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Analyzing the Performance of Feature Selection
on Regression Problems: a Case Study on
Older Adults’ Functional Profile
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Abstract—Healthcare systems are capable of collecting a significant number of patient health-related parameters. Analyzing them to
find the reasons that cause a given disease is challenging. Feature Selection techniques have been used to address this
issue—reducing these parameters to a smaller set with the most "determinant” information. However, existing proposals usually focus
on classification problems—aimed to detect whether a person is or is not suffering from an illness or from a finite set of illnesses.
However, there are many situations in which health professionals need a numerical assessment to quantify the severity of an illness,
thus dealing with a regression problem instead. Proposals using Feature Selection here are very limited. This paper examines several
Feature Selection techniques to gauge their applicability to the regression-type problems, comparing these techniques by applying
them to a real-life scenario on the functional profiles of older adults. Data from 829 functional profiles assessments in 49 residential
homes were used in this study. The number of features was reduced from 31 to 25—with a correlation between inputs and outputs of
0.99 according to the R? score and a Mean Square Error (MSE) of 0.11—or to 14 features—with a correlation of 0.98 and MSE of 5.73.

Index Terms—Feature Selection, Regression, Machine Learning, Aging Informatics, Healthcare Data Analytics, eHealth

1 INTRODUCTION

Every day, healthcare professionals need to assess large
numbers of patients—not only those with chronic or degen-
erative diseases but also those with long-term or chronic
conditions [1]. This requires a constant reassessment of
patients, especially for the aging population, among whom
chronic and degenerative diseases and dysfunctions are
more common and more frequent. Many of these assess-
ments involve collecting large amounts of information re-
garding different variables associated with the patients’
health status [2]]. To help health professionals manage data
from these assessments, many healthcare systems have IT
platforms where their patients’ information is digitized [3]]
into Electronic Health Records, allowing health profession-
als, with the help of software developers and data scientists,
to develop powerful assessment platforms [4].
Nevertheless, the effort needed for health professionals
and informal caregivers to perform these assessments re-
mains excessive. Collecting data from several variables in
each assessment is time-consuming which infringes on their
limited time and reduces their patient-facing care time [5].
Health professionals are thus forced to reduce the number of
assessments that they need to perform routinely to care for
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their patients, thus reducing the sustainability and quality
of care.

If a clinical assessment includes redundant or irrelevant
variables, then the initial set of inputs could potentially be
reduced at a minimal accuracy loss, consequently easing
the aforementioned time crunch situation. An example of
this is the World Health Organization Disability Assess-
ment Schedule IT (WHODAS-II), an assessment instrument
for functioning. Although the original version included 36
items, some studies have validated the use of a reduced 12-
item version [6]], [7]. However, establishing which variables
contain redundant information and can therefore be elimi-
nated is not a trivial matter. The selection cannot be done
manually, based on intuition or using arbitrary techniques
to find relationships between variables. Instead, statistical
techniques are needed to calculate which reduced set of
variables provides the same information as the original
set [8]. After this, calculations done to extract results with
these items must be reformulated or replaced by other
techniques—since the new set does not contain all items of
the original one.

To solve this problem, two types of techniques exist in
the literature, which can be used together. First, Feature
Selection techniques [8] allow selecting from among a set
of features those that best describe the output, eliminating
redundant, unrelated, or non-influential variables. Second,
Machine Learning and Deep Learning techniques can be
used to define models that automatically learn from data to
establish relationships between input variables and an out-
put that has not been programmed or defined beforehand—
a prediction model. These techniques are already employed
in the health domain to solve problems involving the anal-
ysis of different kinds of data [9]], [10], [11].
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Feature Selection and Machine Learning/Deep Learning
techniques are closely related. Feature Selection techniques
are employed to pre-process the input variables in any of the
main types of Machine Learning and Deep Learning prob-
lems [[10]: classification —the output is one or several among
a series of well-known classes—, regression —the output is
a continuous value—, and clustering —the output is a series
of clusters not known previously, to which the different
samples belong. This pre-processing is often conducted as
part of the data cleansing phase [9], [12]]. Feature Selection is
frequently used in classification problems [8], [13], [14]. The
use of Feature Selection in unsupervised problems, such as
clustering, has also been extensively researched for years
[15]. However, as far as the authors are aware, Feature
Selection is not commonly applied to regression problems
[16], [17] and its potential could be investigated further [18].

This paper aims to offer a technological solution that
can be used to reduce the number of items to be mea-
sured in a health assessment, allowing the diagnosis of
a pathology or condition to be accomplished with almost
the same precision but with less data. To do this, different
feature selection techniques used in regression problems
and available in the literature have been reviewed. In order
to compare them, these techniques are applied to a real-
world case study focused on the assessment of aging adults’
functional profiles. This comparison allows us to propose
new models to predict functional profiles” scores with fewer
variables than the original formulas. The results obtained
by the model in terms of correlation between inputs and
outputs are also analyzed. They provide an overview of the
performance of feature selection techniques when applied
to regression problems in the case study. They also provide
insights into their extrapolation to other problems of this
type—in other healthcare assessments as well as other ap-
plication domains.

The paper is organized as follows. First, Section [2| intro-
duces Dimensionality Reduction and its Feature Selection
techniques. Section [3| provides an overview of the structure
and process followed in the development of the proposal
and introduces the case study. Section ] compares each of
the alternative feature selection techniques, by using them—
independently or in combination—to predict target vari-
ables based on the older adults” functional profile dataset.
SectionBldiscusses the results in terms of number of features
and achieved correlation between inputs and outputs, and
compares the initial set of variables with the final set. Section
[b]is a brief discussion about Feature Selection on regression
problems and the results obtained in the case study focused
on in this paper. Section [7/| reviews existing literature on the
use of Feature Selection on healthcare data. Finally, Section
presents the paper’s conclusions and an agenda for future
work in this research area.

2 BACKGROUND

The increasingly high dimensionality and complexity of
data make it necessary to use Dimensionality Reduction
(DR) techniques [19] in exploratory data analysis. Feature
Selection is a type of DR technique that allows data scientists
to move from an initial high dimensional data set to a more
reduced one, known as the intrinsic dimension of data.

This intrinsic dimension contains the minimum features
that describe the data [20], providing a series of benefits:
simplification of prediction models based on these data,
improvement of its predictions, or avoidance of the long-
standing problem known as the “curse of dimensionality”
[21], among others. These benefits are common to all types
of DR techniques. However, each one has its own intrinsic
advantages, depending on how dimension is reduced in
each of them.

Feature Selection methods [22] reduce the data dimen-
sionality by selecting a subset of variables from the input.
This subset describes the input data while reducing the ad-
verse effects due to including noise and irrelevant variables
in predictions [8]. Therefore, they aim to simplify prediction
models, improving their results—namely better generaliza-
tion and reduced overfitting—and problem understanding.
They also reduce the amount of information to be collected
as input, and thus the computational load and fit time, while
avoiding the above-mentioned curse of dimensionality. For
these reasons, Feature Selection methods are particularly
useful in domains with many input features and few sam-
ples [23]—i.e., analysis of DNA micro-arrays data or hand-
written manuscripts—especially in classification problems.

These techniques are based on the premise that, in many
models, the input information that allows characterizing
an output—for example, discriminating between different
classes in a classification problem—can be obtained from a
smaller set of variables than initially used. This could be
due to mutually-dependent variables—where the value of
one is highly correlated with the value of another—or due
to irrelevant input variables, whose values do not affect the
output—even though they were initially believed that they
would. The former introduces redundant information (and
complexity) in the models, while the latter could lead to
noise and bias in the prediction. Feature Selection eliminates
redundant and irrelevant features at a minor loss of infor-
mation, and hence model accuracy, in both supervised and
unsupervised problems.

