terest (QoI) in a statistical manner (e.g. moments of the output distribution, probability
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of failure, response probability distribution function);

• A sensitivity analysis (or Bayesian inversion) which will allow the knowledge of the un-

certainty of the input parameters to be updated. This step provides valuable information

that can support the decision of either i) attempting to reduce the variability of the in-

put parameter by e.g. performing additional experimental tests, or ii) discarding its

importance and reducing the dimensionality of the problem.

Monte Carlo Simulation (MCS) is a well-known technique that allows the propagation of

uncertainty throughout the sampling of input variables and computation of the corresponding

output. Although the technique is well-posed and convergence is ensured, the main issue with

MCSs is that they usually require 104–105 runs to converge, and 106–107 runs to perform a

proper sensitivity analysis [31]: far too many for the computational models under consider-

ation, since each run would require several hours of computational time. Hence, there is a

need to resort to the use of emulators (also called surrogate models, metamodels, or response

surfaces).

An emulator reproduces the original computational model. It is calibrated on limited runs

of the original model (hereinafter denoted calibration runs) and can be executed with negligible

computational effort.

Therefore, to define an emulator, it is necessary [31]:

• To run the original computational model for selected values of the input vector chosen

using different sampling techniques (e.g. Latin Hypercube Sampling);

• To choose a proper class (i.e. functional shape) for the meta-model (e.g. polynomial

chaos expansion [32], low-rank tensor approximations [33], kriging [34], support vector

machines [35], neural networks, etc.)

• To calibrate the emulator with the generated data, by using the original computational

model. This is achieved using different techniques, such as full quadrature [36], sparse

grid integration [37], least-squares analysis [38], compressive sensing [39], etc., depending

on the functional shape chosen for the emulator.

• To propagate uncertainty by applying MCS to the emulator to derive the statistical

properties of the QoI.

Although a lot of research has recently been done to propose more advanced UQ&M meth-

ods for engineering problems, only a few are the examples of them being applied to strength
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analysis methods for composites that use analytical [40] or numerical [41] tools requiring negli-

gible computational effort, thus making the execution of hundreds or thousands of calibration

runs perfectly acceptable.

But the FEA computational models taken as the benchmark in the aerospace industry and

academia are much more complex (they take into account several damage mechanisms) and

extremely time-consuming: running them, even a dozen times, is not a viable option.

Is there a way to reduce the calibration runs to a bearable number suitable for an industrial

environment? We will demonstrate that, for some cases, it is possible to answer positively to

the previous question. We will achieve this result through a pragmatic approach entailing the

definition of efficient emulators, the use of advanced progressive damage models for composites,

and the determination of the stochastic response by means of appropriate statistical techniques.

2. Materials and methods

2.1. Definition of the emulator

The first step is to define an emulator that has to be fast and sufficiently precise. The

aforementioned predictive computational models providethe mechanical behaviour of a struc-

ture in output. Although several variables can be monitored, the structural strength is the

critical information that is retrieved and that is used for design purpose.

Therefore, the emulator will predict the strength of the structure, f , which depends on

several stochastic variables necessary to define the material parameters, mi, the orientation of

the plies, θj , the geometric parameters, gk, the loading, lm, and the boundary conditions, bn,

and other additional variables:

f = f (mi, θj , gk, lm, bn, . . . ) (1)

We assume the laminate to be a well-designed hard laminate subjected to an overall ten-

sile/compressive stress. In this case the structural strength can be assumed to be dominated

by the failure of the fibre. Therefore, a change in the strength of the ply X in the longitudinal

direction or in the intralaminar fracture toughness associated with this failure mechanism Gc

will have a substantial effect on the strength of the laminate. A change on all the other material

parameters, independently of their variability, has little effect on the strength of the laminate.
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Considering also that manufacturing in the aeronautic industry heavily relies on automated

systems (e.g. Automatic Tape Laying, Automatic Fibre Placement, etc.) the variability of

the orientation of the plies, θj , and other geometrical parameters, gi, can be neglected and the

layup and dimension can be considered deterministic variables.

