
Network Intrusion Detection with Constraints

Pedro Salgueiro
Universidade de Évora and CENTRIA FCT/UNL

Portugal
email: pds@di.uevora.pt

Salvador Abreu
Universidade de Évora and CENTRIA FCT/UNL

Portugal
email: spa@di.uevora.pt

Abstract—In this work we present NeMODe a declar-
ative system for Computer Network Intrusion detection
providing a declarative Domain Specific Language for
describing computer network intrusion signatures that
can spread across several network packets, which allows
to state constraints over network packets, describing
relations between several packets. NeMODe provides
several back-end detection mechanisms relying on Con-
straint Programming (CP) methodologies to find those
intrusions.

Index Terms—Constraint Programming, Intrusion
Detection Systems, Domain Specific Languages

I. Introduction

Network Intrusion Detection Systems are one of the
most important tools in computer network management
to maintain the security, integrity and quality of computer
networks and keep the users data safe. To maintain the
quality and integrity of the services provided by a com-
puter network, some aspects must be verified in order to
maintain the security of the users data. The description
of those conditions, together with a verification that they
are met can be seen as an Intrusion Detection task. These
conditions, specified in terms of properties of parts of the
(observed) network traffic, will amount to a specification
of a desired or an unwanted state of the network, such as
that brought about by a system intrusion or another form
of malicious access.

Those conditions can naturally be described using a
declarative programming approach, such as Constraint
Programming [1] or Constraint Based Local Search Pro-
gramming (CBLS) [2], enabling the description of these
situations in a declarative and expressive way. To help
the description of those network situations, we created
NeMODe, a Domain Specific Language (DSL) [3], which
enables an easy description of intrusion signatures that
spread across several network packets, which will then
translate the program into constraints that will be solved
by more than one constraint solving techniques, including
Constraint Based Local Search and Propagation-based
systems such as Gecode [4]. It will also have the capa-
bilities of running several solvers in parallel, in order to
benefit from the earliest possible solution.

Throughout this paper, we mention technical terms
pertaining to TCP/IP and UDP/IP network packets, such
as packet flags, ACK, SYN, RST, PSH, URG, acknowl-

edgment, source port, destination port, source address,
destination address, payload, which are described in [5].

This paper is organized as follows. Section II presents
the state of the art and a brief description of Intrusion
Detection Systems, Constraint Based Local Search, Adap-
tive Search and Domain Specific Languages. Section III
demonstrates how to model and perform Intrusion Detec-
tion using Constraint Programming. Section IV details the
DSL provided by NeMODe and provides some examples.
Section V shows the experimental results obtained by
NeMODe. Section VI evaluates NeMODe and Section VII
presents the conclusions and future work.

II. State of the art

A. Intrusion Detection Systems

Intrusion Detection Systems(IDS) play an important
role in computer network security, which focus on traffic
monitoring trying to inspect traffic to look for anomalies or
undesirable communications in order to keep the network
a safe place. There are two major methods to detect
intrusions in computer networks; 1) based on the network
intrusion signatures, and 2) based on the detection of
anomalies on the network [6]. In this work, we adopted
an approach based on signatures.

Snort is a widely used Intrusion Detection System that
relies on pattern-matching techniques to detect the net-
work attacks [7]. Snort is a very efficient Intrusion Detec-
tion System but is primarily designed to detect network
attacks which have a signature that can be identified in
a single network packet. Although it provides some basic
mechanisms to write rules that spread across several net-
work packets, the relations between those network packets
are very simple and limited, such as the Stream4 and Flow

pre-processor.

Most of the recent work in intrusion detection systems
has been focused on the performance [8], but there has
been also some work [8], [9] that focus on the method used
to match the network packet signatures and the type of
signatures that can be detected, using alternative search
methods that allows the search of signatures that spreads
across several packets, which is one of the limitations of
Snort and most other intrusion detection systems.



