
Digital Forensics Research Using Constraint
Programming - A preliminary approach

João Calhau, Pedro Salgueiro, Salvador Abreu, and Nuno Goes

Universidade de Évora

Abstract. The world today is becoming more and more digital, as such
there is a huge amount of data constantly being created, transmitted
and saved every second. Representing this data in digital form, although
it brings some advantages it also brings some disadvantages and chal-
lenges when we need to make an analysis of the content of said data.
For this same reason, it was created the discipline of digital forensics,
which focuses on the analysis of digital equipment content. This docu-
ment introduces an approach on using constraint programming methods
in digital forensics analysis, allowing for an easier and more efficient
method to analyze digital equipment data.

Keywords: Digital Forensics, Contraint Programming, Security, Declar-
ative Programming

1 Introduction and Motivation

In this work we present a system that makes use of the constraint programming
paradigm and methods to solve digital forensics problems, developed in the con-
text of João Calhau MS Thesis. Through the use of constraint programming,
we’re able to describe a digital forensics problem in a declarative and expressive
way, and reach a solution to the problem. The digital forensics problems we’re
trying to solve are problems such as discovering files that have a specific name,
path, type or content and timelines.

The main purpose of the system presented in paper is to allow for an easy
and efficient method to search for relevant information in the contents of digital
equipment, as previously described. Beyond that, the system must also be able to
detect important dates, snapshots, restore points or versions, all these operations
mentioned must be performed in a chronological order and without any previous
pre-processing of the digital image.

1.1 Constraint Programming

Constraint programming is a powerful paradigm mostly used to solve combina-
torial problems. It looks like a simple way to model real world problems but can
actually turn into a complex challenge when we want to find solutions for the



2

problem that is being solved. Constraints can be found in our day to day expe-
riences, almost ubiquitous, representing the conditions that restrict our freedom
of decision [15].

In constraint programming, we usually have a set of variables, with an initial
domain, to which constraints are applied in order to reduce its domain, and thus
reach a solution. Once a constraint is placed on the system it cannot violate
another constraint previously applied. This way we can express the requirements
of the possible values of the variables [13].

Constraint satisfaction problems are usually solved with the help of solvers.
These solvers are essentially search algorithms, usually based on backtracking
techniques[11], constraint propagation [12] or local search [6].

1.1.1 Backtracking

Backtracking is a search method that incrementally finds possible candidates to
solve the problem. At the same time it removes the candidates that can not be
used as a valid solution to the problem [11]. One of the most used examples for
this type of search method is the n-queens puzzle, where a set of n queens should
be organized, in a n× n chess board, in such a way that none of the queens can
attack each other. Any partial solution that contains two queens that can attack
each other is abandoned immediately.

1.1.2 Constraint Propagation

Constraint propagation starts by reducing the variable’s domain, strengthening
or creating new constraints, reducing the search space, which leads to a prob-
lem that is easier to solve. Since this algorithm only reduces the search space
reduction of the problem variables, after completion, there is still the need to
use another algorithm to solve the problem, which was converted into a simpler
problem by the propagators [12].

1.1.3 Local Search

Local search is an incomplete search method to find solutions for a problem.
It consists in, iteratively, and with the help of previously defined heuristics,
assigning values to the system variables until all the constraints are satisfied. At
each step of the iteration, the values of the variables are updated to values near
the previous value. The algorithm also makes sure of the quantity of constraints
it violates so it can have a ”cost” associated with the attribution of the values
and it can thus tell us if a pre-determined cost has been met [6].

1.2 Digital Forensics

Digital forensics is a very important discipline in criminal investigations where
the main device used was an digital device, or to investigates crimes where
the evidence may be stored in a digital device. The digital forensics tools have



3

become a vital appliance to assure we can rebuild information after a cybernetic
attack or even if we just want to analyze any type of digital equipment. [8]

It’s a complex task to collect evidence/elements in digital equipment, either
connected to a criminal activity or not. If that piece of equipment is connected
to any type of computer network, with the consequent increase in digital traffic,
more difficult it becomes to detect any anomaly or undesirable communication in
the network. Thus, the intrusion detection systems have become a very important
tool in computer network security. [16]

To collect evidence/data in digital equipment there are many tools capable
of analyzing a digital forensics image. Among them, one of the tools that is most
used is the EnCase Forensic [18], also used in several judicial systems. Besides
this tool, which is proprietary and commercial, there are other open source and
free of access tools capable of accomplishing the same work. The Forensic ToolKit
(FTK) [1] and the Autopsy [2] are two examples.

