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Abstract: Given the continuous increase in the global population, the food manufacturers are
advocated to either intensify the use of cropland or expand the farmland, making land cover and
land usage dynamics mapping vital in the area of remote sensing. In this regard, identifying
and classifying a high-resolution satellite imagery scene is a prime challenge. Several approaches
have been proposed either by using static rule-based thresholds (with limitation of diversity) or
neural network (with data-dependent limitations). This paper adopts the inductive approach to
learning from surface reflectances. A manually labeled Sentinel-2 dataset was used to build a
Machine Learning (ML) model for scene classification, distinguishing six classes (Water, Shadow,
Cirrus, Cloud, Snow, and Other). This models was accessed and further compared to the European
Space Agency (ESA) Sen2Cor package. The proposed ML model presents a Micro-F1 value of 0.84,
a considerable improvement when compared to the Sen2Cor corresponding performance of 0.59.
Focusing on the problem of optical satellite image scene classification, the main research contributions
of this paper are: (a) an extended manually labeled Sentinel-2 database adding surface reflectance
values to an existing dataset; (b) an ensemble-based and a Neural-Network-based ML models; (c) an
evaluation of model sensitivity, biasness, and diverse ability in classifying multiple classes over
different geographic Sentinel-2 imagery, and finally, (d) the benchmarking of the ML approach against
the Sen2Cor package.

Keywords: Sentinel-2; high-resolution imagery; scene classification; Sen2Cor; surface reflectance;
artificial intelligence; machine learning

1. Introduction

In remote sensing, classifying parts of the high-resolution optical satellite images into
morphological categories (e.g., land, water, cloud, etc.) is known as scene classification [1].
Recently, the challenge of optical satellite image scene classification has been the focal
point of many researchers. Scene classification plays a key role in urban and regional
planning [2,3], environmental vulnerability and impact assessment [4,5] and natural disas-
ters and hazard monitoring [6], for example. Further, given the current population growth
and industrial expansion needs, assessment of land-use dynamics is certainly required for
the well-being of individuals.

Earth observation can be defined as gathering physical, chemical, and biological infor-
mation of the planet using Earth surveying techniques, which encompasses the collection
of data [7]. In such Earth surveying techniques, optical satellites play a major role, and one
such satellite is Sentinel-2 [8]. Sentinel-2 is part of the Earth observation mission from
the Copernicus Programme, and systematically acquires optical imagery at a high spatial
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resolution over land and water bodies. Copernicus [9] is the European Union’s Earth ob-
servation program coordinated and managed by the European Commission in partnership
with ESA. In the succession of five days, for the same viewing angle, multispectral imagery
(at 10 m, 20 m, and 60 m resolution) is freely provided by the Sentinel-2 mission covering
all of Earth’s land surface.

In prior researches, several methods like look-up tables from big databases, atmo-
spheric corrected images (general pre-processing), sensor-specific thresholds rules [10-12]
or time-series analysis [13-15] were used for automated satellite image classification. More-
over, previous researches focused mainly on classifying individual pixels or objects through
image features [16,17] such as color histograms, the gist descriptor [18] and local binary
patterns [19] enabling the detection of micro-structures (like points, lines, corners, edges
or plain/flat areas). These image features have proved to be effective in image classifica-
tion to distinguish objects like roads, soil, and water, but can not provide morphological
information such as clouds, vegetation, shadows or urban areas [20].

Using different spectral and temporal resolutions satellite imagery, different CNN-
based models [1,21,22] were proposed to define cloud masks and land cover change.
Further, Baetens et al. [23] compared 32 reference cloud masks using Maccs-Atcor Joint
Algorithm (MAJA) [24], Sen2Cor [25] and Function of Mask (FMask) [26] respectively
achieving 91%, 90%, and 84% accuracy. Apart from this, while multi spectra/temporal
based methods achieve higher performance over cloud and land cover classification, they
are complex and need multi spectra/temporal data during learning, which is not always
available. Besides, none of the previous studies emphasized the problem of detecting more
than one class (Water, Shadow, Cirrus, Cloud, Snow, and Other) using a single ML model.
In this study, an inductive approach to learning from different surface reflectance is un-
dertaken, which simplifies the inference stage of learning and improves the generalization
ability of models.

Generally, during the learning process of scene classification, the associated infor-
mation of the scene is considered, resulting in a higher generalization ability of the
trained model [27]. Currently, for image scene classification, the majority of open-access
datasets are either limited in data diversity, size or the number of classes. For example,
the publicly available dataset UC Merced [28] consists of 100 (256 x 256 pixels) images for
21 classes, the Aerial Image Dataset (AID) [29] consists of 10,000 images within 30 aerial
scene types, the Brazilian Coffee Scene Dataset [30] is composed of 950 (600 x 600 pixels)
aerial scene images uniformly distributed over 50 classes, EuroSAT [31] comprises of
27,000 (64 x 64 pixels) georeferenced and labeled image patches, PatternNet [32] contains
38 classes with 800 images per class and BigEarthNet [33] contains of 590,326 Sentinel-2
image patches acquired between June 2017 and May 2018 over the 10 countries. Given the
benefit of Machine Learning in scene classification over sensor-specific-thresholds-based
methods, it is significant to compare its performance to Sen2Cor (sensor-specific-thresholds-
based method).