B. Constraint Programming

Constraint Programming (CP) is a declarative program-
ming paradigm which consists in the formulation of a
solution to a problem as a Constraint Satisfaction Problem
(CSP) [1], in which a number of variables are introduced,
with well-specified domains and which describe the state
of the system. A set of relations, called constraints, is then
imposed on the variables which make up the problem.
These constraints are understood to have to hold true for
a particular set of bindings for the variables, resulting in
a solution to the CSP.

Constraint Based Local Search: Constraint Based Local
Search (CBLS) [2] is a fundamental approach to solve
combinatorial problems such as Constraint Satisfaction
Problems. CBLS is a method that can solve very large
problems but its not a complete algorithm, and is unable
to provide a complete or optimal solution. Usually, this
approach starts with an initial, tentative solution to the
problem, which is iteratively improved though minor mod-
ifications until a termination criterion is satisfied.

Adaptive Search: Adaptive Search (AS) [10] is a Con-
straint Based Local Search [2] algorithm, taking into
account the structure of the problem and using variable-
based information to design general heuristics which help
solve the problem.

Adaptive Search iteratively repairs the tentative solu-
tion, trying to reduce the error functions used to model
the problem, in order to obtain a valid solution to the
problem.

Adaptive Search receives as input a set of variables and
their associated domains, a set of constraints with the
associated error functions, a function to project constraint
errors of each variable and an objective function to min-
imize. Its output is an assignment of values to variables,
which is a valid solution to the problem, i.e., on for which
all constraints are satisfied.

Adaptive Search is a good algorithm to detect network
intrusions, as a solution to an intrusion detection problem
is a subset of the packets seen on the network traffic, and
a solution to a problem modeled in Adaptive Search is an
ordered permutation of the domain of the problem, which,
when applied to the intrusion detection domain, will be the
network traffic window. Adaptive Search has recently been
ported to Cell/BE, presented in [11].

Gecode: Gecode [12] is a constraint solver library based
on propagation [1], implemented in C++ and designed
to be interfaced with other systems or programming lan-
guages.

Using Propagation-Based constraint solving, the prob-
lem is described by stating constraints over each variable
that composes the problem, which states what values
are allowed to be assigned to each variable, then, the
constraint solver will propagate all the constraints and
reduce the domain of each network variables in order to
satisfy all the constraints and instantiate the variables that
compose the problem with valid results, thus reaching a

solution to the initial problem.

C. Domain Specific Languages

Domain Specific Language(DSLs) [3] allows to easily
create programs to a specific and well defined domain with
efficiency, generating easy to understand and maintain
programs, by using a specific jargon. Most IDSs, like Snort
and Bro [13], also a widely used IDS, provide custom
languages to describe the signatures, but they are usually
scripting languages, based mostly on pattern matching
and regular expressions, counter-intuitive and don’t use
a declarative approach, making them less expressive.

III. Intrusion Detection with Constraints

Our approach to intrusion detection relies on describing
the desired signatures through the use of constraints and
then identify a set of packets that match the target
network situation in the network traffic window, which is
a log of the network traffic in a given time interval.

The network intrusion needs to be modeled as a
Constraint Satisfaction Problem (CSP) in order to
use the constraint programming mechanisms. A CSP
which models a network situation is composed by a set
of variables, V , which represents the network packets
involved necessary to describe the network situation; the
domain of the network packet variables, D, and a set
of constraints, C which relates the variables in order to
describe the network situation. We call such a CSP a
network CSP. On a network CSP, each network packet
variable is a tuple of integer variables, 19 variables for
TCP/IP 1 packets and 12 variables for UDP packets 2,
which represent the significant fields of a network packet
necessary to model the intrusion signatures used in
our experiments. For both TCP and UDP network
packets, the individual variables of the tuples represent
the time-stamp, the source/destination addresses, the
source/destination ports and the packet number, used to
match the packet with its data. The TCP packets have
more significant fields than UDP packets, so these have
some more variables, which represents the extra TCP
flags and the packet sequence numbers. This number of
fields may increase over time with the evolution of the
work and the use of more complex intrusions.

