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Abstract: Two sentences can be related in many different ways. Distinct tasks in natural language
processing aim to identify different semantic relations between sentences. We developed several models
for natural language inference and semantic textual similarity for the Portuguese language. We took
advantage of pre-trained models (BERT); additionally, we studied the roles of lexical features. We tested
our models in several datasets—ASSIN, SICK-BR and ASSIN2—and the best results were usually achieved
with ptBERT-Large, trained in a Brazilian corpus and tuned in the latter datasets. Besides obtaining
state-of-the-art results, this is, to the best of our knowledge, the most all-inclusive study about natural
language inference and semantic textual similarity for the Portuguese language.
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1. Introduction

Different types of semantic relations can be found between two sentences. For instance, two sentences
are considered to be equivalent (paraphrases) if they have the same meaning. Additionally, it is possible
that one sentence contradicts the other (contradictions), or that no relation at all is found between them
(neutral). An entailment relation is also possible, and we say that a source sentence (the premise) entails
a target sentence (the conclusion) when the conclusion is most probably true if the source is true [1].
These (and other) semantic relations have been deeply studied in natural language processing (NLP).
For instance, equivalence between sentences is tackled in paraphrase identification tasks; the detection of
relations as contradictions, neutral or entailment is the research target of natural language inference (NLI),
which is also referred to as recognizing textual entailment (RTE). In this paper, we focus on the tasks of
semantic textual similarity (STS)—where the similarity level between two sentences is calculated—and
NLI. Our focus is in the Portuguese language.

Many NLP application scenarios have been boosted recently due to pre-trained models, which can
be directly used or tuned to specific domains/tasks. BERT [2] is an example of such models. With BERT,
various NLP tasks achieved state-of-the-art results, including STS and NLI for Portuguese [3,4].

In this paper, we test three BERT models for the Portuguese language:

• Multilingual BERT (from now on mBERT), a model trained for several languages at the same time [5];
• Two BERT models trained with (Brazilian) Portuguese corpora (https://github.com/neuralmind-ai/

portuguese-bert), differing in size (from now on ptBERT-Base and ptBERT-Large).
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We studied the performances of these models by following two different approaches: in the first,
we tuned BERT models in NLI and STS corpora; in the second, we used BERT embeddings to feed
more traditional classification/regression algorithms, namely, random forests (RF) and support vector
machines (SVM).

Moreover, we tested the performance of lexical features in both tasks, either alone or combined with
BERT embeddings, in a voting process.

State-of-the art results were obtained with ptBERT-Large in almost all the considered corpora and
metrics. Although BERT (and other embedding sources) has already been used in these tasks (and for the
Portuguese language), this is, as far as we know, the most detailed study on this topic.

In the following we present related work in Section 2, our approach in Section 3 and its experimental
setup in Section 4. The results are reported and discussed in Sections 5 and 6. Finally, we conclude and
plan future work in Section 7.

2. Related Work

Both NLI and STS have been studied from some time now. A benchmark for systems aimed at
performing RTE was initially developed in the PASCAL challenge series [6], where RTE was defined
as the task of labelling two sentences as entailed or not entailed. To target a broader range of semantic
relations, more recent challenges and corpora introduced the task of NLI, where sentences may also be
labeled as contradictions or neutral (no semantic relation), other than entailment. The most popular
of such challenges are the ones from the International Workshop on Semantic Evaluation (Semeval)
(https://semeval.github.io).

STS is a regression task, where the aim is to find a continuous value, usually, between 0 and 5 for the
similarity among two sentences. To compare the performances of systems measuring semantic similarity,
various shared tasks on STS were defined in Semeval [7], including cross-lingual and multilingual tracks [8],
which did not cover Portuguese.

To the best of our knowledge, the first corpus to include entailment labels and similarity values
for Portuguese sentences was ASSIN (Avaliação de Similaridade Semântica e Inferência Textual) [9],
containing pairs of sentences from news sources, split into subsets for Brazilian and European Portuguese,
and provided in a shared task with the same name (http://propor2016.di.fc.ul.pt/?page_id=381). The same
types of annotations can be found in SICK [10], a corpus of image and video captions, in English, annotated
by crowd-sourcing. Recently, a translation of SICK sentences to Portuguese, the SICK-BR corpus [11],
was made available. The ASSIN2 shared task followed ASSIN, and produced a corpus based on SICK-BR
entailment and neutral examples, expanded by lexical transformations [12]. In this paper we evaluate our
models on all of the mentioned Portuguese corpora.

Several methods were tested in these corpora, including feature-based approaches from similarity
metrics on various text representations [13], word embeddings built with word2vec [14] from the
Portuguese Wikipedia [15,16] and feature-based models relying on syntactic properties and lexical
semantics [17]. Compositional methods that derive sentence similarity from word similarities [18] were
also tested. With ASSIN, the corpus continued to be employed after the shared task, and in particular,
Pinheiro et al. [19] built a new Portuguese word2vec model from Brazilian news data and Wikipedia;
Rocha and Cardoso [20] employed a Portuguese WordNet; and Alves et al. [21] explored word embedding
models other than word2vec. In this paper we test several embedding models; in addition, and as
previously said, we test two different approaches, one based on tuning pre-trained models; in the second
by using pre-trained models as feature suppliers. For the latter approach, we also test a combination of
embeddings and lexical features.

https://semeval.github.io
http://propor2016.di.fc.ul.pt/?page_id=381
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Recently, the BERT model [2] was made available, and achieved state-of-the-art results on various
NLP tasks for English, like those in the GLUE benchmark [22], which is aimed at solving multiple NLP
tasks. BERT produces contextual and dynamic embeddings from a deep learning architecture based on
bidirectional transformers [23], such that the embedding of a word is specific to the context in which it is
employed, and the same word employed in different contexts results in different embeddings. Training a
BERT model is expensive in terms of time and resources, but pre-trained models (in base or larger versions),
based on Wikipedia, were made available on various languages including Portuguese [5].