This study aims to (a) develop a geographically independent ML model for Sentinel-2
scene classification with high cross-dataset accuracy and (b) benchmark the classification
accuracy against the existing well-adopted method for scene classification. The general-
ization ability of the ML model was assessed against L1C patches acquired over Lisbon
(Portugal), Ballyhaunis (Ireland), Sukabumi (Indonesia), and Béja (Tunisia). The notable
contributions of this work are summarized as follows:

1.  Focusing on the problem of optical satellite image scene classification, an ensemble
and Neural Network based ML models are proposed;

2. An extended manually labeled Sentinel-2 database is set up by adding Surface Re-
flectance values to a previous available dataset;

3. The diversity of the formulated dataset and the ML model sensitivity, biasness,
and generalization ability are tested over geographically independent L1C images;

4. The ML model benchmarking is performed against the existing Sen2Cor package that
was developed for calibrating and classifying Sentinel-2 imagery.
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2. Sen2Cor

While capturing satellite images, the atmosphere influences the spatial and spectral
distribution of the electromagnetic radiation from the Sun before it reaches the Earth’s
surface. As a result, the reflected energy recorded by a satellite sensor is affected and
attenuated, requiring an atmospheric correction. Atmospheric correction is the process
of removing the effects of the atmosphere on the Top-of-Atmosphere (TOA) reflectance
values of original satellite images; TOA reflectance is a unitless measurement that provides
the ratio between the radiation reflected and the incident solar radiation on a given surface.
Bottom-Of-Atmosphere (BOA) reflectance, on the other hand, is defined as the fraction
of incoming solar radiation that is reflected from Earth’s surface for a specific incident or
viewing case.

Sen2Cor is an algorithm whose pivotal purpose is to correct single-date Sentinel-2
Level-1C products from the effects of the atmosphere and deliver a Level-2A surface
reflectance product. Level-2A (L2A) output consists of a Scene Classification (SCL) image
with eleven classes together with Quality Indicators for cloud and snow probabilities,
Aerosol Optical Thickness (AOT) and Water Vapour (WV) maps and the surface (or BOA)
reflectance images at different spatial resolutions (60 m, 20 m, and 10 m). Table 1 presents
the eleven classes with their corresponding color representation in the SCL image. Each
particular classification process [34] is discussed next.

Table 1. List of Sen2Cor Scene Classification Classes and Corresponding Colors [34].

No. Class Color

No Data (Missing data on projected tiles) (black)
Saturated or defective pixel (red)
Dark features / Shadows (very dark gray)
Cloud shadows (dark brown)

Vegetation (green)

Water (dark and bright) (blue)
Cloud low probability (dark gray) _
Cloud medium probability (gray)

Cloud high probability (white)

10 Thin cirrus (very bright blue) _

11 Snow or ice (very bright pink)

0
1
2
3
4
5 Bare soils / deserts (dark yellow)
6
7
8
9

2.1. Cloud and Snow

Figure 1 describes the Sen2Cor Cloud/Snow detection algorithm: it performs six tests
and the result of each pixel is a cloud probability (ranging from 0 for high confidence
clear sky to 1 for high confidence cloudy sky). After each step, the cloud probability of a
potentially cloudy pixel is updated by multiplying the current pixel cloud probability by
the result of the test. The snow detection follows the same procedure with five different
tests resulting in 0 for high confidence clear (no snow) to 1 for high confidence snowy pixel.

2.2. Vegetation

Two filters, namely the Normalized Difference Vegetation Index (NDVI) [35] and a
reflectance ratio (R), are used to identify vegetation pixels. The NDVI and R filters are
expressed by Equations (1) and (2) (NIR (Near Infra-Red), RED and GREEN refer to the
corresponding band values). Thresholds of T1 = 0.40 and T2 = 2.50 are set for NDVI and
R, respectively. If the NDV I and R values exceed the corresponding thresholds, the pixel
is classified as vegetation in the classification map.

NIR — RED
NDVI = NIR + RED (M)
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Figure 1. Sen2cor Cloud and Snow Mask Algorithm.
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2.3. Soil and Water

Bare soil pixels are detected when their reflectance ratio R (Equation (2)) falls below a
threshold T = 0.55. If the ratio R1 (Equation (3)) exceeds a threshold T = 4.0 the pixel is
classified as bright water.

_ BLUE

Rl = SWIR

®)

2.4. Cirrus Cloud

Under daytime viewing conditions, the presence of thin cirrus cloud in the upper
troposphere is detected by Sentinel-2 band 10 (B10) reflectance threshold. In the first step,
all B10 pixels with a value between T = 0.012 and T = 0.035 are considered as thin cirrus;
in the second step, after generating a probabilistic cloud mask, if the cloud probability is
below or equal to 0.35, the pixel is classified as a thin cirrus cloud.

2.5. Cloud Shadow

The cloud shadow mask is constructed using (a) a “geometrically probable” cloud
shadow derived from the final cloud mask, sun position and cloud height distribution and
(b) a “radiometrically probable” cloud shadow derived from a neural network [36].

3. Materials and Methods

This study evaluates the performance of the developed machine learning models in
classifying water, shadow, cirrus, cloud, snow, and other scenes over Sentinel-2 imagery.
This section focuses on (a) Dataset creation; (b) Classification Algorithms; (c) Feature
analysis and, finally, (d) Experimental setup and architecture modeling.

3.1. Dataset Creation

In supervised machine learning, input-label pairs are required by the learning func-
tion [37,38]. In this regard, the overall (input-label) dataset creation process is described in
Figure 2, which perform the following steps:

1.  For each product-ID in the original dataset, L1C products were downloaded from
CREODIAS [39] platform;

2. For each downloaded L1C product, a corresponding L2A product was generated
using Sen2Cor v2.5.5. Afterwards, for each L2A product, Scene Classification was
retrieved resulting in an extended dataset for Sen2Cor assessment;
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3. Downloaded L1C products were re-sampled to 20 m (allowing spatial analysis) and
the 13 bands of imagery were retrieved, resulting in an extended dataset for the
ML model.