The domain of the network packet variables, D, are
the values actually seen on the network traffic window,
which is a set of tuples of 19 integer values (for the TCP
variables) and 12 integer values (for the UDP variables),
each tuple representing a network packet actually observed
on the traffic window and each integer value represents
each field relevant to intrusion detection. The packets
payload is stored separately in an array containing the

1Here, we are only considering the “interesting” fields in TCP/IP
packets, from an IDS point-of-view.

2Here, we are only considering the “interesting” fields in UDP
packets, from an IDS point-of-view.



Listing 1 Representation of a network CSP

P = {(P1,1, . . . , P1,z), . . . , (Pn,1, . . . , Pn,z)}
D = {(V1,1, . . . , V1,z), . . . , (Vx,1, . . . , Vx,z)}
Data = {Data1, . . . , Datax}
∀Pi ∈ P ⇒ Pi ∈ D

payload of all packets seen on the traffic window. The
correspondence between the packet and its payload is
achieved by matching the packet number, i, which is the
first variable in the tuple representing the packets and the
ith position of the array containing the payloads.

Listing 1 shows a representation of such CSP, where
P represents the set of network packet variables, where
P n, z, is each of the individual integer variables of the
network packet, in a total of z fields for each network of
the n packets, with z = 19 for TCP packets and z = 12
for UDP packets. D is the network traffic window, where
Di = (Vi,1, . . . , Vi,z) ∈ D is one of the real network packets
on the network traffic window, which is part of the domain
of the packets P . Data is the payloads of the network
packets in present in the network window, where Datai
is the payload of the packet Pi = (Vi,1, . . . , Vi,z) ∈ D.
The associated domains of the network packet variables
is represented by ∀Pi ∈ P ⇒ Pi ∈ D, forcing all packets
belonging to P obtain values from the set of packets in the
network window D.

A solution to a network CSP, if it exists, is an assign-
ment of network packet values, Di = (Vi,1, . . . , Vi,z) ∈ D,
to each packet, Pi = (Pj,1, . . . , Pj,z) ∈ P , that models the
desired situation, thus identifying the network packets that
identify the intrusion being detected.

IV. NeMODe - A DSL to describe network
signatures

In this work we present a declarative, intuitive domain-
specific programming language [3] for NeMODe, which
talks about network entities, their properties and relations
between them, allowing to describe network intrusion
signatures, and, with base on those descriptions, generate
Intrusion Detection mechanisms. A more complete de-
scription of this DSL as well as other examples is presented
in [14], which is an extended description of the work
described in this paper.

The key characteristic of NeMODe is to ease the way
how network attack signatures are described using con-
straint programming, hiding from the user all the con-
straint programing aspects and complexity of modeling
network signatures in a Constraint Satisfaction Prob-
lem(CSP), but still using the methodologies of CP to
describe the problem at a much higher level, describing
how the network entities should relate among each other
and what properties they should verify. Maintaining the
declaritivity and expressiveness of the CP allows an easy

and intuitive way of describing the network attack signa-
tures, by describing the properties that must or must not
be seen on the individual network packets, as well as the
relationships that should or should not exist between each
of the network packets.

NeMODe is a front-end to several back-ends, one to
each intrusion detection mechanism, allowing to generate
several detection mechanisms from a single description.
Having a single specification to several constraint solvers
allows the search of a solution using different methods of
search, allowing to run each of those methods in parallel,
which allows to obtain different results from each solver.
Depending on the characteristics of the problem, some
solvers could produce a better and faster solution that
others, allowing to choose the first solution to be produced.

NeMODe presents five groups of statements: (1) the
primitives of the language, (2) the connectives, (3) def-
initions, (4) the use of such definitions and (5) macro
statements. The primitives are the basic statements of the
language, which state simple properties that each network
variable should verify. The connectives are statements
that relate two or more network variables, forcing them
to verify some relations. The definition is a simple way
of storing primitives or connectives under a variable to
be used later. The use of definitions, forces a previous
definition to used. Finally, the macro statements, are
helpers that avoid unnecessary code repetition and ease
the description of the signature.