In ASSIN2 various systems already relied on the BERT model, where the best results were
obtained by Rodrigues et al. [24] by employing an enhanced BERT model, only available for English,
with a machine translated version of the ASSIN2 corpus. Competitive results were also achieved
by Rodrigues et al. [3], through augmenting the mBERT-Base model with data not in the ASSIN2 corpus,
and by Cabezudo et al. [4], who identified and explored relations between NLI and STS annotations,
such that the mBERT-Base model was fine tuned on the NLI task, and the resulting model was employed
to compute embeddings to address the STS task.

The system of Cabezudo et al. [4] employs lexical features, such as BLEU [25], and features based
on the Brazilian WordNet of OpenWordNet-PT [26], to analyze examples relative to their NLI and STS
annotations, and to combine them with BERT embeddings for addressing the ASSIN2 tasks. Such features
did not improve the performance of BERT, but the mentioned corpus analysis supported an alternative
split of training and development examples with which their best result was obtained.

In Rodrigues et al. [3], a new instance of the BERT model was introduced, specific to Portuguese,
as trained with the Portuguese Wikipedia and various news sources, from European and Brazilian
Portuguese variants. The motivation for such model is to avoid language interpretation issues proper
to the encoding of multiple languages in the official mBERT-Base model, as exemplified by the authors.
However, said model did not succeed in providing the best results, which were instead obtained with
mBERT-Base. Experiments included fine tuning on each task, fine tuning in the mentioned Portuguese
texts and using the corpus from the previous ASSIN edition to increase training data.

3. Features and Models

Available resources to assess the similarity between Portuguese sentences include embeddings and
lexical similarity metrics. We used both, separately and in combination. In the next sections we describe
the features used in this work, and the models we have built.

3.1. Features

3.1.1. BERT Embeddings

We obtained embeddings from BERT, namely, a single embedding for the concatenation of two target
sentences, by employing Portuguese and multilingual BERT models, not tailored to a particular task. From
such a generic embedding of a sentence pair, as we will see, we can build a model through supervised
learning with non-deep-learning methods.

The BERT architecture defines two variants in model size, with 12 layers and embeddings of
768 dimensions for BERT-Base models and 24 layers with embeddings of 1024 dimensions for BERT-Large
models. The output of a BERT layer is a sequence of embeddings for input words and special tokens
of the BERT architecture, and each layer encodes different linguistic information [27,28]. As such,
the embedding of an input text is obtained from the output of a certain layer, either from its CLS special
token, intended for classification purposes [2], or by reducing the sequence into a single embedding, such
as by weighted average.
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A generic BERT model is obtained by pre-training, a process where the weights of these layers are
adjusted according to two unsupervised language modeling tasks, applied to a collection of unlabeled
texts [2]. One such unsupervised task randomly masks some of the input tokens, and then finds the
original forms of the masked tokens, according to a predefined vocabulary. As such, pre-training a BERT
model requires a collection of texts and a vocabulary. The final BERT model is then defined by a network
of pre-trained weights and the vocabulary, and its output is a generic representation of the semantics in
the input text, according to pre-training data.

We employed the base and large versions of the Portuguese BERT model (ptBERT-Base and
ptBERT-Large) described in https://github.com/neuralmind-ai/portuguese-bert, which was pre-trained
in a Brazilian corpus collected from the internet, with a vocabulary of 30,000 units computed from
the Brazilian Wikipedia. We also employed the multilingual BERT model, which is only available in
base version (mBERT-Base), and was pre-trained on Wikipedia for 100 languages, with a vocabulary of
110,000 units for all languages [5]. All employed models consider raw text that was not transformed by
lower casing or accent removal.

Given a pair of sentences, the essential input to a BERT model is a sequence of indexes on its
vocabulary, one for each token in the concatenated sentence pair. For sentence pairs, BERT defines an
optional second input, as a mask vector that identifies which tokens belong to which sentence. Moreover,
BERT defines a final optional input as a mask vector that identifies padding tokens to discard, which we
employed to limit our input sequence to 128 tokens, by padding or truncating sequences of other lengths,
as also employed by the original BERT scripts (https://github.com/google-research/bert).

We operated generic BERT models with the bert-as-service framework (https://github.com/hanxiao/
bert-as-service), where the full BERT input is automatically computed from a sentence pair concatenated
by the “|||” separator. The default output is computed from the second to last layer, which has shown
to contain better embeddings [29], using a weighted average of token embeddings, normalized by the
padding mask to consider only non-padding tokens.

3.1.2. Lexical Similarity Features

The output of a similarity metric is a score for the similarity between two sentences. Several of such
metrics exist; some are applicable to inputs composed of heterogeneous symbols, such as the Jaccard
coefficient [30]. We employed a previously released system that generates 96 features for a pair of
sentences, based on applying such metrics to various representations of text. Namely, lexical features were
obtained from the INESC-ID@ASSIN [13] system, since it achieved state-of-the-art results on the European
Portuguese track of the ASSIN challenge [9]. These included metrics for symbols, such as the previously
mentioned Jaccard, but also similarity metrics aimed at text, such as BLEU [25]. Each metric was applied
to the original sentences, but also to alternative representations of the text, such as that obtained from
phonetic encoding. A comprehensive description of such metrics and representations is available in [13].

3.2. Models

Given a corpus where each example is composed of a pair of sentences and its target outcome is a
label and/or continuous value related to the equivalence between the two sentences, our (traditional)
models are based on two distinct types of feature vector: (a) the embedding of each sentence pair according
to BERT, and (b) a vector of scores from similarity metrics. Using BERT embeddings, we also built models
based on fine tuning the embeddings (BERT fine tuned) to tasks in a particular corpus, in an end-to-end
fashion, where BERT is tailored to the tasks in a corpus.

https://github.com/neuralmind-ai/portuguese-bert
https://github.com/google-research/bert
https://github.com/hanxiao/bert-as-service
https://github.com/hanxiao/bert-as-service
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3.2.1. Traditional Models

In this work we employed such a system to Portuguese corpora annotated with NLI labels and STS
values. Therefore, we produced a classification and a regression model for each type of feature vector,
such that the same type of features was employed for both tasks. These models were built with traditional
machine learning algorithms, rather than neural networks and deep learning.

