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A B S T R A C T

The task of cleaning reflectors is a widely adopted strategy to handle the soiling in concentrated solar power
(CSP) plants. The dynamics of the soiling of frequently cleaned mirrors is dependent on many factors such as the
cleaning method, its frequency and the seasonal soiling rate. This study proposes a new approach to model the
soiling of regularly cleaned reflectors instead of the inaccurate methods undermining the CSP yield by using
fixed reflectance assumptions. Markov switching (MS) regime, which is a non linear time series approach where
parameters are allowed to switch between the regimes, are applied on the reflectance data of second surface
silvered-glass mirrors, exposed at the Plataforma Solar de Almería (PSA) in Spain during two years and cleaned
biweekly using high pressure demineralized water. The nonlinearities typically exhibited by such reflectance
time series are successfully modeled by accounting for two regimes, a soiled and a clean regime, and in-
corporating various parameters (rain, washing cycle, and lagged autoregressive terms) in the suggested MS
models. Based on the information criteria and the diagnostic of the models residuals, the best model has a
switching normalized reflectance mean of 0.944 during the clean regime versus 0.688 during the soiled regime,
in addition to one fixed lag autoregressive term. In order to evaluate the adequacy of the proposed model versus
the traditional approach, which uses fixed reflectance as input for estimating CSP plants yield, four reflectance
scenarios were studied by simulating the output of a 30 MWe plant using TRNSYS© (TRaNsientSYstem
Simulation) program. The first and the second scenarios used the time series of the measured and fitted model
reflectance data, while the third and the forth scenarios used fixed inputs (a maximum and a yearly average
reflectance). The comparison of the simulation results showed that adopting the innovative proposed concept of
switching regimes results in very good performance, especially in the soiled regime during which the simplistic
reflectance considerations, which ignore the soiling dynamics and the applied washing cycle, undermine the
generated power.

1. Introduction

Due to their potential to produce renewable and cost effective en-
ergy, CSP projects, such as large CSP utility-scale plants (Mendelsohn
et al., 2012), small-sized PTCs for industrial application (Fernández-
García et al., 2015) or coupled CSP and desalination plants (Palenzuela
et al., 2011), are promising options for clean energy production. Var-
ious candidate materials could be used in CSP plants, however the
available supply of glass material (Pihl et al., 2012) and its high re-
flectance supports the deployment of glass based solar reflectors in the
solar field of CSP plants.

Arid and semi arid locations with high Direct Normal Irradiance

(DNI) are challenged by the degradation and persistent soiling of solar
reflectors, distributed over huge areas in the solar field, which will
inevitably drive down the performance of these plants. Accurate mon-
itoring of degradation (Sutter et al., 2012) and soiling of CSP candidate
materials with proper devices as demonstrated in Sutter et al. (2013)
and Sansom et al. (2017) is crucial to evaluate their reflectance.

The application of anti-soiling coatings are among preventive so-
lutions for keeping the dust away from the solar reflectors (Sarver et al.,
2013). But for this technology to be effective, the performance of the
mirrors should not be affected by the application of these films
(Atkinson et al., 2015). To obtain a peak optical performance
(Valenzuela et al., 2014), an extensive frequent cleaning must be
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applied, which is considered to be the most effective and widely used
solution for handling the issue of dust deposition and adhesion to solar
concentrating surfaces. For benign cleaning methods, such as non
contact washing using pressurized water, innovative approaches have
to be investigated (Anglani et al., 2017). In order to preserve the ability
of reflectors to effectively focus the direct sunlight onto the solar re-
ceiver, an acceptable specular reflectance value in the wavelength
range of the solar spectrum must be maintained. It is considered that an
average reflectance above 90% measured at a 670 nm must be adopted
in order to produce the planned energy output and, thus, preserve the
economics of the plant (Cohen et al., 1999).

The soiling rate depends greatly on the prevailing weather condi-
tions (Bergeron et al., 1981; Heimsath et al., 2010; Fernandez-Garcia,
2012; Burgaleta et al., 2012; Bouaddi et al., 2017). For example, the
combined effect of light rain and wind severely pollutes the surface of
the mirrors (King and Myers, 1980), while strong rainfalls effectively
eliminate the adhering dirtiness. The adopted cleaning frequency may
change seasonally as in Jones et al. (2007), where the reflectance ob-
tained during winter with no artificial cleaning applied is almost
equivalent to the reflectance obtained by applying frequent artificial
cleaning during summer. Also, as concluded by Roth and Pettit (1980),
the state of a mirror influences the dust accumulation rate. The authors
pointed out a sharp drop of 0.0085 reflectance units/day for newly
exposed mirrors, but as dust accumulation increases the soiling rate
slows down. The possible reason for this might be that the probability
for a particle to settle on a mirror surface is lower when the surface is
covered with other dust particles than when the mirror is totally clean.