The following list presents the set of primitive (predi-
cates) available in the current implementation of NeMODe
which allows to state properties of network packets that
should be verified:

• Force a variable to be a TCP or UDP packet.
• Force a packet to have specific a TCP flag set.
• Force a packet not to acknowledge any packet.
• Force a packet to contain a given string on its payload.
• Force a packet to have a specific src/dst port.
• Force a packet to have a specific src/dst ip address.

Follows a list of the connective statements, which are
used to relate several network entities:

• Force a tcp packet to acknowledge other packet.
• Restrict the temporal distance between packets.
• Force two packets to be related.
• Force the src/dst port of a packet to be equal to the

src/dst port of other packet.
• Force the src/dst ip address of a packet to be equal

to the src/dst ip address of other packet.
• State that one piece of payload of a packet should be

equal to other piece of the payload of other packet.

NeMODe provides a special type of statements to help
users specify network signatures with minimum work, the
definition statements. These statements allows to store a
set of properties over a set of network entities and give it a
name and using them later on the program. Listing 2 shows
an example of a simple definition where some properties
over two network packets are stated, in this particular case,



the variable A should be a TCP/IP packet, and have its
syn flag set. These set of properties are stored in variable
C, which can later be used. Those definitions by them self
don’t have any effect, they are only applied when used or
referred. In order to use those definitions, simply refer the
variable to which the set of properties was assigned or use
it in a macro statement, explained next.

Listing 2 Example of a definition
1: C = { tcp_packet(A),
2: syn(A) }

The macro statements provide mechanisms to help the
user describe the situation, by avoiding unnecessary code
repetition. This macro statements can be used to repeat a
set of properties assigned to a variable, and give a name to
that repetition, allowing future references to each property
of each instance of the repetition i.e., R:=repeat(3,C).
Other type of macro statements are the ones that are
applied to the repetitions stored in a variable, such as state
the maximum/minimum allowable time interval between
each instance of the repetition, i.e., max_duration(R)

< secs(60) or the maximum/minimum overall interval
time that a repetition can take, i.e., max_interval(R) <

secs(60). Listing 3 illustrates a simple use of this macro
functions. Other macro statement is the connection state-
ment, which forces two network packets to belong to some
the same connection, in any direction.

When using the repeat statement, as in line 2 of List-
ing 4, each instance of the repetition as well as its variables
keeps accessible, referring it as the nth instance and then
referring the variables name, i.e., R[1]:A. Listing 4 shows
an example, where the statement nak is applied to variable
A of the first instance of the repetition R.

NeMODe provides two back-end detection mechanisms;
(1) based on the Gecode constraint solver and (2) based
on the Adaptive Search algorithm. Each of these detection
mechanisms are based on Constraint Programming tech-
niques, but they are completely different in the way they
perform the detection, and also the way the signatures
are described. In Sec. II-B each of these approaches are
explained.

A. Examples

So far, we have worked with some simple network
intrusion signatures: (1) a DHCP spoofing, (2) a DNS
spoofing, (3) a SYN flood attack, (4) a Portscan attack
and (5) a SSH Password brute-force attack. All of these
intrusion patterns were be described using NeMODe and
the generated code was successful in finding the desired
situations in the network traffic logs. In this paper we
present only the DNS spoofing and the SYN flood attack.
The Portscan attack and the SSH Password brute-force
attack is explained in [14], while the DHCP spoofing attack
is explained in [15].

