Isotope geochemistry evidence for Laurussian-type sources of South Portuguese Zone Carboniferous turbidites (Variscan Orogeny)

Manuel Francisco Pereira1, Cristina Gama1, Ícaro Dias da Silva2, José Manuel Fuenlabrada3, José Brandão Silva2 and Jorge Medina4

1Instituto de Ciências da Terra, Departamento de Geociências, Escola de Ciências e Tecnologia, Universidade de Évora, Apt. 94, 7002-554 Évora, Portugal
2Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
3Unidade de Geocronologia, CAI de Ciências da Terra e Arqueometria, Universidade Complutense de Madrid, Calle José Antonio Novais, 12, 28040 Madrid, Spain
4GeBioTec, Departamento de Geociências, Universidade de Aveiro, 3810-193 Aveiro, Portugal

IDS, 0000-0002-1855-9410; JMP, 0000-0001-6687-8631; JM, 0000-0002-1885-7614
*Correspondence: mpereira@uevora.pt

Abstract: New Rb–Sr isotopic data from South Portuguese Zone (SPZ) turbidites show that the \(^{87}Sr/^{86}Sr(t)\) ratio increases from the basal Mértola Formation (Viséan–Serpukhovian: 0.706–0.707), through the Mira Formation (Serpukhovian–Bashkirian: 0.706–0.712) to the uppermost Brejoeira Formation (Bashkirian–Moscovian: 0.713–0.715). In addition, estimated Nd \(T_{DM}\) model ages for the Mértola (1.29–1.09 Ga), Mira (1.58–1.11 Ga) and Brejoeira (1.73–1.37 Ga) formations indicate a difference in the stratigraphy for their isotopic sources. The isotope geochemical data indicate significant changes in the sources from which the SPZ Carboniferous turbidites are derived. The progressive emplacement of the plutonic rocks and older basement units is consistent with the progressive degradation of a continental magmatic arc on the Laurussian margin. Mértola turbidites inherited their geochemical characteristics from an adjacent dissected Middle–Late Devonian continental magmatic arc. This reproductive history of the plutonic rocks and older basement units is consistent with the Mira and Brejoeira formations, with the increasing contribution of recycled ancient continental crust. The pronounced similarity between the Nd \(T_{DM}\) model ages and the detrital zircon populations of the Mira and Brejoeira formations (SW Iberian) suggest that they share a common Laurussian (West Avalonian/Meguma terrane)-type source but a contribution from Gondwanan (Gondwanan- type sources) cannot be discarded.

The chemical composition of siliciclastic sedimentary rocks is mainly determined by the provenance of terrigenous sediments, and thus by the original composition of the source rocks (McLennan et al. 2005). These sources may comprise a complex mixture of igneous, metamorphic and recycled sedimentary rocks (McLennan et al. 1993), which makes it difficult to distinguish between provenances using only petrographical studies. During the last two decades, major- and trace-element geochemistry and radiogenic isotopes for bulk samples have been successfully used in provenance studies (Rollinson 1993; Murphy and Nance 2002; McLennan et al. 2003; Ugidos et al. 2003; Fuenlabrada et al. 2016). Improvements in detrital zircon U–Pb geochronology techniques have also provided a powerful tool for evaluating the recognition of the range of different sources for siliciclastic sediments and sedimentary rocks (Gehrels 2012).

It has been demonstrated that the combined use of petrography, geochemistry and geochronology enables the recognition of different sources, identifies changes in provenance during the filling of sedimentary basins, and constrains the relevance of the tectonic setting in which siliciclastic sedimentary rocks were deposited (Dickinson et al. 1983; Thomas 2011). This approach can determine the relative contributions of distinct sources which provide detritus to the basins of a developing mountain chain as these settings commonly reflect evolving changes in source (Thomas et al. 2004).

In this paper, we investigate the provenance of Carboniferous siliciclastic strata from the synorogenic basins of SW Iberia in order to determine source terranes during the amalgamation of Pangaea during the Carboniferous (Appalachian–Variscan mountain belt). In SW Iberia, Carboniferous strata occur in three main tectonic units of the Variscan

First published online May 20, 2020, https://doi.org/10.1144/SP503-2019-163
© 2020 The Author(s). Published by The Geological Society of London. All rights reserved.