It should be considered that the aforementioned predictive models are employed during

certification to speed up the process by replacing the physical experiments with virtual exper-

iments. These models are used mainly on small structural elements (as open hole specimens,

bolted joints, etc.) and never on full-scale models. These structural elements, having reduced

dimensions, can be manufactured with very tight tolerance, and this circumstance further

allows considering the geometric parameters, gi, as deterministic variables.

Testing structural elements, for which standardised test methods exist, under controlled

environmental conditions, permits also neglecting the variability of the loading, lm, and bound-

ary conditions, bn, and allow considering these as deterministic variables.

Hence, there are only two stochastic variables, the ply strength X and the intralaminar

fracture toughness Gc. It is convenient to introduce a new stochastic variable λ = X/
√Gc and

to express the structural strength as depending on X and λ:

f = f (X,λ) (2)

In an attempt to define an efficient emulator, let X̄ indicate a reference value of the strength

corresponding either to its expected value, E (X), or to the median, X(50) (hereinafter the

p-th percentile of a stochastic variable will be indicated with p between two parentheses in

superscript). When the ply strength is X̄ the structural strength can be calculated for some

values of the ply fracture toughness, Gc, to which correspond values of λ and f . Interpolating

these values, e.g by using a PCHIP (Piecewise Cubic Hermite Interpolating Polynomial) in-

terpolation, allows determining an approximation for the structural strength as a function of

λ:

Φ (λ) ≈ f
(
X̄, λ

)
(3)

We now consider two similar softening laws (Fig. 1) with strength X̄ and X (we indicate with

X either the stochastic variable or its realization). It is easy to demonstrate that similarity

is ensured keeping a constant λ and this is true for triangular but also other softening laws
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(e.g. the bilinear). It should be noted that for the same damage variable, 0 ≤ d ≤ 1, the same

percentage of fracture energy is dissipated in both cases.

We assume that at the peak load the two finite element models defined with the previous

softening laws exhibit the same damage pattern (i.e. the i-th element in both FEM models

will exhibit the same damage variable, di.) If this assumption holds, the structural strength

scales with the ply strength, therefore it can be written:

f (X,λ)

f
(
X̄, λ

) =
X

X̄
(4)

hence, substituting (3) in (4) and rearranging yields:

f (X,λ) =
X

X̄
Φ (λ) (5)

which completes the definition of the emulator.

Some assumptions made for the definition of the emulator may be too simplistic and not

faithfully adherent to reality. Its accuracy might not be acceptable in some specific cases (e.g.

soft laminates, exotic material systems, etc.) and needs to be assessed through experimental

validation. However, the poor accuracy of the emulator does not hinder its usefulness for

uncertainty quantification because it might still be employed (as crude as it is) in the frame-

work of Multi Fidelity (MuFi) schemes which permit quantifying uncertainty by combining

emulators with different levels of sophistication [42].

2.2. Computational model

For the calibration of the emulator, the computational model presented in [18] was used.

This was able to simulate interlaminar and intralaminar damage and was able to predict

with great accuracy (maximum relative error of 13%) different configurations used during

the certification of aerospace-grade fibre-reinforced structural elements, including unnotched

tension / compression, open hole tension / compression, and filled hole compression specimen.

For conciseness, the details of the computational model are not reported here (since this is

not the focus of this work), and the interested reader is referred to [18].

A portion of the virtual experiments run in [18], namely unnotched and open hole specimens

made of IM7/8552 with [0/90/-45/+45]3s layup, were rerun here (Tab. 1). The material

properties necessary to define the model, taken as deterministic variables, are reported in
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Tab. 2. The only stochastic properties are the longitudinal strength and fracture toughness,

in tension or compression, depending on whether the virtual experiment simulate a tensile or

compressive case, respectively (see Tab. 3).

It is worth noticing that assuming a given distribution for these variables is not necessary

for the definition of the emulator or to determine the statistics of the QoI through boot-

strapping. However, in the following, a given distribution for strength and fracture toughness

will sometimes be assumed for the sake of discussion. When this will be deemed necessary,

strength and fracture toughness will be considered to have log-normal distribution. This is

preferred to the abused normal distribution simply because strength and fracture toughness

are non-negative variables and, therefore, a distribution with support in [0,+∞] seems more

appropriate. Hence, strength and fracture toughness read:

X = exp (µX + σXZ1) ; Gc = exp (µG + σGZ2) (6)

where Z1 and Z2 are standard normal variables and µi and σi are the scale and shape param-

eters that are calculated in Tab. 3.

