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Abstract The invasive red swamp crayfish Procam-

barus clarkii is present in most of the Portuguese

rivers with well-known economic and environmental

impacts, being also an important reservoir for many

fungal and bacterial pathogens that can affect native

aquatic fauna. Here the bacterial microbiota of the gut

and carapace of the red swamp crayfish from three

distinct localities in Portugal was characterized, using

a metataxonomic approach. We tested whether bio-

logical measurements (sex, cephalotorax lenght, body

condition and stress through glucose measurements)

and sampling locality can be used as predictors of

alpha and beta bacterial diversity. Results showed that

the carapace microbiota are more responsive to

differing environmental conditions than the gut

microbiota, which are likely more affected by host

factors, such as sex. Additionally, we have also found

several potential pathogens in the microbiota of the

analyzed crayfish. Our data provide a relevant baseline

of the red swamp crayfish microbiota but highlight the

need for further research, namely to fully characterize

its role as a vector for bacterial diseases in freshwater

ecosystems.
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Introduction

The rate of introduction of invasive species throughout

the world has been accelerated by human population

growth, increasing transport capacity and economic

globalisation (Sakai et al., 2001). The rapid prolifer-

ation of these species, often at the expense of native

species, has numerous negative impacts on biodiver-

sity (e.g. increased predation pressure, habitat disrup-

tion; Sala et al., 2000), and can cause severe economic

damages (e.g. as agricultural-based pests; Vilcinskas,

2015; Souty-Grosset et al., 2016). Additionally, inva-

sive species may facilitate the introduction of novel

pathogens into new regions with potentially catas-

trophic effects for native species (e.g. Vilcinskas,

2015).

Bacteria play a pivotal role at all biological scales

from the individual point of view to the entire

ecosystem perspective (Gibbons and Gilbert, 2015;

Delgado-Baquerizo et al., 2016; McFall-Ngai et al.,

2013). Commensal bacterial consortia can be affected

by biotic (e.g. host age or moult stage; Zhang et al.,

2020a; Middlemiss et al., 2015) and abiotic factors

(e.g. environmental conditions; Xavier et al., 2020;

Guo et al., 2020). Commensal microbes may be

beneficial to hosts in many ways, including dietary

supplementation (microbes supplement their hosts

with nutrients that are limited or absent in their diet or

that they cannot produce on their own), they can boost

or depress host immune system, and influence social

interactions (Behar et al., 2008; Ridley et al., 2012).

Furthermore, recent research has demonstrated how

bacterial microbiomes can have pivotal roles in

invasion ecology. For example, changes in the micro-

biome of native species, such as in ghost ants

competing with invasive fire ants, can help buffer

the adverse effects of competition with the invasive

species by modulating changes in behavior and diet

(Cheng et al., 2019). On the other hand, microbiomes

of many successful invasive species are able to

improve their growth or confer adaptive advantages

in newly invaded areas in relation to native counter-

parts (e.g. Hayward et al., 2015; Fontaine & Kohl,

2020). Therefore, a greater understanding of the

microbial landscape of invasive species may be

determinant to predict how these can threaten vulner-

able local ecosystems.

In Portugal, the relative isolation of most freshwa-

ter ecosystems (Sousa-Santos et al., 2019) allowed the

evolution of numerous endemisms that are particularly

vulnerable to biological invasions, which might seri-

ously compromise the regional biodiversity (Barbosa

et al., 2009; Cabral et al., 2005). A great example of a

successful invasive species is the case of the red

swamp crayfish Procambarus clarkii (Girard 1852),

which is used for human consumption and is now

present in most of the Portuguese rivers with well-

known economic and environmental impacts, for

example negatively affecting rice production and

local macroinvertebrate, amphibian or macrophyte

communities (Anastácio et al., 2000; Anastácio et al.,

2005; Souty-Grosset et al., 2016). The red swamp

crayfish has been identified as an important reservoir

for many fungal or fungus-like pathogens that can

affect native aquatic animals (e.g. the chytrid fungus

Batrachochytrium dendrobatidis Longcore, Pessier &

Nichols 1999; Trichosporon jirovecii Fragner 1969;

Aphanomyces astaci (Schikora 1906), referred in

Filipová et al., 2013; Abdallah et al., 2018; Ofi-

cialdegui et al., 2019) and also many pathogenic

bacteria that can affect other aquatic animals (e.g.

