Defect and Diffusion Forum Vols. 312-315 (2011) pp 871-876
Online available since 2011/Apr/20 at www.scientific.net

© (2011) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/DDF.312-315.871

Fluid Flow and Solid/Fluid Suspensions Flow in 3-D Packed Beds of
Spheres: the Effect of Periodicity of Fixed Beds

A. Serrenho’?® and A.F. Miguel "**

'Geophysics Centre of Evora, Rua Romao Ramalho 59, 7000-671 Evora, Portugal
?Department of Civil Engineering, National University of Ireland, Galway, Ireland
3Department of Physics, University of Evora, PO Box 94, 7002-554 Evora, Portugal

“ana.serrenho@gmail.com ,**afm@uevora.pt

Keywords: Packed beds, fluid flow, solid/fluid suspensions flow, permeability, inertial factor,
penetration efficiency, deposition

Abstract. A 3-D numerical study is performed to investigate the effects of periodicity (geometry)
on flow of fluid and on flow of solid/fluid suspensions in packing arrangements of fixed beds of
spheres. The porosity is fixed at 0.58 and the following packing arrangements are studied: simple
cubic, face-centered cubic, hexagonal, rhomboedric hexagonal and tetragonal. Simulations are
carried out at Reynolds numbers ranging from 0.1 and 50, and using solid suspensions with
different sizes (0.2, 2 and 10 micron) and densities (200 and 2000 kg/m®). The effect of the
periodicity on fluid flow characteristics (permeability and inertia parameter) and on the penetration
efficiency of solid suspensions within the packed beds is analyzed and quantified.

Introduction

A set of non-overlapping solid objects is called a packing. The interest in packing structures dates
back to early times when the grain packings called “heaps” were the first things that were ever
measured in ancient civilizations both for trading or taxes collection [1]. Packing structures has also
fascinated scientists for centuries. They have served as models to understand the structure of liquid
and crystal states of matter, heterogeneous materials and granular media [2-5].

Sphere packing is a very common type of particle packing and has been studied by biologists,
materials scientists, engineers, chemists, and physicists [5,6].. Packings of identical spheres are
commonly used for several operations such as in granular media for fluid flow, and for processes
involving absorption, adsorption of a solute, distillation, filtration and separation [7,8]. Despite its
importance and long history [7], there are some fundamental issues concerning packings of spheres
that remain elusive, including the precise effect of packing arrangements on flow of solid/fluid
suspensions (e.g., aerosol transport and deposition). Therefore, the effect of periodicity (geometry)
is of fundamental importance in a wide variety of environmental, biological and technological
processes.

Nearly half millennium ago, Johannes Kepler [9] stated that the face-centered cubic packing is
the way pack identical spheres together in the densest possible way (i.e., porosity of 1-m/ 182 (~
0.260) and packing density /1 gl? ). This arrangement found in cannonballs piled at war memorials
or fruit arrangements was called the Kepler conjecture [10]. The packing structure can also be
presented within different arrangements (e.g., cubic, hexagonal, orthorhombic, etc.). In case of
identical spheres, together in the densest possible way, the packing density of these structures varies
between /182 (rhomboedric hexagonal or face-centered cubic) and /6 (simple cubic).

The characteristics of packing affects local fluid, mass and heat transport. Therefore, the packing
arrangement is directly relevant to macroscopic key parameters such as the fluid permeability and
the particle penetration coefficient [7,11]. In this paper, we study the effect of periodicity
(geometry) in fixed beds of spheres (i.e., non-overlapping solid objects) both on flow of fluid and
flow of solid/fluid suspension via direct numerical simulation. The following packing arrangements
are studied: simple cubic, face-centered cubic, hexagonal, rhomboedric hexagonal and tetragonal.
To obtain only the effect of periodicity, the spheres diameter and the porosity are the same for all
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872 Diffusion in Solids and Liquids VI

theses packing arrangements. The fluid dynamics of the suspending fluid is solved using Navier-
Stokes equations and solid suspensions by means the force balance on the particle written in a
Lagrangian reference frame.