3.2.2. BERT Fine Tuned

We define BERT fine tuning as a multi-input and multi-output neural network that encompasses
the BERT architecture. In our fine tuning architecture, BERT is followed by two neural output layers,
one for NLI classification and the other for STS regression. As such, the inputs of our fine tuning model
are the same as those of the BERT model, namely, the indexes and masks computed from a sentence pair,
as previously described. The outputs are a similarity value, for the STS task, and a probability distribution
for the target classes of the NLI task.

Following the original BERT fine tuning setup [2], the weights of our task specific layers were
initialized from a truncated normal distribution, and their input was the embedding of the CLS special
token in the last layer of the BERT model, further normalized by a non-linear tanh-based layer (https:
//github.com/google-research/bert/issues/43) and processed by a dropout layer. As all evaluated corpora
each describe a classification and a regression task, the activations of our task-specific layers are accordingly
softmax and linear, where softmax corresponds to reducing the features in the BERT embedding into a
probability distribution for the classes of the classification task in a target corpus, and linear corresponds
to reducing the BERT features into a single value.

In fine tuning, the layers concerning the BERT model are initialized with pre-trained weights, which
are adjusted according to the loss between the outputs of the classification and regression layers and the
correspondent labels in a target corpus. Namely, for regression we employed the mean absolute error
loss, since it provides robustness to outliers, as convenient in applying our model to diverse corpora.
For classification, we employed the categorical cross entropy loss, which allowed us to address binary and
multi-class tasks with the same setup. We employed the same pre-trained models as in the system based
on the generic BERT models, and assigned the same weights to classification and regression losses.

Due to the dropout layer, which randomly ignores a different part of the BERT output on each training
of the same model, our network outputs are non deterministic. Hence, all reported results for fine tuned
models correspond to an average of five instances of each model.

3.2.3. Voting Model

For both classification and regression, we employed a voting strategy on a set of different models,
to leverage different learning strategies at once. For regression, voting consists of averaging predictions
from a set of models, while for classification different strategies of computing the output class may apply,
whether by choosing the class predicted by most classifiers or by averaging the prediction probabilities
that each classifier reports for a certain class, and choosing the class with the highest average.

4. Experimental Setup

In this section, we describe the models used (Section 4.1), corpora (Section 4.2) and evaluation
measures (Section 4.3).

https://github.com/google-research/bert/issues/43
https://github.com/google-research/bert/issues/43


Information 2020, 11, 484 6 of 19

4.1. Models

The fine tuning architecture was defined with the Keras framework (https://keras.io/). Loading the
BERT model and preparing its inputs from a sentence pair was performed with the Transformers toolkit
(https://huggingface.co/transformers/). We followed the fine tuning parameter recommendations
from Devlin et al. [2], such as for the range of values for epochs, batch size and learning rate, but did
not perform automatic search for optimal parameters. Instead, we selected the maximum number of
recommended epochs and batch size, respectively 4 and 32, and the intermediate value for learning rate
(3 × 10−5). For the optimizer, we employed Adam [31], since in early experiments this was the best
setting, unlike the original BERT model which employs a version of Adam featuring weight decay [2].
ptBERT-Large, ptBERT-Base and mBERT were all tuned in our experiments.

Regarding the most traditional classification/regression setting, all machine learning was performed
in scikit-learn [32]. Classification models were chosen in various combinations, mainly by considering
learning algorithms with simple and complex versions available, and the processing times to build them.
The final set was composed of two types of SVM and random forests of decision trees. In addition,
we considered an ensemble of all models based on a voting algorithm. The simple version of SVM has
a linear kernel (LIBLINEAR implementation), while the more complex versions correspond to the non
linear polynomial and RBF kernels. A random forest is a combination of decision trees and random feature
selection, hence a complex version of decision trees. The voting model also considers decision trees, as the
simpler version of random forests, although its algorithm is not competitive with the latter. Regression
models implement the same types of algorithms selected for classification models.

With respect to the voting model, we considered that all models have the same weight, and for
classification models we employed a strategy (named “soft voting” in scikit-learn) in which the output
class was chosen by averaging the prediction probabilities that each classifier reported for a certain
class, and choosing the highest class average using argmax. To ensure reliable prediction probabilities,
all classifiers were calibrated [33], using the Platt method [34] in scikit-learn.

For all models, optimal parameters were identified from a combination of various parameters,
including various degrees for the polynomial kernel, the number of decision trees in random forests and
the existence of class imbalance on all classification models. Said parameter search was applied for each
corpus. For instance, to obtain the final model, for a certain corpus and feature sets, when using SVM
with a linear kernel, seven different models were trained, corresponding to different values for the C
parameter, sampled from a logarithmic scale between 0.001 and 1000. When using SVM with the remaining
kernels, the search included at least the C and gamma parameters, such that each of the mentioned seven
models implies training another set of models, corresponding to combinations of a certain C values
and various values for gamma, which were sampled from a logarithmic scale between 0.0001 and 10.
For random forests, various types of parameters were also included in the search, such as the number of
trees (we experiment with 100 or 200 trees) and the maximum depth of each tree.

4.2. Corpora

In this section we survey the three corpora we use in our experiments: ASSIN, SICK-BR and ASSIN2.

4.2.1. ASSIN

The ASSIN dataset [9] contains 10,000 sentence pairs collected from Google News, split into training
and test sets with an equal number of Portuguese and Brazilian examples in each set (each Portuguese
variety has 2500 examples for training, 500 for trial and 2000 to test). Each example is annotated for both
the STS and NLI tasks.

https://keras.io/
https://huggingface.co/transformers/
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For STS, semantic relatedness is a continuous value from 1 to 5. These values should be given to
sentence pairs, according to the following guidelines [9]:

1. Completely different sentences, on different subjects.
2. Sentences are not related, but are roughly on the same subject.
3. Sentences are somewhat related. They may describe different facts but share some details.
4. Sentences are strongly related, but some details differ.
5. Sentences mean essentially the same thing.