Vibrio spp.; Sherry et al., 2016;Citrobacter spp.; Chen

et al., 2017a) and cause human disease (e.g. Citrobac-

ter freundii (Braak 1928) Werkman & Gillen 1932;

Francisella tularensis (McCoy & Chapin 1912)

Dorofeyev 1947 in the works by Anda et al., 2001

and Chen et al., 2017b). Despite the large body of

literature on specific pathogens and other microor-

ganisms of the red swamp crayfish (e.g. see Evans &

Edgerton, 2002 for pathogens in general, and Garzoli

et al., 2014 for microfungi), only a few very recent

studies characterized this species’ entire bacterial

communities, by using culture-independent methods

and high-throughput sequencing. These studies

focused on gut microbiomes of crayfish from China

and identified development stage, environment, sea-

son and diet as factors modulating gut bacteria (Zhang

et al., 2020a; Shui et al., 2020; Liu et al., 2020).

Importantly, the exposure to toxic pollutants, such as

nitrites and cadmium, was found to induce imbalance

in the gut microbiota of the red swamp crayfish and

favour the abundance of potential pathogens, which
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may have negative effects in crayfish health (Zhang

et al., 2020b; Guo et al., 2020).

Although knowledge on the red swamp crayfish

microbiome has advanced considerably in recent

years, there is still a general lack of knowledge

regarding the microbiota of introduced populations in

Europe (but see Rossi et al., 2001; Garzoli et al.,

2014). Here we aimed to characterise the bacterial

microbiota of the gut and carapace of the red swamp

crayfish occurring in southern Portugal using high-

throughput sequencing of the 16S rRNA V4 hyper-

variable region. Analyzed crayfish were collected at

three distinct localities: a less polluted site at the

Alqueva Reservoir (the largest reservoir in the Iberian

Peninsula; Potes et al., 2012), and two other localities

with reportedly higher pollution levels, a rice paddy

and a locality in Xarrama River. Additionally, we

collected biological data on the analysed crayfish,

including measures of individual baseline stress levels

(using hemolymph glucose levels as proxy) as a

marker for metabolic expenditure. Finally, we tested

whether biological measurements and sampling local-

ity could be used as predictors for bacterial diversity.

We expected that different environments and/or stress

factors could modulate carapace and gut microbiomes

of the red swamp crayfish.

Materials and methods

Study sites

We chose three distinct sites with differing environ-

mental conditions: (a) the Alqueva Reservoir

(38�13028.4100N; 7�3204.1800W), (b) a rice field near

Salvaterra de Magos (39�209.8000N; 8�44016.6500W),

and (c) the Xarrama River (38�21037.4100N; 8�
403.3300W) (Supplementary Figs. 1 and 2). The

Alqueva Reservoir integrates the catchment of the

Guadiana River Basin, being an important water

supply for human and agricultural consumption in the

Alentejo region. Nonetheless, because its water qual-

ity varies spatially and seasonally, we chose a less

polluted sampling locality, closer to the dam and

mainly surrounded by Montado, a human-made

ecosystem, characteristic of Alentejo, with forests of

holm oaks, cork oaks and chestnut trees (Pinto-Correia

et al., 2011). Our second chosen sampling site was at

an experimental rice research station (COTArroz —

Centro Operativo e Tecnológico do Arroz), within

Paul de Magos (in Salvaterra de Magos), which is a

rice production area of 700 ha, characterized by rice

paddies that are continuously flooded from spring to

summer (Correia, 1995). Adjacent drainage channels

capture overflow and drainage water from the rice

paddies. Finally, the third sampling site was at the

Xarrama River, which is included in a system that is

susceptible to recurrent droughts and under expansion

as an adaptation to climate change. Indeed, this

specific sampling locality was set at one permanent

pool * 27 km downstream from a wastewater treat-

ment plant (Nunes et al., 2017) and immediately

downstream of an intensive milk production farm.

Based on the data retrieved from the National

Information System on Hydric Resources (SNIRH,

Supplementary Fig. 2), Alqueva Reservoir is the least

polluted of the three sampled localities.