Numerical simulation: model of packed beds of spheres and gas-solid suspension flows

Model of Packed Beds of Spheres. We simulate fluid and solid/fluid suspension flows through 5
packing structures in fixed spheres: models SCU (simple cubic), FCC (face-centered cubic), ORT
(orthogonal), HEX (hexagonal), RHE (rhomboedric hexagonal) and TET (tetragonal). These
structures are constructed with spheres of same diameter and have the same porosity (Table 1).

What is the impact of periodicity (geometry) on the fluid flow? and on the solid/fluid
suspensions flow? The answers are provided via numerical simulation described next.

3D Numerical Determination of Fluid Flow. In the limit of incompressible flow, steady state fluid
flow is described by the equations

p(V.VV)=-Vp+puVviv (1)

Vv=0 2)
where v represents the local velocity, p is the pressure, and p and p are, respectively, the fluid
density and the dynamic viscosity. To numerically solve these equations in 3D, we used the code
Fluent [12] which is based on a finite volume scheme. The fluid velocity must vanish at fluid-solid
spheres interfaces and velocity is prescribed at the inlet of each packing arrangement while outflow
boundary conditions are set at the exit.

Grids were generated in Gambit [12] for all packing arrangements. The cell size of the grid
where high gradients of velocities are expected is varied to ensure a grid independent solution.
Grids with 49365-60718 cells and 12615-15150 nodes are found to be appropriate for present study.

Table 1 - Ordered packings of spheres with same sphere diameter and porosity.

Packing Model Arrangement | Packing Density Porosity
simple cubic SCU
face-centered cubic FCC
Orthogonal ORT 0.42 0.58
Hexagonal HEX

rhomboedric hexagonal | RHE

Tetragonal TET

The permeability and the inertia coefficient of each packing structure are calculated by applying
the so-called Forchheimer equation [7,13]

Ap _p 2
LK u+ pou 3)

Here u is the superficial fluid velocity, K is the permeability, Ap/L is the pressure drop and a is
an inertial coefficient. Eq. (3) is not a purely empirical expression since it can be derived by an
adequate average of the Navier-Stokes equation for steady and incompressible laminar flow of a
Newtonian fluid in a rigid porous medium [14]. For convenience, Eq. (3) is often rearranged in a
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friction factor-Reynolds number dimensionless correlation. Here, following a suggestion of Miguel

[15] is rearranged in a friction factor- Forchheimer number dimensionless correlation as follows

f, = L +1 4)
Foy

where f, is the friction factor (=Ap/ (pocLuz)), Fok is the Forchheimer number based on permeability

(=ARex), Rek is the Reynolds number based on permeability (=puK1/ 2/ w) and A is the dimensionless

inertia parameter (:OLKI/ %). Eq. (4) may be used to correlate data from a large variety of packed

structures and a broad range of flow conditions.

Numerical Solid-Suspension Dynamics. There are two important aspects of solid/fluid suspension
dynamics: the motion of the particles in the fluid and the interaction of the particles with the solid
spheres of the packing arrangement. Once the steady flow field is obtained, the motion of the
particles in the fluid may be pursued with the Lagrangian type equation of motion [11]

1/2
duy, 1]18u 1 d 216mpc, T
—Lr=—]—clu-u J+—p—lu-u |J+&p| —F—2— 5
it p,| o )r gy lo-u,) &p( rd3c At ©
. d . . . . .
with ¢, :Cdp—p‘up —u‘ for micrometer and ¢, -1 for submicrometer particles [7], u, is particle

24 Ce

velocity, cq is drag coefficient, c. is the Cunningham slip correction factor [7], & is the zero-mean
unit-variance-independent Gaussian random number, og is the Boltzmann constant, p, is the
particle density, and T is the absolute fluid temperature. Here the first right-hand term represents the
drag force, the second right-hand term is the lift force due to shear, the third right-hand term
denotes a force arising from Brownian collisions and the fourth right-hand term represents the effect
of force of gravity on the particle. This motion of the particles in the fluid is also solved by the code
Fluent [12]. The components of random force (third right-hand term) are evaluated at each time
step. In this study, the particle is trapped at the solid spheres of the packing arrangement at first
collision.

