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The Box-Cox transformations are used to make the data more suitable for statistical analysis. We know from the literature that
this transformation of the data can increase the rate of convergence of the tail of the distribution to the generalized extreme
value distribution, and as a byproduct, the bias of the estimation procedure is reduced. The reduction of bias of the Hill
estimator has been widely addressed in the literature of extreme value theory. Several techniques have been used to achieve
such reduction of bias, either by removing the main component of the bias of the Hill estimator of the extreme value index
(EVI) or by constructing new estimators based on generalized means or norms that generalize the Hill estimator. We are going
to study the Box-Cox Hill estimator introduced by Teugels and Vanroelen, in 2004, proving the consistency and asymptotic
normality of the estimator and addressing the choice and estimation of the power and shift parameters of the Box-Cox
transformation for the EVI estimation. The performance of the estimators under study will be illustrated for finite samples
through small-scale Monte Carlo simulation studies.

1. Introduction and Preliminaries

In extreme value theory, one is often interested in the esti-
mation of the extreme value index (EVI), ξ, a parameter con-
trolling the heaviness of the right tail �F ≔ 1 − F, with F the
distribution function (d.f.) of the process under study. In a
univariate independent and identically distributed (i.i.d.)
setup, let us assume that we have access to a random sample
of size n and use the notation Xi:n to denote the i-th ascend-
ing order statistic, 1 ≤ i ≤ n. Similar to the central limit theo-
rem, the extremal types theorem states that if there exists a
nondegenerate limit distribution for a suitable normalization
of the maximum,

P
Xn:n − bn

an
≤ x

� �
⟶
n⟶∞

Gξ xð Þ, ð1Þ

being Gξð:Þ an extreme value (EV) d.f. of the type:

Gξ xð Þ ≡ EVξ xð Þ≔
exp − 1 + ξ xð Þ−1/ξ

� �
, 1 + ξ x > 0, if ξ= 0,

exp −exp −xð Þð Þ, x ∈ R, if ξ = 0:

8<:
ð2Þ

From Equations (1) and (2), the d.f. F is said to pertain
to the domain of attraction for maxima of EVξ, with ξ ∈ R.
Such a fact is denoted by F ∈DMðEVξÞ. The distribution in
Equation (2) encompasses three types of distributions: if ξ
< 0, the right tail is light; i.e., F has a finite right endpoint
(xF ≔ sup fx : FðxÞ < 1g < +∞); if ξ > 0, the right tail is
heavy of a negative polynomial type and F has an infinite
right endpoint; if ξ = 0, the right tail is of an exponential type
and the right endpoint can be either finite or infinite.
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In this paper, we are going to work with heavy-tailed
models, i.e., models with ξ > 0 that belong to the so-called
Fréchet domain of attraction, denoted by D+

M ≔DM

ðEVξÞξ>0. These types of models are quite common in areas

like biostatistics, computer science, finance, insurance, and
statistical quality control, among others.

1.1. Box-Cox Transformations in Extreme Value Theory.
Let X be a random variable (r.v.) with d.f. F ≡ FX ∈DMð
EVξÞ, with probability density function f X . The Box-Cox
(BC) transformation [1] of X is a function of the parame-
ter σ ∈ R given by the following:

Y =
Xσ − 1

σ
, σ ≠ 0,

ln X, σ = 0,

8<: ð3Þ

where σ = 1 corresponds to a mere change in location, σ
= 1/2 to the square root transformation, and σ = −1 to
the reciprocal transformation.

The use of BC transformations in EV theory has been
quite diverse. Bali [2] proposed the BC-GEV distribution
to model the empirical distribution of returns as a generali-
zation of the GEV distribution in Equation (2) and of the
generalized Pareto distribution, with d.f. GPξðxÞ = 1 + ln Gξ

ðxÞ. The d.f. of the BC-GEV distribution is as follows:

Fξ x ; σð Þ = Gξ xð Þ� �σ − 1
σ

+ 1: ð4Þ

Under a semiparametric framework, Teugels and Van-
roelen [3] provided the theoretical framework through the
use of regular variation (see Seneta [4] and Bingham et al.
[5] for details on regular variation) to determine the optimal
values of σ that maximize the rate of convergence of the
second-order condition (to be detailed in Section 1.2) for
values of ξ ≥ 0. Another application of the BC transforma-
tion was presented in the work of Eastoe and Tawn [6],
under a Bayesian framework. Wadsworth et al. [7] use the
BC transformation in the inference procedure to account
parametrically for the uncertainty surrounding the scale
extrapolation in physical processes. Paulauskas and Vaiciulis
[8, 9] used the BC transformation and considered estimators
based on block scheme considering a family of functions of
order statistics.

In the next theorem, the link between the domain of
attraction of FX and of the transformed variable Y , with d.
f. FY , is established.

Theorem 1 (Wadsworth et al. [7]). Under the conditions
such that convergence in Equation (1) holds, with norming
sequences an and bn, then with Gξð:Þ the d.f. in Equation (2)

P
Yn:n − b∗n

a∗n
≤ x

� �
⟶
n⟶∞

Gξ∗ yð Þ ð5Þ

holds for some finite ξ∗ where

b∗n =
bnð Þσ − 1

σ
,

a∗n = an bnð Þσ−1,
ð6Þ

and we can say that FY ∈DMðEVξ∗Þ. Furthermore, if FX is
twice differentiable for sufficiently large x, then the limiting
shape parameter ξ∗ takes the form:

ξ∗ = ξ + lim
x⟶xF

h xð Þ
x

σ − 1ð Þ, ð7Þ

with hðxÞ = ð1 − FðxÞÞ/f ðxÞ the reciprocal hazard function of
the parent distribution FX . For any such distribution which
has ξ ≤ 0, ξ∗ = ξ, due to fact that hðxÞ/x tends then to zero,
as x⟶ xF .

Remark 2. Note that if ξ ≤ 0, then ξ∗ = ξ ≤ 0 and FY is in the
same domain of attraction of FX . If ξ > 0, i.e., if we are in the
Fréchet domain of attraction, ξ∗ can be different of ξ and FY
can no longer belong to the Fréchet domain of attraction.

1.2. First- and Second-Order Frameworks. With F ∈D+
M , let

F⟵ denote the generalized inverse function of F, defined
by F⟵ðtÞ≔ inf fx : FðxÞ ≥ tg, let U be the associated
(reciprocal) quantile function, defined as UðtÞ≔ F⟵ð1 − 1
/tÞ, t ≥ 1, and let RVα stand for the class of regularly varying
functions at infinity with index α, i.e., positive measurable
functions gð:Þ such that limt⟶∞gðtxÞ/gðtÞ = xα, for all x
> 0.