Listing 3 Example of a macro function
1: C = { tcp_packet(A), syn(A) },
2: R:=repeat(3,C),
3: max_duration(R) < secs(60)

Listing 4 Accessing a variable
1: C = { tcp_packet(A), syn(A)},
2: R := repeat(3,C),
3: nak(R[1]:A)

DNS spoofing: DNS Spoofing is a Man in The Middle
(MITM) attack. In this attack, the attacker tries to pro-
vide a false DNS query posted by the victim, if succeeded
the victim could access a machine under the control of the
attacker, thinking that it is accessing the legit machine,
allowing the attacker to obtain crucial data from the
victim. In order to arrange this attack, the attacker tries
to respond with a false DNS query faster than the legit
DNS server, providing a false IP address to the name that
the victim was looking for. This kind of attacks is possible
to detect by looking for several replies to the same DNS
query. Listing 5 shows how this attack can be programmed
using NeMODe. Line 2 describes the packet that makes
the DNS request. Lines 4-5, describes a first reply to the
DNS request and lines 7-8 describes the second reply. Lines
10-12 states that packets B and C should be different and
that the DNS id of the replies should be the equal to the
DNS request, which are the first two bytes of the packet
payload.

Listing 5 A DNS Spoofing attack programmed in
NeMODe
1 dns_spoofing {
2 udp_packet(A), dst_port(A) == 53
3

4 udp_packet(B), src_port(B) == 53,
5 dst(B) == src(A), dst_port(B) == src_port(A),
6

7 udp_packet(C), src_port(C) == 53,
8 dst(C) == src(A), dst_port(C) == src_port(A),
9

10 B != C,
11 data(B,0,2) == data(A,0,2),
12 data(C,0,2) == data(A,0,2)
13 } => {
14 alert(’DNS Spoofing attempt’)
15 };

SYN flood attack: A SYN flood attack happens when
the attacker initiates more TCP/IP connections than the
server can handle and then ignoring the replies from the
server, forcing the server to have a large number of half
open connections in standby, which leads the service to
stop when this number reach the limit of number of
connections. This attack can be detected if a large number
of connections is made from a single machine to other in
a very short time interval. Listing 6 shows how a SYN
flood attack can be described using NeMODe. Lines 2-
4 describes a TCP/IP packet with the SYN flag set and
assigns set those of properties to variable C. In line 6, the



macro statement repeat is used to repeat the properties
of definition C by 30 times, and assign those repetitions
to variable R. Line 7 states that the time interval between
each repetition of C should be less than 500 micro-seconds.

Listing 6 A SYN flood attack programmed with NeMODe
1 syn_flood {
2 C = {
3 tcp_packet(A), syn(A), nak(A)
4 },
5

6 R := repeat(30,C),
7 max_interval(R) < usecs(500)
8 } => {
9 alert(’SYN flood attack attempt’)

10 };

B. Code Generation

The current implementation of NeMODe is able to
generate code for the Gecode solver and for the Adaptive
Search algorithm. These two approaches to constraint
solving are completely different as well as the description of
the problems, forcing us to have several code generators for
each of back-end available. We were able to minimize this
difference by creating custom libraries for each constraint
solver so that the code generation process is not completely
different for each back-end.

Generating an A.S. program: The task of generating
Adaptive Search resumes to create the proper error func-
tions so that Adaptive Search be able to solve the problem;
the cost_of_solution and cost_on_variable. To ease
the generation of this functions, a small library was created
which implements small error functions, specific to the
network intrusion detection domain, which are then used
to generate the code for the error functions.

Generating a Gecode program: This goal is achieved by
generating code based on Gecode constraint propagators
that describe the desired network signatures. We created a
custom library that defines functions that combine several
stock Gecode constraints to define custom, network related
“macro” constraints. The same library includes definitions
for a few network-related constraint propagators, useful to
implement some of the constraints needed to describe and
solve IDS problems.

V. Experimental Results

While developing this work, several experiments were
done. We have tested the examples of Sect. IV-A, a DNS
Spoofing attack and a SYN flood attack. All these network
intrusions were successfully described using NeMODe and
valid Gecode and Adaptive Search code were produced for
all network signatures. The code generated by NeMODe
was then executed in order to validate the code and ensure
that it could indeed find the desired network intrusions.