Sampling and preparation

All crayfish were captured during 2019 using Swedish

type traps, baited with sardines (Sardina pilchardus

Walbaum 1792). Twenty crayfish were collected: six

in the Alqueva reservoir (3rd July 2019); seven in the

Xarrama River (15th of July 2019); seven in Salvaterra

de Magos (29th of May 2019). Carapace bacterial

samples were taken using sterile swabs (Medical Wire

& Equipment, UK). Each specimen was kept in

individual ziploc bags, stored in cold temperature

conditions inside a cool box, from capture to labora-

torial processing, which took between 1 and 1 h 30 m.

Individuals were measured (total weight and

cephalothorax width) and sexed. Fulton’s condition

index (K) was estimated for each individual with the

formula: K = W/L3, where W—wet weight (g); L—

cephalothorax length (mm) (Anastácio & Marques,

1998; Ricker, 1975) (Supplementary Table 1). After

being measured, individuals were placed at - 20�C
for 10 min. Individuals were then taken from the

freezer and decapitated. Specimens were dissected and

the entire guts were removed. Bleach was used to

sterilize all the material between dissections. Swabs

and tissues were kept at - 80�C until processing.

DNA was extracted using the PowerSoil DNA Isola-

tion Kit (QIAGEN, Netherlands), DNA concentration

and quality were measured in a NanoDropTM 2000

Spectrophotometer (ThermoFisher Scientific, USA).

DNA extractions were shipped on dry ice to the
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University of Michigan Medical School (USA) for

amplification and sequencing according to the proto-

col of Kozich et al. (2013). Each sample was amplified

for the V4 hyper-variable region of the 16S rRNA

gene (* 250 bp). PCR amplification failed for five

gut samples probably due to high concentration of

PCR inhibitors. All amplicon libraries were pooled

and sequenced in a single run of the Illumina MiSeq

sequencing platform. Raw sequences were deposited

in the National Center of Biotechnology Information’s

(NCBI) Sequence Read Archive (SRA) under the

BioProject ID PRJNA684689.

For glucose measurements, hemolymph was col-

lected by inserting a syringe between the cephalotho-

rax and the abdomen (Lee et al., 2000), and collecting

1 mL of hemolymph from the heart or pericardial

cavity. Glucose determination was done according to

Ribeiro et al. (2015), and in reference to the method

described for crayfish by Lee et al. (2000). Hemo-

lymph samples were centrifuged at 2500 9 g for

10 min at 4�C and the supernatant was collected and

analyzed for glucose concentrations using the Glucose

Assay kit from QCA (Spain), based on the sequential

reactions from glucose oxidase (GOD) and peroxidase

(POD). Briefly, 10 ll of supernatant was added to the

microplate with 200 ll of kit reaction buffer and read

at 505 nm in a microplate spectrophotometer reader

(Multiskan Go). Saline solution (0.9% NaCl) was used

to dilute hemolymph samples if needed. Glucose

concentration in samples was inferred from the

standard curve made of known glucose standards

(25–100 mg/dL).

Microbiome data processing and statistical

analysis

Raw FASTQ files were denoised using the DADA2

pipeline in R with the parameters for filtering and

trimming being trimLeft = 20, truncLen =

c(220,200), maxN = 0, maxEE = c(2,2), truncQ = 2

(Callahan et al., 2016). A total of 831,257 16S rRNA

sequences were retrieved. A table containing amplicon

sequence variants (ASVs) was constructed and taxo-

nomic inferences made against the SILVA (138

release) reference database (Quast et al., 2013). ASVs

that were not identified as bacteria were removed.

Samples with less than 1,000 bacterial sequences were

eliminated from downstream analyses, which meant

eliminating three gut samples (plus the five that did not

amplify). For these reasons only 12 out of the initial 20

gut samples were kept in subsequent analyses. Bac-

terial sequences retrieved from the carapace varied

between 17,848 and 46,426 per sample, and sequences

retrieved from the gut varied between 2,673 and

22,324. ASV abundances were normalized using the

negative binomial distribution (McMurdie et al.,

2014), which accounts for library size differences

and biological variability. After normalization and

removal of non-bacterial reads, 729,509 sequences

and 5,458 ASVs were retrieved from the 20 carapace

samples; and 89,940 sequences and 925 ASVs were

retrieved from the 12 gut samples. Venn diagrams

were built to depict the number of ASVs shared

between body sites in each locality, and the number of

ASVs present in the gut and carapace that were shared

across localities.