2.3. Statistical analysis

The distribution of the strength and fracture toughness are essentially unknown. The

design engineers rely only on a limited number of experiments (i.e. realizations) and have

no solid grounds to estimate the said distributions. Performing additional experiments is not

viable because it does not necessarily solve the problem and is quite costly. Hence, design

engineers need to work with the few experimental data they have available and must make

the best use of them.

Considering these circumstances, bootstrapping seems to be the natural choice to construct

an estimator for the desired parameters of the distribution of the QoI. Bootstrapping is a

statistical technique that uses random sampling with replacement. It was proposed for the first

time in [43] and since then has been expanded and used in different fields [44]. Bootstrapping

does not require the knowledge of the distribution of the strength and fracture toughness and

is particularly convenient, in this case, because permits analysing different groups of sample

data without the burden of performing additional experiments.

The QoI can be any: the mean value of the structural (i.e. the strength of the specimen),

its variance, or any other additional statistical parameter. Due to the importance given by the
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designers in the aerospace field, the parameter that will be determined is the so-called A-basis

value, i.e. the strength at which only 1% of the specimens will fail with a 95% confidence level.

The procedure used will be the following (Fig. 2):

• Assuming that there are nX experimental values for the strength and nG experimental

values for the fracture toughness, and denoting by nMax = max (nX , nG), two bootstrap

samples of length nMax, are generated for the strength and the fracture toughness,

respectively. This allows forming nMax couples, each containing a strength and a fracture

toughness value.

• Each couple, given as input to the emulator of Eq. (3) will provide a value of the struc-

tural strength, allowing the determination of the empirical probability distribution of

the structural strength.

• This procedure is repeated N = 1000times (MCS) and this will allow one to obtain N

distributions of the structural strength.

• At this point, theoretically, the first percentile (necessary for the determination of the

A-basis value) could be directly determined from the empirical distribution. It is well

known, however, that bootstrap is able to determine the statistic that characterises

the centre of the distribution (mean, median, variance), but usually fails when used

to estimate extreme values, such as extreme percentiles. To solve this issue, it was

decided to determine the best fit ofthe empirical distribution and to use the latter for

the determination of the first percentile of the structural strength. To avoid assuming any

functional form of the distribution (i.e. avoiding "making up" the distribution), kernel

density estimation (KDE) was used. Considering that the bandwidth of the kernel also

affects the fitting, this is not imposed but chosen through optimisation, via grid search

cross-validation [45], ofthe log-likelihood of the test data in the estimated density.

• The KDE fit of each strength distribution allows one to determine for the i-th iteration

the corresponding value of the first percentile, f (1)
i . These values are then collected and

the distribution for the first percentile of the strength f (1) is generated. Finally, the
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A-basis value is obtained by computing the 5th percentile of this distribution1.

3. Calculations and Discussion

3.1. Preliminary calculations

The emulator’s definition requires some assumptions whose suitability can be assessed by

comparing the emulator’s and the computational model’s predictions.

Preliminary simulations of unnotched and open-hole specimens were conducted to assess

the validity of Eq. (4). Simulations were carried out for the tensile specimens UT, OHT12,

OHT60 and for the compressive specimens UC, OHC12, OHC30 (Tab. 1). The strength and

fracture toughness were assumed to follow log-normal distributions with parameters reported

in Tab. 3. The reference value of the strength, X̄, was taken as the median value of the

strength distribution, X̄ = X(50) = exp (µX), while λ was taken constant and equal to λ =

X(50)/
√

G(50)
c = exp

(
µX − µG

2

)
. Simulations were carried out for different values of the strength

X in the interval
[
X(0.1), X(99.9)

]
and the error made using Eq. (4) was computed (Fig. 3). The

error was found to be smaller than 10% (in absolute value) in the interval
[
X(0.1), X(99.9)

]
and

smaller than 2% in the interval
[
X(10), X(90)

]
(i.e. in the centre of the distribution). Therefore,

it can be concluded that Eq. (4) is quite accurate for the cases under consideration.

