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A B S T R A C T   

The “LDTtool” python toolbox is introduced. This ArcGIS toolbox can be applied to assess land cover or land use 
changes between two or three moments, considering landscape composition and configuration. The development 
of LDTtool occurs in a time when the studies on landscape dynamics looking at amount and configuration 
changes are becoming mainstream. The use of analytical units, whether regular polygons like squares or irregular 
like districts, allows to study at broad as well as at detailed scales, depending on the base maps spatial resolution 
and intrinsic quality. The ultimate goal of the toolbox is to assign each analytical unit to a type of dynamic. The 
paper shows how to operate the toolbox and provides a case study regarding the olive groves dynamics in 
Portugal in the period 1990–2018.   

1. Introduction 

Significant and/or quick landscape changes often disrupts ecosystem 
functioning interfering with ecological processes and thus jeopardizing 
their capacity to provide vital services for population (Millennium 
Ecosystem Assessment, 2005). Substantial landscape changes have such 
impact on biodiversity that habitat loss and fragmentation are often 
pointed as one of the major causes of biodiversity loss (Jaeger et al., 
2011) in some regions and therefore regarded as a central issue in 
conservation biology (Saunders et al., 1991; Wiens, 1996). Since land
scape patterns influence ecological processes (pattern-process relation
ship; McGarigal et al., 2012; Turner, 1990), landscape metrics became 
popular among the landscape ecologists. 

To interpret landscapes as discrete patches of different land cover 
classes (Forman, 1995), there are two main types of changes to consider: 
composition and configuration changes. The former relates to what 
constitutes the landscape and its amounts (e.g. land cover types and how 

much) – What exists in the landscape. The latter has to do with the shape 
and location of the elements – How it is distributed. Although both types 
of changes co-occur, interact and even depend on each other (Linden
mayer and Fischer, 2007), the separation of their independent effects is 
necessary to better understand the impacts. Looking at a single measure 
of change without separating the contribution of the composition and 
configuration make studies difficult and sometimes impossible to 
compare (Fahrig, 2017, 2003). An increasing number of studies has been 
considering the importance of distinguishing the different effects of 
amount and geometric changes in landscape analysis (e.g. Johnstone 
et al., 2014; Plećaš et al., 2014; Sauder and Rachlow, 2014; Steckel et al., 
2014). 

Many metrics, methods and software with distinct specificities have 
been developed to measure landscape characteristics. Some examples of 
well-known software are FRAGSTATS (McGarigal et al., 2012), Conefor 
Sensinode 2.2 (Saura and Torné, 2009), Patch Analyst (Rempel et al., 
2012), Circuitscape (McRae et al., 2013), Graphab (Foltête et al., 2012) 
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and Land-metrics DIY (Zaragozí et al., 2012). Overall, landscape study 
does not seem to lack tools but new ones keep being developed in order 
to improve the existing analytical capabilities (e.g. landscapemetrics by 
Hesselbarth et al. (2019); gDefrag by Mestre et al. (2019) For a broader 
notion of the quantity and variety of landscape analytical software 
existent, especially free and open source, we recommend the works by 
Steiniger and Hay (2009) and Steiniger and Hunter (2013). 

The focus on accounting for both amount and geometric changes is 
the foundation of the Landscape Dynamic Typology (LDT) method 
(Machado et al., 2018). LDT is a set of “Types of Dynamics” (ToD) that 
can occur in a binary landscape, obtained via combination of two met
rics that can increase, decrease or remain the same in a period between 
two dates: Area to represent composition and Number of Patches (NP) to 
assess configuration (Table 1). 

LDT application can be straightforward but it can also require a 

heavy workload and for that reason, the transition of the original pro
tocol to a software piece is regarded as essential to increase its adoption 
(Machado et al., 2018). In this paper we introduce the “LDTtool”, an 
ArcGIS (www.esri.com) toolbox designed to facilitate and automate the 
application of the LDT method. We provide a comprehensive description 
of the toolbox as well as an illustrative case study concerning the olive 
grove dynamics that have been occurring in southern Portugal. 