Bacterial composition (alpha-diversity) was calcu-

lated for each sample using Shannon and Faith’s

phylogenetic diversity (PD) indices as implemented in

the R package phyloseq (McMurdie et al., 2013).

Bacterial community structure (beta-diversity) was

estimated inter-sample using taxon-based Bray–Curtis

dissimilarity distance (quantitative), and phyloge-

netic-informed weighted (quantitative) and

unweighted (qualitative) UniFrac distance (Parks

et al., 2012). Linear mixed effect models (using the

lmer R package; Gałecki et al., 2013) were used to

assess differences between bacterial microbiota from

carapace and gut, using individuals as a random factor.

PERMANOVA (using the adonis function with

10,000 permutations and implemented in the vegan

R package; Oksanen et al., 2020) was used to assess

the differences in bacterial microbiota structure

between carapace and gut microbiota, with individuals

in strata option.

Regarding crayfish biological measures, weight and

cephalothorax length were correlated (Pearson’s cor-

relation: r = 0.82, P\ 0.001). For this reason, only

cephalothorax length was used in the statistical

models. Kruskal–Wallis tests were used to assess the

differences in crayfish biological measures (i.e.

weight, cephalothorax length, Fulton’s condition

index and glucose) between localities and sex (Sup-

plementary Table 1). Pairwise comparisons were

performed using the Wilcoxon test with Benjamini–

Hochberg correction.

Cephalothorax length, Fulton’s condition index and

glucose were standardised to a mean of zero
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(‘‘centering’’) and standard deviation of one (‘‘scal-

ing’’). Due to the significant differences between

microbiota of gut and carapace, the effects of locality

and measured biological factors on microbiota com-

position and structure were assessed independently for

each tissue using linear models (alpha-diversity * lo-

cality ? glucose ? fulton condition

index ? cephalotorax length ? sex) and PERMA-

NOVA with 10,000 permutations (beta-diver-

sity * locality ? glucose ? Fulton condition

index ? cephalotorax length ? sex). Variation in

the mean proportions of the most abundant taxa

(C 5% of all reads after normalization for phyla level

and C 1% for genus level) in each tissue between

localities was assessed by linear models.

Results

Significant differences were found in glucose (Krus-

kall-Wallis test = 19.66, P\ 0.001) and cephalotho-

rax length (Kruskall-Wallis test = 6.40, P = 0.040) of

crayfish between sampling localities. Pairwise com-

parisons showed cephalothorax length was signifi-

cantly lower at Salvaterra de Magos relative to

Alqueva (P = 0.024). Levels of glucose (our proxy

for stress levels) were significantly lower in Alqueva,

than at Salvaterra de Magos and Xarrama. Conversely,

sex had no significant effect on crayfish biological

measurements.

Significant differences were found in alpha-diver-

sity indices between the carapace and gut microbiota

(F = 122.8 and P\ 0.001 for Shannon; F = 315.1

and P\ 0.001 for PD; Fig. 1), with higher diversity

found in the carapace. Significant differences between

beta-diversity of the carapace and gut microbiota were

also found when using both UniFrac and Bray–Curtis

distances (PERMANOVA, R2 = 0.14 and p\ 0.001

for unweighted UniFrac; R2 = 0.06 and P = 0.036 for

weighted UniFrac; and R2 = 0.17 and P\ 0.001 for

Bray–Curtis). The results from linear models revealed

no effects of tested variables, i.e. locality and biolog-

ical measurements, in alpha-diversity of the gut and

carapace microbiota (Table 1). Results from PERMA-

NOVA showed that locality had a significant effect in

all metrics used to measure microbiota structure of the

carapace (see Table 1 for statistics and P-values; and

Fig. 2 for a graphical representation). For gut micro-

biota, a significant effect of locality and sex also was

detected for the Bray–Curtis distance (Table 1 and

Fig. 2).