The model was then calibrated by running 5 simulations for different values of the fracture

toughness, G(p)
c , with p = 0.1, 25, 50, 75, 99.9 to which corresponded 5 values of lambda λp =

X̄/

√
G(p)
c . All the cases of Tab. 1 were considered. The values were then fitted using a PCHIP

to calculate Φ (λ) of Eq. (3). The numerical values and best fits are shown in Fig. 4.

Determining Φ (λ) allows us to define the emulator. Numerical simulations (Fig. 5) were

performed for different combinations of strength and fracture toughness equally spaced in the

ranges
[
X(0.1), X(99.9)

]
and

[
G(0.1)
c ,G(99.9)

c

]
). Considering the joint distribution of strength

and fracture toughness defined in the domain
[
X(0.1), X(99.9)

]
∩
[
G(0.1)
c ,G(99.9)

c

]
the error is

calculated to be less than 2% at the centre of the distribution (i.e.
[
X(10), X(90)

]
∩
[
G(10)
c ,G(90)

c

]
)

and less than 10% elsewhere, thus allowing considering the emulator sufficiently accurate.

1In this case the classical percentile formula is used. KDE fitting is not necessary since numerous points

(N = 1000) are available.
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Note that calibration must be performed for each specimen configuration (e.g. for different

layups, geometries, load types, etc.). The fact that calibration only requires 5 simulations

justifies the strategy of training separate emulators of each configuration.

3.2. Statistic analysis and derivation of the design allowables

If the distribution of strength and fracture toughness were known, the statistical analysis

would be trivial. Assuming, for example, the distributions to be log-normal with parameters

defined in Tab. 3 it will be sufficient to run a MCS analysis providing as input material prop-

erties values sampled from the said distributions and derive the distribution of the structural

strength for each specimen. This will allow determining all the statistical parameters of the

structural strength distribution, including the mean value, the standard deviation, or the first

percentile (Fig. 6).

But the strength and fracture toughness distributions (Fig. 7) are unknown to the design

engineers. They only rely on experimental values that can be seen as realization of the said

distributions.

To explain the procedure suggested for the determination of the A-basis value, we sample

the experimental values from the said distributions (indicated with crosses in Fig. 7) and

reported in Tab. 4) and assume that these are the only data available to the design engineers.

The suggested procedure is the following:

• Knowing the experimental values of the strength, the reference value can be calculated

as the mean value, therefore X̄ = 1
nX

∑
Xi.

• Knowing the maximum and minimum values of fracture toughness, five equally spaced

values of the fracture toughness are chosen in the
[
Gmin
c ,Gmax

c

]
interval.

• Running the computational model2 using as input parameters the reference value of

the strength X̄ and the 5 values of fracture toughness (5 simulations in total) permits

calibrating the emulator.

2Although it might be obvious to the reader, it should be stressed the fact that the computational model

does not depend on the distributions of the strength and fracture toughness but only on the values of the

reference strength X̄ and fracture toughness Gc used for its calibration. In Sec. 3.1 a log-normal distributions

for strength and fracture toughness were implicitly assumed for the sake of discussion.
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• Using the procedure reported in Sec. 2.3 the structural strength distributions and the

corresponding statistics (in particular, the A-basis value) are obtained.

Figs. 8 and 9 report the distribution obtained for the 1st percentile of the structural

strength, f (1) for the tensile and compressive cases, respectively. For each specimen is reported

not only the f (1) distribution, but also the true f (1) value (ignored by the design engineers

but known and calculated by us and reported in Fig. 6), the predicted value of f (1) and the

A-basis value, computed as the expected value and the 5th percentile of the f (1) distribution.

A quick inspection of Figs. 8 and 9 reveals that the prediction for f (1) (mean value of

the distribution) underestimates and overestimates the true value in tension and compression,

respectively. One might wonder what causes this behaviour and the answer is straightforward:

it mainly depends on the (mock) experimental data (Tab. 4) that fed the model.