To obtain accurate energy production estimations under real out-
door conditions, Deffenbaugh et al. (1986) incorporated a soiling factor
in the calculation of reflector’s optical efficiency. For simulation pur-
poses, reflectance is usually treated as a constant input, annual average,
as in Blair et al. (2014) and Quaschning et al. (2001). When deciding on
the best cleaning frequency to adopt in CSP plants, reflectance dy-
namics and various other variables (such as rainfall) should be taken
into account. To determine a suitable cleaning frequency, Jones et al.
(2007) proposed a formula where variables such as the constant annual
soiling rate, the number of natural cleaning, and the effectiveness of the
cleaning are considered. On the other hand, Bergeron (1982) used a

simplified reflectance formula, which relies on the assumption that the
reflectance evolves over time as a constant daily reflectance loss until
reaching a plateau level. A different method was followed by Kattke
and Vant-Hull (2012), suggesting a time-average reflectance based on
film growth assumption. A time series approach was adopted in
Bouaddi et al. (2015), where dynamic linear models (DLM) were ap-
plied to model the cumulative soiling of mirrors in Agadir (Morocco).

Unlike cumulative soiling, which is characterized by a continuous
decreasing trend with some stochastic variation unless a strong natural
cleaning event brings back the reflectance to high levels, regularly
cleaned mirrors exhibit various swings (gains and losses of reflectance)
and follow completely different dynamics dictated by the seasonal
soiling, the frequency and efficacy of the artificial cleaning and the
effectiveness of natural cleaning. By adopting a regular cleaning fre-
quency (2, 6, and 12 days), Roth and Pettit (1980) showed that the
reflectance oscillates around a long term average. However, this is not
necessarily the case when the time between successive cleaning of re-
flectors is not equally spaced (Burgaleta et al., 2012), or when heavy
soiling causes the overall average reflectance to severely drop during a
dusty season. Since it could be advantageous to alternate between dif-
ferent cleaning methods (Jones et al., 2007) with each washing method
having its own frequency of use, the resulting reflectance level may
change over many cleaning cycles. In their work, Ba et al. (2017)
proposed a modeling tool based on a finite horizon Markov decision
process to decide on the optimal cleaning decision. However, the re-
flectance data used in their work does not build upon real site data.

This paper proposes a set of models based on Markov regime-
switching (MS), which introduce the idea of changing regimes, to de-
scribe the reflectance dynamics of cleaned reflectors in CSP plants. This
approach was applied on frequently cleaned CSP mirrors exposed for
two years in Almería, Spain. This period of measurement is long enough
to capture the seasonal aspects of reflectance change under the adopted
washing frequency and the prevailing weather conditions. Key elements
affecting the soiling, such as the rainfalls and the implemented cleaning
frequency as well as the dustiness state of the mirror, are incorporated
into the proposed models. To evaluate how this new modeling approach
of reflectance works compared to simplistic approaches, it was tested
against three other reflectance scenarios using the simulation results of

Nomenclature

Acronyms

ACF autocorrelation function
AIC Akaike information criterion
BIC Bayesian information criterion
CIEMAT Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas
CSP concentrated solar power
D&S Devices and Services Co
DLM dynamic linear model
DNI direct normal irradiance
JB Jarque-Bera test
LB Ljung-Box test
ML maximum likelihood
MS Markov switching
MSAR Markov switching autoregressive
MSDR Markov switching dynamic regression
NID normal identically distributed
PSA Plataforma Solar de Almería
PTC parabolic-trough collectors
SE standard errors
TRNSYS TRaNsientSYstem Simulation

Greek symbols

β coefficients dependent on the identified regime
∊t the residuals of the model
μst regime dependent mean
ν coefficients independent on the identified regime
ρ coefficients of the lagged endogenous variable
σ variance of the Gaussian distribution
θ parameters of the model

Roman symbols

d order of time series differencing
L the likelihood
M number of regimes
n number of data points in the dataset
p the order of the autoregressive term

−P value the value obtained to accept or reject the statistical test
pij the probability of going from a state i to a state j
q order of moving average
st a random variable
t the time
X the regressors
Yt the reflectance time series
Z the regressors
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a 30 MWe plant without storage in TRNSYS© software.

2. Methodology

In this section, the studied soiling data collected in PSA are pre-
sented. Also, explanations of the detailed modeling approach for
building and comparing Markov regime-switching models and im-
plementing reflectance assumptions in TRNSYS©simulation software
are laid out.

2.1. Reflectance data

The data used in this study are the reflectance time series of second
surface silvered-glass mirrors exposed outdoors for two years period at
the PSA, in Almería (Spain). The PSA, which belongs to the Energy,
Environment and Technology Research Center (CIEMAT), is the largest
CSP research, development and test center in Europe and it is re-
presentative of locations where CSP plants are deployed. The exposure
test benches were facing south and adopted a 45° inclination angle,
which is appropriate since it is near the location latitude 37°, in addi-
tion to being used in many soiling studies (Morris, 1980; Bergeron
et al., 1981).