Feature Selection is different from other DR methods
[24] such as Feature Extraction. Feature Extraction methods
generate a set of new features based on the initial ones with
each new feature containing the most relevant information
from several of the initial ones. Such Feature Extraction set
might or might not be smaller than the initial set. Feature
Selection, on the other hand, filters the most relevant, exist-
ing features without generating new ones, only eliminating
some. For this reason, Feature Selection is better suited to the
healthcare sustainability problem addressed in this work.
However, when predictions need to be improved, both
methods can be applied together—first Feature Selection
and then Feature Extraction on the resulting features.

There are three main types of Feature Selection meth-
ods in the existing literature [8]], [22]: filter, wrapper, and
embedded methods. Filter methods are independent of the
prediction model that is subsequently used, where the se-
lection of the most relevant variables is based on a ranking
criterion. The ranking is arrived at using a well-defined
criterion used to establish the relationships between each
input variable and the output variables. Wrapper methods
[25] work differently by employing and evaluating a pre-
diction model to each subset of the variables. Performance
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for each subset is measured as a function of the prediction
accuracy provided by the model trained with that subset.
This model is then “wrapped” in a search algorithm for
the best-performing subset. Finally, embedded methods also
employ a prediction model to determine the best subset of
input variables. However, in this case, feature selection is
performed as part of the model’s training process, rather
than based on the predictions yielded by an already trained
model. Therefore, there is no need to split the data into a
training and a testing set—to train first and then evaluate
the prediction model’s performance later—thus reducing
the Wrapper methods’ computational cost.

These methods are not mutually exclusive and can be
used together [26]. For instance, the filter methods, being
less computationally expensive and more independent re-
garding the prediction model to be subsequently used but
also less aggressive in terms of feature sifting, are usually
applied first to perform an initial phase of feature selection,
which amounts to pre-processing the set of variables that
will subsequently be analyzed using one of the other two
techniques.

In addition to Feature Selection techniques, this paper
also employs Machine Learning models. These techniques
can be divided into supervised, unsupervised, and rein-
forced learning, depending on the type of problem to be
addressed. Learning is considered supervised when there is
a set of labeled data —both the input and the output are
known. Supervised learning includes problems of classifi-
cation or regression, depending on what is to be learned.
This paper will focus on supervised learning and, more
specifically, on regression problems.

3 PROPOSED APPROACH

The proposal in this paper is the result of an experimental
study carried out in several phases. All the experiments
were conducted using real-life data from a single case study:
an evaluation of the aging adults’ functional profile. The
specific data used were derived from 829 assessments of
716 older adults treated in 49 residential homes and medical
centers in Portugal. These assessments are employed to
compute five different continuous values that describe the
aging adults’ functional profile, making this case study a
regression study.

The first phase involved examining available examples
of using Feature Selection techniques in regression prob-
lems. Quantitative comparison was carried out considering
different aspects to evaluate the performance of each tech-
nique when applied to our case study.

Then, the best performing techniques were selected to
create a series of models that, using a reduced set of input
features, could predict the functional profile of the older
adults studied with almost the same precision as the original
set. In order to measure this accuracy, we provide a series of
metrics on the correlation between inputs and outputs and
the error introduced in the prediction models, compared to
the traditional method using all the input features.

3.1 Case Study: Evaluation of Functional Profile using
the Elderly Nursing Core Set (ENCS)

The experiment performed is associated with the authors’
Multidimensional Integrated Assessment Platform for el-

derly (MIAPe) [4], which is employed by health profes-
sionals and caregivers in different Portuguese socio-geriatric
settings. It is used to assess different aspects of the patients’
health including the patients” functional profile which is the
most relevant to the work in this paper. For this purpose, 31
items or questions—the input variables—are collected, with
values filled manually using the Elderly Nursing Core Set
(ENCS) form [27].

The ENCS was developed by Lopes and Fonseca in 2013
to assess the quality of life in terms of functioning among
older adults [28]. The psychometric properties of the ENCS
were later evaluated by Fonseca et al. [27]. This assessment
instrument is based on the International Classification of
Functioning, Disability and Health (ICF) [29]. Each of the 31
questions is valuated on a Likert scale from 1 to 5 points: (1)
No disability: 0-4%; (2) Mild disability: 5-24%; (3) Moderate
disability: 25-49%; (4) Severe disability: 50-95%; and (5)
Complete disability: 96-100%. From these 31 items, 10 items
measure body functions, 17 items measure body structure,
and 4 items measure environmental factors. Full description
of these items can be found in the supplementary material.
The ENCS is divided into four areas of concern: self-care,
learning and mental functions, communication, and social
relationships. A higher value is correlated with a worse
functional profile of the assessed individual. Applying a se-
ries of validated mathematical formulas [27] to the values of
these 31 questions, five scores corresponding to the above-
mentioned areas of concern are extracted. These represent
the general functional profile of the elderly: General punctua-
tion of functionality (GPF), Self-care (AC), Learning and memory
functions (LMF), Communication (C), and Relationships with
friends and carers (RFC). These scores are represented as
continuous values, from 0 to 100.

e General punctuation of functionality corresponds
to the overall score obtained in the functional profile
for all dimensions. For its calculation, all items are
employed.

o Self-care corresponds to the basic activities of daily
living, such as eating and drinking. For its calcula-
tion, all 17 items from body structure are employed.

e Learning and memory functions is concerned with
cognitive functions, such as memory or orientation.
For its calculation, all 10 items from body functions
are employed.

e Communication is related to the ability to talk or
hold a conversation. For its calculation, 4 of the 17
items from body structure are employed.

o Relationships with friends and carers corresponds
to the ability to maintain relationships with family or
obtain support from health professionals, friends, or
other caregivers. For its calculation, all 4 items from
environmental factors are employed.

Each of these scores can be represented as a regression
function that takes as input each of the 31 questions of the
ENCS form, making this case study a suitable one for the
intended scope. Therefore, in this case study the focus will
be put on being able to compute each of these five scores
with a reduced number of questions—instead of the 31
original ones.
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4 COMPARISON OF FEATURE SELECTION TECH-
NIQUES ON FUNCTIONAL PROFILE

To determine the best Feature Selection technique to be ap-
plied to the case study, the different techniques available for
Feature Selection on regression problems were compared.
As far as the authors know, no previous study has compared
the application of different Feature Selection techniques on
regression problems.

To carry out this comparison, a battery of different
Feature Selection techniques has been chosen, following a
well-structured process— to make the comparison as fair
and reproducible as possible. All the results obtained were
meticulously documented to ensure replicability. The tech-
niques selected, the methodology followed, and the results
obtained are discussed next.

41

The Feature Selection techniques used in this study are
commonly available in Data Science tools. Specifically, we
used the Python programming language, which is widely
used in the field of Data Science and Data Mining. Therefore,
only techniques offered for this language were sought. Tech-
niques were selected from Scikit—learrﬂ and YellowbrickE]
Data Science libraries. The first is a widely used library for
the creation of Machine Learning models that also offers DR
tools. The second is a Scikit-learn wrapper that offers visual
solutions to facilitate model and data analysis.

Limiting the study to only techniques available in
Python and, more specifically, offered by these libraries,
may suggest that certain techniques were left out of the
comparison—for instance, those that are less common.
However, given the large number of techniques offered by
these libraries—as shown below—, we consider that the ob-
tained results in the comparison are sufficiently valid—since
we have included very common and frequently used Fea-
ture Selection techniques such as Recursive Feature Elim-
ination (RFE) and filter methods based on the correlation
between features and Mutual Information (MI). Moreover,
from a practical viewpoint, using techniques offered by
libraries that are widely used in production environments
facilitates the availability, reproducibility, and transfer of
results of this research.

All Feature Selection techniques available in both li-
braries were evaluated. For each technique, different param-
eter combinations were tested. Compared Feature Selection
techniques are shown in Table

Selected Feature Selection Techniques

No wrapper method was tested since these libraries offer
embedded methods instead.