The code generated for Gecode was run on a dedicated
computer, an HP Proliant DL380 G4 with two Intel(R)
Xeon(TM) CPU 3.40GHz and with 4 GB of memory,
running Debian GNU/Linux 4.0 with Linux kernel version

Table I
Average time(in seconds) necessary to detect the intrusions

using Gecode

Intrusion to detect Gecode (seconds)
SYN flood 0.0566

DNS Spoofing 0.0069
DHCP Spoofing 0.0082

Table II
Average time(in seconds) necessary to detect the intrusions

using Adaptive Search

Intrusion to detect A.S (seconds)
SYN flood 0.0466

DNS Spoofing 0.3512
DHCP Spoofing 0.3924

2.6.18-5. As for the Adaptive Search code, it run on an
IBM BladeCenter H equipped with QS21 dual-Cell/BE
blades, each with two 3.2 GHz processors, 2GB of RAM,
running RHEL Server release 5.2. The reason to run
both detection mechanisms in different machines with
a completely different architecture is because Adaptive
Search has recently been ported to Cell/BE, and we choose
this version of Adaptive Search to run our experiments,
forcing us to use the QS21 dual-Cell/BE blades, which is
incompatible with the implementation of Gecode, forcing
us to use a machine with x86 architecture to run Gecode.

In all the experiments we used log files representing
network traffic which contains the desired signatures to
be detected. These log files were created with the help of
tcpdump [16], which is a packet sniffer, during an actual
attack to a computer, which was induced to simulate the
real attacks described in this work.

DNS spoofing attack: In the DNS spoofing attack, we
used tcpdump to capture a log file, composed of 400
network packets, while a computer was under an actual
attack. We used Ettercap to perform the DNS spoofing
attacks. The attack was programmed in NeMODe, which
successfully generated code for Adaptive Search as well as
for Gecode and successfully detected the intrusions.

SYN flood attack: In the SYN flood attack a log file
of 100 network packets was created with the help of
tcpdump while a computer was under a SYN flood attack.
The attack was programmed in NeMODe which in turn
generated code for Adaptive Search and Gecode. This code
was then used to successfully detect the intrusion.

A. Results

Table I presents the time(user time, in seconds) required
to find the desired network situation for each of the attacks
presented in this work and also for a DHCP Spoofing
attack, described in [15], using Gecode. Table II presents
the same results using Adaptive Search. The execution
times presented in both tables are the average times of
128 runs.

VI. Evaluation

The performance of the prototypes described in Sec. V
shows a multitude of performance numbers relative to



the intrusion detection mechanisms used for each network
signature. Although the tests were executed using two
different computers; under this conditions; Gecode usually
performs better than Adaptive Search, except in the SYN
flood attack. This difference is explained by the fact that
Adaptive Search needs a very good heuristic functions
to improve its performance. We created some heuristics
based on the network situations we are studying which
improved the performance of Adaptive Search, but still
can’t reach the performance of Gecode. The SYN flood
attack performed better in Adaptive Search due to the fact
that the network packets of the attack are close together
and there aren’t almost any other packets between the
packets of the attack.

Even without a perfect heuristic of Adaptive Search, the
results obtained are quite encouraging. As for Gecode, the
results obtained are quite good. With these results, we
are now ready to start the detection of intrusions in real
network traffic instead of log files.

As for NeMODe, it turns out to be a success, since it was
possible to easily describe all the three network intrusions
and generate valid code that could detect the desired net-
work situation. Although other intrusion detection systems
like Snort could detect the attacks presented in this work,
they can not describe the problems with the expressiveness
used by NeMODe or even relate the several packets that
make part of the attack.

VII. Conclusions and Future Work

The work presented in this paper presents NeMODe,
a system for Network Intrusion detection, which provide
a declarative Domain Specific Language that generates
intrusion detection recognizers based on Constraint Pro-
gramming, more specifically, using Gecode and Adaptive
Search. NeMODe presents a very expressive DSL that
allows to describe network intrusion signatures by express-
ing relations between network packets simply by stating
constraints over network packets.

This work shows that it is possible to use a single
signature description based on CP to generate several
recognizers, each one based on a different CP paradigms,
and with that recognizers detect the desired intrusions.