Among the five types of reflectors deployed in this investigation,
only reflectance data of the test bench’s forth column is studied here
(see Fig. 1). Reflectance measurements were performed on two mirror
samples of dimensions 400 x 400 mm with 3mm thickness. Since dust
distribution on the mirrors is not uniform, a mask was used as medium
to perform three measurements on the same spots of each mirror. Thus,
the obtained reflectance is the average of the six reflectance measure-
ments. The reflectance data were measured using the Devices & Ser-
vices (D&S) 15R-USB portable specular reflectometer (Devices&
Services, 2012), see Fig. 2. This equipment has a restricted wavelength
range between 635 and 685 nm (with a peak at 660 nm), and suffers
from incidence angle limitations Since the amount of reflected light on
a surface depends on the incidence angle of the incoming rays (with this
influence being more crucial for soiled mirrors),ideally it should be
varied from near normal to 70° (Sutter et al., 2018) to adequately
evaluate how varying incidence angles coupled with dust obstruction
affect the amount of interceptedrays within the acceptance angle.
However, current portable reflectometers are quite limited and do not
possess this feature. This instrument remains widely used for measuring
reflectance (Meyen et al., 2010). The configuration used to perform the
reflectance consisted in using a 12.5 mrad acceptance angle with reg-
ular calibration of the instrument to ensure the correctness of the
measurements.

Before applying the MS modeling technique, the reflectance data are
normalized by dividing the measured reflectance by the reflectance of
the clean new second surface silvered-glass mirror, thus obtaining the
cleanliness. In what follows, this normalized reflectance is called simply
reflectance. Since the rainfall data are valuable for understanding and
analyzing the soiling behavior, this parameter was recorded daily
during the outdoor exposure period. Concerning the cleaning of mir-
rors, high pressure demineralized water was applied, which is the
cleaning method typically used in CSP plants (Cohen et al., 1999). Bi-
weekly washing cycle was adopted to clean the exposed mirrors (right
after measuring the reflectance), which is considered as reasonable
choice in semi arid environments (Burgaleta et al., 2012).

Due to the requirement of using regularly spaced data points while
dealing with time series, some time irregularities of the last few mea-
surements are excluded from the used data. Therefore, the exploited
reflectance dataset covers a total of 670 days, which is a long enough
period to capture the dynamics of soiling in CSP plants. In our used
sample, if a reflectance data point was not equally spaced from its most
recent measurement, it is considered as missing and its value is imputed
via simple linear interpolation. Other imputation methods such as
(Honaker et al., 2011) could be useful if data of climatic conditions are

available. Fig. 3 illustrates the normalized reflectance dynamics over
time. The standard errors of mean reflectance are small when mirrors
are relatively clean. For the case of imputed data these standard errors
are not significant since the standard deviation from the mean re-
flectance is not accounted for in the modeling approach.

The applied artificial cleaning is indicated in dashed red lines,
whereas the daily rainfalls are marked in blue. The amount of rain from
the beginning of the experiment to the end of September are quite
dispersed and light, whereas the second period (from October onwards)
shows heavier rainfalls especially during October, November, March
and April. The absence of rain and less frequent applied artificial
cleaning result in low values of reflectance in the months of July and
August. Other factors such as soil dryness during summer months and
the amount of suspended aerosols in the air may be enhancing and
accelerating dust accumulation on the surface of the mirrors. This also
has to do with the fixed number of cleaning passes that are enough for
restoring high reflectance during winter but are insufficient during
summer. Conversely, the months with the combined effect of artificial
cleaning and rainfall show high reflectance levels.

The soiling on the short term might appear merely as loss and re-
covery of reflectance. However, reflectance measured over many
cleaning cycles (for a period of 670 days in our case) exhibit patterns
that point out underlying dynamics that are a combination of site
condition, cleaning intervention and seasonal variation. These changing
dynamics call for switching parameters depending on the different site
conditions. Our modeling approach based on MS tries to unveil these
dynamics.

2.2. Approach

This section introduces the Markov regime-switching framework
along with the description of key categories of MS models. Also, it
describes the approach followed for suggesting and comparing MS
models which capture the soiling dynamics, in addition to explaining
the reflectance scenarios implemented in the TRNSYS©simulation
software.

2.2.1. Markov regime-switching models description
A first attempt to model the data using non-switching models (i.e. a

linear AR, ARX, or ARIMA (Sumway and Stoffer, 2006)) was performed.
In order to apply these models, the stationarity of reflectance time
series must be satisfied. Thus, differencing was performed until this
requirement is obtained.

The best ARIMA(p,d,q), where p is the order of the autoregressive
term, d is the order of differencing and q is the order of moving average,
revealed that the best model has a differencing of order d= 2, as
confirmed by performing the augmented dickey fuller test, and p=3.
By performing residual diagnostics, the autocorrelation test is

Fig. 1. The biweekly cleaned second surface silvered-glass mirrors exposed at
the PSA (Spain).
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successfully passed, but the normality of residuals is violated. Moreover
this model gives poor performance, log-likelihood equals 42. This poor
result did not change with artificial cleaning or rain included as re-
gressors.

In this paper, the proposed approach uses non-linear time series
models that are state-dependent and are not constrained to only using
constant parameters that just remain the same over many cleaning
cycles.

MS methods are extensively used in econometric studies (Goldfeld
and Quandt, 1973; Hamilton, 1989). These types of models are espe-
cially applied to describe the economic business cycles. The non linear
time series approach introduced by MS are also used to model and
analyze the data in diverse fields, such as wind forecasting (Shen and
Ritter, 2016), hydrology (Akintug and Rasmussen, 2005) and psy-
chology (Hamaker and Grasman, 2012). The strength of MS techniques
stems from their ability to model the nonlinearity exhibited by time
series using the concept of regime changing dynamics, meaning that the
parameters of the model can change depending on the identified re-
gimes.

