
 

DOI: 10.2478/bile-2022-0003 

 
 

Biometrical Letters 

Vol. 59 (2022), No. 1, 23-46 

Maximum Likelihood and L2 Environmental Indices  

in Joint Regression Analysis 

 

Dulce Gamito Pereira 

Departamento de Matemática, Escola de Ciências e Tecnologia, Centro de Investigação  
em Matemática e Aplicações, Instituto de Investigação e Formação Avançada,  
Universidade de Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal 

e-mail: dgsp@uevora.pt 

SUMMARY 

This paper describes an iterative analysis of incomplete genotype  environment data. L2 

environmental indices were introduced to enable the use of Joint Regression Analysis 
(JRA) in analyzing experiments with incomplete blocks. We now show how, once 
normality of yields is assumed, the introduction of L2 environmental indices provides a 

theoretical framework for Joint Regression Analysis. Using this framework, maximum 
likelihood estimators are obtained and likelihood ratio tests are derived. It is noted that 
the technique allows unequal weighting of data, and the special case of complete blocks 
is discussed.  

Keywords: Joint Regression Analysis, maximum likelihood estimators, likelihood ratio 
tests, L2 environmental indices. 

1. Introduction 

In their review of the literature on genotype  environment interaction, Aastveit 

& Mejza (1992) placed Joint Regression Analysis (JRA) in the group of models 

used for response stability when the environment changes. This group of models 

was further divided into: 

 models based on regression techniques; 

 models based on analysis of variance (ANOVA). 

JRA clearly belongs to the first subgroup. More about genotype  environment 

interaction can be found in Kang & Gauch (1996). 
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JRA has been widely used in the analysis of series of experiments designed 

for cultivar comparison. These experiments must cover as wide an area as 

possible in order to increase the usability of the selected cultivars. Gusmão et al. 

(1989) introduced the concept of equipotential zones for cultivar yield pattern 

evolution in this context. Equipotential zones will be regions, as large as possible, 

in which JRA can be carried out. 

The crucial problem in methods based on regression is the choice of the 

controlled variables, since the yield is usually taken as a dependent variable. In 

Linear Joint Regression Analysis (LJRA) a synthetic variable, the environmental 

index, is used to measure the productive capacity of each pair (location, year). 

Initially conceived by Mooers (1921) and further developed by Yates & 

Cochran (1938), JRA was greatly improved by Finlay & Wilkinson (1963), who 

made the method practicable. The environmental index as introduced by Eberhart 

& Russel (1966) was measured, for each experiment, by its average yield. Next, 

for example, Gusmão (1985, 1986a, 1986b) showed that the precision in 

analyzing series of randomized block experiments was greatly increased by 

considering environmental indices for individual blocks instead of only one 

environmental index per experiment. With this proposal, if we have K 

experiments each with b blocks, we will have Kb supporting points per regression 

instead of only K such points. 

Later on, LJRA was criticized by Westcott (1986) and Lin et al. (1986) for 

not considering specific environmental variables, but other authors, such as 

Becker & Leon (1988), argued that this criticism was not strong enough to justify 

discarding LJRA. In fact, the holistic approach to productive capacity integrated 

into this technique has performed quite well in the Portuguese case. Based on 

results from regional yield experiments and several simulated studies, Baeta et al. 

(1990) illustrated how genotype  environment interaction (as expressed by the 

cultivar  block interaction) may be responsible for the increase in estimates of 

the experimental error in the ANOVA of randomized complete block design 

(RCBD) experiments. In order to overcome such difficulties, and to increase the 

accuracy of the statistical analysis of RCBD trials, practical solutions were 
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suggested, for the case when the F test for blocks is not significant (Gusmão  

et al. 1990) and when it is significant (Mexia et al. 1990, 1991). 

Formerly, LJRA was applied to series of randomized block experiments.  

The block environmental indices were estimated, following Gusmão (1985, 

1986a, 1986b, 1988), by the block average yields. This procedure had several 

shortcomings: 

 it can only be used when every block contains all cultivars; 

 it is difficult to accept an average yield as a controlled variable. 

Despite these limitations, LJRA has, as pointed out above, led to quite good 

results. 

Both of the shortcomings of LJRA mentioned above are overcome when L2 

environmental indices are used. We will present an algorithm for their estimation 

when incomplete block designs are used. In each block, every cultivar is absent 

or has a single replicate. This means that we will consider binary block designs 

only. 