In ASSIN, NLI is defined as a categorical assignment to the classes: entailment, paraphrase or none
(neutral). The distribution of examples with these labels is approximately balanced between the European
and Brazilian splits of this corpus but is not balanced relative to examples per label, with a total in both
corpora of 7316 examples of neutral, 2080 of entailment and 604 of paraphrase.

Within the ASSIN campaign, performance was measured separately for European Portuguese and
Brazilian Portuguese, but also for the concatenation of both corpora.

4.2.2. SICK-BR

SICK-BR corpus [11] is a Brazilian Portuguese translation of the SICK [10] corpus (NLI and STS). The
original SICK was the target corpus for a shared task at Semeval 2014 [35].

As in the original SICK corpus, SICK-BR is composed of 4906 test examples, 495 trial/development
examples and 4439 train examples.

Each example, that is, each sentence pair, is annotated for the STS task with a continuous value
between 0 and 5, for how similar the two sentences are; and for the NLI task, with labels neutral,
contradiction and entailment to indicate the relationship between the two sentences. The distribution of
these labels in the corpus is not balanced, with 5595 examples of neutral, 2821 of entailment and 1424 of
contradiction. More information is available, such as the original English sentences. The development of
SICK-BR only targeted sentence translation; hence, the remaining annotations are the same as in SICK.

4.2.3. ASSIN2

ASSIN2 [12] extends SICK-BR with more examples. These examples were created by modifying
examples of SICK-BR, by replacing words by their synonyms, for instance. ASSIN2 has approximately
the same size as SICK-BR, although it does not include contradiction examples. Instead, the NLI task is
defined as a binary classification, for entailment or non for entailment. Example distribution for ASSIN2
contains 6500 examples for training, 500 for validation and 2448 for testing, and this is the only corpus in
our evaluation that describes a balanced distribution of examples per NLI label, where exactly half of the
examples on each corpus partition are of the entailment class, while examples of the other half correspond
to the not entailment class. The STS task is also included in ASSIN2, as inherited from SICK-BR.

4.3. Evaluation Metrics

For NLI, we report accuracy, precision, recall and F score (F1, as we consider precision and recall to
have the same weight/importance).

Precision measures the performance of a system in predicting the correct class of all its predictions for
a certain class. It is implemented as the number of examples where the predicted class matches the true
class, divided by the total number of examples predicted as being of said class.

Recall measures the fraction of examples of a certain class that were correctly predicted, and is
implemented as the number of examples wherein the predicted class matches the true class, divided by
the total number of examples of said class.
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The F1 score represents the harmonic mean of precision and recall, where 1 indicates the importance
factor of precision in respect to recall. Generally, the F score is defined as in Equation (1), which we employ
with β = 1.

Fβ = (1 + β2)× precision × recall
(β2 × precision) + recall

(1)

Accuracy measures the fraction of correct predictions with respect to all predictions.
Precision, recall and F1 metrics are based on the assumption that a positive class exists (as in binary

classification). For classification tasks with multiple classes, such as NLI in most of our evaluated corpora,
these metrics are computed for each class, by considering predictions of other classes as negative instances.
As such, a multi class problem is solved as a series of binary problems. An average of all such outputs
produces the multi-class version of these metrics, where certain forms of averaging may consider data
aspects such as class imbalance. Following the ASSIN task definition, we compute a macro average for all
evaluated corpora, which corresponds to an unweighted average where all classes are considered equally
important. However, most evaluated corpora describe an unbalanced distribution of examples per class.

We report multi-class precision, recall and F1 metrics with macro averaging for all evaluated systems,
and also per class evaluation metrics for the system with best overall performance. Accuracy is also
computed per class, considering examples of other classes as the negative class, which disregards the
differences between other classes.

For STS, as in the Semeval edition that employs the English SICK corpus [35], we report Pearson
and Spearman correlations, and the mean squared error (MSE), all of which are suitable to measure the
performance of a system that outputs a single unbounded and real valued prediction.

To compute the MSE, the difference between each prediction and its true value is squared, so that all
differences are positive numbers, and the average of all such values is the MSE. Hence, the lowest possible
MSE value is 0 and there is no upper bound.

The Pearson correlation coefficient measures the strength and direction of the linear relation between
predictions and true values, and corresponds to a continuous value from −1 to 1, where 0 indicates no
linear relationship. Visually, a prediction and its true value is represented as a point in a bi-dimensional
space, and there is a linear relationship between predictions and true values if all points are near a single
line/path. The sign of the Pearson coefficient is the same as the slope for such line, and its value indicates
the proximity of points to the line. For instance, a Pearson value near −1 indicates that predictions and
true values have distant magnitudes, but vary proportionally on most examples.

The Spearman correlation coefficient is defined as s Pearson that instead considers predictions and
true values as ranks, and not their actual values. Namely, the Spearman coefficient corresponds to the
Pearson applied to such ranks.

A lower MSE is better, while for the remaining metrics, both for NLI and STS, a higher value is
better. All metrics for NLI produce values in the 0 to 1 range; hence we report such results in percentages.

5. Results

In the following, we report the results of our systems in the NLI and STS tasks on Portuguese corpora,
where for each corpus we provide a table with results from various systems, ours and others, followed by
a table with per class results for an ensemble of the five instances of the fine tuned ptBERT-Large model,
obtained by averaging their predictions, since this is the most complex system and achieves the best results
on most evaluation metrics. In the former table, the best results for each metric, considering all systems,
are highlighted with boldface. For fine tuned models, we report the mean and standard deviation of the
evaluation metrics on the five instances of each model. Supporting each table of systems, we also frame or
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describe results from systems that we computed which did not achieved competitive results; hence these
are not shown in the tables.