In this setup, we have the validity of the first-order con-
dition (de Haan [10]):

F ∈D+
M ⟺ 1 − F ∈ RV−1/ξ ⟺U ∈ RVξ: ð8Þ

To develop the asymptotic nondegenerate properties of
the estimators under study, we need to assume the exis-
tence of an auxiliary function AðtÞ, with ∣A ∣ ∈RVρ [11],
where ρ ≤ 0 is a shape second-order parameter, and for
every x > 0, we often work with a second-order condition
(SOC) of the type:

lim
t⟶∞

ln U txð Þ − ln U tð Þ − ξ ln x
A tð Þ = xρ − 1

ρ
: ð9Þ

Slightly more restrictively, we are going to work with
models in the Fréchet domain of attraction (ξ > 0) that
belong to Hall-Welsh class of models [12], i.e., models with
the second-order right tail expansion:

1 − F xð Þ≔ x
C

� �−1/ξ�
1 + E1

x
C

� �− −ρ/ξð Þ

+ o x− −ρ/ξ+εð Þ
� �	

, x⟶∞,
ð10Þ
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with E1 ≠ 0, ρ < 0, and C > 0, the first-order scale parame-
ter. For these models, the second-order tail quantile func-
tion is as follows:

U tð Þ = Ctξ 1 +D1t
ρ + o tρð Þð Þ, t⟶∞, ð11Þ

with D1 = ξE1. If the SOC in Equation (9) holds with AðtÞ
= ξβtρ, then D1 = AðtÞ/ðρtρÞ. Most common heavy-tailed
distributions, like the Fréchet, the generalized Pareto, the
Burr and Student’s t, belong to the class in Equation (11).
The log-gamma and the log-Pareto models (ρ = 0 in Equa-
tion (9)) do not belong to the class in Equation (11).

Remark 3. Under a parametric framework, Wadsworth et al.
[7] showed that for models in Hall-Welsh class, a BC trans-
formation of the data increases the rate of convergence of
the tail of the distribution to the GEV distribution if σ =
−ρ/ξ, and as a byproduct, the bias of the estimation proce-
dure is reduced.

Let us consider a BC transformation such that X∗ =
Xσ + a and denote by ðX∗

1 ,⋯, X∗
nÞ the transformed sample,

with d.f. F∗, associated with the original sample ðX1,⋯,
XnÞ, where X∗

i = TðXiÞ, with TðXÞ = Xσ + a. The first-
order condition associated with the X⋆ is as follows:

limt⟶∞
U∗ txð Þ
U∗ tð Þ = xξσ = xξ

∗
⟺U∗ ∈ RVξ∗=ξσ: ð12Þ

Under the validity of Equation (12) and for some C⋆,
C > 0, we have U⋆ðtÞ ~ C⋆tξ

⋆ = ðCtξÞσ.
Teugels and Vanroelen [3] used the theory of extended

regular variation (see de Haan and Ferreira [13]) to deter-
mine the optimal values of σ that maximize the rate of con-
vergence of the second-order condition for values of ξ ≥ 0
and proved in Theorems 4.1, 4.2, and 4.3 that when ξ > 0
and ξ + ρ > 0, a BC transformation has no effect on the
SOC of U∗ unless σ = −ρ/ξ; if ξ > 0 and ξ + ρ < 0, the BC
transformation can have a negative or positive effect on the
SOC of U∗ and the positive effect happens when σ = −ρ/ξ.
If ξ > 0 and ξ + ρ = 0, for any value other than σ = −ρ/ξ = 1
, there is no improvement in the speed of convergence of
the SOC. Thus, the value σ that maximizes the rate of con-
vergence of the SOC that will be considered in this work is
as follows:

σ = −
ρ

ξ
: ð13Þ

This choice will enhance the bias reduction in the esti-
mation procedure.

1.3. Reduced Bias EVI Estimation. For heavy right tails, i.e.,
whenever Equation (8) holds, the classical extreme value
index (EVI) estimator is the Hill (H) estimator [14], with
functional form

Hn,k ≔
1
k
〠
k

i=1
ln Xn−i+1:n

Xn−k:n

� �
, ð14Þ

the average of the log-excesses, and consequently also the
average of the k scaled log-spacings Ui ≔ iðln Xn−i+1:n − ln
Xn−i:nÞ, 1 ≤ i ≤ k.

But the Hill EVI estimator, in Equation (14), exhibits the
usual trade-off between bias and variance, and therefore, the
suitable accommodation of the asymptotic bias has been
widely discussed among EVT practitioners. The first papers
are due to Peng [15], Beirlant et al. [16], Feuerverger and
Hall [17], and Gomes et al. [18], among others. Such a bias
reduction usually provided more stable sample trajectories
and a lower mean square error at the optimal level, but at
the expense of an increase in variance, which did not allow
the estimators proposed in the aforementioned papers to
surpass the classical estimators for small k values. Further
details can be found in Gomes and Guillou [19], among
others.

For heavy-tailed models, Caeiro et al. [20, 21] and
Gomes et al. [22, 23], among others, were able to overcome
the bias-variance trade-off, keeping the variance of the pro-
posed reduced bias EVI estimators equal to ξ2/k, the vari-
ance of the Hill EVI estimator. For that reason, these
estimators were coined minimum variance reduced bias
(MVRB) EVI estimators. These classes of estimators depend
upon the adequate consistent estimation of the vector of
second-order parameters, ðβ, ρÞ ∈ ðR, R−Þ in AðtÞ = ξβtρ in
a high level k1 of larger order than k, the number of top
order statistics used in the EVI estimation, and surmount
the classical EVI estimators for all k values.

Practical issues related with the estimation of ðβ, ρÞ and
algorithms are presented by Gomes and Pestana [24], among
others. Among several classes of MVRB EVI estimators, we
refer to the class introduced in Caeiro et al. [20], the cor-
rected Hill (CH) estimator:

CHn,k ≡ CHn,k
bβ , bρ� �

≔Hn,k 1 −
bβ

1 − bρ n
k

� �bρ !
, ð15Þ

with ðbβ , bρÞ a set of adequate estimators of the second-order
parameters ðβ, ρÞ (see Section 3). The estimator in Equation
(15) will be used in Section 4 for comparison with the new
class of MVRB EVI estimators introduced in this paper.
Other techniques have been used in the literature to reduce
the bias of the Hill estimator, in Equation (14), and new esti-
mators based on generalized means or norms that generalize
the Hill estimator have been proposed (see Brilhante et al.
[25], Caeiro et al. [26–29], Paulauskas and Vaiciulis [8, 9],
Beran et al. [30], and Beirlant et al. [31], among others).

In Section 2 of this paper, we present the BC Hill esti-
mator and derive the consistency and asymptotic normal-
ity of the estimator under study assuming that the BC
parameters are known. Next, in Section 3, we address
the estimation of the BC parameters, and in Section 4,
we present the finite sample behaviour of the BC Hill esti-
mators and compare it with the corrected Hill estimator.
Finally, in Section 5, some concluding remarks and future
work are put forward.
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2. The Box-Cox Hill Estimator

The Box-Cox Hill (BC Hill) estimator introduced by Teugels
and Vanroelen [3] has the functional form:

HBC
n,k σ, að Þ≔ 1

kσ
〠
k

i=1
ln Xσ

n−i+1:n + a
Xσ
n−k:n + a

� �
, ð16Þ

where a > 0, so that fXσ
i + agni=1 is strictly positive, σ = −ρ/ξ

> 0, as in Equation (13) and, HBC
n,kðσ, 0Þ ≡Hn,k, in Equation

(14). The estimators Hn,k, in Equation (14), and HBC
n,kðσ, aÞ,

in Equation (16), are both consistent for the estimation of
ξ, for intermediate sequences of integers k, i.e., such that

k = kn, 1 ≤ k < n, kn ⟶∞, kn = o nð Þ, as n⟶∞:

ð17Þ

Under the second-order framework in Equation (9), the
asymptotical distributional representation

Hn,k =
d
ξ + ξffiffiffi

k
p Zk +

1
1 − ρ

A
n
k

� �
1 + op 1ð Þ� � ð18Þ

holds true [32], where Zk =
ffiffiffi
k

p ð∑k
i=1 Ei/k − 1Þ, with fEig a

sequence of i.i.d. standard exponential r.v.’s, is an asymptot-
ically standard normal r.v.