For completeness’ sake, we point out that Digby (1979) gave an iterative 

numerical method for fitting a joint regression model to an incomplete two-way 

table without replicates, but did not analyze the statistical properties of the 

obtained estimators. Ng & Grunwald (1997) gave another iterative method for 

the adjustment of joint regressions. Both methods were compared in Ng & 

Williams (2001). Applying our technique to the data in this paper, we obtained 

comparable results. 

Using a model similar to the one introduced by Digby (1979) and assuming 

the yields to be normal and homoscedastic, we show that the zigzag algorithm 

leads to maximum likelihood estimators. Moreover, we derive likelihood ratio 

tests for the degree of the regressions to be adjusted and for equality of the 

coefficients. As to the degree, we point out that Mexia et al. (1999, 2001) showed 

that the precision might only slightly increase with the degree of the adjusted 

polynomials. Thus, the corresponding test is included only for completeness’ 

sake. 
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2. Model 

We assume, following Gusmão (1985), that for each block in a series of 

experiments there is a distinct environment. Moreover, we restrict ourselves to 

linear regressions, since (see Mexia et al. 2001) no great improvement was 

obtained by considering polynomial regression. Thus if the jth cultivar is present 

in the ith block, its mean yield will be expressed as 
 

 ij j j iE Y x  , j=1,...,J, i=1,...,b   , 

where 
j  and 

j  are the regression coefficients for the jth cultivar, and 

 , 1,...,ix i b  is the environmental index for the ith block. We are thus led to the 

model 

ij j j i ijY x +  , j=1,...,J, i=1,...,b    , 

very similar to that proposed by Digby (1979). The main difference is that we 

will assume the error 
ij  to be normal and homoscedastic. This assumption will 

enable us to obtain maximum likelihood estimators and to perform likelihood 

ratio tests. 

To adjust this model by least squares, we seek to minimize 

   
2

1 1

, ,
b J

J J b

ij ij j j i

i j

S p Y x 
 

  α β x . 

The weights
ijp  are 1 when the jth cultivar is present in the ith block and 0 

otherwise. 

To carry out the minimization, the zigzag algorithm (see Mexia et al. 1999) 

may be used. This is an iterative algorithm that starts with a set of initial values 

0, , 1,...,ix i b , for the environmental indices. It is clear that the choice of these 

values is important. In the complete case we can often start (see Mexia et al. 1999) 

with the block mean yields. Moreover, if we have a design with resolvable super-

blocks, we can use, for each block, the average yield of the corresponding super-

block. 
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In each iteration, minimization is first carried out for the vectors 
Jα  and 

J
β  

of coefficients, and subsequently for the vector 
b

x  of environmental indices. 

Lastly, the vector 
b

x  is standardized, so that the range of environmental indices 

is kept unchanged. 

The zigzag algorithm is summarized in the following scheme: 

 

ZIGZAG ALGORITHM 

Calculation of the initial values for the environmental indices 
0

bx  

Range  0 0 ;  a b  with    0 01 0 0 01 0,...,  and  ,...,b ba Min x x b Max x x   

 

Minimize the function  
 

 

0

0

0

S ,   : 

b

J J b

b











x

α β x

x

 

 

To minimize     0 0S ,   b J b J bx α x β x minimize the functions

   
2

1

,
J

J J

i ij ij j j i

j

h x p Y x 


  α β , i 1,..., b , to obtain  

the new vector 
0'
bx . 

 

Standardize the vector of environmental indices to ensure unchanged range, 

with    0 01 0 0 01 0' ' ,..., '  ;  ' ,..., 'b ba Min x x b Max x x   

Take  0 0
1 0 0 0

0 0

' '
' '

i i

b a
x a x a

b a


  


 

 

Thus we obtain the vector 
1

bx . 

 

Repeat this procedure until successive sums of sums of squares  

of weighted residuals differ by less than a fixed amount. 
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In the appendix, we consider the behavior of this algorithm.  

We point out that (see Pereira & Mexia 2003) we could use other non-

negative weights in order to take into account the agronomical relevance of the 

different blocks. 

3. Maximum likelihood estimators 

Since we work with large samples, and the main goal of JRA is connected with 

inference in the regression coefficients, and not with variance components, we 

will use the usual maximum likelihood estimators. 

Let us now assume that the yields are independent and normally distributed, 

with variances 
2 . We take the pairs  jj  , , Jj ,...,1 , of coefficients, 

1,...,i , i b   the environmental indices, and N the number of observed yields. 