Original Dataset
Product ID

Coordinate

Class

v

L2A Image
™ ™
Product ID L1C Image (20M)
¥ ¥
Exporting 13 . Spatially Exporting Scene
Bands Images Resample (20M) Classes Images

l

Extended Dataset for ML Model Extended Dataset for Sen2Cor
Product ID Product ID

—*| Coordinate Coordinate <
13 Bands Sen2Cor Scene Classes
Class Class

Figure 2. Generation of the Extended Database for Machine Learning (ML) and Sen2Cor Assessment.

3.1.1. Original Data

Holstein et al. [40] created a database of manually labeled Sentinel-2 spectra using
false-color RGB images. The database consists of images acquired over the entire globe
(Figure 3) and comprises 6.6 million points (exactly 6,628,478 points) classified into one of
the six classes presented in Table 2. It includes a wide range of surface types and geometry
from a total of 60 products from the five different continents Europe (22), Africa (14),
America (12), Asia (6) and Oceania (6). The data is described by 4 attributes: product_id,
latitude, longitude and class.

Figure 3. Geographical Overview of Selected Scenes.
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Table 2. Holstein et al. [40] Dataset: Description of Classes with Coverage and Distribution of Points.

Class Coverage Points Distribution (%)

Cloud opaque clouds 1,031,819 15.57

Cirrus cirrus and vapor trails 956,623 14.43

Snow snow and ice 882,763 13.32

Shadow clouds, cirrus, 991,393 14.96
mountains, buildings

Water lakes, rivers, seas 1,071,426 16.16

Other rematimng: crops, 1,694,454 25.56
mountains, urban

Total - 6,628,478 100

As mentioned, Holstein et al. [40] used false-color RGB images to classify images. First
of all, L1C products (all bands) were spatially resampled to 20 m. Afterwards, RGB bands
1, 3 and 8 were used to classify clouds and shadow, RGB bands 2, 8 and 10 were used to
classify cirrus and water, and RGB bands 1, 7 and 10 were used to classify snow and other.
Additionally, the authors used a two-step approach to minimize human error: the labeled
images were revisited to re-evaluate past decisions.

3.1.2. Extended Data

Knowing L1C product ID and coordinates for individual data points, we added surface
reflectance information to each entry to build and assess a Machine Learning classification
model and further compare it to the Sen2Cor algorithm.

First of all, using the list of the 60 products from the original data, the relevant L1C
products were downloaded using the CREODIAS [39] platform. Then, the L1C products
were resampled to 20 m (allowing spatial analysis) and the 13 bands were retrieved for
each product.

Extended Dataset for the ML model.

The extended data used to build the ML model is composed of 17 attributes: prod-
uct_id, latitude, longitude, BO1, B02, B03, B04, B05, B06, B07, B08, BSA, B09, B10, B11, B12,
class. Here, B refers the band; each band represents the surface reflectance (p) value at
a different wavelengths [41]. Surface reflectance is defined as the fraction of incoming
solar radiation that is reflected from Earth’s surface for a specific incident or viewing case.
In general, the reflectance values (also known as TOA) range from 0.0 to 1.0.

Figure 4 details the class-wise p value distribution using the violin plot. Here, we can
observe that for each class, the p value for each band is different, meaning that each band
has its p value according to a different type of surface/class. For example, for all classes,
B10 p value is zero, apart from the Cirrus class; this is because B10 is responsible for the
detection of thin cirrus [34].

In Figure 4, we can see that there are points from classes with p greater than 1.0; unlike
negative p, objects that have p > 1 are not unnatural. Circumstances that would lead to
such observance are: (a) nearby thunderstorm clouds that provide additional illumination
from reflected solar radiation; (b) the area receiving solar radiation is directly perpendicular
to the sun; and (c) surfaces such as shiny buildings, waves, or ice crystals that act as mirrors
or lenses and reflect incoming direct sunlight in a concentrated way rather than diffusely.

Table 3 presents the number of points of the dataset per band and class with p > 1.
We can observe that the class with a higher proportion of p > 1 values is the Snow one.
This can be explained taking into account that snowy surfaces reflect incoming sunlight in
a concentrated way rather than diffusely acting as a mirror, producing observed p > 1.
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Figure 4. Extended Dataset: Class-wise Surface Reflectance (p) Value Distribution over 13 Bands.

Table 3. Extended Dataset: Point Distribution Overview of Band/Class wise Surface Reflectance (p) Greater than 1.0.

Bands\Class Other Water Shadow Cirrus Cloud Snow
BO1 47 229 1076 5013 34,334 259,562
B02 587 313 2694 5589 47,265 285,053
B03 190 289 1232 3742 40,254 256,421
B04 536 429 3855 6897 79,380 300,538
B05 516 447 4300 8099 84,426 305,134
B06 546 477 4609 8597 993,355 299,270
B07 576 559 4653 8858 121,825 290,569
B08 517 424 3942 7880 96,182 277,403
B8A 607 597 4513 8903 133,901 281,007
B09 0 0 0 6 3730 60,674

B100 0 0 0 0 0 0
Bl1 597 0 1 0 10,112 0
B12 43 0 0 0 671 0

Total 4762 3764 30,875 63,581 751,415 2,615,631

(0.02%) (0.03%) (0.24%) (0.51%) (5.60%) (22.79%)
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Extended Dataset for Sen2Cor assessment.