We proved that we can easily describe network signature
attacks that spread across several network packets, which
is somewhat tricky or even impossible to make using
systems like Snort. Although the intrusions mentioned in
this work can be detected with other intrusion detection
systems, they are modeled/described with out relating the
several network packets of the intrusion, much of the times
using a single network packet to describe the intrusion,
which could in some situations produce a large number of
false positives.

A very important future work is to model more network
situations as a CSP in order to evaluate the performance
of the system while working with a larger diversity of
problems. Although the DSL allows to describe a broad

range of attacks, it still needs more flexibility to cope with
more types of signatures and include more back-ends. We
also need to better evaluate the the work presented in this
paper by comparing the obtained results with systems like
Snort.

Also a very important future step is to start performing
network intrusion tasks on live network traffic link, allow-
ing to apply this method in a real network to assess its
performance.

Acknowledgments

Pedro Salgueiro acknowledges FCT –Fundação para
a Ciência e a Tecnologia– for supporting him with
scholarship SFRH/BD/35581/2007. The IBM QS21 dual-
Cell/BE blades used in this work were donated by IBM
Corporation, in the context of a SUR (Shared University
Research) grant awarded to Universidade de Évora and
CENTRIA.

References

[1] F. Rossi, P. Van Beek, and T. Walsh. Handbook of constraint
programming. Elsevier Science, 2006.

[2] P. Van Hentenryck and L. Michel. Constraint-based local search.
MIT Press, 2005.

[3] A. Van Deursen and J. Visser. Domain-specific languages: An
annotated bibliography. ACM Sigplan Notices, 35(6):26–36,
2000.

[4] Gecode Team. Gecode: Generic constraint development envi-
ronment, 2008. Available from http://www.gecode.org.

[5] Douglas Comer. Internetworking With TCP/IP Volume 1:
Principles Protocols, and Architecture, 5th edition. Prentice
Hall, 2006.

[6] Y. Zhang and W. Lee. Intrusion detection in wireless ad-
hoc networks. In Proceedings of the 6th annual international
conference on Mobile computing and networking, page 283.
ACM, 2000.

[7] H. Song and J.W. Lockwood. Efficient packet classification for
network intrusion detection using FPGA. In Proceedings of
the 2005 ACM/SIGDA 13th international symposium on Field-
programmable gate arrays, pages 238–245. ACM New York, NY,
USA, 2005.

[8] K.S.P. Arun. Flow-aware cross packet inspection using bloom
filters for high speed data-path content matching. In Advance
Computing Conference, 2009. IACC 2009. IEEE International,
pages 1230 –1234, 6-7 2009.

[9] S. Kumar and E.H. Spafford. A software architecture to support
misuse intrusion detection. In Proceedings of the 18th national
information security conference, pages 194–204, 1995.

[10] P. Codognet and D. Diaz. Yet another local search method for
constraint solving. Lecture Notes in Computer Science, 2264:73–
90, 2001.

[11] Salvador Abreu, Daniel Diaz, and Philippe Codognet. Parallel
local search for solving constraint problems on the cell broad-
band engine (preliminary results). CoRR, abs/0910.1264, 2009.

[12] C. Schulte and P.J. Stuckey. Speeding up constraint propaga-
tion. Lecture Notes in Computer Science, 3258:619–633, 2004.

[13] V. Paxson. Bro: a system for detecting network intruders in
real-time* 1. Computer networks, 31(23-24):2435–2463, 1999.

[14] Pedro Salgueiro and Salvador Abreu. A DSL for Intrusion
Detection based on Constraint Programming. In SIN 2010:
Proceedings of the 3rd International Conference on Security of
Information and Networks, New York, NY, USA, 2010. ACM.

[15] Pedro Salgueiro and Salvador Abreu. On using Constraints for
Network Intrusion Detection. In INForum 2010 - Simpósio de
Informática, Braga, Portugal, 2010.

[16] tcpdump web page at http://www.tcpdump.org, April, 2009.