Particles (density 200 and 2000 kg/m’, diameters between 0.2 and 10 um) are released at the
inlet of the packing structure cavity and tracked through the structure until they are trapped on the
solid spheres or escape through the outlet of the structure. The particles penetration efficiency, I1, is
evaluated using a particle counting technique, and defined as the ratio of outlet, ny,, and inlet
particle number , njy,

n

[P (©)
n.

inl

For the sake of convenience, the results are presented in terms of penetration efficiency per
number of solid spheres, [y, given by

M= %

spheres

where Ngpheres 1S the total number of solid spheres that compose the packing structure.

Results and Discussion

First, we have performed complete 3D numerical simulations of air flow through packing
structures, composed by spheres of diameter dcsr (des/=constant), that are depicted in Table 1. Fig. 1
shows the flow pathlines for the packing structures subjected to low Reynolds conditions (Re=0.2)
and high Reynolds conditions (Re=40). As shown in this figure, the situation is different at low and
high Re: the predominant viscous forces in the momentum transport through the void geometry
generates a more uniform "pathlines" velocities at Re=0.2, whereas at Re=40 "channels" of air flow
are generated due to the relevant contribution of inertial forces.
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Simple Cubic
SCU 1.E+03 3
1.E+02 4
) 1.E+01 =
Face-Centered 3
Cubic = ]
/3 (5) w="1E+00 =
1.E-01 =
Hexagonal 1.E-02 ;*
HEY 3
1.6-03 |

1.E-04 1.E-02 1.E+00 1.E+02
Foy
Tetragonal
TET

Figure 2 - The friction factor (fy) versus the
i Forchheimer number (Fok): solid and dashed lines
Wt R represent Eq. 4, solid line best fits Darcy regime,
dashed line best fits nonlinear regime, and e
represents results of the numerical simulations

Figure 1 - Flow pathlines within the
packing arrangements (longitudinal
section).

After simulating and averaging the overall pressure drops for different inlet velocities, we
estimated the coefficients K and a. Eq. (3) was successfully correlated with our numerical data and
the permeability and the inertial coefficient were obtained from the best fit (Table 2). Although both
the porosity and diameter of spheres are the same, Table 2 shows that the permeability and the
inertial coefficient are not the same for the packing structures. They fall into the range of 1.82x107-
3.4x10® m” and 1650-2525 m™, respectively. Only the following packings arrangements present
very similar parameters: FCC and TET, RHE and ORT, and SCU and HEX. Notice that SCU and
HEX detach from the others arrangements because they present the highest permeability and the
lowest inertial coefficient. Packing models FCC, TET, RHE and ORT show permeabilities within
the same range of magnitude (~2x10™ m?).

Table 2 - Ordered packings of spheres: permeability and inertial coefficient.

Packing Model Porosity Permeability Inertial Coefficient

(m?» 10?® (1/m)
simple cubic SCU 3.40 1650
face-centered cubic FCC 1.82 2525
Orthogonal ORT 0.58 2.24 2241
Hexagonal HEX 3.20 1795
rhomboedric hexagonal | RHE 2.12 2277
Tetragonal TET 1.93 2496

In Fig. 2, we show both the results obtained with Eq. (4) and from the simulations performed
with the packing arrangements. As shown in this figure, Eq. (4) is in agreement with our data and
the transition from linear (Darcy's law) to nonlinear (inertial) behavior is in the range 0.08 < Fog <
0.7.