The data used for assessing Sen2cor algorithm is composed of 5 attributes: product_id,
latitude, longitude, sen2cor_class, class. Since there are eleven classes in Sen2cor scene im-
age (Table 1) and only six classes in original data (Table 2), a class mapping was performed.
This mapping is shown in Table 4.

Table 4. Class Mapping of Extended Dataset for Sen2Cor Assessment.

Mapped Class Corresponding Sen2Cor Class (Table 1)

Cloud Cloud high probability

Cirrus Thin Cirrus

Snow Snow

Shadow Shadow, Cloud Shadow

Water Water

Other No Data, Defective Pixel, Vegetation, Soil, Cloud low and medium probability

3.2. Classification Algorithms

In this study, we evaluated ensemble methods (Random Forest & Extra Tree) and a
deep learning based method (Convolutional Neural Network) using the built extended
dataset for satellite imagery scene classification. This section introduces shortly the used
classification algorithms and provides details about feature analysis and the adopted
experimental setup.

During the ML modeling process, the following statistical and CNN-based classifica-
tions algorithms were used.

3.2.1. Decision Tree (DT)

Decision tree is an efficient inductive machine learning technique [42,43] where the
model is trained by recursively splitting the data [44]. The data splitting consists of a tree
structure (root-nodes-branches-leaf), which successively tests features of the dataset at
each node and splits the branches with different outcomes. This process continues until a
leaf (or terminal node) representing a class is found. Each split is chosen according to an
information criterion which is maximized (or minimized) by one of the “splitters”.

However, a decision tree is sensitive to where it splits and how it splits. Generally,
the bias-variance trade-off depends on the depth of the tree: a complex decision tree (e.g.,
deep) has a low bias and a high variance. Also, the tree makes almost no assumptions
about the target function but it is highly susceptible to variance in data making decision
trees prone to overfit [45].

Decision trees were used in many applications, including identification of land cover
change [46], mapping of global forest change [47] and differentiating five palustrine wet-
land types [48].

3.2.2. Random Forest (RF)

Random Forest (RF) is a tree ensemble algorithm [49], which aims to reduce the
decision tree variance (at the small cost of bias). During the random forest learning process,
bagging is used to minimize the variance by learning from several trees over various
sub-samples of the data [50] (in terms of both observations and predictors used to train
them). Bagging is a process where several decisions are averaged [51].

In the random forest learning process [45], m variables are randomly selected from
a potential set of p variables, resulting in two groups that separate the data in the best
way possible. This process is repeated to the max depth of d, creating a forest of several
individual trees. In the end, observation x is classified using all the individual trees, and the
final decision is averaged.
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3.2.3. Extra Tree (ET)

The main difference between a random forest and extra tree [52] (usually called
extreme random forests) lies in the fact that, instead of computing the locally optimal
feature/split combination (for the random forest), for each feature under consideration,
a random value is selected for the split [53]. This leads to more diversified trees and fewer
splitters to evaluate when training.

3.2.4. Convolutional Neural Networks (CNNs)

CNNs are Neural Networks that receive an input, assign importance (learnable
weights and biases) to various aspects/objects within the input, and are able to differ-
entiate one input from other. Due to the sparse interactions and weight sharing, Neural
Networks (NN) are best suited for processing large-scale imagery [54]. When considering
CNN:ss, the connection between the previous layer and the next layer is referred to as sparse
interaction. Whereas, in weight sharing, layer share the same connection weights.

Recently researchers are proposing complex and deeper structures like, for example,
AlexNet [55], VGGNet [56], and GoogLeNet [57], having depths of 8, 19, and 22, respec-
tively [58]. In other words, CNN exploits domain knowledge about feature invariances
within its structure and they have been successfully applied to various image analysis and
recognition tasks [59], making it an effective technique for labeled tabular data classifica-
tion [60].

3.3. Feature Analysis

Feature ranking helps to select the most useful features to build a model. The Scikit-
Learn library [61] provides an implementation of the most useful statistical algorithms
for feature ranking [62], including Chi-Squared (chi2) [63], Mutual Information (mutual
info.) [64], ANOVA (anova) [65] and Pearson’s Correlation Coefficient (pearson) [66]. We
applied these measures over the full dataset and the ranking is shown in Table 5.

Table 5. Feature Analysis: Feature Ranking using Statistical Algorithms.

Rank Chi2 Mutual Info. Anova Pearson
1 B11 B11 B11 B11
2 B12 BO1 B12 B12
3 B04 B12 B8A B8A
4 B8SA B02 B07 B07
5 B03 B03 B08 B08
6 B07 B04 B03 B03
7 B0O5 B0O6 B06 B06
8 B02 B05 BO1 BO1
9 B08 B07 B02 B02

10 B06 B8A B04 B04
11 BO1 B08 B05 B0O5
12 B09 B09 B09 B09
13 B10 B10 B10 B10

Sen2Cor uses nine bands (1, 2, 3, 4, 5, 8, 10, 11 and 12) to generate a scene classification
map and ten bands (1, 2, 3,4, 8, 84, 9, 10, 11 and 12) to produce a L2A product [34]. Com-
paring this band information with the results shown in Table 5 and the surface reflectance
(p) values distribution (Figure 4), the obtained statistical feature ranking produces contra-
dictory results. For example, statistical feature ranking ranks B10 as the least important
band, but the sole purpose of B10 is to identify the presence of the Cirrus class, which
is supported by Figure 4. Removing B10 from the training dataset can hinder the model
performance when applied on an unseen (satellite) image acquired from anywhere over
the globe. This fact leads us to state that although the dataset is a collection over different
continents and represent a possible global distribution, ranking bands upon the dataset is
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not ideal as each band has its own purpose/reflectance. Thus, in our experiments, we have
used all the 13 bands to possibly cover all the surface reflectance (p) value distributions.