Results for other systems were obtained from the original publications, according to the therein
addressed tasks, corpora and evaluation metrics. For each corpus, we report results for all other systems,
to the best of our knowledge, that achieve competitive performances. Some systems report results on
multiple corpora, and not all of the evaluation metrics we report for our systems are reported in the
original publications of other systems. Moreover, some of the other systems were trained with additional
data or combine multiple corpora, while our systems are trained per corpus and only with the data in
such s corpus.

Our systems are grouped by type of feature; systems based on BERT are identified by the name
of the BERT model followed by the learning algorithm employed to build the model of such system.
Learning algorithms are abbreviated as lsvc for linear SVM, rf for random forests, poly and rbf for SVM
with such kernels and voting for the ensemble of all non-deep-learning models. Systems based only on
lexical features are identified only by the name of the involved learning algorithm. Results for decision
trees are not shown, since the performance of said model was not competitive.

5.1. ASSIN in European Portuguese

A selection of results for the ASSIN-PTPT corpus is shown in Table 1, and the per class results of
the fine tuned ptBERT-Large model are shown in Table 2. Considering the remaining results, linear SVM
is the machine learning method with the best performance in most experiments, while decision trees
correspond to the overall worst performance. However, the MSE of the linear SVM model based on
ptBERT-Large embeddings and lexical features is higher than 1, unlike all other models based on this
feature set. For all other experiments in ASSIN-PTPT, the MSE value is only higher than 1 when using
decision trees. The best MSE value for a model based on ptBERT-Large and lexical features was obtained
with a random forest, which is the only machine learning method that considers feature selection. However,
for this feature set, using random forests in other models does not result in greater performance than linear
SVM, which suggests that the MSE’s instability with Large embeddings is due to the greater complexity
inherent to their greater size.

For models with only BERT embeddings as feature vectors, results for non linear SVMs are similar to
or worse than those of linear SVM. Additionally, the MSE for all such models based on ptBERT and decision
trees was 1.03, while the MSE for the model based on mBERT and decision trees was 0.94, although we
expected the Portuguese-only model to always be superior to the multilingual model.
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Table 1. ASSIN-PTPT NLI and STS results.

System Accuracy Precision Recall F1 MSE Pearson Spearman

# Other systems
de Souza et al. [36] 0.64 0.66
Freire et al. [18] 0.72 0.64
Hartmann [16] 0.66 0.70
Alves et al. [21] 0.43 0.78
Santos et al. [37] 0.63 0.72
Rocha and Cardoso [20] 0.84 0.73
Pinheiro et al. [19] 0.83 0.82 0.57 0.70
Barbosa et al. [15] 0.78 0.61 0.72 0.64
Oliveira Alves et al. [17] 0.79 0.58 0.70 0.68

# BERT fine tuned
ptBERT-Large 0.91 ± 0.00 0.87 ± 0.01 0.81 ± 0.01 0.84 ± 0.00 0.40 ± 0.01 0.85 ± 0.01 0.83 ± 0.01
ptBERT-Base 0.90 ± 0.01 0.86 ± 0.03 0.76 ± 0.03 0.80 ± 0.02 0.47 ± 0.10 0.85 ± 0.00 0.83 ± 0.00
mBERT-Base 0.87 ± 0.01 0.77 ± 0.03 0.79 ± 0.02 0.76 ± 0.04 0.53 ± 0.04 0.83 ± 0.01 0.81 ± 0.01

# BERT as features
ptBERT-Large (lsvc) 0.83 0.69 0.63 0.65 0.56 0.77 0.77
ptBERT-Base (lsvc) 0.83 0.70 0.67 0.68 0.56 0.76 0.76
mBERT-Base (lsvc) 0.85 0.72 0.69 0.70 0.54 0.78 0.77

# BERT as features + LEX
ptBERT-Large (lsvc) 0.84 0.69 0.64 0.65 1.23 0.77 0.77
ptBERT-Large (rf) 0.74 0.59 0.43 0.43 0.65 0.74 0.73
ptBERT-Base (lsvc) 0.85 0.72 0.72 0.72 0.50 0.76 0.76
mBERT-Base (lsvc) 0.85 0.71 0.73 0.72 0.43 0.79 0.78

# LEX
lsvc 0.86 0.76 0.74 0.75 0.61 0.74 0.73

Table 2. ASSIN-PTPT NLI results per class, for the fine tuned ptBERT-Large model.

Label Accuracy Precision Recall F1 Examples from Total

neutral 0.94 0.93 0.98 0.96 0.69
entailment 0.93 0.90 0.81 0.85 0.24
paraphrase 0.97 0.82 0.66 0.73 0.67

5.2. ASSIN in Brazilian Portuguese

A selection of results for the ASSIN-PTBR corpus is shown in Table 3, and the per class results of the
fine tuned ptBERT-Large model are shown in Table 4.

In ASSIN-PTBR, all models based on feature vectors with only BERT embeddings of any BERT model
performed similarly, except for models based on decision trees and random forests (also composed of
decision trees) which had lower performances.

For BERT embeddings with lexical features, performance was similar in all models and for both tasks,
except for random forests with ptBERT-Large embeddings where all evaluation metrics were at least 10%
lower than in other models.

For traditional models in ASSIN-PTBR, lexical features achieved the best accuracy, using a linear
SVM, and BERT-Base embeddings combined with lexical features achieved the best F1 (mBERT), MSE and
Pearson (ptBERT)—all in models based on the voting strategy. Such results are competitive or better than
those obtained with the fine tuned mBERT-Base model.
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Table 3. ASSIN-PTBR NLI and STS results.