Remark 4. The BC Hill estimator is also a generalization of
the EVI estimator introduced by Gomes and Oliveira [33],

H að Þ
n,k ≡HBC

n,k 1, að Þ≔ 1
k
〠
k

i=1
ln Xn−i+1:n + a

Xn−k:n + a

� �
, ð19Þ

where the shift a imposed to the data is a tuning parameter.
The authors studied the adequate choice of a that enabled
the reduction of the main component of the bias of the Hill’s
estimator, in Equation (14). The results obtained in the sim-
ulation studies for models with σ = 1 are in line with the
ones provided in Section 4.

2.1. Asymptotic Behaviour of the Box-Cox Hill Estimator
When σ and a Are Known. In this section, we start by deriv-
ing the asymptotic behaviour of the BC Hill estimator
assuming that the BC parameters, σ and a, are known. We
then get an optimal value for a that allows us to obtain a
new class of MVRB EVI estimators.

Theorem 5. In Hall-Welsh class of models in Equation (11),
for intermediate k, i.e., for k values such that Equation (17)
holds, we have the validity of following distributional repre-
sentation,

HBC
n,k σ, að Þ=d ξ + ξffiffiffi

k
p Zk +

A n/kð Þ
1 − ρ

1 −
a

βCσ

� �
1 + op 1ð Þ� �

:

ð20Þ

If
ffiffiffi
k

p
Aðn/kÞ⟶ λ, possibly nonnull, we can guarantee

that

ffiffiffi
k

p
HBC

n,k σ, að Þ − ξ
� �

⟶
n⟶∞

d
ξN 0, 1ð Þ + λ

1 − ρ
1 −

a
βCσ

� �
,

ð21Þ

with Nð0, 1Þ denoting a standard normal r.v. If we further
choose

a = βCσ, ð22Þ

then

ffiffiffi
k

p
HBC

n,k σ, að Þ − ξ
� �

⟶
n⟶∞

d
ξN 0, 1ð Þ: ð23Þ

Proof. The universal uniform transformation and from the
definition of the reciprocal quantile function Uð:Þ in Equa-
tion (11), we get Xi:n = d UðYi:nÞ, with Y a unit Pareto r.v.
In what follows, we shall use the following relations: for j
> i, Y j:n/Yi:n = d Y j−i:n−i, ln Yi:n = d Ei:n, where E denotes a
standard exponential r.v., and Yn−k:n ~ p n/k, whenever
Equation (8) holds.

HBC
n,k σ, að Þ = 1

kσ
〠
k

i=1
ln Xσ

n−i+1:n + a
Xσ
n−k:n + a

� �
=d 1
kσ

〠
k

i=1
ln Uσ Yn−i+1:nð Þ + a

Uσ Yn−k:nð Þ + a

� �
=d 1
kσ

〠
k

i=1
ln U Yn−i+1:nð Þ

U Yn−k:nð Þ
� �σ

+ 1
kσ

〠
k

i=1
ln 1 + a/Uσ Yn−i+1:nð Þ

1 + a/Uσ Yn−k:nð Þ
� �

= 1
k
〠k

i=1 ln U Yn−i+1:nð Þ
U Yn−k:nð Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hn,k

+ 1
kσ

〠
k

i=1

a
Uσ Yn−i+1:nð Þ −

a
Uσ Yn−k:nð Þ

� �
=Hn,k +

1
kσ

〠
k

i=1

a
Uσ Yn−k:nð Þ

� −1 + U Yn−k:nð Þ
U Yn−i+1:nð Þ
� 	σ� �

:

ð24Þ

For the second term in the right hand side, we know that
under the validity of Equations (8) and (11), we can write

UðYn−k:nÞ ~Uðn/kÞ = Cðn/kÞξ and UðYn−i+1:nÞ/UðYn−k:nÞ
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= d Y−ξ
k−i+1:kð1 + opð1ÞÞ. Then,

HBC
n,k σ, að Þ = Hn,k +

1
σ

a
Cσ

n
k

� �−ξσ 1
k
〠
k

i=1
−1 + Y−ξσ

i

� �
: ð25Þ

Since E½Ya� = 1/ð1 − aÞ, for a < 1,

HBC
n,k σ, að Þ=d ξ + ξffiffiffi

k
p Zk +

1
1 − ρ

A n/kð Þ 1 + op 1ð Þ� �
+ a
Cσ

n
k

� �−ξσ −ξ
1 + ξσ

1 + op 1ð Þ� �
=d ξ + ξffiffiffi

k
p Zk +

A n/kð Þ
1 − ρ

+ a
Cσ

n
k

� �−ξσ −ξ
1 + ξσ

� �
� 1 + op 1ð Þ� �

:

ð26Þ

Using the parametrizations AðtÞ = ξβtρ and σ = −ρ/ξ,
the distributional representation in Equation (20) holds true.
We then get an optimal a value, the value of a in Equation
(22), such that that the dominant component of the bias of
the BC Hill estimator is null, and Equation (23) follows.

Corollary 6. Under the first-order condition in Equation
(12), and for the heavy-tailed models in Hall and Welsh class,
in Equation (11), such that U∗ðtÞ = c1 t

ξ∗ + c2, with c1 and c2
real constants, c1 ≠ 0, the BC Hill estimator in Equation (16)
is asymptotically unbiased for any k = kn ⟶∞, not neces-
sarily intermediate.

Proof. This result comes straightforwardly from the defini-
tion of the Box-Cox Hill estimator in Equation (16) and
from the fact that we are working with heavy-tailed models
in Hall and Welsh class, with quantile function U∗ðtÞ = c1
tξ

∗ + c2, c1 and c2 real constants, c1 ≠ 0.

Remark 7. The heavy-tailed models in Hall and Welsh class
that satisfy the property in Corollary 6 are the Burrξ,ρ, the

log� logisticθ,ξ, and the GPξ parents. This behaviour will
be illustrated in Section 4.

In Table 1, we show for some heavy-tailed models the
optimal values of σ and a, in Equations (13) and (22),
respectively, where cν = ðνBðν/2, 1/2ÞÞ1/ν, with B the com-
plete beta function.

Remark 8. Teugels and Vanroelen [3] considered two exam-
ples to show the bias reduction of the BC Hill estimator. In
the first one, a Burr ξ=1,ρ=−0:5 model was chosen. The
power of the BC transformation is σ = 0:5, and the authors
used a = 1, which is, according to Equation (22) and
Table 1, the optimal value for bias reduction. In the sec-
ond example, the authors considered a Cauchy model
(ξ = 1, ρ = −2), with σ = 2. It was noticed that the choice
of a is very important and a value around 0.5 was sug-
gested as it was the value that had the strongest effect of
minimizing the bias of the BC Hill estimator. We now
know, from Equation (22) and Table 1, that the optimal
value is a = 2/3.

3. Adaptive Estimation of the Box-
Cox Parameters

The BC parameters depend on the estimation of the first-
order scale parameter C and on the estimation of the
second-order shape, ρ, and scale, β, parameters. In this
work, we are going to consider a misspecification of the
first-order scale parameter, considering that C = 1.

For the estimation of the second-order shape parameter,
ρ, we consider the class of estimators introduced in [34]
defined by the following:

bρ k ; τð Þ≔ −
3 T τð Þ

n kð Þ − 1
� �
T τð Þ
n kð Þ − 3

� �
������

������, ð27Þ

with τ a real tuning parameter [35]:

Table 1: First-order, second-order, and Box-Cox parameters for some heavy-tailed models.