3.4. Experimental Setup

To assess the classifiers, 10 products (belonging to all five continents: one each from
Asia and Oceania, two each from Africa and America, and four from Europe) out of 60
were randomly selected for the test set. Aiming at including all 5 continents in the test set
led to a class distribution somehow different from the full dataset. The test set distribution
can be seen in Table 6.

Table 6. Test set: Class-wise Point Distribution (%).

Class Points Distribution (%)
Other 174,369 10.29
Water 117,010 10.92
Shadow 155,715 15.71
Cirrus 175,988 18.40
Cloud 134,315 13.02
Snow 154,751 17.53
Total 912,148 13.76

The information about the experimental setup used to build the classifiers is presented
in Table 7.

Table 7. Experimental Settings and System Specifications.

Attribute Description

Features 13 (value of each band)

Classes 6 (Other, Water, Shadow, Cirrus, Cloud, Snow)
Training set 50 Products (5,716,330 samples)

Test set 10 Products (912,148 samples)

Language and Library Python and Scikit-learn

System Specification Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz
CNN Early Stopping monitor = ‘val_loss’, mode = 'min’, patience =2
CNN Model Checkpoint monitor = ‘val_acc’, mode = ‘max’

Precision, recall and F1 score are performance measures that can be used to evaluate
ML models. Precision is defined as the ratio between the number of correct positive and all
positive results whereas, in recall all relevant samples (all samples that should have been
identified as positive) are considered instead of all positive results [67]; F1 is the harmonic
mean of Precision and Recall. These measures are calculated per class (considering one
class as positive and all the other classes as negative) using Equations (4).

TP TP Precision x Recall
Precision = ————— Recall = ————— F1=2 4
reCIsIOn = Tp 1 Fp T TPYEN * Precision + Recall

Here, TP, TN, FP, and FN stand for True Positive, True Negative, False Positive, and
False Negative.

When aiming to have an unique performance value, precision, recall and F1 are
averaged; this average can be calculated over the per class values (macro-average) or by
summing the true positive, false positive and false negative for all classes and calculating
the performance measures over these counts (micro-average).

To fine-tune the classification algorithms, a RandomizedSearchCV [68] with 5 folds
cross-validation procedure over the train set was used. The assessment was done using
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the micro-F1 measure. Table 8 shows the best parameter values for Random Forests (RF)
and Extra Trees (ET) algorithms. The found CNN parameter values were epochs = 8,
batchsize = 32, filters = 24 and, kernelsize = 4.

Table 8. Fine-tune Parameter values for Random Forests (RF) and Extra Trees (ET) Algorithms.

Parameter RF ET
criterion gini gini
max_depth 20 20
min_samples_split 50 10
min_samples_leaf 1 1
max_features sqrt sqrt
n_estimators 242 279
min_samples_split 50 10
bootstrap True True

Figure 5 shows the CNN model structure. Using the CNN architecture [69] as a
base reference, the used CNN model consists of an input layer, 1D convolutional lay-
ers, a dropout layer, a max-pooling layer, followed by one flatten, two dense, and an
output layer.

ConviD Flatten Dense Dense

Dropout  MaxPooling1D

- -
- ilp-(10,24) o -
. p-(10,24) -
ip - (13,1) olp-(10.24) o1 (5.24) ilp - (5.24) S
ofp-(10,24) olp-(120) ifp-(120) ifp- (100)
act - Relu olp-(100)  o/p-(6)

act-Relu  act - Softmax
Figure 5. Proposed Convolutional Neural Network (CNN) Architecture.

Following is a description of each layer:

¢ Input layer: The input representation of this layer is a matrix value of 13 bands;

e  Convolutional-1D layer: This layer is used to extract features from input. Here,
from the previous layer, multiple activation feature maps are extracted by combining
the convolution kernel. In our architecture, we used a convolution kernel size of 4;

e Dropout: A random portion of the outputs for each batch is nullified to avoid strong
dependencies between portions of adjacent layers;

¢ Pooling layer: This layer is responsible for the reduction of dimension and abstraction
of the features by combining the feature maps. Thus, the overfitting problem is
prevented, and at the same time, computation speed is increased;

¢  Flattenlayer: Here, the (5 x 24) input from the previous layer is taken and transformed
into a single vector giving a feature space of width 120;

e  Dense layer: In this layer, each neuron receives input from all the neurons in the
previous layer, making it a densely connected neural network layer. The layer has a
weight matrix W, a bias vector b, and the activation function of the previous layer.

e  Softmax activation: It is a normalized exponential function which is used in multi-
nomial logistic regression. By using the softmax activation function, the last output
vector of the CNN model is forced to be a part of the sample class (in our case,
the output vector is 6).
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4. Results

As mentioned in the previous section, the classification models were compared over

the test set that comprises 10 products from all five continents. Table 9 shows precision,
recall and micro-F1 values for Random Forests (RF), Extra Trees (ET), Convolutional Neural
Networks (CNN) along with Sen2Cor Scene Classification (SCL).

Table 9. Results over the test set: Random Forest (RF), Extra Trees (ET), Convolutional Neural Network (CNN) and
Sen2Cor (SCL). The proposed models ET and CNN achieves a micro-F1 value of 0.84 compared to the Sen2Cor of 0.59.