2 Known Tools and Other Approaches

In this section we introduce the practical aspects of constraint programming
including some libraries and toolkits that are used to model and solve constraint
problems. We also describe similar work already done in this area.

2.1 Choco

Choco is a free access and open source library dedicated to constraint program-
ming. It is written in Java and supports several types of variables, including
Integers, Booleans, Sets and Reals. It also supports several types of constraints
such as AllDifferent and Count, configurable search algorithms and conflict ex-
plaining. The first version of Choco was developed in the early 2000s. A few years
later, Choco 2 was developed and declared a success in the academic and indus-
trial world. Since then, Choco has been completely re-written and in 2012 the
third version of Choco was launched. The current version comes with a simpler
API and is denominated Choco 4 [14].

2.2 Gecode

Gecode is a free access, open, portable, accessible and efficient programming
environment used to develop systems and applications based on restrictions.
Gecode, much like Choco, supports various types of variables and restrictions,
among them are Integers, Float and Sets. These variables are used to model
problems that are then solved with the help of constraint propagators and search
algorithms [17] [9].

2.3 Google OR-Tools

Although Choco and Gecode are two of the most widely used libraries, there are
also other new tools, such as the Google OR-Tools. Google Optimization Tools



4

or OR-Tools is an interface that puts together several linear programming solver
and that counts on the use of several types of algorithms such as search algo-
rithms and graph algorithms. What this library has that is so noteworthy is the
fact that it doesn’t let itself be bound by one language. Although implemented
in C++, it is capable of working in other languages like Python, C# or Java.

2.4 The Sleuth Kit

The Sleuth Kit is C library and a collection of tools that allows its users to
analyze disc images and restore files from it. The Sleuth Kit is what Autopsy
[2], the forensics tool mentioned earlier, uses in it’s background jobs. The Sleuth
Kit framework allows the user to incorporate additional modules so he can an-
alyze file contents and build automated systems. In addition, the library can be
embedded in larger digital forensics tools and command line tools can be used
directly to find any kind of proof [3].

Of all the tools The Sleuth Kit has to offer, the most interesting to help us
in the type of problem we’re trying to solve is the Sorter, which analyzes a file
system and organizes what it finds by extension of file. In addition, it provides
us details about the organized files, such as the file inode number. The Sorter
can also use a separate hash database to ignore files that are known to be good,
such as Dynamic-Link Libraries, or dlls, of the windows file system or even know
applications.

2.5 Digital Forensics and Constraint Programming

During the analysis and study of the state of the art about constraint program-
ming and digital forensics, no studies were found that combined the two areas.
The topic that most resembled this was the use of constraint programming in
artificial intelligence in order to make cyber-defense a more reliable and secure
method. [19] Considering the reduced number of related works, it is part of the
proposed work to see if the use of programming by constraints introduces im-
provements in terms of processing speed and ease of finding clues or evidence in
the cyberspace.

3 Approach

This section introduces our approach for modeling a Digital Forensics Problem
as a Constraint Satisfaction Problem using the Choco Solver. We include all data
structures needed to model the problem, how they are used to reach a solution
to the problem, the methodologies used to analyze and extract the information
from the digital evidences, and how the problem is modelled as a CSP.

3.1 Methodology

After acquiring the disk image to be analyzed, it is first processed by the Sorter
tool from The Sleuth Kit [3]. The Sorter outputs multiple files with different



5

names, each name being a pre-determined type of file, such as archive, executable
or data. Each output file contains all the information the Sorter collects such as
the file path in the file system, the file type, the image name (from where the
data was extracted) and the inode number, which is an internal representation of
that particular file in the file system. With this information there isn’t much we
can do, because the information hasn’t been processed yet, this means we need
to store it in some kind of data structure. When thinking about what type of
data structures to use we figured out that having the data organized in various
different ways would make it easier to extract the information in a later date, so,
instead of one data structure we decided on using three different data structures.
These data structures are described in Section 3.1.1

To populate these data structures we parse the data of files created by the
Sorter tool. That can be easily achieved by reading the contents of said files and
storing them in some kind of ”wrapper” in the data structures. This wrapper
ended up being a representation of the inodes containing the inode number,
the file path, the file type and the file name. The files outputted from the sorter
always have the same type of structure, three lines of text followed by and empty
line, this can be seen as an example in figure 2. Also the three lines of text always
come in the same format, first line is file path and name, second line is file format
and third line is image name and inode number. All we have to do is iterate over
those lines four at a time, gather the information, build the inode representation
and store it on the data structures.