Model
First-order Second-order Box-Cox

ξ C ρ β σ a

Burrξ,ρ ξ 1 ρ 1 −ρ/ξ 1

Frechetξ ξ 1 -1 1/2 1/ξ 1/2
Log‐logisticθ,ξ ξ θ−ξ -1 1 1/ξ 1/θ
Generalized Pareto, GPξ ξ 1/ξ −ξ 1 1 1/ξ
Cauchy 1 1/π -2 2π2/3 2 2/3
Student tν 1/ν ffiffiffi

ν
p

/cν −2/ν ν + 1ð Þc2ν
� �

/ ν + 2ð Þ 2 ν ν + 1ð Þð Þ/ ν + 2ð Þ
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T τð Þ
n kð Þ≔

ln M 1ð Þ
n kð Þ

� �
− 1/2 ln M 2ð Þ

n kð Þ/2
� �

1/2 ln M 2ð Þ
n kð Þ/2

� �
− 1/3 ln M 3ð Þ

n kð Þ/6
� � , if τ = 0,

M 1ð Þ
n kð Þ

� �τ
− M 2ð Þ

n kð Þ/2
� �τ/2

M 2ð Þ
n kð Þ/2

� �τ/2
− M 3ð Þ

n kð Þ/6
� �τ/3 , if τ= 0,

8>>>>>>>>><>>>>>>>>>:
M αð Þ

n kð Þ≔ 1
k
〠
k

i=1
ln Xn−i+1:n − ln Xn−k:nð Þα:

ð28Þ

Note that Mð1Þ
n ðkÞ ≡Hn,k, in Equation (14), and the

results obtained in Fraga Alves et al. [34] and in Gomes
and Martins [36] advise to consider τ = 0 for values of ρ ≥
−1 and τ = 1 for values of ρ > −1.

For the estimation of the second-order scale parameter,
β, we are going to consider the estimator introduced in
Gomes and Martins [36], given by the following:

bβ k ; bρð Þ≔ k
n

� �bρ dk −bρð Þ ×Dk 0ð Þ −Dk −bρð Þ
dk bρð Þ ×Dk −bρð Þ −Dk −2bρð Þ , ð29Þ

where for any α ≥ 0,

Dk αð Þ≔ 1
k
〠
k

i=1

i
k

� �α

Ui,

dk αð Þ≔ 1
k
〠
k

i=1

i
k

� �α

,
ð30Þ

with Ui = ifln Xn−i+1:n − ln Xn−i:ng, 1 ≤ i ≤ k, the scaled log-
spacings, and bρ the ρ estimator in Equation (27).

Asymptotic considerations as well as simulated results
led several authors to consider the estimation of the
second-order estimators at a high level k1, given by k1 ≔
½n1−ε� where ε ~ 0+ and ½x� denotes, as usual, the integer part
of x. In the simulation studies in Section 4, the value ε = 0:001
was used to compute the estimates of the second-order
parameters. Under adequate general conditions, the classes
of estimators in Equations (27) and (29) are asymptotically
normally distributed and show highly stable sample paths
as functions of k, the number of top order statistics used,
for a wide range of large k values.

Theorem 9 (Fraga Alves et al. [34] and Gomes and Martins
[36]). If the SOC in Equation (9) holds, for models in Hall
and Welsh class with AðtÞ = ξβtρ, ρ < 0, if k is intermediate,
i.e., if Equation (17) holds and if

ffiffiffi
k

p
Aðn/kÞ ⟶

n⟶∞
∞, then bρ

ðkÞ converges in probability towards ρ, as n⟶∞, andbβðk ; ρÞ converges in probability towards β, as n⟶∞.
Moreover, with W•

k ~ a Normalð0, 1Þ, • = R, B, σρ = ξ

ð1 − ρÞ3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρ2 − 2ρ + 1

p
/ρ, and σβ = ∣β ∣ ð1 − ρÞ ffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2ρ
p /∣ρ ∣ ,

bρ k ; τð Þ=d ρ +
σρffiffiffi

k
p

A n/kð Þ
WR

k + op 1ð Þ,

bβ k ; ρð Þ=d β +
σβffiffiffi

k
p

A n/kð Þ
WB

k + op 1ð Þ:
ð31Þ

As stated earlier, the estimates of β and ρ are computed at
the high level k1 and the following results in Caeiro and
Gomes [37] hold true.

Theorem 10 (Caeiro and Gomes [37]). Under the conditions
of the previous theorem, with bρ = bρðk1 ; τÞ for any τ and k1
such that

bρ − ρ = op
1

ln n

� �
, as n⟶∞, ð32Þ

bβðk ; bρÞ is consistent for the estimation of β. Moreover,

for models in Hall and Welsh class and with bβ ≔ bβðk1, bρÞ,
we may further say that bβ − β =Opðln ðn/k1Þðbρ − ρÞÞ, at
most of the order of ðbρ − ρÞ ln n.

In addition to the classes presented in Equations (27)
and (29), we also refer the classes introduced in Goegebeur
et al. [38], Ciuperca and Mercadier [39], Worms and Worms
[40], de Wet et al. [41], and Henriques-Rodrigues et al. [42],
among others, for the estimation of ρ and the classes intro-
duced in Caeiro and Gomes [35] and Gomes et al. [43], for
the estimation of β.

In this paper, we are going to work with adaptive esti-
mates of the BC parameters in Equations (13) and (22). So,
for the estimation of σ, we consider the following:

bσ = −
bρ k1ð Þ
H

n,k̂H0

, ð33Þ

with bρ the ρ estimator in Equation (27), k1 the high level
used in the estimation of the second-order parameters, and

H
n,k̂H0

the Hill estimator computed at the level k̂
H
0 ≔ kH0 ðbβ ,bρÞ, with kH0 ðβ, ρÞ≔ arg minkAMSEðHn,kÞ [44], given by

the following:

kH0 β, ρð Þ≔ 1 − ρð Þ2n−2ρ
−2ρβ2

 !1/ 1−2ρð Þ
: ð34Þ

For the estimation of a and with the misspecification
C = 1, we are going to consider:

â = bβ k1ð Þ, ð35Þ
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with bβ the β estimator in Equation (29). The associated

estimators of σ, bσðkÞ = bρðkÞ/bξðkÞ and a, considering C =
1, i.e. âðkÞ = bβðkÞ, which are consistent for the estimation
of σ and a, respectively, for sequences of k values such
that Equation (17) holds. The BC Hill estimator, in Equa-
tion (16), assuming that the BC parameters are adaptively
estimated has the functional form:

HBCH
n,k ≡HBC

n,k bσ , âð Þ≔ 1
kbσ〠

k

i=1
ln Xbσn−i+1:n + â

Xbσn−k:n + â

 !
, ð36Þ

with bσ and â presented in Equations (33) and (35),
respectively. The consistency of the BCH estimator in
Equation (36) for the estimation of the EVI, ξ, is pre-
sented in the next theorem.

Theorem 11. In Hall-Welsh class of models in Equation
(11), for intermediate k, i.e., for k values such that Equa-
tion (17) holds, with bσ and â presented in Equations (33)
and (35), consistent estimators of σ and a, respectively, then
HBC

n,kðbσ , âÞ⟶P ξ.