4.2 Methodology

Our comparison evaluated the different techniques based
on the number of features selected, the correlation achieved
by Machine Learning models using those features, and the
execution time required to select the features. Correlation
is measured with the coefficient of determination, R? score,
with 1.0 being the ideal value—indicating that model that

1. https:/ /scikit-learn.org /stable /
2. https:/ /www.scikit-yb.org/en/latest/

Type Technique Library
Filter GenericUnivariateSelect Sklearn
Filter SelectPercentile Sklearn
Filter SelectKBest Sklearn
Filter SelectFpr Sklearn
Filter SelectFdr Sklearn
Filter SelectFwe Sklearn
Filter VarianceThreshold Sklearn
Filter Rank1D Yellowbrick
Filter Rank2D Yellowbrick
Filter Feature Correlation

Embedded  SelectFromModel Sklearn
Embedded SequentialFeatureSelector  Sklearn
Embedded RFE Sklearn
Embedded RFECV Sklearn
Embedded  Feature Importances Yellowbrick
Embedded RFECV Yellowbrick

TABLE 1

List of techniques evaluated

perfectly explains the observed output variation concern-
ing input variation—and 0 being the worst-case scenario—
model that does not explain any variation—. Negative val-
ues are not taken into account. In contrast to other metrics,
the closer the R? score is to 1, the better the model explains
the variability of the target feature (output). Other metrics,
such as Mean Square Error (MSE), must be considered when
training a final model. However, to assess how changes in
input features affect the model’s output, only the R? score
was considered in this comparison.

To execute the different techniques we used a laptop
running Windows 10, with 16 GB of RAM and an Intel Core
i7-8550U processor at 1.8 GHz base frequency and 4.0 GHz
turbo frequency, equipped with NVMe SSD technology for
storage. The following software was used: Python v.3.7.5
(programming language), Anaconda v.1.9.12 (Python distri-
bution for Data Science), conda v.4.10.1 (package manage-
ment system), Jupyter v.6.0.1 (development environment),
Scikit-Learn v.0.23.0 (Data Science library), Yellowbrick v.1.2
(Data Science library), and Pandas v.0.25.3 (data manipula-
tion and analysis library).

The process followed to carry out the comparison was as
follows:

Step 1: Transform functional profile data into a suitable
format. The Elderly Nursing Core Set (ENCS) data was
anonymized and filtered to obtain a dataset containing only
information on the form’s 31 items and the values for each
of the five scores of the functional profile of the older adults
(GPE, AC, LMF, C, and RFC).

Step 2: Test the initial feature set data, without applying
Feature Selection techniques, on 12 different Scikit-learn
regression models. These 12 models were generated with the
main Scikit-learn algorithms for regression models —based
on the assumption that linear regression, logistic regression,
support vector machines, and tree-based algorithms are the
most employed for regression problems [30]. All parameters
were left as default. Since there are five outputs, five models
had to be created with the same inputs—one for each
output. In this case, we took advantage of Scikit-learn’s
MultiOutputRegressor class, which internally creates one
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model for each output and then encapsulates them in one.
The results were obtained with an initial set of 829 samples,
corresponding to evaluations of actual patients, dividing
them into 555 for training and 274 for testing. This is a
typical division of roughly two parts for training and one
for testing. Then a hold-out validation was performed—
training and testing sets without cross-validation.

Step 3: Select the five models with the best predictions
(best R?) out of the 12 models tested in the previous step.
This is possible because the initial feature set is easily
computable and allows the testing of different algorithms.

Step 4: Test the Feature Selection algorithms. For each of
these methods, different configurations were tested, based
on the different hyperparameters that they accept:

e In those that required keeping a number of features,
such as K, percentile or the maximum number of
features to be selected, the value was initially set
to half —15 features or a percentile of 50%. This
decision has been taken because the objective in
the step is to make an initial comparison between
the different techniques and not to find the optimal
value of hyperparameters for each of them—or even
compare the results for the same one with different
hyperparameter values. This is done later in Step 6.

e In those using a threshold, different values were
tested.

e Values such as alpha, employed by techniques such
as SelectFpr or SelectFdr, were left as default.

¢ For the embedded methods, each of the five models
selected in Step 3 was tested as estimators. This
estimator model is the one being wrapped by the
embedded method to determine the importance of
each feature and can be different from the final
prediction model where the set of features selected
is employed as input.

e Methods using a model as estimator required one es-
timator for each output and thus were not compatible
with MultiOutputRegressor. This required perform-
ing a feature selection for each of the five outputs,
before merging the results. This merge is done by
joining the selected features for each output so that
the resulting set of features allows predicting the five
functional profile scores —the five outputs.

Step 5: Evaluate the performance of the selected feature
set for each technique and hyperparameter configuration,
again using the prediction models selected in Step 3. The
results are provided in terms of the final number of features,
R? score for each of the five models evaluated, average R>
score, and execution time of the Feature Selection process.
To calculate the R? score for each model, we used the same
division of samples and validation as in Step 3.

Step 6: Those methods that could be configured using
parameters were executed again, using the whole range of
possible values. Results were complemented with a graph
per each technique and configuration, showing the evolu-
tion of the number of resulting features for each different
value of the parameters and the average RR? score associated
with each number of variables. This score was calculated
using the same functions as in Step 5.

All the software developed for the benchmark is pro-
vided as additional material and in a Zenodo repositoryﬂ
The complete comparison can be replicated by running the
“Comparison” and “Graphical” notebooks.

4.3 Comparison of Results

The main outcomes of the different steps of the comparison
are shown below. A more complete version of the tables
presented here, and additional figures with the results of
varying the parameters’ values when using the different
techniques, can be found as additional resources and in the
aforementioned Zenodo repository.

From Step 1, no outcomes are obtained. This step is only
for data processing.

From Step 2 the Table [2| is obtained. This table shows
the results obtained when evaluating the different models,
using all 31 features—without Feature Selection. As can be
seen, the results in most of the tested models are close
to 100% correlation (1.0 R* score). Only Support Vector
Regressor (SVR) with a non-linear RBF kernel yielded lower
correlation results (0.74 R? score). On the other hand, the
third-degree Polynomial Regression yielded a negative and
out-of-bounds result. According to the Scikit-learn library
that provides the implementation of the algorithm and the
calculation of the coefficient of determination, the negative
result is due to the model output being very different from
that expected for the same input values [31].

To ensure that the R? score obtained by these models
is not the result of overfitting and that default hyper-
parameters are not leading the models to a suboptimal
point, a 5-step cross-validation with the training data has
been carried out, showing that the results are good and
acceptable. The standard deviation between the R? score
of each step has been analyzed and, except for the SVR with
RBF kernel and NuSVR, the values obtained are in the order
of 1073 to 10~°. The exact results can be found in the Jupyter
notebook Initial_tests_CV in the supplementary material.

The five models with a coefficient of determination
higher than 0.99—Linear Regression, Ridge Regression,
Lasso Regression, Extra Tree Regression, and LinearSVR—
were selected in Step 3.

As well, Table |2| shows the time needed to train the
model and to perform a prediction for each of the tested
models. Neural Network Regression is the one offering the
worst training time, followed by Random Forest, Extra Tree,
and Polynomial Regression of Degree 3. This situation is
expected since these are the more complex models. Predic-
tion times are in the order of microseconds in most cases,
with the costly ones being the Random Forest and Extra
Tree methods again, as well as some implementations of the
SVR. These are from the order of tenths of milliseconds.
However, times for both cases, train and prediction, are
acceptable in any of the models and their consideration is
not as important as R? for that case—no need for constant
retraining or fast prediction exists in our case study.