Now the likelihood function will be 

 
 

 

2

2
1 1

2

1

2

2, , ,
2

b J

ij ij j j i

i j

N

p Y

J J b

N

e
L

  



 

 

  

α β θ . 

The log-likelihood will then be 

     
2

2 2

2
1 1

1
, , , ln ln 2

2 2 2

b J
J J b

ij ij j j i

i j

N N
p Y     

  

     α β θ . 

From 

 
 

2

22 22
1 1

1

22

b J

ij ij j j i

i j

N
p Y   

   


   


 , 

we obtain 

  
2

2

1 1

1 ˆ ˆˆˆ
b J

ij ij j j i

i j

p Y
N

   
 

   , 

where “ ^ ” indicates, as usual, maximum likelihood estimators. To obtain the 

  Jj , jj ,...,1,ˆˆ  , and the ˆ , 1,...,i  i b  , we must minimize  

   
2

1 1

, ,
b J

J J b

ij ij j j i

i j

S p Y   
 

  α β θ .
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Thus, our weighted nonlinear least square estimators are also maximum 

likelihood estimators, once normality is assumed. Moreover, the zigzag algorithm 

can continue to be used. 

These results extend, naturally, to polynomial regressions; thus: 

 least square estimators of the coefficients and environmental indices are also 

maximum likelihood estimators, under assumed normality; 

 moreover, with m the degree of the polynomial regression, we obtain 

 

2

2

1 1 0

1 ˆ ˆˆ
b J m

m ij ij j i

i j

p Y
N

  
  

 
  

 
  . 

We considered the general case, so that these results also hold for the 

complete block case. 

4. Likelihood ratio tests 

4.1. The general case 

As a polynomial of degree t is a special case of a polynomial of degree 1t , we 

can (see Fisz 1963, p. 580) assume the degree 1m t   to test tmH :0  

(formally by this hypothesis we mean 0 1: 0tH    ). Let  be the parametric 

space associated with H0, while the total parametric space, assuming that the 

degree of the regression does not exceed 1t  , will be . 

With Sm the sum of squares of residuals, when degree m polynomial 

regressions are adjusted, the corresponding maximum of the log-likelihood is 

      

   2

2

1
ˆln 2 ln ln 2 ln

ˆ2 2 2 2 2 2

m
m m m

m

SN N N N N
S

N
  


       

 

Now, if 0H  holds, the limit distribution, when N  , of 

  1

1

2 ln t
t t

t

S
N

S
 



     

is (see Mood 1974, p. 441) the central chi-square distribution with J degrees of 

freedom, since the last coefficients of the J regressions will be null. 

The most important case is that for 1t , in which we test for linearity. 
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In what follows, we restrict ourselves to linear regressions, with pairs 

 jj  , , Jj ,...,1 , of coefficients. We start by testing the hypothesis 
'

0 1: ... JH    , and let  be the common value of these coefficients when '

0H  

holds. We redefine  and  in accordance with the hypothesis to be tested. Then 

1  will be the unrestricted maximum of the log-likelihood; this is the maximum 

associated with . Moreover, to obtain the maximum of the likelihood, when 
'

0H  

holds, we have to maximize 

     
2

2 2

2
1 1

1
, , , ln 2 ln

2 2 2

b J
J J b

ij ij j i

i j

N N
p Y     

  

     α 1 θ . 

Now 

 

 
 

2

22 22
1

1

22

b J

ij ij j i

i j

N
p Y  

   


   


 , 

so that 

  
2

2

1 1

1 ˆ ˆˆˆ
b J

ij ij j i

i j

p Y
N

      
 

   , 

where the index  indicates that these estimators are obtained maximizing the 

likelihood in . To obtain them we have only to minimize 

    
2

1 1

, ,
b J

J b

ij ij j i

i j

S p Y   
 

  α θ . 