2. LDTtool 

The LDTtool is a python-based add-on ArcGIS toolbox operational in 
ArcCatalog and ArcMap as well as in ArcGIS Pro. It was developed using 
the 10.6 version and updates to future versions will be assured in order 
to keep the toolbox useable. 

It comprises five tools (Fig. 1). The first four tools (Landscape Dy
namic Types) run the core LDT steps to calculate the dynamics occurred 
in the landscape. The 1.1 (2 M (Squares)) uses two moments of analysis 
and regular squares as analytical units. The 1.2. (3 M (Squares)), uses 
three moments of analysis and squares. The 1.3. (2 M (Districts) uses two 
moments of analysis and districts as analytical units. The 1.4 (3 M 
(Districts)) uses three moments of analysis and districts. 

Finally, the “2 – Forecast” calculates a hypothetical scenario 
assuming the ongoing trends will persist. The forecast tool considers 
how the types of dynamics can evolve from one to the other. For 
instance, in the presence of area gain, the ToD G (aggregation by gain) 
will continue eventually until it reaches a ‘total cover’ situation. In the 
opposite direction, in a situation of area loss, the ToD H (NP decrement 
by loss) is going to a ‘no cover’ scenario when the last patch disappears. 
For more detailed explanation see Machado et al. (2018). 

LDT works with binary landscapes and thus landscape Feature 
Classes must contain only one class with the polygons, that represent 
patches, under study (the habitat, the land cover category, etc.). 

Relevant recommendations to avoid possible errors or malfunction
ing are: (i) using the same coordinate system in the data frame and all 
the input elements; (ii) using feature classes (requires a geodatabase) 
instead of shapefiles and (iii) delete unnecessary attribute fields. 

Table 1 
Landscape dynamic types (adapted from Machado et al., 2018).  

Type If and Designation Graphic Representation 

A ΔA =
0 

ΔNP =
0 

No change 

B 

ΔA =
0 

ΔNP >
0 

Fragmentation per 
se 

C 

ΔA =
0 

ΔNP <
0 

Aggregation per se 

D 

ΔA>0 ΔNP =
0 

Gain 

E 

ΔA<0 ΔNP =
0 

Loss 

F 

ΔA>0 ΔNP >
0 

NP increment by 
gain 

G 

ΔA>0 ΔNP <
0 

Aggregation by 
gain (NP 
decrement by 
gain) H 

ΔA<0 ΔNP <
0 

NP decrement by 
loss 

I 

ΔA<0 ΔNP>0 Fragmentation by 
loss (NP increment 
by loss) 

(A) If there is no change in an area or in the number of patches (NP) we assume 
that landscape (or the analytical unit extent) did not change; (B) If the area 
remained the same but the NP increased, it means a fragmentation occurred; (C) 
If the area remained the same but NP decreased, then an aggregation took place; 
(D) If the area increased and the NP is equal, it represents a gain of area; (E) If the 
area decreased and the NP did not change, there is a loss of area; (F) If both area 
and NP increased, it led to new patch creation; (G) If the area increased and NP 
decreased, an aggregation occurred due to area gain; (H) If both area and NP 
decreased, a patch decrement occurred due to area loss; (I) If area decreased and 
the NP increased, it means that fragmentation occurred due to area loss. Fig. 1. LDTtool structure in ArcToolbox.  
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The input’s quality also affects the overall quality of the analysis. For 
that reason, spatial and temporal resolution should be adequate to assess 
the phenomena under study and therefore reproduce accurately the 
landscape evolution. 

2.1. Preliminary steps 

The following preliminary steps are essential to ensure the toolbox 
correct functioning.  

1. Create a File Geodatabase.  
2. Make it the default Geodatabase (while creating it or after in: Menu 

File, Map Document Properties, Default Geodatabase (select).  
3. Import the feature classes into the Geodatabase. The feature classes 

should be the landscape moment 1, landscape moment 2 and land
scape moment 3 (optional). Regarding the analytical units, the 
feature classes are the study area boundary (for squares) or districts.  