Step 4 and 5 start at that point, having the results of
the five models selected when they are trained with the
original features set. In these steps, the aim is to obtain the
results for the same models when they are trained with the

3. https://doi.org/10.5281/zenodo.6421873
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Model R? Train time (s)  Predict time (s)
Linear Regression 0.999659 0.0102 7.40210~°
Polynomial Regression (Degree=2)  0.885259 0.3103 3.13z10—°
Polynomial Regression (Degree=3)  -220.837775  1.0423 9.73210~°
Ridge Regression 0.999657 0.0182 8.63210~°
Lasso Regression 0.990675 0.0124 1.09z107°
Decision Tree Regression 0.957315 0.0201 1.09210~°
Random Forest Regression 0.983631 1.3971 2.06x10~4
Extra Tree Regression 0.990431 1.1709 1.85210~4
SVR (kernel=rbf) 0.745581 0.1036 3.01z1074
LinearSVR 0.998442 0.2315 7.29210~6
NuSVR 0.721767 0.0623 1.53z10~4
Neural Network Regression 0.978924 2.6033 3.722107°
TABLE 2

Results of model testing without feature selection

set of features selected by each Feature Selection technique
(and each of its parameters’ configurations) tested in this
study. Tables [3] and @] show the summary of the results
obtained for each of these techniques in different terms: the
number of features selected, average train time (in seconds),
and R? score when the set of features selected is used as
the input set to train each of the five models under study.
Table [B] shows the results of the filter methods and their
configurations while Table[d|shows results for the embedded
ones. As can be seen in both tables, the results obtained
are related to the number of features considered, execution
time (in seconds), and correlation—the R? score obtained
in Step 5 of comparison with the set of features selected
on each of the five models selected of the Table [2| during
Step 3 and on average. As was the case in Step 2, a 5-step
cross-validation has been carried out here in addition to
the traditional validation as well, to check that the models
used and their configuration are still valid and do not suffer
from overfitting. The results of this cross validation can
be found in the Jupyter notebook Comparison_CV of the
supplementary material. All possible configuration and
techniques available in the libraries employed have been
tested. However, those configurations or techniques not
working have been discarded and are not shown in the
tables of results to improve readability. That is the reason
why some techniques listed in Table [I| are not shown on
them. Their results can be found in the supplementary
material attached to this manuscript.

In the tables, tuples containing only results in terms of
execution time belong to techniques that provide visual re-
sults, that is, that do not automatically filter features. Instead
of that, they provide some graphs that experts in the domain
must interpret to manually filter the features by themselves.
Since such results are subject to expert interpretation, they
do not provide direct information in terms of the number of
features selected and/or results of the models trained with
it. Hence, all these tuples are listed in the tables to indicate
that they have been tested. However, none of them will be
delved into further in this comparison.

Regarding the results, we will consider first the time
required to perform the feature filtering —which offers
an insight into how computationally costly each of the
techniques employed can be. This time is only relevant
for the beginning, when the features are selected. After
that, it will not be necessary to re-execute these techniques.
In this regard, it can be observed that the average time
of the filter methods (Time column of Average results row
in Table [3) is much lower than the average time of the

embedded methods (Time column of Average results row in
Table {). However, this is mainly due to the time required
for the RFECV technique of the yellowbrick library when
using Linear SVR as estimator. If the time required by that
technique with that configuration is not taken into account,
the average time of the embedded methods is significantly
reduced to 4.37 seconds. Therefore, it can be concluded
that filtering methods are, on average, slightly faster than
embedded methods. Specifically, embedded methods’ time
is 663% that of filter ones if the time of the RFECV with
Linear SVR as estimator is discarded. However, and espe-
cially taking into account the duration of the execution times
obtained by using any of the methods considered—mostly
in the order of tenths and hundredths of seconds, the results
are manageable and do not affect the decision of which one
should be used in this case study.

If we focus only on the times obtained by the embedded
methods, the situation arising from using a Linear SVR
as estimator in the RFECV technique appears not to be
an isolated case —although this is the most outstanding
example. In all embedded methods, applying a Linear SVR
as estimator notably increases the execution time by 1953%
—from 4.61 seconds on average for other techniques and
configurations to 90.06 seconds on average for those using
a Linear SVR as estimator. Conversely, the model that offers
the best estimator times in the embedded methods is the
Ridge Regression, although with results very similar to
those offered by the other three models.

It is noticeable, however, that the embedded tech-
niques from the Yellowbrick library —Feature Importances
technique and RFECV (yellowbrick version)— have much
longer execution times than the techniques taken from
Scikit-learn. This is probably because this library works as
a wrapper over Scikit-learn—taking the same amount of
time as if they were executed directly—and then generating
graphical solutions based on the results obtained. The time
requirements of these techniques are even more remark-
able in the case of RFECV, whose fastest configuration —
using a Linear Regression as estimator— needs 74 times
the time of the slowest Scikit-learn technique with the same
configuration—RFE with a Linear Regression as estimator.

On the other hand, if we focus only on the times obtained
by the filter methods, we can appreciate that the use of the
mutual_info_regression as score function leads to a notable
increase in the times. Specifically, the use of this score
function instead of f_regression leads to an increase in time of
11458% in the techniques that allow both score functions—
0.02 seconds on average with f regression and 2.34 seconds
on average with mutual_info_regression. In addition, as with
the embedded methods, the Yellowbrick techniques also
require longer times than the others. These are the only
methods whose results reach times in the order of seconds or
tenths of seconds—without taking into account techniques
employing mutual_info_regression as score function.