System Accuracy Precision Recall F1 MSE Pearson Spearman

# Other systems
de Souza et al. [36] 0.45 0.64
Santos et al. [37] 0.37 0.71
Freire et al. [18] 0.47 0.62
Silva and Rigo [38] 0.43 0.66
Hartmann [16] 0.38 0.70
Alves et al. [21] 0.34 0.74
Barbosa et al. [15] 0.82 0.52 0.44 0.65
Oliveira Alves et al. [17] 0.82 0.47 0.44 0.65
Pinheiro et al. [19] 0.85 0.81 0.37 0.71

# BERT fine tuned
ptBERT-Large 0.90 ± 0.01 0.82 ± 0.05 0.67 ± 0.05 0.70 ± 0.06 0.23 ± 0.01 0.84 ± 0.01 0.83 ± 0.01
ptBERT-Base 0.90 ± 0.00 0.83 ± 0.01 0.70 ± 0.03 0.75 ± 0.02 0.25 ± 0.01 0.83 ± 0.00 0.82 ± 0.00
mBERT-Base 0.86 ± 0.00 0.59 ± 0.15 0.53 ± 0.02 0.52 ± 0.01 0.32 ± 0.02 0.78 ± 0.01 0.77 ± 0.01

# BERT as features
ptBERT-Large (lsvc) 0.84 0.66 0.57 0.59 0.30 0.78 0.78
ptBERT-Base (lsvc) 0.84 0.66 0.57 0.59 0.29 0.78 0.78
ptBERT-Base (poly) 0.84 0.68 0.61 0.63 0.30 0.78 0.77
mBERT-Base (lsvc) 0.85 0.66 0.59 0.62 0.31 0.77 0.76

# BERT as features + LEX
ptBERT-Large (lsvc) 0.84 0.68 0.62 0.62 0.72 0.79 0.78
ptBERT-Large (voting) 0.79 0.63 0.62 0.60 0.34 0.80 0.79
ptBERT-Base (voting) 0.82 0.63 0.66 0.64 0.28 0.80 0.79
mBERT-Base (voting) 0.85 0.68 0.65 0.67 0.30 0.79 0.77

# LEX
lsvc 0.86 0.70 0.59 0.63 0.35 0.74 0.72

Table 4. ASSIN-PTBR NLI results per class, for the fine tuned ptBERT-Large model.

Label Accuracy Precision Recall F1 Examples from Total

neutral 0.94 0.94 0.98 0.96 0.78
entailment 0.91 0.72 0.75 0.73 0.17
paraphrase 0.96 0.95 0.33 0.49 0.53

5.3. ASSIN in European and Brazilian Portuguese

A selection of results for the full ASSIN corpus is shown in Table 5, and the per class results of the
fine tuned ptBERT-Large model are shown in Table 6.

For the full ASSIN corpus, using BERT embeddings as features resulted in competitive performance
in both tasks from all deep learning algorithms and BERT models, with SVM-based models achieving
similar results and the worst performance corresponding to decision trees. Using feature vectors of BERT
embeddings combined with lexical features, all deep learning algorithms and BERT models failed both
tasks, particularly in F1 and MSE scores; e.g., for SVM-based models, most F1 scores were below 50% and
most MSE scores were above 1. Results from using only lexical features are competitive with any results
obtained with feature vectors that included BERT embeddings.

5.4. ASSIN2

A selection of results for the ASSIN2 corpus is shown in Table 7, and the per class results of the fine
tuned ptBERT-Large model are shown in Table 8.
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In ASSIN2, when using only BERT embeddings as features, all combinations of BERT models
and learning algorithms resulted in similar performances, except with decision trees (performance not
competitive). In such a setting, the voting algorithm produced the best results for all BERT models.

With feature vectors of ptBERT embeddings, both base and large, combined with lexical features,
only random forests and the voting algorithm produced a MSE result below 1, while the results for other
evaluation metrics are competitive and approximate in all models. For ptBERT-Base, we further note that
in all models except those of decision trees and SVM with RBF kernel, the better a model performs in
the NLI task, the worst its MSE value, although other metrics of the STS task remain competitive and
consistent with the NLI task. With the mBERT-Base model, all results are similarly competitive, except in
all decision trees results and the MSE values from SVM of any kernel.

As in the most experiments in ASSIN2, the voting algorithm also produces the best performance
when applied to feature vectors with only lexical features, for all metrics and tasks.

Table 5. ASSIN (PTPT + PTBR) NLI and STS results.

System Accuracy Precision Recall F1 MSE Pearson Spearman

# Other systems
de Souza et al. [36] 0.56 0.66
Freire et al. [18] 0.59 0.62
Hartmann [16] 0.52 0.68
Barbosa et al. [15] 0.80 0.58 0.59 0.63
Oliveira Alves et al. [17] 0.80 0.54 0.57 0.65
Pinheiro et al. [19] 0.83 0.83 0.47 0.70

# BERT fine tuned
ptBERT-Large 0.91 ± 0.01 0.84 ± 0.03 0.81 ± 0.05 0.82 ± 0.04 0.48 ± 0.11 0.82 ± 0.01 0.81 ± 0.01
ptBERT-Base 0.90 ± 0.01 0.81 ± 0.02 0.81 ± 0.01 0.81 ± 0.01 0.49 ± 0.03 0.81 ± 0.01 0.80 ± 0.01
mBERT-Base 0.90 ± 0.01 0.83 ± 0.02 0.78 ± 0.02 0.80 ± 0.01 0.43 ± 0.04 0.80 ± 0.01 0.79 ± 0.01

# BERT as features
ptBERT-Large (lsvc) 0.85 0.70 0.63 0.66 0.43 0.76 0.76
ptBERT-Base (lsvc) 0.86 0.72 0.68 0.70 0.42 0.76 0.76
mBERT-Base (lsvc) 0.86 0.73 0.67 0.69 0.42 0.77 0.76
mBERT-Base (rbf) 0.86 0.73 0.70 0.71 0.41 0.77 0.76

# BERT as features + LEX
ptBERT-Large (voting) 0.71 0.45 0.45 0.41 0.90 0.55 0.57
ptBERT-Base (voting) 0.74 0.42 0.35 0.31 0.67 0.64 0.66
mBERT-Base (voting) 0.75 0.54 0.52 0.50 0.58 0.70 0.70

# LEX
lsvc 0.86 0.75 0.68 0.71 0.48 0.72 0.71

Table 6. ASSIN (PTPT + PTBR) NLI results per class, for the fine tuned ptBERT-Large model.