4. Add the “LDTtool” toolbox to ArcToolbox. 
5. Select the Geodatabase as “Current workspace” and “Scratch work

space in Geoprocessing menu, Environments, Workspace (select). 
6. Select the Geodatabase as “Current workspace” and “Scratch work

space” in the Arctoolbox Environments; Workspace. (select).  
7. Confirm the paths are correct within each tool by Right-clicking; 

Properties; Environments; check the Workspace box, Values button. 

2.2. Inputs and settings 

The inputs and settings required to run the tools are the following: 
Tool 1 – Landscape Dynamics Types.  

• Study Area Polygon: Polygonal feature class containing the study area 
boundaries.  

• Districts: Polygonal feature class containing the districts boundaries.  
• Landscape Moment 1: Polygonal feature class of the landscape in 

moment 1.  
• Landscape Moment 2: Polygonal feature class of the landscape in 

moment 2.  
• Landscape Moment 3: Polygonal feature class of the landscape in 

moment 3.  
• Squares width and height (meters): Analytic square size.  
• Keep patches equal or larger than (square meters): Minimum patch size 

to be analysed.  
• Output Feature Class: Name and path of the output file. 

Tool 2 - Forecast.  

• Landscape to forecast (Output of tool 1) 

3. The LDTtool demonstration 

In order to demonstrate the LDTtool implementation and outputs, we 
use the tool 1.1 and therefore there are two moments of analysis and 
squares are used as analytical units. We present an illustrative example 
of the olive grove dynamics occurred in Portugal between 1990 and 
2018. 

3.1. Background 

Traditional olive groves are a characteristic element of Mediterra
nean landscapes. Besides its historical and cultural value, traditional 
groves often host many species making them relevant in terms of 
biodiversity. In Portugal, the quest for olives and olive oil self- 
sufficiency first, and exports increments after, led to a landscape 
change in the last years. New high-yielding intensive (and super- 
intensive) groves are fast expanding, often replacing biodiversity-rich 
but low-yielding traditional ones (Morgado et al., 2020). Not only 

traditional olive groves but also other land uses such as “non-irrigated 
arable land” and “permanently irrigated land”, have been transformed 
in large-scale plantations, often with high levels of intensification. 

In time, populations began to complain about several problems 
regarding agrochemicals among other issues. Regarding biodiversity, 
besides the initial land-cover change that represents a severe habitat loss 
for many species, it has recently been revealed that the mechanical ol
ives harvesting at night leads to mass bird mortality (Silva and Mata, 
2019). At the landscape scale there is a marked homogenization of the 
territory provoked by large-scale plantations. It is urgent to assure that 
modern groves, essential to achieve high yield production, minimize 
their negative environmental impacts while simultaneously the tradi
tional groves are promoted. This might be achieved through both po
litical and/or market mechanisms. For instance, Moreira et al. (2019) 
suggested new labels should be created to provide consumers with de
tails about the grove from which the product was sourced. 

3.2. Preliminary steps 

A File Geodatabase was built using ArcCatalog and the feature 
classes were imported into it (see 2.2 Inputs and Settings subsection). 
Next, a blank ArcMap project was created and both the default geo
database and the scratch workspace were pointed to the built geo
database. Then the “LDTtool” toolbox was added to the ArcToolbox and 
the feature classes were loaded into the project. 

3.3. Inputs and settings 

We used the continental Portuguese Administrative Boundaries 
Official Map (2018 version) as study area and the Olive Groves of 1990 
and 2018 extracted from the CORINE Land Cover maps. The analytical 
square size was defined as 10 km and the minimum size patch (to discard 
meaningless polygons resulting from intersect operations) as 50,000 m2. 
It is important the chosen dimensions are appropriated relative to both 
the base maps and the phenomena under study. Since CLC uses a min
imum size patch of 25 ha (250000 m2), selecting smaller minimum size 
patches does not to improve the spatial resolution. Also, we knew be
forehand the landscape changes in Portugal involving groves are mostly 
due to large scale plantations, often larger than 50,000 m2. 