In MS models, an unobservable random variable St follows a set of
regimes M, where ∈ …S M1, ,t . The transition probabilities describe the
process of switching between M regimes following a first order Markov
chain. The probability of going from a state i at time −t 1 to a state j at
time t is defined in Eq. (1):

= = =−P S j S i p( | ) ,t t ij1 (1)

For the case of two switching regimes, for example, the matrix of
transition probabilities can be expressed as follows:

= ⎡
⎣

⎤
⎦

P
p p
p p ,11 21

12 22 (2)

where p11 is the probability of being in regime 1 and staying in that
regime (this is also the case for p22 in regime 2), whereas p12 and p21
inform about the probabilities of going from a regime to another.

Within the framework of MS, there are many interesting models that
could be used to model non linear time series. In this paper, we are
primarily concerned with Markov switching autoregressive (MSAR)
models of the class MSM(M)-AR(p) (Krolzig, 2013) and Markov
switching dynamic regression models (MSDR)(Frühwirth-Schnatter,
2006).

MSM(M)-AR(p) refer to the class of models where the mean level is
allowed to switch between regimes. The importance of these models
arises from their ability to account for a changing mean, depending on
the identified regime, which in the present case describes the targeted
average reflectance of regularly cleaned mirrors in CSP plants. Since
this targeted reflectance may change with varying cleaning strategies or
unexpected weather conditions, it is allowed to change between re-
gimes. Also, these models allow for incorporating autoregressive com-
ponents of order p (order of lagged endogenous variables), which are
able to capture the effect of past values of reflectance on current values,
thus taking into consideration the effect of past dirtiness of the mirrors
on their current reflectance. This model is expressed in Eq. (3)
(Hamilton and Raj, 2013):

∑− = − + ∊ ∊ ∼
=

− −Y μ ρ Y μ NID σ( ) , (0, ),t s
k

p

k t k s s s s
1

2
t t k t t t

(3)

where Yt is the time series under study, the reflectance in our case, μst
stands for the regime dependent mean, and ρk represents the auto-
regressive coefficient. p and M are, respectively, the order of the au-
toregressive term and the number of regimes. ∊st, known as the error
conditional on the regime, is independent and identically distributed
and follows a Gaussian distribution with mean 0 and variance σ .

Another interesting class of models used in this study are the MSDR.
These models allow, in addition to the switching mean and autogressive
components as in MSAR, to include exogeneous variables which are
suspected to affect the dynamics of observed time series. Their math-
ematical formula is given by Eqs. (4) and (5):

= + ∊Y μ σt s s st t t (4)

where μst, the conditional mean of Yt , is formulated as follows:

∑= + +
=

−μ β X νZ ρ Ys s t t
k

p

ks t k
1

t t t (5)

Fig. 2. The instrument used for reflectance measurements.

Fig. 3. The normalized reflectance evolution during 670 days.
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In this expression, Xt and Zt are the regressors. The βst and ν denote,
respectively, the regime dependent and regime invariant coefficients.

Computing the model parameters estimates (including the coeffi-
cients and the transition probabilities) are performed using the max-
imum likelihood (ML) estimation method. The two important processes
required to describe the dynamics of MS models are the filtering and the
smoothing process. The first consists in obtaining regimes probabilities
by updating based on the recent information, whereas the second en-
ables the exploitation of the entire information contained in the data to
obtain the smoothed regime probabilities. The ML algorithms for
computing the filtering and smoothing of the transition probabilities
are developed and extensively explained in Hamilton (1989) and Kim
(1994).

2.2.2. Building MS models
MS modeling requires first deciding on the number of the switching

regimes. By visually inspecting the reflectance data (see Fig. 3), it is
considered that the reflectance evolves between two regimes. One re-
gime with an upper average reflectance, which occurs when the soiling
rate is low or/and the cleaning (natural and/or artificial) is frequent,
versus another regime characterized by a lower average reflectance due
to high soiling rate or/and irregular and infrequent cleaning. If higher
frequency measurements were available, it would be possible to capture
three or more regimes, but in our case the data at hand suggested two
regimes. The second assumption to be made is about the nature of the
transition probabilities between regimes. Here, it is considered that the
probabilities of going from one regime to another are constant over
time.

In order to propose appropriate MS models, the following reasoning
is considered. First, the reflectance of frequently cleaned reflectors
tends to fluctuate around a mean value which depends on many soiling
factors. Thus, regime-dependent mean models are selected.

Second, based on the assumption that the state of the reflectors (the
level of their dirtiness) is very important for modeling reflectance (as it
was mentioned in Section 1), the inclusion of autoregressive terms is
performed, meaning that the current state of the reflectance is depen-
dent on p previous reflectance. This consideration enhances the MS
models capability by allowing them to be dynamic.

Third, since rainfall and artificial cleaning impact the soiling at
different degrees, both switching and non-switching regressors are used
in the analysis. Here, artificial cleaning was treated as an explanatory
variable taking a 0 or 1 value (0 when no cleaning is applied and 1
otherwise), whereas the amount of accumulated rainfall between suc-
cessive measurements is used as the natural cleaning regressor.