Precision Recall Micro-F1
Class Support
RF ET CNN SCL RF ET CNN SCL RF ET CNN SCL
Other 0.74 0.74 0.74 0.39 0.91 0.96 0.92 0.97 0.82 0.83 0.82 0.56 174,369
Water 0.96 0.93 0.93 0.84 0.86 0.87 0.87 0.83 0.91 0.90 0.90 0.84 117,010
Shadow 0.89 0.91 0.91 0.96 0.77 0.73 0.75 0.54 0.83 0.81 0.83 0.69 155,715
Cirrus 0.78 0.82 0.78 0.91 0.67 0.76 0.75 0.10 0.72 0.79 0.76 0.18 175,988
Cloud 0.77 0.81 0.79 0.62 0.91 0.90 0.90 0.94 0.83 0.86 0.84 0.75 134,315
Snow 0.93 0.94 0.96 0.86 0.88 0.86 0.86 0.31 0.90 0.90 0.91 0.46 154,751
Overall 0.83 0.84 0.84 0.59 0.83 0.84 0.84 0.59 0.83 0.84 0.84 0.59 912,148

Analysing Table 9, the following observations can be made:

When looking at micro-F1, CNN performs similar to Random Forest and Extra Trees.
The difference in micro-F1 is small (almost zero) and we cannot state that CNN
outperforms the others. Moreover, one can state that each algorithm performs better
than the others on specific classes; for example, ET has higher micro-F1 over classes
Cirrus, Cloud, and Other, whereas RF has higher micro-F1 over Water and CNN
over Snow.

Looking at precision and recall for Cirrus and Shadow classes, it is noticeable that
Sen2Cor has high precision but low recall. This means that Sen2Cor is returning
very few results of Cirrus and Shadow (it has a very high rate of false negatives),
although most of its predicted labels are correct (low level of false positive errors).
Opverall, the three Machine Learning algorithms generate models with similar perfor-
mance with differences that range from 0% to 7% between the “best” and the “worst”.
(for example, Cirrus has a “best” micro-F1 of 0.79% with ET and a “worst” micro-F1 of
0.72% with RF.) With regard to the classes, there is a great variation: precision values
are above 90% for classes Snow and Shadow and less than 75% for the Other class;
for recall, the highest values are obtained for the classes Cloud and Other (values
above 80%) and the lowest for the Cirrus and Shadow classes (values between 67%
and 77%). Regarding the micro-F1 measure, the only class with values below 80% is
the class Cirrus; classes Snow and Water have values above 90%.

Comparing the performance of ML algorithms with Sen2Cor, especially for the Cirrus
and Snow classes, ML approaches are superior. For the same classes, Sen2Cor micro-
F1 values are below 50%; these low values are due to the big difference between
precision and recall (for Cirrus precision is above 90% while recall is 10%; for Snow
precision is above 85% and recall around 30%). Considering the micro-F1 measure,
the ML models present an increase of about 25 points (from 59% to 84%) when
compared to the Sen2Cor Scene Classification algorithm.

To check if there is a significant difference between Sen2Cor and ML models (i.e.,

if the difference in micro-F1 is significant or not), the McNemar-Bowker test [70,71] was
performed. The McNemar-Bowker’s test is a statistical test used on paired nominal data
(with k x k contingency tables following a dichotomous trait) to determine if there is a
difference between two related groups. Here, k is the number of categories/labels, and the
McNemar-Bowker B value is calculated using the Equation (5), where, O; ; is the count of
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the i*" row and j" column in crosstab. A crosstab is a table that shows the relationship

between k x k variables.
B ki Xk: (0i; — 0j,)?
i=1j (Oi,' + O',i)

=i+1

©)

The acquired B value follows approximately a chi-square distribution [72], with df =
(k—1)/2 degrees of freedom. The probability density function is be calculated using
Equation (6), where, I' denotes the gamma function, which has closed-form values for
integer (df /2).

Bif/2—1,—B/2
f(B,df) = 24 /2T (df /2)

Using Equation (6) for comparing Sen2Cor and ML models, our null hypothesis
(the difference between two groups is statistically significant) was proved by obtaining a
(p-value) less-then 0.05. The same can be visualized in Figure 6 where a value of McNemar-
Bowker B = 271,184 and degrees of freedom df = 15 result in (p-value) = 0.0.

(6)

0.0006

0.0004

()

0.0002

0.0000

269,000 270,000 271,000 272,000 273,000 274,000
X

E(X)=1271184 o=S5D(X)=736.456 o°= Var(X)= 542368
Figure 6. Chi-square Distribution Plot Proving Null Hypothesis.

To have a better grasp of the differences between the ML model and Sen2Cor, we
randomly selected an image (Figure 7a) from the test set with classes Cloud, Shadow,
and Other (identified as white, brown, and green respectively) and generated classification
images using the ET model (Figure 7b) and Sen2cor (Figure 7c). The original image and the
resulting classified images are presented in Figure 7.

After analysing Figure 7a closely, it is possible to say that for each cloud present in the
image there is an equivalent shadow. Comparing the generated images of Figure 7b, we can
observe that the ML model is classifying cloud and cloud shadow accurately than Sen2Cor;
Sen2Cor classification (Figure 7c) is missing the majority of cloud shadows, whereas the
ML model captures them all.