The output feature class was named “LDT_OliveGroves” (Fig. 2a). 
This feature class was then used as input for “Tool 2 – Forecast” (Fig. 2b). 

3.3.1. Square size selection 
The tool allows the use of districts and squares as analytical units. 

Although the pros and cons are common to both types of analytical units 
(see subsection “3.5. Results and discussion” for more on the Modifiable 
Areal Unit Problem - MAUP), the districts are usually used for some 
specific reason and often exempted from further justification while the 
artificial sampling schemes such as regular grids tend to be more scru
tinized. For example, a county boundary is as artificial for some natural 
processes as a square or an hexagon but it is commonly accepted that 
data has to be aggregated by county our any other administrative or 
statistical unit. In analytical terms the repercussions may be similar but 
when using an artificial sampling grid an extra attention is required to 
make sure the sampling scheme itself is not adulterating the raw data. 
Since there is not a single solution for this problem and there are a 
multitude of contexts and applications, users often have to find a way to 
assess quality and establish tolerance levels. Regular areas like squares 
can be used for no particular reason but many times are used because 
there are many associated data available in that format, thus allowing 
variable extraction for posterior analysis. One important aspect to 
consider is how well the sampling scheme preserves the integrity of the 
base data. For instance, in our case study, a single patch can be recog
nized by the software as being multiple patches because it crosses 
several squares (or districts). Since the final calculations are based on 
the analytical unit and not on the patches themselves, the same patch 
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can be counted multiple times. Ultimately, the only way to solve this 
problem was to use the study area boundaries and discard the use of 
analytical units. The downside of such an option is the complete loss of 
spatial resolution and its associated benefits. In our view, a good 
compromise would be a grid size that minimizes patch intersection and 
still offers an adequate spatial resolution to assess the phenomenon 
being studied. To what NP are concerned, olive groves maps show 1613 
patches in 1990 and 1974 in 2018. After intersecting the grid composed 
by 1011 100 km2 squares, the NP was 2220 and 2685, respectively. This 
represents 607 artificial extra patches for 1990 and 711 for 2018. The 
intersections per square were 2,2 for 1990 and 2,7 for 2018. To improve 
the spatial resolution requires smaller squares that would make these 
numbers worse. On the opposite direction, to improve these numbers we 
would have to enlarge the squares and lose spatial resolution. 

As to patch size, the average olive grove was 1,72 km2 in 1990 and 
1,76 km2 in 2018. Thus, a 100 km2 square would be large enough to fit 
several patches and to minimize the original patches crossing several 
squares. Looking at the extremes of the patch size distribution, only one 
patch in 1990 and 2018 is larger than 100 km2. This suggests that the 
grid size is not too small. It could be larger but the larger the square is, 
the more patches it can fit and that increases the risk of hiding some ToD 
by losing spatial resolution. Overall, these values seemed acceptable for 
the task in hands but could the output be too influenced by the square 
size? To answer this question we reran the tool using 9 km, 10 km, 11 km 
and 12 km squares that differ 10% and 20% from the original 10 km 
grid. This allowed us to assess the MAUP’s scale effect. Having different 
sizes, the grids are distinct, the squares are not in the same place, and 
with that we were also assessing the MAUP’s context or zoning effect. 
With the 10 kmX10km squares as a starting point, we used R software (R 
Core Team, 2018) to run Chi-Squared tests against all the other grid 
sizes, based on the ToD counts. The results show the ToD counts display 
no significant differences and thus are considered similar. A comple
mentary visual analysis of the ToD spatial distribution also reveals 
consistency among different square sizes, albeit some expected varia
tions. The Chi-Squared test results and the maps are provided as sup
plementary material. 

3.4. Outputs 

The final product is a feature class with the study area divided by 
squares, each one with the metrics calculated for both dates, their 
variation and assigned to a ToD (Figs. 3 and 4). 