Next, we will discuss the number of features selected
by each technique. It is important to mention at this point
that in most cases the number of features selected by each
technique does not match the number of maximum, k
best—k being the number of best features to be selected—
and percentile features indicated for the technique. This
is due to the existence of five outputs in our case study.
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\ R score |
[ Feature Selection technique | Score func. / Algorithm [ Parameters [ N. features [ Time (s) | LR [ Ridge [ Lasso | ExtraTree | LinearSVR | Avg. |
GenericUnivariateSelect f_regression percentile(50) 26 0.030751  0.999662 0.999661 0.991935  0.959194 0.999570 0.990004
GenericUnivariateSelect mutual_info_regression  percentile(50) 26 2134323  0.999662  0.999661  0.991935  0.962304 0.999617 0.990636
GenericUnivariateSelect f_regression k_best(15) 26 0.018815  0.999662  0.999661  0.991935  0.957074 0.999595 0.989585
GenericUnivariateSelect mutual_info_regression  k_best(15) 26 1907155 0.999662  0.999661  0.991935  0.956841 0.999618 0.989543
GenericUnivariateSelect f_regression fpr 29 0.020798  0.999660  0.999659  0.990675  0.959773 0.996560 0.989265
GenericUnivariateSelect f_regression fdr 29 0.017323  0.999660  0.999659  0.990675  0.957852 0.997536 0.989076
GenericUnivariateSelect f_regression fwe 29 0.028273  0.999660 0.999659  0.990675 0.957720 0.998158 0.989174
SelectPercentile f_regression percentile(50) 26 0.016828  0.999662  0.999661  0.991935  0.960177 0.999587 0.990204
SelectPercentile mutual_info_regression percentile(50) 26 2.680883  0.999662 0.999661 0.991935 0.960406 0.999616 0.990256
SelectKBest f_regression k(15) 26 0.021328  0.999662  0.999661  0.991935  0.962586 0.999604 0.990690
SelectKBest mutualfinfofregression k(15) 26 1.932915 0.999662 0.999661 0.991935 0.964257 0.999524 0.991008
SelectFpr f_regression alpha(0.05) 30 0.017359  0.999659  0.999657  0.990675  0.956662 0.999236 0.989178
SelectFdr f_regression alpha(0.05) 30 0.016368  0.999659  0.999657  0.990675  0.963822 0.998723 0.990507
SelectFwe f_regression alpha(0.05) 30 0.016368  0.999659  0.999657  0.990675  0.956609 0.998340 0.988988
VarianceThreshold threshold(0) 31 0.011376  0.999659  0.999657  0.990675  0.951833 0.999485 0.988262
VarianceThreshold threshold(0.5) 30 0.012895  0.990122  0.990139  0.983033  0.948834 0.987646 0.979955
VarianceThreshold threshold(0.8) 26 0.014385 0.950137 0.950143  0.940121  0.835992 0.933441 0.921967
Rank1D algorithm="shapiro” 0.266352
Rank2D algorithm="pearson” 0.514352
Rank2D algorithm="covariance” 0.467696
Rank2D algorithm="spearman” 0.499440
Rank2D algorithm="kendalltau” 0.775745
Feature Correlation method="pearson” 1.325842
Feature Correlation method="mutual_info-regression” 3.091538
Average results of Scikit Learn 28 0.52342 0.996186 | 0.996187 | 0.987845 | 0.951290 0.994462 0.985194
Average results of Yellowbrick 0.99157
Average results 28 0.659963 | 0.996186 | 0.996187 | 0.987845 | 0.951290 0.994462 0.985194
TABLE 3
Results with filter feature selection methods
[ R? score |
[ Feature Selection technique | Estimator [ Parameters [ N.features [ Time(s) | LR [ Ridge [ Lasso | Extra Tree | LinearSVR | Avg. |
SelectFromModel Linear Regression 25 0.019840 0.999661  0.999660 0.991935  0.956487 0.999528 0.989454
SelectFromModel Ridge Regression 25 0.017359  0.999661  0.999660  0.991935  0.969842 0.999629 0.992145
SelectFromModel Lasso Regression 26 0.018350 0.999662  0.999661  0.990675  0.963172 0.998009 0.990236
SelectFromModel Extra Tree Regression 15 0.029721 0.989018  0.989018  0.981734  0.949199 0.987603 0.979314
SelectFromModel Linear SVR 25 0.472687 0.999661  0.999660  0.991935  0.965365 0.999622 0.991249
RFE Linear Regression step=1. n_features_to_select(0.5) 19 0.184014 0.995868  0.995877  0.988012  0.956765 0.995921 0.986488
RFE Ridge Regression step=1. n_features_to_select(0.5) 19 0.168639 0.995872  0.995876  0.988544  0.962146 0.995824 0.987653
RFE Lasso Regression step=1. n_features_to_select(0.5) 19 0.252960 0.993647  0.993647 0.985406  0.957668 0.992244 0.984522
RFE Extra Tree Regression  step=1. n_features_to_select(0.5) 18 0.342241 0.994401 0.994401 0.986994  0.961540 0.994313 0.986330
RFE Linear SVR step=1. n_features_to_select(0.5) 18 6.788760 0.994438  0.994437  0.987052  0.958555 0.994463 0.985789
Feature Importances Linear Regression topn=15. stack=false relative=true 1.870455
Feature Importances Ridge Regression topn=15. stack=false relative=true 1.721119
Feature Importances Lasso Regression topn=15. stack=false,relative=true 1.874882
Feature Importances Extra Tree Regression  topn=15. stack=false,relative=true 1.906664
Feature Importances Linear SVR topn=15. stack=false,relative=true 2.007809
RFECYV (yellowbrick) Linear Regression step=1. cv=5 25 13.765470  0.999661  0.999660  0.991935  0.959631 0.999592 0.990096
RFECV (yellowbrick) Ridge Regression step=1. cv=5 25 14.980706  0.999661  0.999660  0.991935  0.959212 0.999561 0.990006
RFECV (yellowbrick) Lasso Regression step=1. cv=5 25 17.979028  0.999661  0.999660  0.991935  0.959729 0.999610 0.990119
RFECV (yellowbrick) Extra Tree Regression  step=1. cv=5 27 18.757748  0.999552  0.999550  0.991866  0.961919 0.999535 0.990484
RFECV (yellowbrick) Linear SVR step=1. cv=5 29 351.008670  0.999662  0.999660  0.991935  0.951663 0.999586 0.988501
Average results of Scikit Learn 21 0.82946 0.99619 0.99619 0.98842 0.96007 0.99572 0.98732
Average results of Yellowbrick 26 42.58725 0.99964 0.99964 0.99192 0.95843 0.99958 0.98984
Average results 23 21.708356 0.997339 | 0.997339 | 0.989589 | 0.959526 0.997003 0.988159
TABLE 4

Results with embedded feature selection methods

Therefore, to select the appropriate features for each output,
all techniques must be applied five times on the original
set of features. After this, the selected features per output
are merged to obtain the total required set of features. This
way, selecting the 15 best features (k=15) for each output
may result in a final set of 26 features —a result yielded by
some of the techniques. It should also be pointed out that, in
this case, the embedded techniques yield more remarkable
results than the filter techniques. The former selected 23
features on average (N. features column of Average results
row in Table @), while the latter selected an average of 28
features (N. features column of Average results row in Table
3).

In the case of embedded methods, the RFE technique
yielded sets with fewer than 20 features for any of the
estimators tested. Specifically, Extra Tree Regression and
Linear SVR are the ones that filtered most features, reducing
the set to 18 features compared to the 19 features obtained
with the other estimators. The same happens with the
SelectFromModel when using the Extra Tree Regression as
estimator again. When using this estimator the number of

features is reduced to 15, compared to the 25-26 selected
when using other estimators, without a remarkable loss of
correlation.

Regarding filter methods, the number of features can
at best be reduced by five, resulting in sets of 26 features.
Several techniques and configurations result in this number
of features being selected. However, there are others such
as VarianceThreshold—with threshold values such as 0.5 as
an intermediate value or 0 as a lower limit value—that filter
only one or no features at all, respectively. The same applies
to the SelectFpr, SelectFdr, and SelectFwe techniques. All of
them are based on the use of an alpha —corresponding to
the highest uncorrected p-value for features to be kept—
which, if left at its default value, only filters out one feature.
However, these techniques also fail to improve correlation
by filtering fewer features and retaining more information
for the model —since there are still features that are redun-
dant or not linked to the outputs among the resulting 30
features.

Finally, it is necessary to discuss the results in terms
of correlation. In this case, the embedded techniques offer
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GenericUnivariateSelect with k_best (f_regression score) between 1 and 31 (step=1)

Avg. R2 score as a function of Selected variables

8

Selected variables
@

098

096

094

Avg. R2 score

5 10 15 20 25 30
Selected variables

Fig. 1. Number of features selected and R? score as a function of the k best selected in GenericUnivariateSelect technique

VarianceThreshold between 0 and 1 (step=0.1)
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Fig. 2. Number of features selected and R? score as a function of the threshold defined in VarianceThreshold technique

more similar results, all achieving a correlation higher than
0.98 (Avg. R? score column in Table E[) This suggests that
they maintain the correlation of the original set of variables,
even when considering a smaller number of variables. In the
case of the filter methods, the results are similar (Avg. R?
score column in Table [3), although some of the techniques
reduce the precision depending on the configuration of the
hyperparameters. This is the case of the VarianceThreshold
technique when the threshold value is changed from 0 to
0.5 or 0.8. However, even at the risk of lower precision
if this particular technique is used, both embedded and
filter techniques are successful at filtering features—to a
greater degree or lesser degree, as mentioned above—while
keeping the original precision close to the ideal value of 1. A
correlation of 0.98 or 0.99 is not a decisive factor, both values
being very close to the ideal.

As result of the last step (Step 6), a series of graphs—
one per technique, admitting hyperparameters with values
in a finite range—are included to illustrate the relationship
between the number of filtered features, the average pre-

cision achieved by the models with each selected feature
set, and the different techniques and the value obtained
by their hyperparameters. These graphs illustrate how the
size of the selected feature set changes when the value
of any of its hyperparameters is modified within its finite
range. It is also possible to appreciate changes in correlation
caused by changes in the number of selected features. All
these graphs are provided as additional material in the
Zenodo repository, inside the “images” folder. In addition,
each technique and configuration is linked to its associated
graphs in the .XLSX results document. For the sake of
brevity, we will only discuss those graphs that we consider
to be of greater relevance, since they provide the most
easily visually understandable graphs and since they are a
significant sample of the different types of hyperparameters
that can be configured (such as the thresholds, the number
of features to be selected K, or the maximum number of
features to be selected).

The first one is that of GenericUnivariateSelect with
f_regression as score function. Figure[T|shows the evolution
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RFE (ExtraTreeRegressor estimator) with max_features between 1 and 31 (step=1)
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Fig. 3. Number of features selected and R? score as a function of the maximum features selected in RFE technique

of the number of features finally selected and average R?
score for this configuration—taking into account the five
models used as estimators during validation—and k best
features to be selected as parameter changes. The k best
parameter varied in a range from 1 to 31—the total number
of features—with an added—i.e., selecting one more feature
in each execution. The figure shows how, by selecting one
feature per output, a value of 3 features is obtained, with
a correlation of almost 0.84. From that point on, correlation
increases up to 26 features—especially when k is adjusted
to a value of 2 features and selected features increase from
3 to 9. This number of features is obtained by a wide range
of k. The figure also shows that the tested models perform
better with this number of features than with the original
31, losing correlation when more features are selected.