2.2.3. Specifications of the MS models
A total of seven models are proposed to describe the reflectance data

by incorporating parameters suspected to capture the soiling dynamics.
In this study, a regime independent variance was adopted in all the
proposed models, because using the alternative, that is a regime de-
pendent variance, lead to poor performance (these results were not
presented in the following analysis for brevity considerations). This
means that the data does not endorse an error dependent variance
which is correlated to the observed regime. The performance of these
models will be compared in Section 3.

The first model, model 1, has a simple regime switching mean, MSM
(2)-AR(0), which is expressed as:

= + ∊ ∊ ∼Y μ N σ, [0, ]t s s s s
2

t t t t (6)

where Yt is the reflectance time series and μst and σst are, respectively,
the regime switching mean and variance. The parameters to be esti-
mated for this model are =θ μ μ σ p p( , , , , )1 2 11 22 .

In order to obtain more dynamic models, a lagged endogenous
variable of order 1, also called autoregressive term, is accounted for.
Lags of order 2 or more were also tested but resulted in poorer models
as demonstrated by AIC and BIC criterion (again these models were not
presented in the following analysis for brevity considerations). Meaning
that the time dependency does not persist beyond 1 lag and that the
most important predictor of reflectance is the most recent past re-
flectance (lag 1).

Models 2 and 3 belong to MSM(2)-AR(1) models. Model 2 is ex-
pressed as follows:

= + + ∊ ∊ ∼−Y μ ρ Y N σ, [0, ]t s s t s s s1
2

t t t t t (7)

where ρst is the switching coefficient of the one lag autoregressive term.
Model 3, on the other hand, uses a non-switching coefficient

= =ρ ρ ρs 1 2t .
To extend this analysis, models 4, 5, 6 and 7 belonging to MSDR

class of models are studied. They are expressed as:

= + + + ∊ ∊ ∼−Y μ ρ Y β X N σ, [0, ]t s s t s t s s s1
2

t t t t t t (8)

where βst denotes the regime dependent coefficient of the regressor Xt .
In the case of a non-switching regressor, the coefficients remain the
same across regimes, that is = =β β βs 1 2t .

In models 4 and 5, the rainfall is introduced as an explanatory
variable. In model 4, both the rainfall regression and the one lag au-
toregressive coefficients are allowed to vary depending on the regime,
while they both remain constant in model 5.

Two additional models (6 and 7) are considered. They both include
the rain and artificial cleaning as explanatory variables in addition to a
switching mean and autoregressive lag of order one. Both cases of
switching (model 6) and non switching coefficients (model 7) are in-
vestigated. Table 1 summarizes all models suggested to capture the

Table 1
Summary of the suggested MS models.

Models Category Parameters

Switching
mean

Switching
autoregressive lag

Non switching
autoregressive lag

Switching
explanatory variable

Non Switching
explanatory variable

Non switching
variance

Model 1 MS(2)-AR(0) + − − − − +
Model 2 MS(2)-AR(1) + + − − − +
Model 3 MS(2)-AR(1) + − + − − +
Model 4 MSDR with rainfall as

explanatory variable
+ + − + − +

Model 5 MSDR with rainfall as
explanatory variable

+ − + − + +

Model 6 MSDR with both rainfall and
cleaning as explanatory

variable

+ + − + − +

Model 7 MSDR with both rainfall and
cleaning as explanatory

variable

+ − + − + +
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soiling dynamics.

2.2.4. Evaluation of the MS models
In order to compare the performance of the proposed models, the

log-likelihood, the Akaike information criterion (AIC), and the Bayesian
information criterion (BIC) are computed. AIC is best suited to compare
models with different number of parameters, thus favoring parsimo-
nious models (Akaike, 1998). BIC, also called also Schwartz criteria, is
equally used for comparing models but it is expressed differently
(Schwarz, 1978). They are formulated in Eqs. (9) and (10):

=
− +

AIC
log L k

n
2 ( ) 2

, (9)

=
− +

BIC
log L klog n

n
2 ( ) ( )

, (10)

where L is the likelihood, k is the number of parameters of the model
and n is the number of data points of the studied dataset.

For the models to be adequate, their residuals must respect the
hypothesis of normality and independence. In order to check the nor-
mality assumption, the Jarque-Bera (JB) normality test (Jarque and
Bera, 1980) is performed. The autocorrelation function (ACF) and the
Ljung-Box (LB) test (Ljung and Box, 1978) are used to check the in-
dependence of the residuals.

2.3. Simulation of different reflectance assumptions

Based on the energy output of a simulated CSP plant, the perfor-
mance of the best selected model against other reflectance assumptions
was evaluated. This simulation was performed in TRNSYS©
(TRaNsientSYstem Simulation) program (Klein, 1988). A 30MWe
parabolic-trough collectors (PTC) plant without thermal storage, which
is extensively studied in the literature as in Lippke (1995) and Patnode
(2006), was used to perform the analysis. In this study, the number of
mirrors was set to 182,000m2 solar field aperture area. The only ad-
justment made compared to (Patnode, 2006) consisted in using the
Meteonorm software (Remund, 2014) to generate the meteorological
data of Almería (Spain), where the reflectance data used in this study
was measured.