We state that a static rule-based approach, like the one used by Sen2Cor that heavily
rely on surface reflectance (it uses a sensor-specific threshold based method) tends to miss
marginal variation between two surfaces leading to misclassification. To support this claim
and to prove the general-ability of the ML model, we classified a specific image (Figure 8)
with brighter surface reflectance values (note that this image does not belong to the dataset).
Figure 8a shows the RGB image of the coastal area of Lisbon, Portugal; in it, there are
3 visible parts: water, coastal area sand and land surface. Figure 8b,c show the generated
classification images using the ET model and Sen2Cor, respectively.
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Figure 7. Scene Classification (Lautoka Area of Fiji between (17°42'58'" E, 177°35'46'" S) and (18°03/24"" E, 177°54'01"
S) coordinates): (a) RGB Image, (b) ET classifier, and (c) Sen2Cor. Color Labels: Cloud (White), Shadow (Brown), Other
(Green).



Remote Sens. 2021, 13, 300

15 of 22

Coastal

Area

Land — el 'v‘m“’ % PEIIN T
an B o :EA’I ol i

(a) Coastal Area RGB Image.

(b) ML Classification.

(c) Sen2Cor Classification.

Figure 8. A Coastal Area Image (Lisbon, Portugal, between (38°29'28'" N, 8°55’ W) and (38°26/11"’
N, 8°49'18"" W)) with brighter surface reflectance. Color Labels: Water (Blue), Cloud (White),
Other (Green).

After analysing Figure 8 closely, it is possible to say that the bright coastal area/sand
present in the Figure 8a is classified as Cloud by Sen2Cor (represented as a white line); on
the other hand, the ML algorithm classified the same bright coastal area/sand as Other
which is indeed is the correct classification. Thus, the ML model is able to better capture
brighter coastal surface reflectance values when compared to Sen2Cor.

5. Discussion

Our proposed system uses a dynamic and generalized approach of surface reflectance,
which does not rely on predefined threshold rules. Thus, we are preserving the pivotal
motivation of classifying any unseen Sentinel-2 images acquired from the globe.

Further, ensemble methods can provide useful information like the Gini index to
the end-user. The Gini index is a measure of statistical distribution intended to represent
different attribute variables influencing the overall accuracy [73]. Using the Gini index,
we were able to identify that B11 and B12 have a substantial effect on the overall model
accuracy (data not presented). Thus, using our proposed model, the classification perfor-
mance can be increased by including additional indexes [74], that use Band 11 and Band
12. For example, including Global Vegetation Index (GVI) [75], Normalized Difference
Salinity Index (NDSI) [76], and Soil Composition Index (SCI) [77] would help in getting a
better performance.

Overall, the random forest and extra tree algorithms produce fast and accurate pre-
dictions (with micro-F1 between 0.83 and 0.84). Nonetheless, when using these ensemble
methods, the issues of overfitting, and bias/variance tradeoff should not be overlooked.

Since Figure 7b shows shadows of all the clouds, we analyzed the the sensitivity of
the ML model. For that we randomly selected (not from dataset) three separate L1C image
patches shown in Figure 9a (Ballyhaunis, Ireland), Figure 9b (Sukabumi. Indonesia), and
Figure 9c (Béja, Tunisia). Then we applied the ET classifier to check if the classifier was
too “pedantic”.
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\i( ) el 1*
(a) Ballyhaunis area between (54°04'02"' N, 8°50'03"" W) and (54°01’ N, 8°44’44’" W) coordinates.

K

(b) Sukabumi area between (6°37'13"' S, 106°53’43' E) and (6°38'22" S, 106°55'55'" E) coordinates.

1.0 km

(c) Béja area between (36°57'45"" N, 9°45/21"" E) and (36°57/45"" N, 9°48/08"" E) coordinates.

Figure 9. Three scene classification comparison between L1C RGB patches and ML classified images: (a) Ballyhaunis,
Ireland, (b) Sukabumi. Indonesia, and (c) Béja, Tunisia. Color Labels: Shadow (Brown), Cloud (White), Other (Green).

From Figure 9 it can be observed that for each geometric independent region (Bally-
haunis, Sukabumi, and Béja), the ML model is capturing, with high precision, the shadows
of the (low, medium, and opaque) clouds, proving the general-ability of the ML model.
To this extent, we can say that the ML models are sensitive and can detect even minor
shadows (from low and medium probability clouds). Moreover, the detection of shadow
does not decrease the workable area as the classifier is generating a mask and the end-user
can still use these workable areas given they might belong to the 'shadow” or “cloud’ class.

Further, we studied the biasness of the model towards the achieved results. To do so,
we selected 59 products for training and 1 for testing. The main reason to split the dataset
in this way was to make sure that the knowledge about a region is not essential to classify
that region. This reasoning enables to pose the following question: ‘will the system be able
to classify a new, non seen product with high performance?” To evaluate this, it would
be interesting to pick a complete region as test while the rest of the points compose the
training set.

We replicated this procedure for each of the 60 products (i.e., using 1 product for test
and the rest 59 products for training). The Fl,y, results are presented in Table 10.
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Table 10. Scene Biasness Test Results: F1,,¢ values of ML algorithms and Sen2Cor.

Class DT RF ET CNN Sen2Cor Support

Other 63.29 72.3 74.16 74.43 64.96 1,694,454 (25.56%)
Water 63.81 734 76.69 73.88 80.73 1,071,426 (16.16%)
Shadow 53.98 63.96 61.45 64.63 50.57 991,393 (14.96%)
Cirrus 47.58 56.63 42.97 51.58 24.08 956,623 (14.43%)
Cloud 65.25 75.08 75.33 72.67 75.04 1,031,819 (15.57%)
Snow 74.67 84.90 87.00 83.43 61.40 882,763 (13.32%)
Flaog 67.95 76.43 76.77 77.54 66.40 6,628,478 (100%)

Equation (7) calculates the F1,,¢ value (over 60 products) for each class where F1,
is the F1 value of the particular class within the product p. N, is the number of points of
the class within the product p, T is the total number of points of the class for all products,
and p € (1,60) is the number of products.