To simplify our notation, we omit the index  from the estimators. We will again 

use a zigzag type algorithm, in each cycle minimizing first for  ,J Jα 1  and 

then for 
b

θ . As a starting point, we take 1
ˆb bθ θ , that is, we use the unrestricted 

maximum likelihood estimators of the environmental indices. We thus obtain 

 

 

1

1 1

2

2

b

ij ij j i

ij

b J

ij i ij j i

i j

S
p Y  ;  j 1,...,J

S
p Y           





 


  




 


    




 
    






. 
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Equating to zero the ,...,Jj
S

j

1  , 





 , we obtain J1,...,j  ; ba jjj    with 

 

1

1

1

1

b

ij ij

i
j b

ij i

i

b

ij

i
j b

ij i

i

p Y

a  ;  j 1,...,J

p

p

b  ;  j 1,...,J

p















  








 












, 

thus obtaining J2,...,j ; baba jjj  111  . We can thus write 

J2,...,j  ; dc jjj  1 , where  

j

j
b

b
c 1

  

and  

 
J,...,j  ; 

b

aa
d

j

j

j 2
1






 

Equating 
1

J

j j

S






  to zero, we further obtain 

 
1 1 1 1 1 1

0
b J J b b J

ij ij ij j ij i

i j j i i j

p Y p p  
     

  
     

   
     

so that, since 11 c  and 01 d , we arrive at 

 1

1 1 1 1

1 1

b J J b

ij ij ij j j

i j j i

b J

ij i

i j

p Y p c d

p







   

 

 
  

 


  


. 

Besides this, a second expression for  may be obtained by equating 





S
 to zero. 

This expression will be 
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 1

1 1 1 1

2

1 1

b J J b

ij i ij ij i j j

i j j i

b J

ij i

i j

p Y p c d

p

  





   

 

 
  

 


  


. 

From both expressions for , we obtain 

1 1 1 1 1 1 1 1

2

1 1 1 1

1

1 1 1 1

2

1 1 1 1

jb J b b J J b

ij ij ij j ij i ij ij i j

i j j i i j j i

b J b J

ij i ij i

i j i j

J b J b

ij j ij i j

j i j i

b J b J

ij i ij i

i j i j

p Y p d p Y p d

p p

p c p c

p p

 

 





 

       

   

   

   

   
    

   



   
   
   



     

 

   

 

. 

Starting from here, we obtain the J ,...,2  and  for the first iteration. Next, we 

maximize with respect to the environmental indices, which is simple, since we 

have to minimize  
1

b

i i

i

h 


 , with 

    
2

1

J

i i ij ij j i

j

h p Y  ;  i 1,...,b  


    , 

and it is straightforward to obtain 

 

 
1

1

J

ij ij j

j

i J

ij

j

p Y

 ;  i 1,...,b

p













 




. 

We can, as before, standardize these values in order to keep the range of 

environmental indices unchanged, and then carry out a second iteration and so 

on. 

With 

S  the final value of S , we obtain 

2ˆ
S

N


  , and the maximum 

of the log-likelihood in  will be 
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 ln 2 ln
2 2 2

SN N N

N


     . 

When N is large (see again Mood et al. 1974, p. 441) the statistic 

1

ln
S

N
S

   is 

distributed as a central chi-square with 1J   degrees of freedom, when 
'

0 1: ... JH       holds. 

Similarly, to test the hypothesis of equality of the intercepts 
''

0 1: ... JH      , we have to minimize 

   
2

1 1

, ,
b J

J J b

ij ij j i

i j

S  p Y    
 

  1 β θ , 

to obtain ˆˆ J ,    β  and ˆ
b

θ , where  continues to represent the parameter space 

associated with the tested hypothesis. Again we will use the zigzag algorithm, 

minimizing alternately for  ,J J 1 β  and for 
b

θ , starting by taking 1
ˆb bθ θ . 

Equating 
1

J

j j

S






  to zero, we obtain 

 2

1

1 1 1 1

1 1

b J b J

ij i ij ij i j j

i j i j

b J

ij i

i j

p Y p c d

p

  





   

 

 



 


, 

where 

1 1

1 1

2 1
11

1 11 1

2 2

1

1 1 1

  and   ; 2,...,

b b

ij ij i i i i b
i i

ij ib bb b
i

ij i i ii i ij i
i ii i

j jb b b

i i ij i ij i

i i i

p Y p Y

p

p pp p

c d j J

p p p

 



  

  

 



  

  

 
 
 
 
 
   

 


  

  
. 

Likewise, from 0





S

, we obtain 

 1

1 1 1 1

1 1

b J b J

ij ij ij i j j

i j i j

b J

ij

i j

p Y p c d

p

 


   

 

 



 


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therefore 

2

1 1 1 1 1 1 1 1

1 1 1 1

1
2

1 1 1 1

1 1 1 1

b J b J b J b J

ij i ij ij i j ij ij ij i j

i j i j i j i j

b J b J

ij i ij

i j i j

b J b J

ij i j ij i j

i j i j

b J b J

ij i ij

i j i j

p Y p d p Y p d

p p

p c p c

p p

  





 



       

   

   

   

 







   

 

 

 

. 