Taxa from Proteobacteria (40%), Bacteroidota

(26%), Verrucomicrobiota (9.1%) and Planctomyce-

tota (7.9%) were highly abundant (C 5% of all

sequences) in the carapace microbiomes. From these,

the proportion of Proteobacteria (F = 12.0,

P\ 0.001), Verrucomicrobiota (F = 4.6, P = 0.025)

and Planctomycetota (F = 9.1, P = 0.002) varied

significantly between localities. Proteobacteria

(43%), Firmicutes (32%) and Planctomycetota

Table 1 Summary of results obtained from the linear and

mixed effects models for alpha-diversity (F-statistics and

respective P values), and from permutational multivariate

analysis of variance (adonis function) for beta-diversity

estimates (R2 and respective P values)

Tissue Alpha and beta diversity Locality Glucose Cephalothorax length Fulton’s index Sex

Gut PD 0.61 (0.578) 0.11 (0.751) 0.02 (0.881) 0.03 (0.858) 0.00 (0.967)

Shannon 0.29 (0.756) 0.43 (0.541) 0.38 (0.565) 0.31 (0.599) 0.03 (0.860)

UniFrac Unweighted 0.20 (0.196) 0.08 (0.913) 0.08 (0.875) 0.08 (0.795) 0.08 (0.892)

UniFrac Weighted 0.19 (0.412) 0.05 (0.848) 0.08 (0.450) 0.08 (0.516) 0.13 (0.166)

Bray–Curtis 0.22 (0.003) 0.07 (0.765) 0.10 (0.072) 0.09 (0.172) 0.10 (0.040)

Carapace PD 0.60 (0.560) 0.03 (0.855) 0.07 (0.789) 2.64 (0.128) 0.33 (0.572)

Shannon 0.58 (0.574) 0.67 (0.426) 0.26 (0.621) 0.24 (0.663) 0.09 (0.763)

UniFc Unweighted 0.30 (0.000) 0.04 (0.488) 0.04 (0.486) 0.03 (0.824) 0.05 (0.118)

UniFac Weighted 0.45 (0.000) 0.02 (0.689) 0.02 (0.787) 0.05 (0.177) 0.03 (0.333)

Bray–Curtis 0.50 (0.000) 0.03 (0.356) 0.02 (0.661) 0.02 (0.655) 0.045 (0.119)

PD stands for Faith’s phylogenetic diversity. Significant associations are depicted in bold
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(5.5%) were highly abundant (C 5% of all sequences)

in the gut, and their proportions did not vary signif-

icantly between localities.

More than 50% of the ASVs found in the gut of the

analyzed crayfish were shared with the carapace

across localities (Supplementary Fig. 3). Only 359 of

the ASVs present in the carapace microbiota of

analyzed crayfish were shared between localities

(Fig. 3), and 12 were present in all individuals.

Twenty-three genera were represented with C 1% of

the reads for the carapace samples after normalization

(Fig. 4), with the relative proportion of about half of

these varying significantly between localities: Cyano-

bium PCC-6307 (F = 9.6, P = 0.002), an unclassified

genus from Spirosomaceae (F = 8.1, P = 0.003), an

unclassified genus from Bacteroidota (F = 5.4,

P = 0.015), an unclassified genus from Methylo-

monadaceae (F = 19.6, P\ 0.001), Crenothrix Cohn

1870 (F = 48.2, P\ 0.001), C39 (F = 54.7 P\
0.001), Hydrogenophaga Willems et al., 1989 (F =

9.1, P = 0.002), an unclassified genus from Coma-

monadaceae (F = 26.9, P\ 0.001), Rhodobacter

Imhoff et al., 1984 emend. Wang et al., 2014

(F = 41.5 P\ 0.001), Novosphingobium Takeuchi

et al., 2001 (F = 48.7, P\ 0.001), an unclassified

genus from Verrucomicrobiaceae (F = 8.6, P =

0.003) and SH-PL14 (F = 9.7 P = 0.002).

The gut of the crayfish analyzed shared 10 ASVs

across localities (Fig. 3). No single ASV was present

in the gut of all the individuals. Nineteen genera were

represented in C 1% of the reads for the gut samples

after normalization (Fig. 5), from which the relative

proportion of three significantly varied between

localities: an unclassified Enterobacterales

(F = 78.8, P\ 0.001), Hafnia-Obesumbacterium

(F = 5.8, 0.024) and Terrimicrobium Qiu et al., 2014

(F = 7.0, P = 0.014).