Proof. The delta method is not going to be directly applied
since the partial derivatives of the estimator HBC

n,kðbσ , âÞ, in
Equation (36), in order to ðσ, aÞ are complex. We first note
thatXn−i+1:n > Xn−k:n, 1 ≤ i ≤ k < n, with bσ a consistent estima-
tor of σ > 0 and â a consistent estimator of a > 0, and defining
â∗ ≔ r â, with r > 0 (a consistent estimator of a∗ = r a), then

Xn−i+1:n + â∗

Xn−k:n + â∗

� �bσ
≤
Xbσn−i+1:n + â

Xbσn−k:n + â
< Xn−i+1:n

Xn−k:n

� �bσ
: ð37Þ

k
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Figure 1: Mean values (left) and MSEs (right) of the estimators under study for samples of size n = 1000 from a Burr ξ,ρ=−0:5 parent with
ξ = 0:25 (top), ξ = 0:5 (middle), and ξ = 1 (bottom).
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If bσ ≥ 1, we can choose r = 1, and if 0 < bσ < 1, the value of
r depends upon the underlying model in study. So, we can
write the following:

Hâ∗
n,k ≔

1
k
〠
k

i=1
ln Xn−i+1:n + â∗

Xn−k:n + â∗

� �
≤

1
kbσ〠

k

i=1
ln Xbσn−i+1:n + â

Xbσn−k:n + â

 !

< 1
k
〠
k

i=1
ln Xn−i+1:n

Xn−k:n

� �
=Hn,k:

ð38Þ

The estimator in the upper bound is the Hill estimator,
Hn,k, in Equation (14), consistent for the estimation of ξ. For

the estimator in the lower bound, the delta method leads to
the following:

Hâ∗
n,k =

d Ha∗
n,k +

∂Ha∗
n,k

∂a∗
â∗ − a∗ð Þ 1 + op 1ð Þ� �

, ð39Þ

with

Ha⋆
n,k =

1
k
〠
k

i=1
ln Xn−i+1:n + a⋆

Xn−k:n + a⋆

� �
: ð40Þ

The estimator Ha∗
n,k is of the same type of the estimator

HðaÞ
n,k , in Equation (19), and is therefore consistent for the

k
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Figure 2: Mean values (left) and MSEs (right) of the estimators under study for samples of size n = 1000 from GP ξ parent with ξ = 0:5 (top),
ξ = 1 (middle), and ξ = 2 (bottom).
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estimation of ξ as proven in Section 2 of Gomes and Oliveira
[33]. The term ∂Ha∗

n,k/∂a∗ can be written as follows:

∂Ha∗
n,k

∂a∗
= 1
k
〠
k

i=1

Xn−k:n − Xn−i+1:n
Xn−i+1:nXn−k:n

= 1
k
〠
k

i=1

Xn−k:n/Xn−i+1:n − 1
Xn−k:n

:

ð41Þ

Let us next use the same kind of arguments referred to in
the proof of Theorem 5: Xi:n = d UðYi:nÞ, with Y a unit Pareto
r.v. and Uð:Þ the quantile function in Equation (11), for j > i,
Y j:n/Yi:n = d Y j−i:n−i, ln Yi:n = d Ei:n, where E denotes a stan-

dard exponential r.v., and Yn−k:n ~ p n/k, whenever Equation
(8) holds. Then, we have the following:

∂Ha∗
n,k

∂a∗
~p 1
kU n/kð Þ

−ξ
1 + ξ

, ð42Þ

and we can write the following:

Hâ∗
n,k =

d Ha∗
n,k −

â∗ − a∗ð Þ
kU n/kð Þ

ξ

1 + ξ
1 + op 1ð Þ� �

: ð43Þ

Working with k values such that Equation (17) holds and
given that â∗ is a consistent estimator of a∗ andHa∗

n,k is consis-

tent for the estimation of ξ, the estimator Hâ∗
n,k is also

k
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Figure 3: Mean values (left) and MSEs (right) of the estimators under study for samples of size n = 2000 from a Cauchy parent (top), a
Student t2 parent (middle), and a Student t4 parent (bottom).
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consistent for the estimation of ξ and the consistency of HBC
n,k

ðbσ , âÞ follows.
Remark 12. In the paper by Gomes and Oliveira [33], the

tuning parameter a of the estimator HðaÞ
n,k presented in

Remark 4 was estimated by the order statistic 1 − X1:n.

According to the authors, the estimator Hð1−X1:nÞ
n,k is consis-

tent for the estimation of ξ, with asymptotic distributional
properties similar to those of the Hill estimator, for models
in D+

M with finite left endpoint.

Remark 13. The estimator Hâ∗
n,k has the same functional form

of the shifted Hill estimator introduced in Aban and
Meerschaert [45]. The shifted Hill estimator was obtained

for shifted Pareto parents of the type FðxÞ = 1 − cðx + aÞ−1/ξ
and is a conditional maximum likelihood estimator of ξ.
The estimator is consistent for the estimation of ξ even
though â is not consistent for the estimation of a under a

semiparametric framework (see Remark 2.1 of Gomes et al.
[46]).

4. Finite Sample Behaviour of the Estimators

To assess the finite sample behaviour of the BC Hill estima-
tors, in Equations (16) and (36), we have implemented a
multisample Monte Carlo simulation experiment of size
1000 × 10 (see Gomes and Oliveira [47], for further details
on multisample simulation) for sample sizes n = 200, 500,
1000, 2000, and 5000, from the following models:

(1) The Burr ξ,ρ model with d.f. FðxÞ = 1 − ð1 + x−ρ/ξÞ1/ρ,
x > 0, ξ = f0:25,0:5,1g, and ρ = −0:5,

(2) The generalized Pareto model, GP ξ, with d.f. FðxÞ
= 1 − ð1 + ξxÞ−1/ξ, x ≥ −1/ξ, and ξ = f0:25,0:5,1g,

(3) The Cauchy model, with d.f. FðxÞ = 1/2 + 1/π
arctan x, x ∈ R, and ξ = 1,

Table 2: Box-Cox estimates and associated 95% CIs based on 10 replicates with 1000 runs each.

200 500 1000 2000 5000

Burr parent with ξ = 0:25 and ρ = −0:5
σ = 2 2:2759 ± 0:0060 2:4373 ± 0:0031 2:5529 ± 0:0044 2:6605 ± 0:0034 2:8112 ± 0:0027
a = 1 1:0114 ± 0:0001 1:0116 ± 0:0001 1:0114 ± 0:0000 1:0120 ± 0:0001 1:0125 ± 0:0000

Burr parent with ξ = 0:5 and ρ = −0:5
σ = 1 1:1404 ± 0:0030 1:2206 ± 0:0035 1:2758 ± 0:0026 1:3321 ± 0:0025 1:4035 ± 0:0018
a = 1 1:0113 ± 0:0001 1:0115 ± 0:0001 1:0115 ± 0:0000 1:0121 ± 0:0000 1:0124 ± 0:0000

Burr parent with ξ = 1 and ρ = −0:5
σ = 0:5 0:5696 ± 0:0009 0:6113 ± 0:0010 0:6375 ± 0:0011 0:6658 ± 0:0012 0:7034 ± 0:0006
a = 1 1:0114 ± 0:0001 1:0114 ± 0:0001 1:0114 ± 0:0000 1:0121 ± 0:0000 1:0125 ± 0:0000

GP parent with ξ = 0:5
σ = 1 1:1426 ± 0:0047 1:2199 ± 0:0027 1:2760 ± 0:0030 1:3318 ± 0:0024 1:4045 ± 0:0012
a = 2 1:0114 ± 0:0001 1:0115 ± 0:0001 1:0115 ± 0:0001 1:0121 ± 0:0001 1:0125 ± 0:0000