To assess the influence of the material parameters provided as input, one might compute

the A-basis value for different sets of material parameters and compare the distribution of the

A-basis value with f (1). These calculations were performed for 200 different sets of material

parameters (randomly generated by sampling from the strength and fracture toughness dis-

tributions). Analysing their results (Figs. 10 and 11) one observes that, depending on the

material parameters in input, the A-basis value prediction might be conservative (lower than

f (1)) or not (larger than f (1)). The integral of the A-basis distributions for values lower than

f (1) provides the probability of getting a conservative prediction, Pc, reported in Figs. 10

and 11, which ranges between 86 and 98% and between 83 and 91% for the tensile and com-

pressive cases, respectively. It is concluded that the proposed methodology delivers consistent

predictions.

A quick examination of the data reveals that non-conservative predictions are related to

sets of material parameters that overestimate the strength and/or the fracture toughness of

the material. The way to reduce the probability of getting non-conservative predictions is

to enhance the quality of the experimental data. Consequently, this emphasises the need for

improved experimental characterisation procedures.

To evaluate the accuracy of the emulator, the A-basis value (and possibly other statis-

tics) could be estimated by computing the structural strength for different combinations of

the strength and fracture toughness and bootstrapping these values to build the structural
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strength distribution. For the experiments of Tab. 4 this would mean performing 72 and

70 simulations3 for tension and compression, respectively. This number is sensibly higher

than what is required for calibrating the emulator but still manageable, especially if an HPC

infrastructure is available. Note that this approach also permits performing uncertainty quan-

tification when an emulator is not available.

This exercise was conducted for two specimens: OHT24 and OHC24. The f (1) distributions

(Fig. 12) obtained using the two approaches (emulator and bootstrap, EB; and bootstrap only,

BO) provide close predictions. The EB distribution appears to be shifted towards the left,

thus providing more conservative predictions. This phenomenon depends exclusively on the

emulator that tends to underestimate the structural strength f as the values of the strength

grow smaller (see also the lower graphs in Figs. 3a and 3b).

Note that for the compressive case (Fig. 12b) the EB approach provides a non-conservative

prediction of the A-basis value (even though it is only by 3 MPa!) and that this circumstance,

as previously mentioned, depends only on the set of material properties used for the calculation.

4. Conclusions

The main concluding remarks of the present work can be summarised as follows:

• A methodology was developed for performing uncertainty quantification for advanced

progressive damage models for composites. The QoI was the structural strength and the

associated statistics.

• An efficient emulator was defined for unnotched and open hole specimens in tension and

compression, making a number of simplified assumptions. Comparing the emulator’s and

the computational model’s predictions permits reaching the conclusion that the proposed

emulator is sufficiently accurate.

• A bootstrapping technique was used to predict the distribution of the structural strength.

This allows determining the desired statistics such as expected value, standard deviation,

skewness, and kurtosis.

310 values of strength and 8 of fracture toughness are available in tension. Since a strength value is repeated

twice, the unique values are 9. Therefore, the necessary simulations are 72 instead of 80.
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• Bootstrapping notably fails when used to determine extreme values, as the first percentile

of the strength distribution required for calculating the A-basis value. For this reason,

the calculation of the first percentile was performed on an analytical expression of the

structural strength distribution obtained by KDE fitting.

• Distributions for ply strength and fracture toughness were assumed, and the distribu-

tion of the structural strength was computed. This allowed the calculation of the true

value of the 1st percentile of the distribution. Without assuming any distribution, the

distribution of the 1st percentile of the structural strength was computed employing the

bootstrapping methodology proposed. The predicted 1st percentile and the calculated

A-basis value were in excellent agreement with the true f (1).

• Distributions of the 1st percentile of the structural strength were obtained using two

approaches requiring i) the use of the emulator and bootstrap (EB), and ii) the use of

bootstrap only. Their predictions agree well.

• The emulator is able to provide systematically conservative results. Non-conservative

predictions are obtained for material parameters that provide a poor statistical charac-

terisation of the actual strength and fracture toughness distributions.