Discussion

In the present study, the bacterial microbiota of the

carapace and gut of red swamp crayfish (Procambarus

clarkii) from three different localities in Southern

Portugal was characterized, by sequencing the v4

region of 16S rRNA of bacterial communities. Anal-

yses of alpha- and beta-diversity indexes showed that

bacterial diversity was higher in the carapace than in

the gut. A similar pattern has been identified in other

crustaceans (e.g. fiddler crabs [Uca spp. Leach, 1814]

in the work by Cuellar-Gempeler & Leibold, 2018),
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however this trend is not universal among crustaceans

and was found inverted in some species (e.g. in the

Atlantic horseshoe crab [Limulus polyphemus (Lin-

naeus, 1758)]; Friel et al., 2020). Not surprisingly, a

large proportion of the most abundant bacteria iden-

tified to genus level and found in the carapace are

known to be able to form biofilms (e.g. Stoecker et al.,

2006; Inaba et al., 2018; Wilkinson et al., 2011).

Interestingly, some of the most abundant bacterial

genera that were found in the gut and carapace have

also been previously found in the gut microbiomes of

red swamp crayfish collected in China (Tyzerella

Yutin and Galperin 2013, effective name; Candidatus

Bacilloplasma Kostanjsek et al., 2007, effective name;

Clostridium Prazmowski 1880 (Approved Lists 1980)

emend. Lawson and Rainey 2016, nom. approb.;

Acinetobacter Brisou and Prevot 1954; reported by

Shui et al., 2020; Liu et al., 2020; Zhang et al., 2020a)

and in Egypt (Flavobacterium Bergey et al., 1923

(Approved Lists 1980) emend. Kuo et al., 2013, nom.

approb.; reported by Khalil et al., 2009), and also in the

heamolymph of red swamp crayfish collected in the

U.S.A. (Flavobacterium; Scott & Thune 1986). The

fact that the same bacterial genera may be shared

globally among red swamp crayfish indicates there

might be a core microbiome (i.e. present in the

(A)

(B)

Fig. 2 Non-metric multidimensional scaling analysis of bacterial beta diversity of the carapace and gut at each sampled locality using

A UniFrac (unweighted) and B Bray–Curtis distances. Sampled tissues and individuals are color coded
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majority of the specimens) for this species. The results

from the current study show that on average about 4%

and 15% of the bacterial taxa (i.e. ASVs) recovered

from the gut and carapace of crayfish, respectively,

were present at the three sampled localities. However,

no single ASV was recovered from the gut of all

(A) (B)

Fig. 3 Venn diagrams depicting the number of shared and unique amplicon sequence variants (ASVs) in the A carapace and B gut

across localities

Fig. 4 Summary of the

taxonomic composition of

crayfish carapace

microbiota at genus level
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individuals analyzed, and only 12 ASVs (0.2% of the

ASVs present in the carapace) were present in the

carapace of all the individuals analyzed. Additionally,

it is worth noticing that a high proportion ([ 50%) of

the ASVs found in the gut were also found in the

carapace. Sharing of bacterial taxa between tissues of

the same host species is not unusual and has been

described before for many animals (e.g. Rosado et al.,

2019; Hoffman et al., 2017).

Importantly, several of the most abundant bacterial

genera found in the carapace and gut of the red swamp

crayfish in the present study are known to harbor

bacterial pathogens that can be harmful to aquatic

animals, including other crustaceans and fish, and

even to humans (e.g. taxa belonging to genera

Cellulosimicrobium Schumann et al., 2001 emend.

Yoon et al., 2007; Hafnia-Obesumbacterium;

Clostridium sensu stricto 1; Candidatus Bacillo-

plasma; and Catenococcus Sorokin 1994 [see for

example Janda & Abbott, 2006; Felföldi et al., 2010;

Guibert et al., 2020; Hou et al., 2018; and Rath et al.,

2018]). Given that previous studies have also identi-

fied the red swamp crayfish as reservoirs of a multitude

of pathogens (e.g. Barkate 1967; Evans & Edgerton

2002; Khalil et al., 2009), further studies are warranted

to determine whether crayfish established in conti-

nental Portugal are carriers of such pathogens and the

potential risk of their transmission to native fauna, and

also humans through consumption.