It is now straightforward to obtain   and the J ,...,2  for the first iteration. 

Now to maximize for the environmental indices we have to minimize 

    
2

1

1
J

i i ij ij j i

j

h p Y  ;  i ,...,b   


    , 

giving 

 

 
1

2

1

J

ij ij j

j

i J

ij j

j

p Y

 ;  i 1,...,b

p

 











 




. 

Next, we can standardize, as before, and repeat the iteration. We repeat the 

iteration until the decrease in the value of S
 is sufficiently small. We can 

proceed as for the hypothesis 
'

0 1: ... JH    . 

Although of lesser interest, we can also consider the hypothesis 

1'''

0

1

...
:

...

J

J

H
  

  

  


  
 

of “equal” regressions. The unrestricted parameter space  and the corresponding 

log-likelihood maximum will be the same as for the previous tests. 

Now, to obtain   ˆ  , ˆ  and ˆ b

θ , we again use the zigzag algorithm to 

minimize 

    
2

1 1

, ,
b J

J J b

ij ij i

i j

S p Y    
 

  1 1 θ  
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alternately with respect to  ,J J 1 1  and to 
b

θ . Just as before, we take 

1
ˆb bθ θ  and, to simplify the notation, we omit the index . 

We now have 

 

 

1

1 1

2

2

b

ij ij i

i

b J

ij i ij i

i j

S
p Y                    

S
p Y           





 


  




 


   



 
    






 

and thus, equating these derivatives to zero, we obtain the solutions of this 

system: 

 

2

1 1 1 1 1 1 1 1

2

2

1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1

b J b J b J b J

ij i ij ij ij i ij i ij

i j i j i j i j

b J b J b J

ij ij i ij i

i j i j i j

b J b J b J b J

ij ij i ij ij i ij ij

i j i j i j i j

b J

ij i

i j

p p Y p p Y

p p p

p p Y p p Y

p p

  



 

 



       

     

       

 




 

  
 





   

  

   


2

2

1 1 1 1

b J b J

j i ij i

i j i j

p 
   














    
 

 

. 

In the second part of the iteration we have to minimize  
1

b

i i

i

h 


 , with 

    
2

1

1
J

i i ij ij i

j

h p Y  ;  i ,...,b  


    , 

and obtain 

 

 
1

1

1

J

ij ij

j

i J

ij

j

p Y

 ;  i ,...,b

p













 




. 

As before, we standardize the estimated environmental indices and iterate until 

S  stabilizes. With 

S  the final value of S , if N is large and 

'''

0H  holds, then 
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the statistic 

1

ln
S

N
S

   follows a central chi-square distribution, with  12 J  

degrees of freedom. 

We point out that the iteration procedure always converges, because we 

obtain a decreasing sequence of minima, bounded below by zero. 

4.2. The complete case 

In this case N bJ , since all cultivars are present in all blocks, and 1ijp  , 

Jj ,...,1 , 1,...,i b , which simplifies considerably the previous formulae. 

The adaptation of the tests for the hypothesis concerning the degree of the 

regressions is straightforward. Again, the most important test is the one for 1t

, that is, the test of linearity. 

Let us consider the tests for the same three hypotheses as before, concerning 

the coefficients of linear regressions. We begin with 

   JH ...: 10  

where we must minimize 

    
2

1 1

, ,
b J

J J b

ij j i

i j

S  Y   
 

  α 1 θ . 

To do this we can proceed as before, except that now we obtain 

 

 
b

1

i 1
1  ;  2,...,

ij i

j

Y Y

j J
b

  



  


 

In this case, with 
1

J

i ij

j

T Y


 , 1,...,i b , we have 

 

1 1 1 1 1

2

1 1
1

1

2

1 1

b J b b J

i j i i i j

i j i i j

b b

i i i
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b

i

i

b b

i i

i i

T b d T d

J J p

b

 

 





 

    

 



 

 







    

 



 
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so that the calculations are much simpler than in the general case. The second 

part of the iteration is also considerably simplified, since we can take 

 

 
1

J

ij j

j

i

Y

 ;  i 1,...,b
J










 


. 