3.5. Results and discussion 

The aim of this particular case study was to illustrate how to use the 
LDTtool and show the type of outputs it produces. The analysis was a 
broad one and did not intend to explain exhaustively the reality behind 
the olive groves increment in Portugal, which is a complex issue and 
would require more and different data with higher spatial resolution, 
possibly thematic resolution (distinguish between traditional and 
modern olive groves) and temporal resolution (use intermediary dates to 
better identify the paces in the land cover changes). 

Although other drivers may be responsible for local changes occur
ring all over the country, it is hard to ignore the process of rapid agri
cultural intensification going on in the Alentejo Region (Southern 
Portugal) and its relevance to the landscape transformation. The tradi
tional extensive, multi-functional agricultural systems, adapted to the 
Mediterranean climate are being rapidly replaced by more intensive and 
irrigated cultures. This was made possible due to public investment in 
the Alqueva dam and its integrated irrigation system, together with 
national and EU agricultural policies (Silveira et al., 2018). As a result, 
large scale intensive and super-intensive olive groves have been imple
mented in the last years in newly irrigated areas. 

According to CLC (CHA00, CHA06, CHA12 and CHA1218) the land 
covers that have been replaced the most by olive groves are “non-irri
gated arable land” and “permanently irrigated land”, presumably land 
that was not irrigated before but has now access to water and land that 
was already irrigated but was used for other cultures. In opposition, 
some existing olive groves were replaced by, mostly, “non-irrigated 
arable land” and “transitional woodland-shrub”, what can reflect the 
low income obtained by traditional olive groves that were abandoned. 

Comparing the 1990 and 2018 feature classes we verify there have 
been an olive grove area increment of 692,84 km2 and a number of 
patches increment of 361. These overall values suggest the “Type of 
Dynamic F–NP increment by gain” has been the main change pattern 
taking place at the study area. The results based on the 100 km2 grid 
provide more detailed results. The number of squares assigned to each 
ToD at this spatial resolution is present in Fig. 5a). 

The “ToD F–NP increment by gain” was the most represented ToD 
with a total of 227 squares which is in line with the global trend pre
viously mentioned. ToD F represents new olive tree plantations not 
adjacent to existing ones. The magnitude of ToD F reflects how vigorous 
the olive grove implementation in Portugal has been. Nevertheless, 
there were some local area losses, presumably traditional and less 
profitable groves. The second most identified ToD was the “H–NP 
decrement by loss”, present in 101 squares. It shows squares where the 
main dynamic was the shift from olive groves into other land covers. 
Looking at the number of squares it seems quite significant with almost 
half of the ToD F (101 vs 227). However, the relation does not stand 
when we compare olive grove area variation as ToD F involved an area 
gain of 817,57 km2 while ToD H involved an area loss of 159,61 km2 

(Fig. 5b). 
The other two ToD with variation in both configuration and 

composition are “G – Aggregation by gain” that reflects situations where 
new plantations or expansion of existing ones originated the fusion of 
patches (groves), and “I – Fragmentation by loss”, where the loss of area 
provoked the division of patches. ToD G was identified in only 16 
squares but totalled an area gain of 143,82 km2, while ToD I was 
identified in 55 squares and implied an area loss of 118,05 km2. 
Focusing on the ToDs that reflected only composition and had no in
fluence in the NP, “D – Gain” was found in 49 squares and involved an 
area gain of 57,18 km2, while “E − Loss” occurred in 71 squares with a 

Fig. 2. Filled dialog boxes. a) Tool 1.1 - Landscape dynamics Types 2 M 
(Squares); b) Tool 2 - Forecast. 
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total loss of 47,83 km2. No squares were assigned to the ToD B or C, that 
represent pure geometric changes (without amount variation) and thus 
do not occur often. 