Association between the studied microbiomes

and environmental conditions, host factors

and metabolic expenditure (aka stress levels)

Marked differences were reported between the envi-

ronmental conditions at each of the sampling sites,

especially between Alqueva, the less polluted site, and

the other two localities (Supplementary Fig. 2). Such

differences are likely to be translated in different

bacterioplankton communities (e.g. Yan et al., 2020;

Wang et al., 2020), and thus affect the pool of bacteria

available to colonize crayfish. For these reasons, it is

not surprising that significant differences in micro-

biome structure were found in the carapace of the red

swamp crayfish between the three sampling localities.

The gut microbiomes also showed structure difference

between localities, albeit only when using the Bray–

Curtis distance. The results presented here are in line

with those of a previous study on gut microbiota of

farmed red swamp crayfish from China, which showed

that geography alone did not explain differences in

community structure, which were instead shaped by

host-intrinsic factors, such as development stage, and

supplied diet (Zhang et al., 2020a). On the contrary,
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the carapace microbiome of another crayfish, Cam-

barus sciotensis Rhoades, 1944 sampled in the New

River drainage (Virginia, U.S.A.), was found to be

highly susceptible to different local conditions, with

carapace microbial communities closely related to

those found in local environments (Skelton et al.,

2017).

There was no significant effect of cephalothorax

length, body condition or glucose levels (aka stress

levels) in the bacterial diversity patterns of the

carapace and gut. Interestingly, sex had a significant,

albeit very moderate, effect in the gut bacterial

community when Bray–Curtis distances were anal-

ysed. Sex was seen to affect gut bacteria richness in

fiddler crabs (Uca thayeri Rathbun 1900 in the work

by Cuellar-Gempeler & Munguia, 2013), with such

differences later attributed to distinct physiology and

behaviour (Cuellar-Gempeler & Leibold, 2018). The

present results may be an indication of a distinct

behavioural response between females and males,

putatively associated with reproduction. In this

species, females are more prone to occupy burrows

than males (Ilhéu et al., 2005), and often spend the

reproductive period secluded inside them while rais-

ing their broods (Anastácio et al., 1999; Correia &

Ferreira, 1995; Hasiotis, 1995). Burrows have distinct

conditions from the local aquatic environment and

induce metabolic changes in crayfish (McMahon &

Stuart, 1995, 1999). Additionally, prey availability

and quality also differ during burrow confinement, and

diet alone can alter gut microbiome in other freshwater

crayfish (Cherax cainii Austin 2002 which studied by

Foysal et al., 2020). Results suggest that the gut

microbiomes of the red swamp crayfish may be linked

to host factors, including sex, but other variables such

as body size and condition or stress levels may have

lower effect on them. While significantly changing

between sites (particularly between Alqueva and

Xarrama), changes in glucose levels may also result

from short term alterations (of social or environmental

conditions) and thus being mostly local drivers of

behavioural and metabolic change, and perhaps less as

modulators of microbial assemblages.

Conclusions

Our results show that the carapace microbiomes of the

red swamp crayfish are shaped by environmental

conditions. In turn, gut microbiota seem to be more

stable and linked with host factors, as was previously

hypothesized (Zhang et al., 2020a). Nevertheless,

results suggest gut bacterial composition and structure

may be unrelated to glucose levels, size or body

condition. Finally, we have also found several taxa

which could correspond to potential pathogens in the

microbiota of crayfish. These findings emphasize the

need to continue research to fully characterize the role

of red swamp crayfish as vectors for bacterial diseases

in freshwater ecosystems, as well as their potential to

affect human health through crayfish manipulation

and consumption.
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J. Garcı́a Peña, M. C. López Velasco, R. E. Sellek, M.
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the montado, the cork and holm oak agroforestry system of

Southern Portugal. Agroforestry Systems 82: 99.

Potes, M., M. J. Costa & R. Salgado, 2012. Satellite remote

sensing of water turbidity in Alqueva reservoir and impli-

cations on lake modelling. Hydrology and Earth System

Sciences 16: 1623–1633.

Quast, C., E. Pruesse, P. Yilmaz, J. Gerken, T. Schweer, P.

Yarza, J. Peplies & F. O. Glöckner, 2013. The SILVA
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