60 60
Flaog = Y _(F1, x Np) =T with T=)_ N, @)
p=1 p=1

When compared to the Sen2Cor, the ML approach achieved an overall improvement
of 11% (77.54% with CNN, 66.40% with Sen2Cor). This study ensures that the achieved
results are better due to the learning done by the algorithms, and that the proposed models
do not possess biasness towards the test set.

Regarding the neural network architecture, different CNN-based models were pro-
posed to classify cloud mask and land cover change using different spectral and temporal
resolutions satellite imagery [1,21,22]. These studies look at different datasets and present
different CNN architectures but, to the best of our knowledge, none evaluates the CNN
architecture with the dataset used in this work making it impossible to make a comparison
of the obtained results.

6. Conclusions

The significant development of remote sensing technology over the past decade has
enabled us for intelligent Earth observation, such as scene classification using satellite
images. However, the lack of publicly available “large and diverse data sets” of remote
sensing images severely limits the development of new approaches especially Machine
Learning methods. This paper first presents a comprehensive review of the recent progress
in the field of remote sensing image scene classification, including existing data sets and
Sen2Cor. Then, by analyzing the limitations of the existing data sets, it introduces a surface
reflectance based, freely and publicly available data set and makes available a ready to use
Python package(scripts) (refer Appendix A) with a trained ML model. These will enable
the scientific community to develop and evaluate new data-driven algorithms to classify
Sentinel-2 L1C images into six classes (Water, Shadow, Cirrus, Cloud, Snow, and Other).

Using the micro-F1 measure, we evaluated three ML representative algorithms (Ran-
dom Forest, Extra Tree and Convolution Neural Network) for the task of scene classification
using the proposed data set and reported the results as a useful (baseline) performance for
future research. The proposed ML model presents a micro-F1 value of 0.84, a considerable
improvement over Sen2Cor that reached a value of 0.59.

The results presented in Table 9 support our claim that the developed ML model can
be used as a base tool for Sentinel-2 optical image scene classification. Moreover, when
evaluating over one complete test set image (Figure 7), it is possible to conclude that while
Sen2Cor misses the majority of cloud shadows, the ML model captures them. Additionally,
model sensitivity (Figure 9) and biasness (Table 10) tests were performed over different
L1C images.

Being composed of several modules, each of them with a high level of complexity,
it is certain that our approach can still be improved and an overall higher performance
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is achievable. As future work, we intend not only to continue improving the individual
modules, but also extend this work to:

¢ Add more training scenes with the help of image augmentation (also known as elastic
transformation) [78] using existing training data.

* Incorporate radar information and correlate the results and its impact over Water,
Shadow, Cirrus, Cloud, and Snow detection.

e  Study different CNN architectures.
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Abbreviations

The following abbreviations are used in this manuscript:

ML Machine Learning

ESA European Space Agency

MSI MultiSpectral Instrument

TOA Top-of-Atmosphere

BOA Bottom-of-Atmosphere

SCL Scene Classification

AOT Aerosol Optical Thickness

WV Water Vapour

MAJA  Maccs-Atcor Joint Algorithm

Fmask Function of mask

NDVI  Normalized Difference Vegetation Index
NIR Near Infra-Red

RF Random Forest

ET Extra Trees

CNN  Convolutional Neural Networks

NN Neural Networks

GVI Global Vegetation Index

NDSI  Normalized Difference Salinity Index
SCI Soil Composition Index

Appendix A. Classifying Sentinel-2 L1C Product

Through this article, the following resources are made publicly available [79]: (1) an
extended (train and test) dataset and (2) a ready to use Python package (scripts) with a
trained ML model to classify Sentinel-2 L1C image. The Python package takes the L1C
product path and produces an RGB image with six classes (Water, Shadow, Cirrus, Cloud,
Snow, and Other) at 20 m resolution. The working example of the developed Sentinel-2
L1C image scene classification package is discussed further.

Figure A1 shows the processing steps of the developed package. The path to Sentinel-2
L1C product is passed as input, and a RGB image with six colors (each identifiying one
class) at 20 m resolution is produced as output. Authors used the GDAL library [80] to read
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and rescale images. During post-processing, neighbour pixels are checked to minimize the
classification error.

Python Package

Sentinel - 2 .| Reading 13 Bands
(L1C Product) (Using GDAL)

!

Rescaling
(20m Resolution)

!

Scene Classification  [¢—

¥

RGB Image L Post Processing
(Six Classes) (checking neighbor pixel)

ML
Model

Figure A1. Package Processing Steps: Classifying Sentinel-2 L1C Product.

Figure A2 shows the working example of the developed package where, L1C product
is classified into six classes. Figure A2a,b respectively present the corresponding RGB
image of L1C product and classified image. Using our package the average time to produce
a scene classified RGB image is 4 min; using Sen2Cor v2.5.5 takes 18 min over system
specification detailed in Table 7 (it is worth mentioning that Sen2Cor performs many other
operations apart from scene classification). For the sole purpose of scene classification,
our model is 4 times faster than Sen2Cor when classifying Sentinel-2 L1C images into six
classes (Water, Shadow, Cirrus, Cloud, Snow, and Other).

(b)
Figure A2. (a) L1C product (b) RGB Scene classified image using developed package. Labels—Water as Blue, Shadow as

Brown, Cirrus as light Purple, Cloud as White, Snow as Cyan and Other as Green.
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