Among the filter methods, it is also interesting to high-
light the VarianceThreshold graph (Figure [2), showing vari-
ations as the threshold was changed. After the 0.5 threshold
value, the technique begins to filter features. It is interest-
ing to see how far it filters when the entire spectrum of
threshold values is tested—from 0.0 to 1.0 with a step of
0.1. The figure shows that, after the 0.4 threshold, it starts
to reduce the space of features. In addition, as the threshold
increases, the number of features selected decreases. This is
expected since by increasing the threshold, the variance of
the features that can be selected becomes more restrictive.
When the optimum point is reached, it is subjected to the
objective pursued during the process of Feature Selection.
The 0.0 threshold is obtaining the best correlation but using
all features, while 1.0 is obtaining the worst correlation, but
with fewer features. Even a middle point, such as the 0.7
threshold—selecting a set of 27 features that provides an
increase in correlation with respect to that offered by the
26 or 28 features set offered by other thresholds— can be
considered as an optimum point.

Finally, it is also interesting to discuss the graphs corre-
sponding to the embedded RFE method—those that filter
out more features. Specifically, Figure 3|shows the evolution
of this technique when an Extra Tree Regression model is
used as estimator and the maximum number of features to

be selected per output is adjusted. In this case, the number of
features to be selected is more progressive than in the other
techniques. For the first values, the result obtained is very
similar to that already yielded by the GenericUnivariateSe-
lect technique in Figure [1} It can also be observed that the
optimal correlation point corresponds to 26 features. This
number of features is obtained when a maximum number
of 8-10 features per output are selected. For any selection
higher than 16 features per output the original 31 features
are selected—except in the case of 22 features per output
when 30 variables are selected. In this case, the R? score
plot shows that this change slightly improves the precision.

To conclude, it can be argued that the embedded meth-
ods select a smaller group of features than the filters,
achieving even better correlation on average—at the cost of
some of these techniques requiring slightly higher execution
times. Almost all embedded techniques filter more features
than the best-performing filter method. The most restric-
tive embedded technique manages to reduce the number
of variables to 50% while maintaining correlation above
that of some of the filter techniques, such as the variance
threshold at 0.8. This last technique only obtains a reduction
of approximately 12% and a correlation of 0.92. It is also
interesting to indicate that, for filter techniques, the func-
tion score mutual_info_regression notably increases the time,
without improving correlation.

5 IMPROVING FUNCTIONAL PROFILE ASSESS-
MENTS

Taking as a starting point the results obtained in the com-
parison above, two models have been developed using the
features selected by one of the analyzed Feature Selection
methods as shown in Figure [l These models predict the
five functional profile scores of the patients considered: one
model with higher accuracy—but using more data—, and
the other with slightly less accuracy—but using a smaller
amount of data.

The creation of two models illustrates the dual potential
of Feature Selection techniques. Figure [d] shows the process
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followed for the creation of the two models and the use for
which each model is developed. On the one hand, Model 1
filters out a smaller number of features while offering better
precision. This could be used to measure the functional
profile based on the new questionnaires to be fulfilled by
health professionals—now with 25 questions instead of 31.
This model offers health professionals measurements of the
different scores of the functional profile of their aging pa-
tients with almost as much precision as the original model,
but with fewer questions. On the other hand, Model 2 filters
out a larger number of features (from 31 features to 14),
offering slightly less precision. This model could be used
by informal caregivers or by the patients themselves to
perform periodic self-assessments, thus providing a more
constant flow of information on their functional profile. If
any irregularities were to be observed whilst applying this
model, health professionals could get involved and start
using Model 1 to obtain more accurate measurements.

For the creation of both models, several of the analyzed
Feature Selection methods were used rather than just one.
First, because each of these models was generated using
different methods. Besides, as suggested by researchers such
as Chen et al. [26] our models combined filtering and
embedded methods. As illustrated in Figure {4} the feature
selection phase before the creation of the Machine Learning
model has performed in two stages: first a filtering method
then an embedded method is applied per model in both
stages. This procedure yields better results since the filtering
methods applied only filter out the most irrelevant features
and the embedded methods used subsequently complete
the elimination of features based on the result offered by
the first ones.

The filter method used in both models was the Gener-
icUnivariateSelect with an f regression function score and
a percentile of 50—since this technique and configuration
removes a few features while maintaining the precision of
the original set. As an embedded method, in the case of
Model 1 we used the SelectFromModel with the default
configuration and RidgeRegression as an estimator. In the
comparison, this reduced the feature set to 25 features with
an average correlation of 0.992—the highest score of all
the tested Machine Learning models. For Model 2 we used
SelectFromModel again with the default configuration but
changed the estimator to the Extra Tree Regressor since, in
the comparison, it was the one that eliminated the highest
number of features.

Finally, as a Machine Learning model for the creation
of the prediction model, we applied in both cases Linear
Regression—the one offering the best prediction among the
five analyzed. As in the comparison, a Linear Regression
model was needed for each output. Therefore Scikit-learn’s
MultiOutputRegressor was used to encapsulate the creation
of these five models in a single one. The results obtained in
terms of correlation between inputs and outputs and predic-
tion error, using the same dataset as during the comparison,
are shown in Table Bl

The results show both models achieve good correlation

Metric Model1 Model 2

Coefficient of determination (R?) 0.999661  0.981238

Mean Square Error (MSE) 0.111246  5.772708

Mean Absolute Error (MAE) 0.178976  1.552575
TABLE 5

Results yielded by different models proposed

measured with the R? score. However, the error in the
predictions, measured with the Mean Square Error (MSE)
and Mean Absolute Error (MAE), is higher in the model
with fewer features, as expected. The closeness between
MSE and MAE values indicates that errors in Model 1 are of
small magnitude—since the MSE tends to give more weight
to large errors and to increase its value concerning the MAE
when there are many large errors. Moreover, in this case,
the MSE has a small value, indicating errors in the order of
less than one unit. The MAE value also shows that the mean
difference between the actual value of the functional profile
scores and the estimator in Model 1 is very small. Seeing
this value and that the functional profile scores oscillate in a
range of values between 0 and 100, the error introduced by
the model is minimal. This, together with its high precision,
confirms the validity of the model to predict the functional
profile of aging patients with confidence. On the other hand,
Model 2’s MAE shows an error of around 1.55 units on
average. However, the MSE does show that, in this case,
there are situations where the value of the score oscillates
more, producing more significant errors, which penalize this
metric compared to that of the MAE. However, the results
are positive in both models and adapted to the needs of each
one.

Applying a 5-step cross-validation on these models, a
mean value of R? score of 0.99964 has been obtained for
Model 1, with a deviation between the R? score obtained in
each step of 7.62360x10~°, which shows that the results of
the model are reliable, being close to those obtained in the
validation with the test set. For Model 2, the results were a
mean R? score of 0.98166, with a deviation of 4.61616x10~3.
This shows that this model is a little less reliable, but still
gives very good results to be used as a preventive model.

6 DiscussioN

We presented a comparison of the different Feature Selection
techniques applied to regression problems and showed how
the results were applied to the creation of two Machine
Learning models for the prediction of the functional profile
of older adults. We discuss a few important aspects of our
work in this section.

First of all, it is important to note that all the work
presented in this paper could be extrapolated to other case
studies (within the health or other domains) which require
applying Feature Selection on regression problems—i.e.,
new case studies or other types of health assessments, such
as older adults’ dementia or loneliness assessments.

Regarding the comparison of the different Feature Selec-
tion techniques on regression problems, it has been shown

Fig. 4. Proposal for improving functional profile assessments with Feature Selection and Machine Learning
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that these techniques are more efficient to reduce the fea-
tures within a dataset such as the older adults’ functional
profile. Some techniques can reduce the initial feature set
containing 31 features to 25 or even 14—which is partic-
ularly relevant since all these features are currently being
used in well-validated clinical procedures for the assess-
ment of functional profiles. This stresses the great potential
of these techniques for regression problems.