The whole process of extracting the data from the file system can be short-
ened into the small flow diagram seen in figure 1.

Fig. 1. Flow diagram

Fig. 2. Example of sorter output for executable files



6

3.1.1 Data Structures

As said before, we decided to go for three different data structures, the first one
would be used to store the representation of the inodes, these didn’t need to be
stored in any particular order so we went for a data structure that didn’t have
order, that was easy and efficient to use, an Hash Map of inodes. In the second
structure we decided to store the inode representations, but this time by path,
that is, we use the same type of structure as the first one, but with a twist, this
time we would use a Hash Map of Linked Lists of inodes because they are going
to be organized without any particular order, but more than one inode can have
the same path, this means we would need to insert various inodes with the same
key in the Hash Map, and that is just not possible, unless we insert the inode
in the linked list at that key position. Finally, the third data structure would
be used to store the inodes by type and as the file types are always the same
(because the sorter always outputs the same type of file types) we decided on
using a simple array (of fixed position) of Linked Lists, the array is always the
same, what changes is the Linked Lists inside said array.

3.2 Modelling

As previously mentioned, the files extracted from the file system are sorted into
various different types and have various types of data extracted from them, such
as type, path, name and inode number. Because each file has a different inode
number, which is an integer, we decided to use the inodes to represent our files
in our Constraint Satisfaction Problem.

The framework we ended up deciding on using was Choco, due to it’s good
rating, good documentation and language familiarity (Java, when opposed to
C++). We now had our variable’s domain, all the inode number in the file
system, but we still did not know which type of variable we would use. Choco
has four different types of variables available with which we could model our
problem with: Integers (IntVar), Booleans (BoolVar), Sets (SetVar) and Reals
(RealVar). We wound up deciding on Integer Set Variables, or SetVars, because
the final solution of our solver would need to be a set of one or more integers.

In Choco Solver, SetVars are defined by a domain that is composed of two
separate domains, the LB and the UB, these being Lower Bound and Upper
Bound, respectively. The Lower Bound is a set of integers that must belong to
every solution and the Upper Bound is composed of the set of integers that may
be part of the final solution [5]. In our case, when creating the variable with
which we are going to work with, the Lower Bound will be left empty, because
we do not know what files we want yet, and the Upper Bound will be composed
of all the inodes existing in the first data structure (the Inode Data Structure).
Finally all that is left to do is create our custom constraints and apply them to
our variable so we can restrict it’s domain.



7

3.3 Constraints and Propagators

To implement a new constraint in Choco solver, first we need to create a prop-
agator. A propagator declares a filtering algorithm that can be applied to the
Variables that model the problem, in order to reduce their domain [4]. Since this
work is still in it’s early stages we decided to create a couple of simple propaga-
tors to test the validity of our approach. We decided to implement the following
propagators: 1) file type propagator that restricts our domain according to the
given type of file passed as argument, it restricts the domain based on the type
data structure created before; 2) file path propagator that restricts our domain
according to the path passed as argument, it restricts the domain based on the
path data structure created before. Both propagators were build to work with
the variables used to model the problem, SetVars.

For the propagators to work, we have to implement the following methods
methods: propagate and isEntailed. The method propagate is pretty straight
forward, it should restrict the domain according to what we need. The method
isEntailed is straight forward as well, all we need to do here is tell the propa-
gator when the problem has a solution or not, or if it is simply undetermined.
These methods are described in detail in Listings 1 and 2.