In summary, there were many changes in olive groves in Portugal 
between 1990 and 2018. Overall, the area increased despite some local 
losses. Most of the amount changes had implications on the olive groves 
configuration (shape and spatial distribution). In a situation (or sce
nario) of olive groves substantial area increment, all the ToD related to 
area gain may contribute to landscape homogenization. Obviously, the 
area amount turned into olive groves is the main thing responsible for 
that contribution but considering a fixed amount, the way it is added to 

the landscape is also relevant. While pure gain, meaning the existing 
patches were expanded (ToD D – Gain), and the presence of new patches 
(ToD F–NP increment by gain) have influence mainly at the landscape 
granularity level, the fusion of patches (ToD G – Aggregation by gain) 
contributes directly to the landscape spatial homogenization. Also 
related to this, particularly if considering biodiversity issues, it is 
fundamental to verify the starting point of each square as a given 
amount of area change may have different meanings and effects. In other 
words, similar areal increments may have different impacts if the square 
had none of that cover, or if the square already had much of it. The LDT 
forecast tool should be used with caution as its purpose is to support the 

Fig. 3. Output attribute table. a) Output of Tool 1.1 - Landscape dynamics Types 2 M (Squares); b) Field originated by Tool 2 – Forecast.  

Fig. 4. Olive Groves in Portugal (1990–2018). a) Map produced by “Tool 1 - Landscape Dynamics Types 2 M (Squares)ˮ showing Continental Portugal divided by 10 
× 10 Km squares with assigned Types of Dynamics (ToD). b1) Detailed view of a square showing TOD G - Aggregation by gain. b2) Detailed view of a square showing 
ToD E − Loss. 
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thinking process of how the landscape may look like in the future and 
not to make accurate predictions. Based on the LDT forecast model, we 
can see that if there is an increasing trend, in time, the existing patches 
of a given land cover may expand so that they bridge the gaps between 
them and merge together (ToD D evolves to ToD G). New patches that 
are installed in the landscape may follow the same path (ToD F is fol
lowed by ToD D which evolves to ToD G). Such analysis act as a diag
nosis and projects a hypothetical future based on the current trend. 
Nevertheless, we must advise this tool is better suited for situations 
where natural processes are in place without management or with little 
human interference (e.g. vegetation recovery, afforestation, etc.). In 
some cases it could be useful to study different forms of ownership, for 
instance large landowners who manage intensively and a multitude of 
small owners who have no interest in management and this conse
quently leads to abandonment of agricultural use. In the case of planned, 
highly managed olive groves (or any other agricultural land) the land 
use changes are mostly dependent of human decision. For instance, the 
tool shows us the ToD F and ToD D may end up originating a higher 
number of ToD G squares, which implies a greater spatial homogeneity 
than we have today. This may end up being true but it is hard to sustain 
this prediction because the olive groves will not expand naturally via 
dispersal. Instead they will appear and disappear due to human direct 
intervention in the territory. 

The analytical grid allowed us to identify local dynamics along the 
study area and visualize them in a map (Fig. 4a). This enhanced capa
bility can be relevant for planning, management and decision making 
processes. Although there are valuable advantages provided by the use 
of analytical units, we must highlight the modifiable areal unit problem 
(MAUP) (Gehlke and Biehl, 1934; Openshaw and Taylor, 1979). The 
MAUP refers to the fact that the areal units can be set arbitrarily and are 
modifiable. Results based on aggregated data following areal units can 
change if the same data are aggregated under different areal units 
(Waller and Gotway, 2004). Commonly used in population-focused 
studies, data aggregation is often based on boundaries such as zip 
codes, census tracts and census block groups (Moon and Farmer, 2001). 
Regular grids are extensively applied in spatial analysis to avoid bias 
caused by administrative divisions (Swift et al., 2008) and/or to include 

the vast amount of data that is available in that format, such as remote 
sensing data, biological atlas or simply because there is a preference for 
working with squares (e.g. UTM) or hexagons as a reference. 