We have also found that the performance of the filter and
embedded methods presented theoretically and practically
in previous studies for classification problems is maintained
when these techniques are applied to regression problems.
In general, filter methods achieved less sifting than embed-
ded methods, but with a much better performance in terms
of computational time. Execution time was not a challenge
for the present case study where all the results, except
those of the Yellowbrick RFECV technique, were obtained
in the range of tenths/hundredths of seconds for Scikit
Learn methods or a few seconds for the case of Yellowbrick
methods—due to the fact of being wrapping Scikit Learn
methods. Even more considering the reduced capabilities
of the computer where the test has been executed. This,
however, could be different in other case studies where
execution time may be a potential challenge.

Regarding the filtering percentage, the results obtained
could act as a reference for the application of Feature Selec-
tion techniques on other regression problems. Our compari-
son could be used to analyze the performance gaps between
the different Feature Selection techniques tested. However,
it is important to note that we do not recommend extrap-
olating the filtering percentage as an exact percentage to
other case studies [8]]. For each case, the filtering percentage
will depend on the quality of the initial data set—i.e., the
number of irrelevant features or the number of correlated
features—of the new case study.

Another important issue to discuss is whether the fea-
tures that have been retained in the two models are over-
lapping. That is, whether all the features of the 14-feature
model are included as entries in the 25-feature model. In
this regard, it has been verified that this is the case. To be
more precise about which items of the original 31 have been
retained, the 25-feature model has retained 6 of the 10 body
functions items, 16 of the 17 body structure items, and 3
of the 4 environmental factors items. The 14-feature model
has retained 4, 7 and 3 items from each group, respectively.
As can be seen, the first model filters mostly body function
items, so these may be the ones with more overlapping
information. The second model continues the path filtering
a bit more of these items, but mostly filtering body struc-
ture items. The least filtered are the environmental factors,
filtering only 1 item for both cases.

On the clinical impact implications of eliminating the
number of features we eliminated, we have evaluated the
amount of time that can be saved on each functional profile
assessment with our proposal. Originally, with the 31 items,
it took an average of 20 minutes to assess a patient (an
average of 38.70 s per item) when the diagnosis was made
by an experienced caregiver. The same caregiver now needs
an average of 15 minutes for the same diagnosis, through the
new version with only 25 questions (improving the average
per item to 36 s). As can be seen, from the caregiver’s point

of view, their process has been optimized by 25%. As for
the self-diagnosis by the elder, we have determined that the
elders aged 65 to 80 years need 10 minutes on average to
fill in the reduced form of 14 questions (an average of 42
s per item) and that the elders aged more than 80 years
need 15 minutes (an average of 64 s per item). For that,
a reformulation of the question to make them more user-
friendly to the elders is needed.

This improvement is due to the fact that the form used
by the caregivers has been reduced by almost 20%, from 31
items to 25 items. However, such filtering does not always
have to be achieved, and there may be situations where only
a small part of the items can be filtered..

Regarding the impact of filtering few features, from the
sanitary point of view we can consider two interesting situ-
ations. First, if it is more convenient to keep all the features
because the time optimization to be achieved is very small
and it is better to keep all the information than to obtain
that optimization. Second, if it is better to eliminate those
few features because they help to optimize the assessment
times (even if only a little). What is best in each case is highly
subjective, and depends largely on the interpretation of the
health professional in charge and the results obtained in the
particular case study. In this case, any filtering obtained is
interesting, even if it is small. It does not matter too much
to lose certain information, since it is not a case study in
which a disease that requires great precision in its diagnosis
is being detected.

It is also relevant to discuss the application of these
Feature Selection techniques to the assessment of functional
profiles. Two Machine Learning models were created to
establish the functional profile scores using fewer data. Both
the model that selected a smaller number of features and
the model that selected a larger number yielded correlation
between inputs and outputs close to 100%. For Model 1,
the error included was so slight that it could be considered
negligible. Therefore, the values yielded by this model are
as accurate as those provided by the original features set.
For the Model 2, the error is still not very significant: 1.55
units on average, with some cases where it is slightly more
pronounced. As suggested above, this could be used as a
preventive model used by informal caregivers to quickly
obtain more frequent, approximate functional scores. In case
the scores suggest a possible problem, health professionals
could then apply the more accurate model.

Our results suggest novel possibilities for the assessment
of the functional profile of older adults—one of the most
costly issues in terms of human healthcare resources, given
that loss of functionality is an inherent consequence of
aging. With this proposal, informal caregivers can contin-
uously measure their patients’ functional profiles changes,
with two advantages: on the one hand, health professionals
have to perform fewer assessments while their patients’
functional profiles can be continuously monitored. In ad-
dition, the assessments performed by health professionals
would be faster and more efficient, since fewer parameters
would be assessed to obtain the same results. This would
benefit healthcare systems, by freeing up time that could
be devoted to providing better care. Therefore, the objective
of this paper has been achieved and it can be considered
a declaration that Feature Selection on regression problems
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can be employed as the technological tool that can improve
the assessment of health pathologies and conditions.

7 RELATED WORK

Dimensionality Reduction (DR) techniques have become
very important in Data Science due to the huge amount
of data generated every day in the so-called Big Data era
[19]—with more and more works applying these techniques
to different domains.

Health care is one of the fields where the use of these
techniques is imperative. Feature dimension is one of the
main challenges in the analysis of healthcare data [9], [12],
[32]. Medical tests often generate significant amounts of
data [33]—input variables or features—which are difficult
to analyze directly by using Data Mining techniques such as
Machine Learning or Deep Learning. Thus, proposals such
as that of Lee et al. [12] suggested the use of DR techniques
to analyze Electronic Medical Records (EMR). They argued
that these records were usually composed of hundreds to
thousands of medical variables, causing a problem of data
high-dimensionality—the so-called curse of dimensionality
[21].

Within DR techniques, two types of approaches can
be established [12]]: Feature Extraction and Feature Selec-
tion. Both approaches are not mutually exclusive and are
often used together [34]. Feature Extraction methods aim
to extract a series of new features from existing features
in a dataset. These new features will be more expressive
than the original ones, thus allowing a better analysis of
the data. This is the approach followed by proposals such
as one of Nufiez-Godoy et al. [35], who employ Feature
Extraction’s Principal Component Analysis (PCA) algorithm
to reduce the high-dimensionality of sensor-gathered data
to detect patterns in human-sitting-poses. The application
of these techniques helps improve the results yielded by
the initial prediction models, using the original feature set,
while reducing the computational cost. However, the use of
these techniques still implies collecting the same number of
input variables, so they do not provide a solution—or, at
least, not by themselves—to the problem addressed in this
paper.

On the other hand, Feature Selection techniques aim
to directly reduce the set of features to be collected as
input. This way, not only do they improve the performance
of prediction models [8]—both in terms of accuracy and
computational costs—they also help analyze the features
that are collected. Their analytical potential results in several
advantages, such as a better understanding of the problem.
The Feature Selection process helps eliminate features that
are redundant or have no real relation to the output—even
if, a priori, healthcare professionals believe that they do.