GP parent with ξ = 1
σ = 1 0:7774 ± 0:0027 0:7998 ± 0:0017 0:8166 ± 0:0013 0:8347 ± 0:0013 0:8611 ± 0:0008
a = 1 0:9913 ± 0:0001 0:9925 ± 0:0001 0:9930 ± 0:0001 0:9928 ± 0:0001 0:9927 ± 0:0000

GP parent with ξ = 2
σ = 1 1:0880 ± 0:0018 1:1165 ± 0:0010 1:1331 ± 0:0015 1:1409 ± 0:0013 1:1519 ± 0:0006
a = 0:5 1:0133 ± 0:0005 1:0152 ± 0:0003 1:0157 ± 0:0001 1:0166 ± 0:0002 1:0172 ± 0:0001

Cauchy parent with ξ = 1
σ = 2 1:9266 ± 0:0043 2:0056 ± 0:0042 2:0507 ± 0:0039 2:0859 ± 0:0020 2:1143 ± 0:0019
a = 2/3 1:0524 ± 0:0005 1:0536 ± 0:0002 1:0551 ± 0:0001 1:0554 ± 0:0001 1:0577 ± 0:0001

Student t2 parent with ξ = 0:5
σ = 2 1:3044 ± 0:0046 1:3636 ± 0:0048 1:3944 ± 0:0028 1:4171 ± 0:0018 1:4397 ± 0:0022
a = 1:5 1:0133 ± 0:0002 1:0143 ± 0:0001 1:0146 ± 0:0001 1:0148 ± 0:0000 1:0155 ± 0:0000

Student t4 parent with ξ = 0:25
σ = 2 1:7947 ± 0:0082 1:9771 ± 0:0078 2:0919 ± 0:0056 2:1934 ± 0:0031 2:3023 ± 0:0040
a = 10/3 1:0236 ± 0:0002 1:0242 ± 0:0001 1:0245 ± 0:0001 1:0247 ± 0:0001 1:0257 ± 0:0000
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(4) The Student tv model, with d.f. FðxÞ = Γððν + 1Þ/2Þ
/Γðν/2Þ ffiffiffiffiffiffi

πν
p Ð x

−∞ ð1 + ðy2/νÞÞ−ðν+1Þ/2dy, x ∈ R, and ν

> 0, where Γ denotes the (complete) gamma func-
tion, ξ = f0, 5, 0:25g (ξ = 1/ν).

In Figures 1–3, we present the mean values, Eð:Þ, and
mean squared errors, MSEð:Þ, for the models under study
provided by the Hill estimator, H, in Equation (14), the BC

Hill r.v. in Equation (16), assuming that the BC parameters
are known and denoted by BCH 0 in the figures, the BC Hill
estimator, BCH, in Equation (36), assuming that the BC
parameters are adaptively estimated by Equations (33) and
(35), and the MVRB EVI estimator, CH, in Equation (15)
for comparison. From Figures 1–3, we can state that:

(i) The BCH estimator beats the Hill estimator for all
simulated models and for all k values, as it presents

Table 3: Optimal sample fraction and associated 95% CIs based on 10 replicates with 1000 runs each.

200 500 1000 2000 5000

Burr parent with ξ = 0:25 and ρ = −0:5
H 0:0645 ± 0:0887 0:0446 ± 0:0555 0:0357 ± 0:0991 0:0319 ± 0:0342 0:0290 ± 0:0342
CH 0:1225 ± 0:1311 0:0740 ± 0:1267 0:0635 ± 0:1261 0:0501 ± 0:0834 0:0427 ± 0:0847
BCH 0:4730 ± 0:1929 0:4242 ± 0:3135 0:4001 ± 0:1553 0:3971 ± 0:1352 0:3917 ± 0:2153

Burr parent with ξ = 0:5 and ρ = −0:5
H 0:0670 ± 0:0751 0:0448 ± 0:0643 0:0360 ± 0:0261 0:0308 ± 0:0748 0:0291 ± 0:0449
CH 0:1335 ± 0:1371 0:0748 ± 0:1199 0:0594 ± 0:0796 0:0497 ± 0:0782 0:0409 ± 0:0951
BCH 0:5010 ± 0:1320 0:4238 ± 0:2908 0:4030 ± 0:1653 0:3903 ± 0:1700 0:3922 ± 0:1698

Burr parent with ξ = 1 and ρ = −0:5
H 0:0645 ± 0:0729 0:0452 ± 0:0456 0:0352 ± 0:0553 0:0325 ± 0:0645 0:0294 ± 0:0514
CH 0:1265 ± 0:1547 0:0840 ± 0:1294 0:0614 ± 0:1679 0:0490 ± 0:1167 0:0426 ± 0:0862
BCH 0:4830 ± 0:2557 0:4194 ± 0:3387 0:3977 ± 0:2099 0:3946 ± 0:2314 0:3939 ± 0:1347

GP parent with ξ = 0:5
H 0:0620 ± 0:0592 0:0414 ± 0:0523 0:0382 ± 0:0708 0:0304 ± 0:0609 0:0288 ± 0:0353
CH 0:1295 ± 0:1783 0:0844 ± 0:1299 0:0615 ± 0:1447 0:0473 ± 0:0936 0:0407 ± 0:0871
BCH 0:1470 ± 0:0973 0:0844 ± 0:1299 0:0579 ± 0:0859 0:0445 ± 0:1082 0:0366 ± 0:0935

GP parent with ξ = 1
H 0:1745 ± 0:1247 0:1352 ± 0:0839 0:1182 ± 0:1179 0:1076 ± 0:1555 0:0993 ± 0:1192
CH 0:6810 ± 0:1458 0:6810 ± 0:1148 0:6839 ± 0:1014 0:6799 ± 0:0662 0:6777 ± 0:1206
BCH 0:7815 ± 0:1170 0:7802 ± 0:1236 0:7839 ± 0:1599 0:7895 ± 0:1218 0:7932 ± 0:1745

GP parent with ξ = 2
H 0:3825 ± 0:1465 0:3384 ± 0:2355 0:3048 ± 0:3279 0:2863 ± 0:4116 0:2681 ± 0:3300
CH 0:5695 ± 0:1330 0:5244 ± 0:1528 0:4578 ± 0:3913 0:4362 ± 0:4030 0:3929 ± 0:4868
BCH 0:4260 ± 0:1367 0:3756 ± 0:1937 0:3342 ± 0:2768 0:3050 ± 0:2726 0:2606 ± 0:4894

Cauchy parent with ξ = 1
H 0:4540 ± 0:011 0:3418 ± 0:0151 0:2971 ± 0:0073 0:2510 ± 0:0094 0:2032 ± 0:0060
CH 0:5637 ± 0:0180 0:4399 ± 0:0121 0:3909 ± 0:0094 0:3260 ± 0:0100 0:2693 ± 0:0110
BCH 0:5820 ± 0:0197 0:4473 ± 0:0117 0:3947 ± 0:0083 0:3416 ± 0:0059 0:2897 ± 0:0053

Student t2 parent with ξ = 0:5
H 0:2345 ± 0:0125 0:1554 ± 0:0064 0:1139 ± 0:0072 0:0956 ± 0:0048 0:0709 ± 0:0036
CH 0:5449 ± 0:0171 0:4729 ± 0:0133 0:4211 ± 0:0113 0:4009 ± 0:0061 0:3779 ± 0:0060
BCH 0:6799 ± 0:0349 0:6077 ± 0:0123 0:5371 ± 0:0125 0:4912 ± 0:0081 0:4479 ± 0:0065