MAUP is a long standing issue in geography and spatial analysis that 
has no optimal solution and has been ameliorated by the researchers 
according to their study contexts. Among several attempts that were 
made to deal with the MAUP (Openshaw, 1984), proposed that areal 
units should match the optimal spatial variance or maximize a given 
statistic. This is a clear protocol that leaves no doubt as to how the units 
are designed, but at the same time it is easy to criticize as it allows re
searchers to design spatial units in order to achieve a preferred result. 
According to Swift et al. (2008), areal units generated from Voronoi 
tessellations (Thiessen polygons) can be effective to reduce aggregation 
bias. The same authors point out that sensitivity analysis can be superior 
to other methods (e.g. optimizing the size and shape of areal units) since 
it does not rely on highly accurate measurements of spatial variables. 
Long et al. (2010) highlighted that MAUP influences the results, and 
suggested a multiscale approach when implementing their metric ‘pro
portion of landscape displacement from configuration’ (Py) as a way to 
minimize scale-related bias. Butkiewicz et al. (2008) first introduced a 
geospatial visualization method and later provided a number of en
hancements to help lighten the effects of the MAUP (Butkiewicz et al., 
2010). 

In our example, if the squares had a different size (scale effect) and/ 
or a different location (context effect), their content in terms of olive 
groves would also be different. Scale effect assessment would require 
testing different square sizes and context effect assessment would 
require changing their location. Although the current LDTtool version 
does not include such validation instruments, similar operations can be 
conducted by running the tool using different size grids (scale effect) and 
feeding the tool with edited grids (rotation, translation, etc.) via tool 1.3. 
or 1.4. (context effect). We took a similar approach and added a statis
tical test to assess the outputs (see Supplementary Material). A future 
validation/quality control procedure to integrate LDTtool is likely to 
involve an automatization of such steps and will be incorporated in the 
existing tools or provided as separated analytical tools. 

4. Concluding remarks 

The newly developed LDTtool can add value to studies in a wide 
range of topics related to biodiversity conservation, invasive species, 
ecosystem services and natural resources planning, mainly if land use, 
land cover or habitat changes are a central topic of the study. After the 
toolbox functionalities were presented, a demonstration was provided 
using as an example the olive groves dynamics in Portugal in the period 
between 1990 and 2018. 

4.1. Strengths, limitations and future developments 

The LDTtool’s strengths and limitations are twofold: those intrinsic 
to LDT and those related to the software itself. Some of the LDT method’s 
virtues are its simplicity due to the fact of being based on simple spatial 
metrics and the easy interpretation of the outputs that come in the form 
of value variations and maps (Machado et al., 2018). LDTtool itself, 
being introduced as an ArcGIS toolbox is expected to be user-friendly. 
The toolbox configuration is straightforward and it runs smoothly and 
fast mostly because it uses the vectorial format. LDTtool is imple
mented/coded in Python, which is a versatile language widely used in 
geoprocessing. Additionally the source-code is available and users can 
extract it and edit it to fit their purposes. The possibility to adjust pa
rameters such as the minimum patch size and the analytical units also 
add versatility to the process. However, the use of analytical units 
(regular polygons such as squares or irregular polygons such as districts) 
does not come without a cost, which in this case is related to MAUP. 
Variations in how regions are delineated have an influence in how the 
data is aggregated. Scale has similar implications because local variation 

Fig. 5. a) Number of squares assigned to each Type of Dynamics; b) Olive grove 
area variation associated to each Type of Dynamics. 
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can be lost when aggregated into a larger region (e.g. 20 Km squares 
instead of 10 Km squares). Therefore, both scale and analytical units 
must be cautiously selected in order to fit the purpose of the study. 
Although this is up to the user, we are aware that an automated vali
dation procedure that helps mitigate the MAUP implications would 
highly improve LDTtool. 

Also the use of binary landscapes facilitates the analysis but can be 
too simplistic to represent reality, mainly in biodiversity studies, 
particularly those involving habitat suitability or functional 
connectivity. 