Next, to test 

 ''

0 1: ... JH       

we must minimize 

    
2

1 1

, ,
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J J b
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Now we obtain 
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2

1
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b
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i

i
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c j J d j J
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as well as 
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1
1

2

1 1

1
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i i i j i i j

i i j i i j

b

i
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i
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b
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 
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

 



 







     



 



, 

so that, as for the previous test, the first part of the iteration is much easier to 

carry out than in the general case. This is also true for the second part of the 

iteration, since now we obtain 

 

 
1

2

1

J

ij j

j

i J

j

j

Y

 ;  i 1,...,b

 











 




. 

Finally, we have the test for 
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J
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  

  

  


   

. 

Then we have to minimize 

    
2

1 1

, ,
b J

J J b

ij i

i j

S Y    
 

  1 1 θ . 

Proceeding as before, we obtain in this case 
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   

 

  

 

, 

which simplifies considerably the first part of the iteration. In the second part, 

it is straightforward to obtain 

  
1

1 J

i ij

j

Y  ;  i 1,...,b
J

 
 

   . 

5. Example 

In this application, we use data obtained in 17 experiments in -designs carried 

out by the Research Center for Cultivar Testing at Słupia Wielka (Poland) in the 

years 1997 and 1998. 

In these experiments, carried out in resolvable block designs, cultivars of 

winter rye were compared. In each design there were 4 superblocks, each with 5 

blocks of 4 plots. Each cultivar occurred on one plot per superblock. The 20 

cultivars are listed in Table 1. 
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Table 1. Names of the cultivars studied 

Names of cultivars 
01AMILO 1WARKO 1MARDER ADAR 
02ZDUNO 1SMH 1094 1SMH 1195 1SMH 1295 
03NAD 195 ESPRIT RAH 496 CHD 296 

04 CHD 396 1RAH 596 WID 196 RAH 697 
05RAPID RAH 797 RAH 897 URSUS 

 

The locations and years of the different experiments are listed in Table 2. 
 

Table 2. Locations and years in which experiments took place 

Trial Location / Experimental station  Year 
1 Lubinicko 1998 
2 Pokój 1997/98 

3 Dukla 1998 
4 Uhnin 1998 
5 Ruska wieś 1997 

6 Łopuszna 1998 
7 Kawęczyn 1998 
8 Rychliki 1998 
9 Głodowo 1998 

10 Rarwino 1998 
11 Masłowice 1998 
12 Lubliniec Nowy 1998 

13 Krościna Mala 1998 
14 Seroczyn 1998 
15 Cicibór 1998 
16 Kochcice 1998 

17 Sulejów 1998 
 

To adjust the linear regressions we used the zigzag algorithm. The adjusted 

regressions are presented in Figure 1. The final results are presented in Table 3.  

In comparing the cultivars that integrate the upper contour 

(dominants) with the remaining ones, we begin by using one-sided t tests. The 

results are given in Table 4. 
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RAH 696 

RAH 696 

 

Figure 1. Adjusted regressions, using L2 environmental indices for the 17 

experiments 
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Table 3. Adjusted coefficients and R2 

Cultivar ~  
~

 R2 

URSUS -1.59 1.29 0.96 
RAH 797 -1.60 1.22 0.97 

05RAPID -0.78 1.12 0.97 
1MARDER -0.73 1.12 0.94 
RAH 897 -0.55 1.09 0.95 
ESPRIT -0.22 1.07 0.92 

WID 196 -0.38 1.06 0.96 
03NAD 195 -0.68 1.05 0.93 
02ZDUNO -0.82 1.02 0.97 

1RAH 596 -0.15 1.01 0.95 
RAH 496 0.20 1.00 0.95 
1WARKO -0.63 0.99 0.96 

CHD 296 -0.55 0.98 0.93 
04CHD 396 -0.54 0.98 0.95 
1SMH 1195 -0.45 0.96 0.93 

ADAR -0.35 0.96 0.96 

RAH 697 0.77 0.95 0.91 
01AMILO -0.27 0.93 0.93 

1SMH 1295 -0.16 0.93 0.96 

1SMH 1094 0.65 0.80 0.90 

  

 

Table 4. Dominant and dominated cultivars 

Dominant 

cultivars 

Range of 

dominance 

 

Dominated cultivars at the 5% level 

 

RAH 697 

 

 6.84  ;  42.5  

RAH 797, 05RAPID, 1MARDER, RAH 897, WID 

196, 03NAD 195, 02ZDUNO, 1RAH 596, 1WARKO, 

CHD 296, 04CHD 396, 1SMH 1195, ADAR, 
01AMILO, 1SMH 1295, 1SMH 1094 

 