Although numerous reflectance scenarios can be used as inputs to
the simulation, this study is focused to four scenarios. Concerning the
first and second scenarios, the reflectance is fed to the PTC component
from the STEC library (Schwarzbözl et al., 2002) as a time series input
using a data file. The actual reflectance data are the input to the first
scenario (Variable-actual), whereas the second scenario uses variable
reflectance of model 3 fitted values (Variable-fitted). A constant re-
flectance is used in the third and fourth scenarios, either as a maximum
reflectance value of 0.96 in scenario 3, as suggested by Cohen et al.

(1999), or as yearly average in scenario 4. The average reflectance for
scenario 4 was taken from the average reflectance registered in a
complete year from the measured reflectance data used in this work (in
this case the year 2012), which is equal to 0.86. Since TRNSYS©per-
forms hourly simulation, 1 h time step, the biweekly measured re-
flectance is interpolated by keeping it constant for 336 h (that is the two
weeks period between two measurements). The comparison of the
different scenarios is performed by simulating the energy (MWh) gen-
erated in each of the identified regimes during a year.

3. Results

This section includes parameters estimation and comparison of MS
models where the best models are selected based on model selection
criteria already established. Then, the models adequacy is judged by
checking the normality and independence of their residuals. Finally, the
smoothed and the filtered regimes are displayed and analyzed, and the
simulation results computed by TRNSYS© are presented.

3.1. Model estimation

Using the likelihood estimation method, the parameters and their
corresponding standard errors (SE) are computed. Table 2 shows the
different parameters estimated for each model (see Table 1) and their
corresponding SE. The switching parameters are reported for each of
the models. When there is no switching parameter the values of a single
regime are presented. Here, βrain and βcl refer to the rainfall and arti-
ficial cleaning coefficients, respectively. Since the variance of the re-
siduals leads to poorer models (see Section 2.2.3), a constant residual
variance applies to all models.

As can be observed in Table 2, the mean of all the proposed models
switches between a high and a low average reflectance, either be-
longing to a “clean”or a “soiled” regime. The low mean, the soiled re-
gime mean, of models 1–5 ranges between 0.68 and 0.69, whereas it
ranges between 0.93 and 0.95 for the clean regime. Models 6 and 7
present a relatively higher soiling mean ranging between 0.70 and 0.71
in the soiled regime versus a mean between 0.94 and 0.95 in the clean
regime.

The ∗ and ∗∗ refer to 5% and 10% significance level, respectively.
The significance of the coefficients (Davison, 2003) is evaluated to as-
sess their relevance in the MS models. Dividing the coefficients by their
corresponding SE informs about the −z statistic and consequently the

−P value. For example when <p 0.05 the corresponding parameter is
significant at a 5% significance level. As can be concluded from Table 2,
the switching mean is significant for all the models and across all re-
gimes, while the autoregressive coefficient ρst is solely significant in
model 2 first regime while being insignificant in the other models.

Table 2
Parameters estimates of the suggested MS models.

Models Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

Parameters Coef SE Coef SE Coef SE Coef SE Coef SE Coef SE Coef SE

μ1 0.947∗ 0.011 0.943∗ 0.016 0.944∗ 0.013 0.939∗ 0.014 0.935∗ 0.013 0.945∗ 0.037 0.949∗ 0.029
μ2 0.691∗ 0.019 0.685∗ 0.020 0.688∗ 0.022 0.691∗ 0.020 0.688∗ 0.021 0.716∗ 0.039 0.700∗ 0.031
ρ1 – – 0.355∗∗ 0.210 0.171 0.128 0.068 0.322 0.127 0.133 0.040 0.173 0.116 0.133
ρ2 – – 0.057 0.162 0.010 0.178 0.006 0.378

β cl
1

– – – – – – – – – – −0.033 0.045 -0.015 0.029

β cl
2

– – – – – – – – – – −0.006 0.038

β rain
1

– – – – – – 0.001 0.001 0.001 0.001 0.028∗ 0.008 0.001 0.001

β rain
2

– – – – – – 0.027∗ 0.008 0.001 0.001

log(σ) 2.830∗ 0.110 2.855∗ 0.112 2.840∗ 0.111 −2.880∗ 0.118 −2.865∗ 0.112 −2.886∗ 0.121 −2.868∗ 0.113

∗ 5% significance level.
∗∗ 10% significance level.
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Concerning the rain coefficient, it is significant in model 4 s regime,
where it appears to have a positive effect on the soiled reflectors while
not impacting the clean regime. This is also the case for the soiled re-
gime of model 6. These results are reasonable since the rain effect is
greater with more accumulated dirt on the surface of the reflectors. On
the other hand, the artificial cleaning regressor does not seem to be
significant neither in the switching case (models 6) nor in the non-
switching case (model 7).

3.2. MS model selection

This section presents the results of applying the evaluation para-
meters to the MS models (see Section 2.2.4) to assess their performance.
Table 3 includes the results of this evaluation.

According to AIC, model 5 is best suited for modeling the soiling
dynamics because it presents the highest value, followed by model 3.
However, BIC favors model 3 followed by model 1. The log-likelihood
attributes the best value to model 6, but for parsimony considerations,
AIC and BIC are considered to be the best ways to judge the suitability
of a model. Model 6 shows the worse AIC, whereas models 6 and 4 show
the worst BIC. Based on these results, model 5 and 3 show the best
performance compared to the other models.