Label Accuracy Precision Recall F1 Examples from Total

neutral 0.94 0.97 0.95 0.96 0.74
entailment 0.93 0.79 0.89 0.84 0.21
paraphrase 0.97 0.85 0.66 0.74 0.60
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Table 7. ASSIN2 NLI and STS results.

System Accuracy Precision Recall F1 MSE Pearson Spearman

# Other systems
de Souza et al. [36] 0.60 0.72
Santos et al. [37] 0.67 0.66 0.58 0.73
Cabezudo et al. [4] 0.87 0.87 0.64 0.73
Fonseca and Alvarenga [39] 0.87 0.87 0.39 0.80
Rodrigues et al. [3] 0.88 0.88 0.52 0.83
Rodrigues et al. [24] 0.88 0.88 0.59 0.79

# BERT fine tuned
ptBERT-Large 0.89 ± 0.00 0.90 ± 0.00 0.89 ± 0.00 0.89 ± 0.00 0.50 ± 0.09 0.84 ± 0.01 0.81 ± 0.01
ptBERT-Base 0.90 ± 0.01 0.90 ± 0.00 0.90 ± 0.01 0.90 ± 0.01 0.43 ± 0.03 0.84 ± 0.01 0.80 ± 0.01
mBERT-Base 0.88 ± 0.01 0.88 ± 0.01 0.88 ± 0.01 0.88 ± 0.01) 0.49 ± 0.04 0.82 ± 0.01 0.79 ± 0.00

# BERT as features
ptBERT-Large (voting) 0.81 0.82 0.81 0.81 0.49 0.80 0.76
ptBERT-Base (voting) 0.80 0.81 0.80 0.79 0.50 0.81 0.76
mBERT-Base (voting) 0.79 0.80 0.79 0.78 0.56 0.76 0.72

# BERT as features + LEX
ptBERT-Large (lsvc) 0.83 0.83 0.83 0.83 5.17 0.75 0.69
ptBERT-Large (rf) 0.52 0.53 0.52 0.51 0.52 0.72 0.67
ptBERT-Base (poly) 0.78 0.81 0.78 0.78 4.26 0.75 0.68
ptBERT-Base (voting) 0.77 0.81 0.77 0.76 0.91 0.79 0.72
ptBERT-Base (rf) 0.74 0.77 0.74 0.74 0.49 0.75 0.72
mBERT-Base (lsvc) 0.79 0.80 0.79 0.78 0.87 0.70 0.64
mBERT-Base (voting) 0.79 0.81 0.79 0.79 0.45 0.76 0.71

# LEX
voting 0.76 0.76 0.76 0.76 0.62 0.70 0.68

Table 8. ASSIN2 NLI results per class, for the fine tuned ptBERT-Large model.

Label Precision Recall F1

NOT entailment 0.93 0.86 0.90
entailment 0.87 0.94 0.90

5.5. The Brazilian SICK Corpus

A selection of results for the SICK-BR corpus is shown in Table 9, and the per class results of the fine
tuned ptBERT-Large model are shown in Table 10.

In SICK-BR, using feature vectors with only BERT embeddings resulted in approximate performances
for all evaluated models, except for those of decision trees and random forests, which were up to 10%
worse than the best model. In such a setting, the best performance is obtained with models based on
SVM with a RBF kernel, for all BERT models, as shown in Table 9. For models based on feature vectors
where BERT embeddings are combined with lexical features, using ptBERT-Large embeddings results in
values of MSE greater than 1, for SVM with linear and polynomial kernels. For models based on ptBERT,
both base and large, the only competitive results in both tasks are achieved with the voting algorithm,
while for mBERT-Base the best results are similar in the two models, both voting and SVM with RBF kernel.
With feature vectors of lexical features only, all models produced approximate results, except decision
trees, which are up to 10% worse than the best model. To the best of our knowledge, no other system
reports results on the SICK-BR corpus.
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Table 9. SICK-BR NLI and STS results.

System Accuracy Precision Recall F1 MSE Pearson Spearman

# BERT fine tuned
ptBERT-Large 0.80 ± 0.13 0.72 ± 0.30 0.76 ± 0.24 0.74 ± 0.28 0.47 ± 0.42 0.70 ± 0.39 0.66 ± 0.37
ptBERT-Base 0.86 ± 0.01 0.86 ± 0.01 0.85 ± 0.01 0.85 ± 0.00 0.30 ± 0.02 0.86 ± 0.01 0.80 ± 0.01
mBERT-Base 0.84 ± 0.01 0.83 ± 0.01 0.84 ± 0.00 0.84 ± 0.01 0.37 ± 0.02 0.85 ± 0.00 0.79 ± 0.00

# BERT as features
ptBERT-Large (rbf) 0.82 0.83 0.80 0.81 0.28 0.85 0.79
ptBERT-Base (rbf) 0.81 0.82 0.79 0.81 0.30 0.84 0.77
mBERT-Base (rbf) 0.81 0.82 0.78 0.80 0.33 0.82 0.75

# BERT as features + LEX
ptBERT-Large (lsvc) 0.82 0.83 0.80 0.82 2.33 0.83 0.76
ptBERT-Large (voting) 0.80 0.81 0.81 0.81 0.54 0.85 0.78
ptBERT-Base (voting) 0.80 0.82 0.78 0.79 0.37 0.82 0.74
mBERT-Base (voting) 0.81 0.82 0.78 0.80 0.34 0.82 0.76

# LEX
voting 0.78 0.79 0.72 0.75 0.45 0.75 0.69

Table 10. SICK-BR NLI results per class, for the fine tuned ptBERT-Large model.