URSUS 

 

 13.47  ;  6.84  

RAH 797, 05RAPID, 1MARDER, RAH 897, WID 

196, 03NAD 195, 02ZDUNO, 1RAH 596, 1WARKO, 

CHD 296, 04CHD 396, 1SMH 1195, ADAR, 

01AMILO, 1SMH 1295, 1SMH 1094 

 

We can see easily that besides the dominant cultivars (URSUS and RAH 697) 

only the cultivars ESPRIT and RAH 496 are not significantly dominated at the 

5% level, in the range  4713425 .  ;  . . If we work at the 1% level, we will also 

have to consider the cultivar 1MARDER as non-significantly dominated. Thus, 

we obtain the efficiency ratios  
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1

Number of dominant cultivars
0.1

Number of cultivars
r     

and 
2

Number of non dominant cultivars
0.20

Number of cultivars
r     

(0.25 if we work at the 1% level). 

If we wanted to use more robust methods, we could use the Scheffé and 

Bonferroni multiple comparison methods. In this case we have the results given 

in Table 5. 

 

Table 5. Significantly dominated cultivars, using the Scheffé and Bonferroni 

multiple comparison methods 

 Dominant 

cultivars 

 

RAH 697 

 

URSUS 

 Range of 

dominance 

 

 6.84  ;  42.5  

 

 13.47  ;  6.84  

Method  Dominated cultivars at the 5% level 
 

 

Scheffé 

 01AMILO, 1SMH 1295, 

1SMH 1094 

03NAD 195, 02ZDUNO, 
1WARKO, CHD 296, 

04CHD 396, 1SMH 

1195, ADAR 

03NAD 195, 02ZDUNO, 

1WARKO, CHD 296, 04CHD 

396, 1SMH 1195, ADAR, 
01AMILO, 1SMH 1295, 

1SMH 1094 

 

 

Bonferroni 

 01AMILO, 1SMH 1295, 

1SMH 1094 

RAH 797, WID 196, 

03NAD 195, 02ZDUNO, 

1RAH 596, 1WARKO, 

CHD 296, 04CHD 396, 

1SMH 1195, ADAR 

RAH 797, WID 196, 03NAD 

195, 02ZDUNO, 1RAH 596, 

1WARKO, CHD 296, 04CHD 

396, 1SMH 1195, ADAR, 

01AMILO, 1SMH 1295, 

1SMH 1094 

 

While the efficiency ratio r1 is still 0.1, r2 increases considerably. This would 

point to high performance, being required for a new cultivar to be recommended, 

and robust decisions when downgrading previously recommended cultivars; see 

Pereira & Mexia (2003). This may be quite acceptable, due to the costs involved 

in obtaining cultivars suitable for use. 
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6. Conclusion 

The use of L2 environmental indices led to a theoretical framework for JRA, 

integrating it into the statistical inference for normal models. Thus, it was possible 

to: 

 obtain maximum likelihood estimators for the environmental indices and the 

coefficients of the regressions; 

 perform likelihood ratio tests, namely linearity tests and tests on the 

regression coefficients. 
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APPENDIX 

The goal function  , ,J J bS α β x  has the derivatives 

 
2

2 2ij ij j j i ij j i

i j

S
p Y x p x

x
  




    

 
, 

thus when 0, 1,..., , 1,...,ij j j iY x  i b j J       we have 

2

2 , 1,..., , 1,...,ij j i

i j

S
p x  i b j J

x





  

 
 

and we may approach the Hessian matrix of S by the matrix 
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 
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Let us now establish 

Proposition 

 The matrix W  is positive definite. 
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Proof: With 
2 , ,b JT bT JT JT    m u v z  we obtain 

2 2 2 2 2
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1 1 1 1
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 
2

1 1

2
b J

ij j i j j i

i j

p u v z x
 
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   which establishes the thesis.           

 

Thus S will then behave, at least approximately, as a convex function. Such 

functions do not have local minima distinct from their absolute minimum, which 

is unique (see Bazaraa et al. 1992, p. 113). 

If we obtain small enough residuals, we may assume that the convex 

approximation to S holds and accept our estimates as corresponding, at least with 

good approximation, to the absolute minimum of S. 

For this reason, good behavior of the zigzag algorithm may be expected. 