• A total of 5 simulations were used for the emulator’s calibration, a negligible amount

compared with other approaches. This fact makes the proposed methodology particularly

suitable for use in an industrial environment to speed up the certification process.
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Table 1: Virtual experiments

Specimen Specimen Label Thickness Width Hole Diameter
(mm) (mm) (mm)

In tension

Unnotched Tension UT 3 20 –

Open Hole Tension

OHT12 3 12 2
OHT24 3 24 4
OHT36 3 36 6
OHT48 3 48 8
OHT60 3 60 10

In compression

Unnotched Compression UC 3 20 –

Open Hole Compression

OHC12 3 12 2
OHC18 3 18 3
OHC24 3 24 4
OHC30 3 30 5
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Table 2: Material properties

Material Property Symbol Units Value

Geometry of the ply
Elemental / Ply thickness t mm 125

UD fracture angle under uniaxial compression α0 rad 0.925
Elastic properties of the ply

Young’s modulus for longitudinal tension E1 MPa 171420
Young’s modulus for transverse tension E2 MPa 9080

In-plane shear modulus G12 MPa 5290
Major Poisson’s coefficient ν12 – 0.32

Strength of the ply
Longitudinal tensile strength X+ MPa 2323.5

Normalised longitudinal tensile stress at the inflection point f+
X – 0.4

Longitudinal compressive strength X− MPa 1200.1
Normalised longitudinal compression stress at inflection point f−

X – 0.2
Transverse tensile strength Y + MPa 62.3

Transverse compressive strength Y − MPa 253
Biaxial transverse tensile strength Y +

B MPa 38.7
Biaxial transverse compressive strength Y −

B MPa 600
In-plane shear strength SL MPa 92.3

Shear stress that activates plastic flow Sp
L MPa 66.9

Shear incremental stiffness under plastic flow Kp – 0.08
Fracture toughness of the ply

Fracture toughness for longitudinal tension G+
1 kJ/m2 133.3

Normalised dissipated energy up to the inflection point f+
G – 0.3

Fracture toughness for longitudinal compression G−
1 kJ/m2 61

Mode I fracture toughness for transverse tension G+
2 kJ/m2 0.28

Mode I fracture toughness for transverse compression G−
2 kJ/m2 1.31

Mode II fracture toughness G6 kJ/m2 0.79
Interlaminar properties

Penalty stiffness K N/mm3 106
Strength under pure mode I τN MPa 62.3
Strength under pure mode II τsh MPa 92.3
Mode I fracture toughness GIc kJ/m2 0.28
Mode II fracture toughness GIIc kJ/m2 0.79

Benzeggagh-Kenane mixed-mode interaction parameter ηBK – 1.45
Friction coefficient µ – 0.1
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Table 3: Stochastic material properties

Material Properties Parameter Symbol Units Value

In tension

Longitudinal tensile strength

Mean Value µ (X+) MPa 2323.5
Standard deviation σ (X+) MPa 150.3

Scale parameter µ+
X MPa 7.76

Shape parameter σ+
X MPa 0.064

Fracture toughness for longitudinal tension

Mean Value µ
(
G+
1

)
kJ/m2 133.3

Standard deviation σ
(
G+
1

)
kJ/m2 30.0

Scale parameter µ+
G kJ/m2 4.87

Shape parameter σ+
G kJ/m2 0.22

In compression

Longitudinal compressive strength

Mean Value µ (X−) MPa 1200.1
Standard deviation σ (X−) MPa 85.0

Scale parameter µ−
X MPa 7.09

Shape parameter σ−
X MPa 0.071

Fracture toughness for longitudinal compression

Mean Value µ
(
G−
1

)
kJ/m2 61.0

Standard deviation σ
(
G−
1

)
kJ/m2 15.0

Scale parameter µ−
G kJ/m2 4.08

Shape parameter σ−
G kJ/m2 0.24

Table 4: Mock experimental data for the A-basis value calculation.

X+ G+
c X− G−

c

(MPa) (N/mm) (MPa) (N/mm)

2305.1 82.6 1201.8 114.8
2613.5 197.5 1242.2 42.2
2447.1 161.1 1146.3 51.6
2390.3 108.9 1236.0 60.5
2205.8 106.3 1315.1 75.8
2205.8 106.4 1238.6 48.3
2128.5 116.1 1131.2 73.4
2524.6 131.9 1157.5
2391.2 1145.7
2436.1 1101.8
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