By examining the matrix of transitions (see Eq. (2)), model 5 in-
dicates that the probability of being and remaining in a regime is very
high =p 0.8811 and =p 0.9522 , while the probability for switching from
a regime to another is very low, =p 0.1212 and =p 0.0521 . The matrix of
transitions in the model 3 shares almost the same probability values.

3.3. Residuals diagnostics

In this section, residuals diagnostics are performed as explained in
Section 2.2.4. By applying the JB test on the standardized residuals of
the model 5, a −P value of 0.57 is obtained, meaning that the normality
assumption is not rejected, as this value is greater than significance
levels. Moreover, this model indicates the independence of its residuals
by succeeding the LB test and with all their lags being inside the 95%
significance level as can be seen in Fig. 4 (a). Passing both of these tests
suggests the adequacy of this model. Model 3, as well, succeeded both
the normality and independence tests. As can be observed in Fig. 4 (b),
the visual inspection of the ACF reveals the independence of the stan-
dardized residuals. The JB test resulted in a −P value of 0.18, greater
than 0.05, signifying that the hypothesis of normal residuals cannot be
rejected at a 5% significance level.

To conclude, according to this analysis and for parsimony con-
sideration the use of rain regressor in the model 5 is not pertinent, thus
making the model 3 sufficient for adequately modeling the reflectance
data. Therefore, the model 3 (presented in Eq. (11)) is selected as the
best one.

⎧
⎨⎩

= + + ∊
= + + ∊

−

−

Y y
Y y

0.944 0.171 , Regime 1
0.688 0.171 , Regime 2

t t

t t

1

1 (11)

With the error following a normal distribution with mean zero and
=log σ( ) 2.840.

3.4. The identified clean and soiled regimes

The identified periods of the model 3 are shown in Figs. 5 and 6,
where probabilities greater than 0.5 illustrate the prevailing regime.
Both the filtered and smoothed regimes probabilities are displayed in
these figures. Since the smoothing process uses the complete data for
probability estimation, it is used to identify the prevailing regimes.
Fig. 5 displays the probabilities of the first regime, which was called the
soiling regime. The displayed probabilities indicate that the soiling
periods identified by the model 3 range from 03/08/2011 to 07/09/
2011 and from 11/07/2012 to 03/10/2012. Clearly, these periods

suffered from high soiling rate and infrequent cleaning. Fig. 6 displays
the second regime, the clean regime, with a higher mean reflectance.
According to the smoothed transition probabilities, these periods range
from 21/09/2011 to 27/6/2012 and from 17/10/2012 to 06/05/2013.

Once the two regimes are identified, the selected model 3 fit was
compared to the measured reflectance data and to the model 5 fit,
which was identified as the second best one. Fig.7 shows that the fitted
models adopt similar patterns as in the actual reflectance data. Both
models 3 and 5 look similar, they almost fit equally good, except in few
points. But the consideration taken to effectively choose the best model
is parsimony. Meaning if two models fit the same, the model with the
least number of parameters,in this case models 3, is the best. This
winning model fit is less suited for unexpectedly low values, but in
general terms the model remains a good fit to the measured reflectance.

3.5. Simulation results

The purpose for this simulation is to test the use of the best MS
model in improving power prediction. Based on the regimes identified
in Section 3.4, the comparison of the reflectance assumptions was
conducted during the year 2012. The periods identified during this year
are the two clean regimes ranging from 01/01/2012 to 10/07/2012
(clean 1) and from 17/10/2012 to 31/12/2012 (clean 2), in addition to
the soiled regime ranging from 11/07/2012 to 16/10/2012 (soiled 1).

Table 4 presents the results of the simulations obtained by adopting
the four reflectance scenarios described in Section 2.3. 11,127MWh is
the yearly accumulated output produced under the Almería site
weather conditions and adopting the reflectance measured under real
exposure conditions (that is, scenario 1). Fig. 8 illustrates the compar-
ison of the different scenarios performed by dividing every regime
output (MWh) by the output produced during the entire year using
actual reflectance (scenario 1).

For a clearer understanding of the results, it deserves to mention
that the outputs of these regimes are not mutually comparable since
they cover different time duration. This is the reason, for example, of
having much smaller bars in regime “clean 2” (which is quite short)
than in regime “clean 1” (the longest one).

As can be seen in Table 4 and Fig. 8, using the maximum reflectance
(scenario 4), obviously, delivers an overoptimistic output with respect
to the measured reflectance (scenario 1). For example, in regime “clean
1” this value is even larger than the power produced during an entire
year of actual reflectance (102%), which indicates that using a high
reflectance level is erroneous when the necessary cleaning required to
attain such high levels is not strictly respected. This scenario is only as
good as the MS fitted model during regime “clean 2” because of its
relatively short duration. By using the yearly average reflectance (sce-
nario 3), an output largely superior than the actual reflectance during
the period “soiled 1” is obtained. Conversely, the average reflectance
underestimates the output during the clean regimes by 6.2% in the
regime “clean 1” and 2.0% in the regime “clean 2”. The fitted model
proposed in this work provides a quite higher production in “clean 1”
but this only due to the long duration of this regime (versus other re-
gimes), thus causing the inconvenience of the hourly simulation, where
biweekly values were interpolated, to overestimate the output.