The penetration efficiency per number of solid spheres is documented in Table 3. It is seen that,
when the Reynolds number increases the probability to escape is higher but the size and the density
of the particles don't have any particular effect on I'ly. The situation changes drastically for big size
and heavy particles under high Reynolds conditions. For particles with size 10 um and density 2000
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kg/m® (Rep=40), the penetration efficiency per number of solid spheres becomes lower for packing
structures FCC, RHE and TET, while it becomes higher for SCU and HEX. This observation can be
explained based on Fig. 1. Big size and heavy particles (i.e., particles with large inertia) have a
better chance to get escape from packing structures SCU and HEX due to the existence of well
defined preferential channels of fluid flow that enable particles to cross these structures without
contact with solid spheres.

Table 3 - Penetration efficiency per solid sphere 717y

particles density 200 kg/m’ particles density 2000 kg/m’

Rep (pud.s/p) Rep (pud./p)

0.2 40 0.2 40

Packin
Mod elg Particles size (um) | Particles size (um) | Particles size (um) | Particles size (um)

0.2 2 10 0.2 2 10 0.2 2 10 0.2 2 10

Iy 107 Iy 102 Iy 1072 Iy 10

SCU 25 | 25 | 25|28 |29 | 31 | 25 |25 |26 |29 | 30| 32

FCC 27 27 |28 | 3.0 | 3.1 | 32 | 27 | 27 | 27 | 3.1 | 32 | 23

HEX 27 27 |28 |30 | 31|32 27 |28 | 28 | 31 | 31 | 35

RHE 28 | 28 | 28 | 32 | 32 | 33 | 27 | 28 | 28 | 32 | 34 | 26

TET 27 127 |28 | 30 | 31 |31 |27 |27 |28 | 31| 3220

3.6E-02

3.2E-02 A

[ 28E02 1

2.4E-02 A

2.0E-02 T
1.E-05 1.E-04 1.E03 1.E02 1.E01 1.E+00 1.E+01 1.E+02
Stokes nhumber

Figure 3 - The penetration efficiency per number of solid spheres (I'ly) versus the Stokes number
(Eq. 8).

The penetration efficiency per number of solid spheres is also depicted in Fig. 3 in terms of
Stokes number expressed by

d2uc
st =5 (8)
18ud
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where St is the Stokes number and c, is the Cunningham slip correction factor [7]. According to
Fig. 3 we come to the conclusion that the influence of the Stokes number in Iy is negligible for
10°<St<10”. For 107<St<50, Ty increases with St (this dependence is more noteworthy for
107<St<0.2). The plot also reveals that for St>50, packing arrangements SCU and HEX experience

an abrupt increase of Iy but FCC, RHE and TET undergo an abrupt decrease of I'ly. Therefore, the
penetration efficiency variation profile of FCC, RHE and TET is different of the profile of SCU
and HEX. This finding is in agreement with the flow results depicted in Table 2.

Conclusion

The analysis carried out in this paper has shown how periodicity (geometry) influences the fluid
flow and the flow of solid suspensions in packing structure composed by fixed beds of spheres
(porosity constant). Simulations carried out at Reynolds numbers ranging from 0.1 and 50 and solid
suspensions of size 0.2, 2 and 10 micron show that: (7) packing arrangements SCU and HEX have
permeabilities ~3x10™®* m* and FCC, TET, RHE and ORT of ~ 2x10™® m%; (ii) packing arrangements
SCU and HEX present inertial coefficients of 1650-1795 m™ and the arrangements FCC, TET, RHE
and ORT of 2241-2525 m’', (iii) the transition from linear (Darcy's law) to nonlinear (inertial) fluid
flow behavior is in the range of 0.08 < Fog < 0.7, and (iv) big size and heavy particles have a better
chance to get escape from packing arrangements SCU and HEX than from FCC, RHE and TET.
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