Student t4 parent with ξ = 0:25
H 0:0943 ± 0:0089 0:0597 ± 0:0058 0:0457 ± 0:0030 0:0312 ± 0:0018 0:0208 ± 0:0007
CH 0:1633 ± 0:0153 0:1020 ± 0:0109 0:0670 ± 0:0058 0:0461 ± 0:0032 0:0301 ± 0:0010
BCH 0:2126 ± 0:0150 0:1176 ± 0:0090 0:0713 ± 0:0048 0:0460 ± 0:0033 0:0266 ± 0:0024
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smaller absolute bias and the minimum MSE is
smaller than the minimumMSE of the Hill estimator;

(ii) For the simulated Burr ξ,ρ models, the BCH estima-
tor underestimates the true value of ξ for k values
larger than 400. The MSE exhibit the usual shape
being the minimum values smaller than the ones
of the CH estimator. Note that if X has a Burr ξ,ρ
distribution, then X−ρ/ξ + 1 has a strict Pareto distri-

bution and this could justify the excellent results of
the BCH 0 statistic;

(iii) For the GP ξ models with ξ = f0:5,1g, the mean
values of the CH and BCH estimators almost over-
lap for a wide region of k values (k < 500, when ξ
= 0:5 and k < 600, when ξ = 1), and from that k
value forward, the bias of the BCH estimator is
smaller than the one of the CH estimator. When ξ

Table 4: Simulated mean values at optimal levels and associated 95% CIs based on 10 replicates with 1000 runs each.

200 500 1000 2000 5000

Burr parent with ξ = 0:25 and ρ = −0:5
H 0:2872 ± 0:0042 0:2702 ± 0:0023 0:2597 ± 0:0032 0:2563 ± 0:0010 0:2519 ± 0:0006
CH 0:2827 ± 0:0020 0:2681 ± 0:0022 0:2640 ± 0:0017 0:2579 ± 0:0011 0:2534 ± 0:0007
BCH 0:2438 ± 0:0005 0:2459 ± 0:0008 0:2478 ± 0:0003 0:2487 ± 0:0002 0:2495 ± 0:0002

Burr parent with ξ = 0:5 and ρ = −0:5
H 0:5775 ± 0:0068 0:5404 ± 0:0047 0:5235 ± 0:0021 0:5096 ± 0:0035 0:5054 ± 0:0018
CH 0:5687 ± 0:0053 0:5363 ± 0:0038 0:5254 ± 0:0031 0:5154 ± 0:0020 0:5051 ± 0:0014
BCH 0:4870 ± 0:0011 0:4921 ± 0:0011 0:4953 ± 0:0007 0:4979 ± 0:0004 0:4991 ± 0:0003

Burr parent with ξ = 1 and ρ = −0:5
H 1:1476 ± 0:0135 1:0805 ± 0:0076 1:0446 ± 0:0085 1:0285 ± 0:0047 1:0125 ± 0:0029
CH 1:1324 ± 0:0097 1:0830 ± 0:0067 1:0544 ± 0:0087 1:0273 ± 0:0064 1:0099 ± 0:0034
BCH 0:9751 ± 0:0027 0:9854 ± 0:0020 0:9918 ± 0:0014 0:9952 ± 0:0013 0:9980 ± 0:0008

GP parent with ξ = 0:5
H 0:5705 ± 0:0062 0:5431 ± 0:0037 0:5265 ± 0:0047 0:5126 ± 0:0023 0:5045 ± 0:0014
CH 0:5662 ± 0:0039 0:5344 ± 0:0042 0:5265 ± 0:0039 0:5081 ± 0:0024 0:5044 ± 0:0015
BCH 0:5688 ± 0:0034 0:5458 ± 0:0040 0:5286 ± 0:0031 0:5161 ± 0:0028 0:5073 ± 0:0020

GP parent with ξ = 1
H 1:0686 ± 0:0083 1:0384 ± 0:0033 1:0224 ± 0:0038 1:0151 ± 0:0031 1:0070 ± 0:0015
CH 1:0036 ± 0:0046 1:0009 ± 0:0020 1:0003 ± 0:0009 1:0001 ± 0:0010 0:9999 ± 0:0007
BCH 0:9974 ± 0:0027 0:9981 ± 0:0013 0:9989 ± 0:0008 0:9993 ± 0:0006 0:9998 ± 0:0004

GP parent with ξ = 2
H 2:0798 ± 0:0057 2:0474 ± 0:0072 2:0294 ± 0:0046 2:0197 ± 0:0053 2:0089 ± 0:0022
CH 2:0626 ± 0:0045 2:0449 ± 0:0029 2:0268 ± 0:0034 2:0177 ± 0:0030 2:0084 ± 0:0014
BCH 1:8812 ± 0:0034 1:9084 ± 0:0037 1:9254 ± 0:0028 1:9327 ± 0:0019 1:9406 ± 0:0008

Cauchy parent with ξ = 1
H 1:0794 ± 0:0050 1:0547 ± 0:0045 1:0411 ± 0:0027 1:0307 ± 0:0024 1:0212 ± 0:0014
CH 1:0656 ± 0:0053 1:0487 ± 0:0028 1:0386 ± 0:0031 1:0282 ± 0:0023 1:0204 ± 0:0018
BCH 0:9236 ± 0:0031 0:9524 ± 0:0025 0:9627 ± 0:0018 0:9731 ± 0:0012 0:9823 ± 0:0008

Student t2 parent with ξ = 0:5
H 0:5858 ± 0:0035 0:5556 ± 0:0035 0:5414 ± 0:0023 0:5359 ± 0:0021 0:5267 ± 0:0018
CH 0:5176 ± 0:0017 0:5101 ± 0:0019 0:5059 ± 0:0014 0:5049 ± 0:0007 0:5020 ± 0:0006
BCH 0:5060 ± 0:0035 0:5067 ± 0:0016 0:5052 ± 0:0008 0:5040 ± 0:0006 0:5019 ± 0:0006

Student t4 parent with ξ = 0:25
H 0:3374 ± 0:0040 0:3163 ± 0:0036 0:3058 ± 0:0026 0:2957 ± 0:0012 0:2861 ± 0:0008
CH 0:3230 ± 0:0037 0:3069 ± 0:0035 0:2961 ± 0:0016 0:2889 ± 0:0014 0:2818 ± 0:0011
BCH 0:3161 ± 0:0029 0:3054 ± 0:0019 0:2958 ± 0:0017 0:2894 ± 0:0016 0:2814 ± 0:0016
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= 2, the BCH estimator underestimates ξ for almost
all k values, whereas the CH estimator overestimates
ξ for the same k values. Regarding the minimum
MSE, both estimators (CH and BCH) present simi-
lar values;

(iv) For the Cauchy model, the behaviour of CH and the
BCH estimator is similar to the behaviour observed
for the GP2 parent;

(v) For the Student tv models (ν = 2, 4), the sample paths
of the mean values of the CH and BCH estimators
overlap from small up to moderate values of k, and
from that value forward, the bias of the BCH estima-
tor is smaller. Regarding the minimum MSE, both
estimators (CH and BCH) present similar values.

In Table 2, we present the estimates of the BC parameters
σ and a, as described in Section 3, for the aforementioned

Table 5: Simulated MSE at optimal levels and associated 95% CIs based on 10 replicates with 1000 runs each.