Table 3
The performance of the proposed models.

Models Log (L) AIC BIC

Model 1 56.169 −2.089 −1.895
Model 2 58.280 −2.137 −1.864
Model 3 57.558 −2.148 −1.914
Model 4 60.020 −2.126 −1.775
Model 5 58.701 −2.154 −1.881
Model 6 60.352 −2.056 −1.628
Model 7 58.866 −2.119 −1.808
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Concerning the other cases, the fitted model delivers significantly better
results close to the actual data, especially during regime “soiled 1”,
where using a yearly average or a maximum reflectance are clearly
inaccurate.

The obtained results confirmed the excellent results of scenario 2
versus simplistic reflectance assumptions. This performance is even
greater during the soiling regime, where using an average or a max-
imum reflectance value clearly misses the mark, thus making this
modeling approach very useful in dusty regions where soiling is per-
sistent.

Even when CSP plants adopt a predefined cleaning schedule,
weather data are unpredictable and thus will definitely influence the
cleaning decision. This work proposes a valuable methodology that
accounts for switching parameters (regressors and means) to adjust for
the change of reflectance under variable cleaning frequency and fluc-
tuating weather conditions.

4. Discussion

Even when CSP plants adopt a predefined cleaning schedule,
weather data are unpredictable and thus will definitely influence the
cleaning decision. This work proposes a valuable methodology that
accounts for switching parameters (regressors and means) to adjust for
the change of reflectance under variable cleaning frequency and fluc-
tuating weather conditions. This modeling approach is highly adaptable
to other CSP sites. For example, using different numbers of regimes
could be plausible depending on the cleaning frequency (artificial),
stochastic natural cleaning occurrence, soiling rate and climatic con-
ditions. Also, it provides very good models to be used for realistic CSP

yield simulations and cleaning optimization studies.
The prediction of future reflectance values could be achieved with

larger data set. This is indicated in Hamilton and Raj (2013) and Krolzig
(2013) detailing the methodology for MS forecasting. To select the best
models, the performance criteria evaluate the adequacy of the number
of regimes as well as the parameters incorporated into the suggested
models.

5. Conclusions

This study introduced a new approach for modeling the soiling of
frequently cleaned reflectors in arid and semi arid environments. In
addition to a proper handling of the reflectance non linearity, the
suggested MS approach is capable of integrating important variables
such as the seasonal soiling and the washing cycle frequency in mod-
eling the soiling behavior. The reflectance data of biweekly cleaned
mirrors studied in this paper follow two regimes, a soiled and a clean
regime. To account for the average reflectance of a period characterized
by its washing cycle and soiling rate, a switching mean component is
used in the seven proposed models. Based on model performance cri-
teria, AIC and BIC, and the residuals diagnostics, the best model com-
prises of a regime switching mean and a non switching autoregressive
lag of order one, in addition to a regime independent variance.

The best selected model fits satisfactorily the measured data and
provides good simulation results compared to other reflectance as-
sumptions. This is particularly clear during the identified soiled regime
where unrealistic fixed reflectance considerations, which ignore the
seasonal soiling dynamics and the cleaning of the typical solar reflectors
in a CSP plant, result in incorrect yield.

Fig. 4. Residuals autocorrelation function (ACF) (a) model 5 and (b) model 3.

Fig. 5. The smoothed probabilities (black bars) and the filtered probabilities (blue line) of the soiling regime.
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TRNSYS was used to compare the different assumptions on a hy-
pothetical 30MW plant. However, testing and validation of the devel-
oped approach on real production plant is highly valuable to gain
general knowledge out of the simulations. Despite of the inconvenience
of the hourly simulation causing the difference between the actual and

fitted output, the selected model is believed to be the best approx-
imation to the real reflectance dynamics. Very promising results have
been obtained and a highly useful model was achieved, which is able to
predict future reflectance values. Furthermore, the selected model
could also be applied to more frequent reflectance data to improve its
capabilities. Finally, the strength of the MS approach enables the use of
as many regimes as it is considered adequate for describing the

Fig. 6. The smoothed probabilities (black bars) and the filtered probabilities (blue line) of the clean regime. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 7. The actual reflectance against the fitted models 3 and 5.

Table 4
The generated output (MWh) obtained by adopting the four reflectance sce-
narios.

Period Date Adopted scenario Generated output
(MWh)

All year 01/01/2012 to 31/12/
2012

1: Variable-actual 11,127

Clean 1 01/01/2012 to 10/07/
2012

1: Variable-actual 8429
2: Variable-fitted 9738
3: Average 7738
4: Maximum 11,367

Soiled 1 11/07/2012 to 16/10/
2012

1: Variable-actual 2308
2: Variable-fitted 2626
3: Average 5605
4: Maximum 8215

Clean 2 17/10/ 2012 to 31/12/
2012

1: Variable-actual 390
2: Variable-fitted 287
3: Average 168
4: Maximum 329

Fig. 8. Histogram of the simulation results of the four scenarios.
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reflectance dataset at disposal, thus representing a promising option for
greater accuracy in estimating the CSP yield in dusty environments.
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