The current version is not a final product but rather the first version 
of a tool that has room to improve and will be updated to assure its 
usability. LDTtool’s current limitations are identified and will be the 
base for future developments. Some upcoming improvements being 
considered at the moment are (i) quality (sensibility or robustness) 
analysis of the final results to minimize the MAUP limitations, (ii) 
expand the analytical possibilities beyond binary landscapes, and (iii) 
integration in other GIS platforms. 

Software availability 

Name: LDTtool. 
Availability and cost: LDTtool can be can be freely downloaded from: 

https://github.com/RDPMachado/LDTtool. 
(Includes a README file with description and instructions). 
License: GNU GPLv3; Developer: Rui Machado; Contact address: 

Departamento de Paisagem, Ambiente e Ordenamento, Universidade de 
Évora, Rua Romão Ramalho, n◦ 59, 7000-671 Évora, Portugal, E-mail: 
rdpm@uevora.pt. 

Year first available: 2020. 
Software required: ESRI® ArcMap™ 10.0 and later versions. 
Program language: Python. 
Program size: 6.97 Mb. 
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A free and open source programming library for landscape metrics calculations. 
Environ. Model. Software 31, 131–140. https://doi.org/10.1016/j. 
envsoft.2011.10.009. 

R. Machado et al.                                                                                                                                                                                                                               

https://github.com/RDPMachado/LDTtool
mailto:rdpm@uevora.pt
https://doi.org/10.1016/j.envsoft.2020.104847
https://doi.org/10.1016/j.envsoft.2020.104847
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref1
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref1
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref1
https://doi.org/10.1111/j.1467-8659.2009.01707.x
https://doi.org/10.1111/j.1467-8659.2009.01707.x
https://doi.org/10.1146/annurev-ecolsys-110316-022612
https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
https://doi.org/10.1016/j.envsoft.2012.07.002
https://doi.org/10.1016/j.envsoft.2012.07.002
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref6
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref6
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref7
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref7
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref8
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref8
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref8
https://doi.org/10.1201/9781315372860
https://doi.org/10.1016/j.tree.2006.11.006
https://doi.org/10.1016/j.apgeog.2009.12.002
https://doi.org/10.1080/01426397.2017.1336757
https://doi.org/10.1080/01426397.2017.1336757
http://www.umass.edu/landeco/research/f
http://www.circuitscape.org
https://doi.org/10.1016/j.ecolmodel.2018.10.012
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref16
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref16
https://doi.org/10.1080/089419201300199545
https://doi.org/10.1080/089419201300199545
https://doi.org/10.1126/science.aay7899
https://doi.org/10.1016/j.agee.2019.106694
https://doi.org/10.1002/9781118526729.ch3
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref21
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref21
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref21
https://www.R-project.org/
https://www.R-project.org/
http://www.cnfer.on.ca/SEP/
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref24
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref24
https://doi.org/10.1016/j.envsoft.2008.05.005
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref26
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref26
https://doi.org/10.31447/ics9789726715054.10
https://doi.org/10.1016/j.ecoinf.2009.07.004
https://doi.org/10.1016/j.ecoinf.2009.07.004
https://doi.org/10.1016/j.compenvurbsys.2012.10.003
https://doi.org/10.1016/j.compenvurbsys.2008.01.002
https://doi.org/10.1016/j.compenvurbsys.2008.01.002
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref31
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref31
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref32
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref32
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref33
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref33
http://refhub.elsevier.com/S1364-8152(20)30904-X/sref33
https://doi.org/10.1016/j.envsoft.2011.10.009
https://doi.org/10.1016/j.envsoft.2011.10.009

	LDTtool: A toolbox to assess landscape dynamics
	1 Introduction
	2 LDTtool
	2.1 Preliminary steps
	2.2 Inputs and settings

	3 The LDTtool demonstration
	3.1 Background
	3.2 Preliminary steps
	3.3 Inputs and settings
	3.3.1 Square size selection

	3.4 Outputs
	3.5 Results and discussion

	4 Concluding remarks
	4.1 Strengths, limitations and future developments

	Software availability
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	References