Listing 1 propagate method

for each value in UB do
if value is not in corresponding structure then

Remove value from UB
end if

end for

Listing 2 isEntailed method

if UB is empty then
Problem is impossible to solve

else
Problem has possible solution

end if

Both propagators work in a similar way, they take the Upper Bound of the
SetVar, iterate over it and remove any inode that is not in the desirable data
structure. For example, if we want to propagate an executable type, our SetVar
is composed of two domains: and empty one {} (the Lower Bound) and one
with three inodes {100, 101, 102} (the Upper Bound). Our type structure only
has one inode in the executable division {100}, what the propagator would do
in this situation is remove every inode that is not in the type structure from
the SetVar which would leave it like so: SetV ar = {}, {100}. Of course this is



8

only an example, and on top of this another constraint could be applied, like
a path constraint (never another type constraint, because that would just leave
the Upper Bound domain empty every time).

3.4 Experimental results

In our experimental phase we decided to start by analyzing something small,
like a disc or a pen drive, what ended up being chosen was the latter. We took a
simple four gigabyte pen drive and passed it through FTK Imager [1] to obtain
it’s image. After obtaining the image we wanted, we passed it through the Sorter
and waited for the contents of the pen drive to be sorted. After the Sorter finished
it’s work we would have to choose the constraints we would want to use later
on.

For a first test we chose only one constraint, a type constraint that would
restrict the domain to only the files that had an archive type. We booted the
program and, sure enough, the resulting solution outputted only the inodes be-
longing to the files that had an archive type as can be seen in figure 3. Seeing
as the first test went well, we decided to apply a second constraint on top of
the first one, this time we chose the unknown type for the type constraint and a
specific path in the file system ”LVOC/LVOC/”, this way the program should
output only seven file inodes and it did as observed in figure 4.

Fig. 3. Program output for the first test



9

Fig. 4. Program output for the second test

4 Conclusion and Future Work

From the experimental phase, we can conclude that what took the most time to
finish was the extraction of the image with the help of FTK Imager [1], this took
about five minutes for a four gigabyte pen drive that had about two gigabytes
of data. The Sorter ran in about twenty-five seconds while the Java program
ran in under one second. We can also conclude that the program works and
restricts the domain as it should, in a very short amount of time, with both
devised constraints placed at the same time. What we would need to do in
terms of future work, would be the creation of more constraints, like restricting
the domain further to files that only have certain keywords or files that have
been altered recently or in a certain period of time.

References

1. AccessData. Forensic toolkit, 2017.
2. Brian Carrier. Autopsy - the sleuth kit, 2017.
3. Brian Carrier. The sleuth kit, 2017.
4. Choco-Solver. Class propagator api, 2018.
5. Choco-Solver. Interface setvar api, 2018.
6. Rina Dechter. Constraint Processing. 2003.
7. Edward Delp, Nasir Memon, and Min Wu. Digital forensics [From the Guest

Editors]. IEEE Signal Processing Magazine, 26(2):14–15, 2009.
8. Simson L. Garfinkel. Digital forensics research: The next 10 years. Digital Inves-

tigation, 7(SUPPL.), 2010.
9. Gecode Team. Gecode: Generic constraint development environment, 2006.

10. Google. Google optimization tools, 2017.
11. Donald E. Knuth. The Art of Computer Programming, Vol. 1: Fundamental Al-

gorithms, 1997.
12. Christophe Lecoutre. Constraint Networks: Techniques and Algorithms. 2010.
13. Justin Pearson and Peter Jeavons. A Survey of Tractable Constraint Satisfaction

Problems. pages 1–42, 1997.



10

14. Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco Solver Doc-
umentation. TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S.,
2016.

15. F. Rossi, P. Van Beek, and T. Walsh. Handbook of Constraint Programming
(Foundations of Artificial Intelligence). pages 281–322, 2006.

16. Pedro Salgueiro, Daniel Diaz, Isabel Brito, and Salvador Abreu. Using constraints
for intrusion detection: The NeMODe system. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 6539 LNCS:115–129, 2011.

17. Christian Schulte, Guido Tack, and Mikael Z. Lagerkvist. Modeling. In Christian
Schulte, Guido Tack, and Mikael Z. Lagerkvist, editors, Modeling and Programming
with Gecode. 2017. Corresponds to Gecode 5.1.0.

18. Guidance Software. Encase forensic, 2017.
19. Enn Tyugu. Artificial intelligence in cyber defense. 2011 3rd International Con-

ference on Cyber Conflict, pages 1–11, 2011.