Label Accuracy Precision Recall F1 Examples from Total

neutral 0.87 0.92 0.85 0.89 0.57
entailment 0.90 0.78 0.91 0.84 0.29
contradiction 0.97 0.90 0.86 0.88 0.15

6. Discussion

In models based on neural networks, we measured statistical significance between the values returned
by each pair of models, using a t-test (five runs for each model) for all metrics. Considering p = 0.05, there
are statistically significant differences between models ptBERT-Base and mBERT-Base, and also between
models ptBERT-Large and mBERT-Base, for most evaluation metrics and corpora. Exceptions include,
for instance, the accuracy metric in the ASSIN-PTPT corpus, for the former pair of models, and most
evaluation metrics in the SICK-BR corpus, for the latter pair of models. Regarding the differences between
models ptBERT-Base and ptBERT-Large, results varied, since we found statistically significant differences
for some metrics, but not for others, on all corpora.

Fine tuned models achieved better results than traditional models in most of the evaluated corpora
and tasks. Particularly, the ptBERT-Large fine tuned model achieved the best results in most corpora and
tasks, compared to our other setups and to other systems. However, for instance, in ASSIN-PTBR it did
not achieve the best precision, recall and F1, and in ASSIN (PTPT + PTBR) it failed to achieve the best F1
and MSE. In the following we further investigate this model.

Regarding the STS task, the results of the ptBERT-Large fine tuned model for Pearson and Spearman
correlation coefficients are near 0.9 in most evaluated corpora, which reveals a strong correlation between
predictions and true values, indicating that the predictions for most examples are distant from their true
values in approximately the same magnitude.

However, with the ASSIN2 corpus this model achieved an MSE worse than one of the state-of-the-art
systems, and also worse than some of our traditional models.

To further study the performance of the ptBERT-Large fine tuned model, we employed the ensemble
for the five instances of this model, wherein the predictions from each instance were averaged, and the
MSE was computed on said average. The ptBERT-Large fine tuned model mentioned in the following
corresponds to said ensemble.
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Interestingly, in examples with greater distance between predictions and true values, this difference is
almost constant, as shown in Figure 1, and the predictions are greater than the true values, suggesting that
the STS predictions of ptBERT-Large fine tuned model are overly confident. As such, we did an experiment
subtracting a constant value whenever the difference between prediction and true was greater than a
certain value. The best results were obtained by subtracting 0.9 from the prediction, when the difference
between the prediction and the true value was greater than 0.5. The resulting MSE was 0.11, as opposed to
the 0.47 originally obtained, and the prediction was subtracted in 1014 of the 2448 test examples. As this
condition implies knowing the true value, we also experimented with subtracting 0.9 on all predictions,
which resulted in a MSE of 0.43.

Examples

ST
S 

va
lu

e

0

1

2

3

4

5

prediction true

Figure 1. Top 100 examples of ASSIN2 with greater distance between predicted and true values of the STS
task, where such distance is greater than 0.5.

We also performed the same analysis for the ASSIN-PTBR corpus, wherein the ptBERT-Large fine
tuned model achieved the best MSE value of all corpora. Here, the distance between predictions and
true values is also approximately constant, as shown in Figure 2. Again, we experimented with the
previously mentioned conditional subtraction, but here the best MSE was obtained by subtracting 0.8
from the predicted value whenever the distance between original prediction and true value was greater
than 0.5. The resulting MSE was 0.12, instead of the original 0.21, and the condition complied with 285
of the 2000 test examples. Subtracting 0.8 from all predictions resulted in a MSE of 0.8, which is worse
than the original result, since only approximately 10% of the test examples complied with the condition
for subtraction.

Moreover, we inspected individual examples where the ptBERT-Large fine tuned model failed to
identify the NLI class. We did not find particular differences between the language employed in such cases
and that of successful classification cases. As embeddings are not interpretable, and hence do not provide
an explanation from their features, we were not able to reason about the language in misclassifications.
However, it was possible to observe that some examples from the corpora are difficult to understand.
For instance, in ASSIN2, sentences Um peixe está sendo cortado por um cara and Um cara está fatiando um peixe
are not considered as entailment, but A comida nas bandejas está sendo comida pelos filhotes de gato and Poucos
filhotes de gato estão comendo are considered as entailment. However, it is out of the scope of this paper to
discuss the quality of the corpora, although issues with NLI corpora can be found in [40], particularly
regarding the development guidelines of the SICK corpus [10], on which our evaluated ASSIN2 and
SICK-BR corpora were based.
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Figure 2. Top 100 examples of ASSIN-PTBR with greater distance between the prediction and true values
of the STS task, where such distance is greater than 0.5

7. Conclusions

We employed two distinct forms of features for NLI and STS in Portuguese, namely, lexical features
and BERT embeddings. We presented several supervised modules for NLI and STS tasks, which deal with
both European and Brazilian Portuguese variants; news and caption based text styles; and the semantic
relations of entailment, paraphrase and contradiction.

As a modern model, BERT reaches better results than lexical features. Our best result was most
frequently obtained by fine tuning the BERT model to a particular corpus, such that the resulting BERT
embeddings were relevant to the NLI and STS tasks, as described in the training set of such corpus.
Particularly, the best result was obtained with a large BERT model pre-trained only in Portuguese texts.
Regarding base models, using a BERT model pre-trained only in Portuguese texts achieved better results
than the multilingual model originally developed by the BERT authors.

Using generic BERT models to compose feature vectors, and employing these in traditional machine
learning models, is not able to compete with fine tuned models, particularly when combined with lexical
features, which produced the worst results. However, the difference between results was smaller in the
ASSIN corpus, which is based on news sources. Additionally, in the ASSIN corpus, using only lexical
features achieved competitive results to models based on features vectors that include BERT embeddings.

Future work includes exploring other sources of features already available for Portuguese,
such as from syntactic analysis, searching optimal parameters for models based on neural networks,
further exploring ensembles of fine tuned models and analyzing language usage in examples. Particularly,
the quality of Portuguese corpora for NLI or STS tasks requires further investigation, as it is relevant to
understand the different average results we obtained in each corpus, and to the best of our knowledge this
has not yet been addressed.
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