200 500 1000 2000 5000

Burr parent with ξ = 0:25 and ρ = −0:5
H 0:0062 ± 0:0003 0:0028 ± 0:0001 0:0015 ± 0:0000 0:0008 ± 0:0000 0:0003 ± 0:0000
CH 0:0037 ± 0:0001 0:0018 ± 0:0001 0:0010 ± 0:0000 0:0006 ± 0:0000 0:0002 ± 0:0000
BCH 0:0007 ± 0:0000 0:0003 ± 0:0000 0:0001 ± 0:0000 0:0001 ± 0:0000 0:0000 ± 0:0000

Burr parent with ξ = 0:5 and ρ = −0:5
H 0:0251 ± 0:0009 0:0115 ± 0:0003 0:0063 ± 0:0002 0:0032 ± 0:0001 0:0013 ± 0:0000
CH 0:0145 ± 0:0005 0:0074 ± 0:0002 0:0043 ± 0:0001 0:0023 ± 0:0000 0:0010 ± 0:0000
BCH 0:0028 ± 0:0001 0:0012 ± 0:0000 0:0006 ± 0:0000 0:0003 ± 0:0000 0:0001 ± 0:0000

Burr parent with ξ = 1 and ρ = −0:5
H 0:1000 ± 0:0031 0:0462 ± 0:0014 0:0250 ± 0:0007 0:0124 ± 0:0004 0:0051 ± 0:0001
CH 0:0580 ± 0:0017 0:0289 ± 0:0007 0:0171 ± 0:0005 0:0088 ± 0:0003 0:0038 ± 0:0001
BCH 0:0116 ± 0:0002 0:0050 ± 0:0001 0:0025 ± 0:0001 0:0013 ± 0:0000 0:0005 ± 0:0000

GP parent with ξ = 0:5
H 0:0251 ± 0:0007 0:0114 ± 0:0004 0:0061 ± 0:0001 0:0032 ± 0:0001 0:0013 ± 0:0000
CH 0:014 ± 0:0006 0:0073 ± 0:0002 0:0041 ± 0:0001 0:0022 ± 0:0001 0:0009 ± 0:0000
BCH 0:0108 ± 0:0004 0:0064 ± 0:0002 0:0039 ± 0:0001 0:0022 ± 0:0001 0:0009 ± 0:0000

GP parent with ξ = 1
H 0:0314 ± 0:0009 0:0144 ± 0:0003 0:0077 ± 0:0001 0:0041 ± 0:0001 0:0018 ± 0:0001
CH 0:0076 ± 0:0002 0:0030 ± 0:0001 0:0015 ± 0:0001 0:0008 ± 0:0000 0:0003 ± 0:0000
BCH 0:0058 ± 0:0002 0:0024 ± 0:0000 0:0012 ± 0:0000 0:0006 ± 0:0000 0:0002 ± 0:0000

GP parent with ξ = 2
H 0:0551 ± 0:0016 0:0243 ± 0:0005 0:0128 ± 0:0003 0:0067 ± 0:0003 0:0027 ± 0:0001
CH 0:0373 ± 0:0009 0:0165 ± 0:0002 0:0089 ± 0:0002 0:0047 ± 0:0002 0:0020 ± 0:0000
BCH 0:0469 ± 0:0006 0:0237 ± 0:0004 0:0144 ± 0:0005 0:0095 ± 0:0003 0:0059 ± 0:0001

Cauchy parent with ξ = 1
H 0:0365 ± 0:0011 0:0168 ± 0:0005 0:0094 ± 0:0003 0:0053 ± 0:0001 0:0025 ± 0:0001
CH 0:0283 ± 0:0008 0:0130 ± 0:0004 0:0073 ± 0:0002 0:0041 ± 0:0001 0:0020 ± 0:0001
BCH 0:0227 ± 0:0005 0:0099 ± 0:0003 0:0057 ± 0:0002 0:0031 ± 0:0001 0:0015 ± 0:0000

Student t2 parent with ξ = 0:5
H 0:0236 ± 0:0005 0:0117 ± 0:0003 0:0069 ± 0:0002 0:0043 ± 0:0001 0:0022 ± 0:0000
CH 0:0064 ± 0:0002 0:0025 ± 0:0001 0:0013 ± 0:0000 0:0007 ± 0:0000 0:0003 ± 0:0000
BCH 0:0041 ± 0:0001 0:0017 ± 0:0000 0:0009 ± 0:0000 0:0005 ± 0:0000 0:0002 ± 0:0000

Student t4 parent with ξ = 0:25
H 0:0210 ± 0:0006 0:0114 ± 0:0003 0:0071 ± 0:0002 0:0048 ± 0:0001 0:0028 ± 0:0001
CH 0:0124 ± 0:0004 0:0070 ± 0:0001 0:0046 ± 0:0001 0:0032 ± 0:0001 0:0020 ± 0:0001
BCH 0:0080 ± 0:0002 0:0055 ± 0:0001 0:0041 ± 0:0001 0:0031 ± 0:0001 0:0020 ± 0:0001
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models. Information on the 95% confidence intervals (CIs),
computed on the basis of 10 replicates with 1000 runs each,
is also provided. The simulated data used to support the find-
ings of this study are available from the corresponding author
upon request.

Next, and based on the 1000 runs, we computed the

simulated optimum level, i.e., the level k̂0 ≔ arg minkMSE
ðbξðkÞÞ, with bξ =H, CH, BCH, and present in Tables 3–5
the simulated values of the optimal sample fraction (the
optimal level divided by the number of positive elements
in the sample), the mean value of each estimator computed
at k̂0, and the MSE of each estimator also computed at k̂0.
For each model, the smallest absolute bias and the smallest
MSE are written in bold. Information on the 95% CIs,
computed on the basis of 10 replicates with 1000 runs
each, is also provided.

Table 2 shows that the estimation of a works well for
models with first-order scale parameter, C = 1, such as the
Burr and GP1, as expected and that the estimation of σ could
be improved in some parents. However, from Tables 4 and 5,
we noticed that the precise estimation of σ has more impact
on the behaviour of the BCH estimator in some models, like
the GP0:25 and GP0:5 than on other models.

At optimal levels, the BCH estimator is always better
than the CH estimator for all simulated Burr parents, and
in this case, the misspecification C = 1 has no impact on
the BCH estimator since C = 1 (see Table 1). The simulated
mean values, at optimal levels, of the CH estimator are better
than the ones of the BCH estimator for all GP parents, but
the BCH estimator has competitive MSEs for the GP0:5 and
GP1 parents. For the Cauchy and Student t2 and t4 parents,
the BCH estimator is better than the CH estimator for
almost all sample sizes, even with the misspecification C =
1.

5. Concluding Remarks and Future Work

In this paper, we have studied the BC Hill estimator intro-
duced by Teugels and Vanroelen, in 2004. We proved the
consistency and asymptotic normality of the estimators
and with the appropriate choice of the BC parameters we
were able to obtain a new class of MVRB EVI estimators.
We considered the adaptive estimation of the BC parame-
ters, and the finite sample behaviour of the estimators was
illustrated by a Monte Carlo simulation study. From the
simulation study, we conclude that the BC Hill estimator
performs better than the corrected Hill estimator for several
heavy-tailed models in terms of simulated mean values and
simulated MSEs. Furthermore, the estimation procedure
presents some robustness to the estimation of the BC param-
eters, as can be depicted by the misspecification of the first-
order scale parameter, C = 1. Note that several heavy-tailed
models satisfy this criterion. The estimation of the BC
parameters could be improved by deriving the maximum
likelihood estimators, a topic under development and out
of the scope of this paper. Other topics of interest for future
research, out of the scope of this paper, are the determina-
tion of the optimal level k used to compute the BC EVI esti-

mates and the use of the BC Hill estimator to derive new
classes of estimators for other parameters of extreme events
such as high quantiles and the second-order shape parame-
ter, ρ.
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