For these reasons, these types of techniques have been
widely used for years. Neumann et al. [36] presented some
continuous Feature Selection approaches, measuring their
performance in different health datasets. Wei and Billings
[37] developed a new unsupervised forward orthogonal
search (FOS) for Feature Selection and applied it to different
health datasets from the UCI Machine Learning Repository.
Maldonado et al. [38] proposed a wrapper method based on
the use of kernel functions with Support Vector Machines

for classification problems. They compared their method
with other existing ones using different datasets, including
the Colorectal Microarray (CRMA) and the Wisconsin Breast
Cancer (WBC) datasets. Huang et al. [2] applied a filter-
based method to an antidepressant medication utilization
study, discussing the advantages of this method with respect
to a wrapper method on logistic regression. Genuer et al.
[39] proposed the use of random forests in wrapper Fea-
ture Selection techniques, applying them on four different
classification datasets, corresponding to Colon, Leukemia,
Lymphoma, and Prostate diseases, and providing some
experimental metrics. Jeanneret et al. [40] performed a
chemistry-driven Feature Selection in order to analyze urine
samples corresponding to dioxin intoxication. Javed et al.
[41] demonstrate the performance of filter methods on three
different datasets belonging to binary classification (two-
class) problems, among them a drug discovery and a heart
disease classification dataset. Cateni et al. [42] proposed
the combination of different Feature Selection techniques
in a two-phase procedure: first using filter methods and
then an exhaustive search. This proposal was validated on
several UCI datasets, among others. Bodur and Douglas [14]
developed and tested a filter algorithm for Feature Selection
in healthcare datasets. Uphade et al. [43] make use of these
techniques also in classification problems to try to detect
which factors should be taken into account in covid patients
to try to place them in a range of days necessary for their
recovery. Bommert et al. [44] compare the use of different
filter methods to select the most relevant features in gene
expression within bioinformatics. They focus on this type
of methods because they are more computationally efficient
than wrappers, being a better choice for high-dimensional
data such as the 14 datasets used for the comparison. Out-
side of the health domain, Guo et al. [45] proposed a method
to perform regression feature selection with noised data —or
data with outliers— when the distribution of representation
error is unknown. Degeest et al. [46] discuss the importance
of Feature Selection as a preprocessing step in Machine
Learning, highlighting the relevance of filter methods and
centering in the context of regression problems.

While some proposals offer new Feature Selection algo-
rithms, others delve into the existing ones and their use
in the health domain. Remeseiro and Bolon-Canedo [47]
reviewed the Feature Selection techniques in medical appli-
cations. Suresh et al. [13] defined a full process, beginning
with data cleansing and outlier detection, following with
dimension reduction using SVM-RFE, and ending with the
evaluation of results on the RFS-SVM algorithm and other
traditional classifiers. They applied this process on a Prima
Indian diabetes dataset. Chen et al. [26] proposed the use
of ensemble methods for Feature Selection on health data,
consisting of the use of filter, wrapper, and embedded
methods together. Chicco and Oneto [16] showed in their
research that machine learning could be used to predict
sepsis shock, as well as demonstrating that Feature Selection
could be employed to identify unexpected symptoms and
relevant clinical components of septic shock. Xu et al. [48]]
proposed a general framework that, using global redun-
dancy minimization in orthogonal regression, emphasized
the importance of the correlation between features in the
Feature Selection processes. Ali et al. [49] use this type
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of techniques to enable the creation of Machine Learning
models capable of predicting drug response according to
omics profiles in precision oncology applications.

In addition, proposals such as that of Arowolo et al. [34]
employed these techniques to select the most relevant fea-
tures within a dataset, before employing Feature Extraction
techniques to improve the accuracy of prediction models.
This approach was used to analyze in a more efficient
way data from the Malaria Vector Gene Expression. Other
proposals such as that of Murthy [50] employed the two
techniques in a reverse process: first new features were
generated with Feature Extraction and then the original fea-
tures plus the new ones were filtered with Feature Selection.
The framework they defined for this is called Minimum
Projection error Minimum Redundancy (MPeMR).

However, most applications of Feature Selection are
linked to classification problems—aiming to predict to
which discrete class from within a dataset a sample belongs,
based on a set of inputs. When the expected output is a con-
tinuous value—i.e., a regression problem—the number of
proposals available in the literature is much smaller. Of the
above-mentioned papers, only that of Chicco and Oneto [16]
uses Feature Selection on regression problems with health
data—ignoring previously published methods, such as that
of Huang et al. [2]]. Outside the health domain, examples are
scarce. Javidi et al. [17] proposed a new Feature Selection
technique on regression problems based on the use of the
Biology Migration Algorithm (BMA) for Feature Selection
and game theory for feature clustering. To test its efficiency,
its authors evaluated it on several datasets from different
domains belonging to regression problems.

Furthermore, as far as the authors know, no works have
reviewed Feature Selection techniques applied to regression
problems and compared their performance on a specific
case study. For example, Chandrashekar [8] reviews Feature
Selection techniques applied to classification problems, of-
fering a comparison of their performance on different health
datasets. El Aboudi et al. [25] also provide an overview
of different Feature Selection techniques on classification
problems, focusing on wrapper methods. Finally, Remeseiro
et al. [47] discuss the importance of Feature Selection on
medical applications, highlighting the high number of re-
gression problems existing in this domain. However, their
techniques’ comparison only covers classification problems’
datasets.

Finally, our work includes also Machine Learning and
Deep Learning tasks. Since there are many Machine Learn-
ing algorithms for the definition of prediction models in
regression problems, the existing literature was reviewed.
Following the recommendations of Jolly et al. [30], tests
were conducted on the most common algorithms—linear
regression, logistic regression, support vector machines,
and tree-based algorithms. Despite using Deep Learning, a
Multi-Layer Perceptron Network (MLP) was chosen. Our
choice of the most suitable neural network is based on
the study by Bhavya and Pillai [10], which discusses the
suitability of several neural network types for the analysis
of healthcare data.

8 CONCLUSIONS AND FUTURE WORK

This paper aimed to reduce the number of parameters that
health professionals must consider to assess an older adult.
Feature Selection techniques were used to reduce an initial
set of features into a smaller subset containing the relevant
information from the initial set while eliminating redundant
features.

We created two different Machine Learning models us-
ing reduced sets of features to predict functional profile
scores: one using fewer features that lose some reliability;
and another using more features but with higher reliability.
Both models could be used together—one as a preventive
model so that the patient can be constantly monitored, and
the other to be used only by health professionals. The input
features used in each model were obtained by using Feature
Selection. For this purpose, an initial comparison of different
techniques and configurations was carried out, taking into
account the computational time taken in selection, the num-
ber of features selected, and the level of correlation between
inputs and outputs achieved.

We argue that the use of Feature Selection techniques
in the healthcare domain is feasible when working on a
regression problem since it can improve the results and help
health professionals in performing assessments. We also
argue that they can be used in situations where accuracy is
very high—close to 100%—but it is necessary to reduce the
number of collected variables. This paper does not aim to
demonstrate that better predictions are obtained with fewer
variables after using Feature Selection. Rather, it shows
that predictions of the same quality can be obtained with
fewer variables. This should help improve the sustainability
of healthcare systems—saving resources and time, which
can be then spent on more pressing tasks. Additionally,
the comparison provided serves as a starting point for
future work seeking to employ these techniques through
implementations already available in the most widely used
Data Science tools.

The data employed in this paper was taken from the
MIAPe platform which collects assessment data of older
adults living in assisted living facilities and nursing homes,
including functional profile data.

As future work, one important topic is to include wrap-
pers methods into the evaluation, since space constraints
have not allowed us to include them in this study. As well,
we will aim to create a framework that allows health profes-
sionals to interact with the algorithms or feature selection
techniques to filter and reduce the features. In this way,
they will be able to eliminate features manually based on
recommendations, checking how the accuracy of the models
is altered. This would allow the model to adapt better to the
real needs of healthcare professionals. It would also help to
resolve the uncertainties left by the automatic application of
Feature Selection. To do this, we could include in the Feature
Selection process those techniques tested in the comparison
that generated visual results to show correlations, mutual
information, and other issues of interest to the users when
they filter features.

The need for a flexible and interactive framework such
as the one mentioned above is clear since the automatic
techniques do not integrate critical domain knowledge or
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take into account how complicated it can be to establish the
value of a specific feature. For instance, they do not consider
the relationship that might exist between two features when
collecting their values—i.e., the value of two features can
be obtained jointly, and it might be interesting to keep
both despite one of them providing little information about
what is being diagnosed. They do not consider either the
importance that a specific feature might have to link the
diagnosis of a disease with another one. All these issues
could be avoided if users were in the loop of the Feature
Selection process.
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