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A B S T R A C T

High temperature thermal energy storage (TES) is a crucial technology ensuring continuous generation of power
from solar energy and plays a major role in the industrial field. Choosing the optimal storage material remains a
great challenge. From the literature, it is understood that the natural rock is a good suitable material for TES in
concentrating solar power (CSP) plants. However, not much work has been published on the behavior of rock
and its suitability for TES. This paper evaluates the potential of rocks as candidate materials for use in high
temperature thermal storage. On one hand, we provide literatures on sensible heat storage (SHS) materials and
works carried out on packed rock beds, and on the other hand, experimental tests are conducted and data are
analyzed and discussed in order to choose the best rocks among fifty two varieties. According to various criteria,
the obtained results show that dolerite, granodiorite, hornfels, gabbro and quartzitic sandstone are the good
candidates to be used as storage materials for air-based solar systems.

1. Introduction

Renewable energies have nowadays attracted more attention due to
the shortage of fossil fuels and their polluting emissions. Solar energy is
the most extensively available of all the renewable energy resources.
However, it is intermittent and unavailable every time. Thermal energy
storage (TES) is considered as a promising technology to exploit
renewable energy [1–3] and an effective way to get the supply of
energy at all times and to regulate the mismatch between energy
generation and energy demand. It plays a very important role in
optimizing concentrated solar power (CSP) technology [4]. The latter
was considered as one of the most optimal and flexible technologies to
produce electricity from renewable energy [5]. Moreover, TES im-
proves the performance of energy systems.

TES can be stored in the form of sensible, latent or chemical heat
storage [2,6]. It can also be stored by combinations of sensible and
latent heat storage [7]. Sensible heat storage (SHS) systems store
energy by heating a storage material without changing the phase,
while the latent heat storage (LHS) involves a phase transition (melting
and solidification) of a phase change material (PCM). Chemical heat
storage is associated with reversible chemical reaction.

A number of studies and reviews concerning the TES technologies
are available in the literature. Hasnain [8] reviewed several TES
technologies and compared SHS and LHS. Ismail and Stuginsky [9]
compared various numerical models for TES in packed bed, both for
SHS and LHS. Zalba et al. [10] reviewed TES systems based on PCMs.

Kenisarin et al. [11] give an extensive summary of high temperature
LHS materials. Gil et al. [12] reviewed and classified different TES
concepts. A comparable work to that of Zalba et al. [10] was reviewed
by Oró et al. [13] for cold TES applications. Cot-Gores et al. [14]
reviewed the experimental research on thermo-chemical energy sto-
rage. They pointed out that the low thermodynamic efficiency of the
basic cycle is among the drawbacks in solid–gas chemical reactions. An
extensive review of the various TES systems and technologies applic-
able to CSP plants was published by Kuravi et al. [15]. Zanganeh et al.
[16] proposed the combination of SHS and LHS for stabilizing the
outflow air temperature of a packed bed of rocks during discharging.
Same approach was used recently by Geissbuhler et al. [4].

LHS has a higher storage density compared to the SHS [1,17,18],
however, the PCMs are expensive, requires a complex geometry [19]
and have short lifetime. Furthermore, the majority of PCMs have low
thermal conductivity [17,20,21], which slows down the heat transfer
rates during charging and discharging process leading to complex heat
exchanger systems. This problem has led to a number of studies for
improving heat transfer. Among these studies, Almsater et al. [21] used
axially finned heat pipes, Peiro et al. [22] used multiple PCMs
configuration instead of the single PCM, Zhao et al. [23] and Sobolciak
et al. [24] used paraffin and expanded graphite and Huang et al. [20]
used metal fins with high thermal conductivity to increase heat transfer
surface areas. A review on the most techniques used is conducted by
Gasia et al. [25] and Agyenim et al. [26]. The main drawback of these
techniques is associated to the increase of costs and the corrosion
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problems. On the other hand, the organic PCMs are flammable [10] and
require temperatures below 150 °C [27], whereas, the inorganic PCMs
are corrosive [28]. The metallic PCMs have high thermal conductivity,
however, because of the very high cost, the use of these materials in
thermal storage is not very widespread.

According to Singh et al. [29], the technological and economical
aspects make SHS superior than LHS. Compared to the other storage
methods, it is the most common technology [30] that is simple in design
and operation, inexpensive and most economic in TES system
[18,31,32]. It can be used in a wide temperature range. Furthermore,
SHS materials are inexpensive and have larger thermal conductivities
when compared with most of PCMs used [7].

Several materials have been used in SHS applications. Molten salts
are the most widely researched and used in CSP plants. Water is the
most used for low temperatures applications (between 25 and 90 °C)
[8]. In term of cost, rocks, sand and soil are the most popular storage
materials selected in several projects. A review of materials used in high
temperature TES applications was given by Gil et al. [12]. On the other
hand, Duffie and Beckmann [33], Singh et al. [29] and Dinker et al.
[18] presented different materials suitable for TES.

This present work evaluates the potential of fifty two varieties of
rocks to be used as high temperature storage materials. The main
objectives of the paper are: (1) to review the properties of SHS materials
considered in literature and works reported on packed rock beds; (2) to
provide experimental data of various rock types; and (3) to test and
interpret the measured characteristics in order to select the best suitable
rocks for high temperature TES.

2. Literature review

This section provides a brief overview on the properties of SHS
materials found in literature and previous works on rock bed thermal
storage.

2.1. Sensible heat storage materials

SHS materials characteristics have been studied in several applica-
tions over the last decades. SHS consists in increasing the temperature

of a storage material (solid or liquid). Molten salt, water, oil, steam,
stone, brick and concrete are the most common storage materials used
in TES systems and are commercially available. Ataer [34] stated that
the choice of a storage material depends mostly on the temperature
level of the required application.

For sensible TES materials, the most desirable characteristics are
high energy density, good thermal conductivity, chemical stability and
high resistance to thermal cycling damage, environmentally friendly
and low CO2 emission, high availability and low cost, low thermal
expansion and little variation in the volume, long time service with a
wide temperature range and easy use. Other desirable characteristics
are good heat transfer between storage material and heat transfer fluid
(HTF) and its compatibility with the container material [1,3,12,35–37].

Tables 1, 2 present, respectively, the most important properties
from literature for a number of different rock types and for different
other sensible storage materials.

From the data collected in Tables 1, 2, we can observe that some
properties of rocks are similar to those of other heat storage materials. It
can also be seen that rocks have good storage capacity. The variation of
thermal properties between rocks is due to the proportion of minerals
and impurities existing in the rock, the different geological ages of rocks
and the difference in place of origin [56]. The tests carried out by Xu
et al. [61] on five storage materials including quartzite rock, silicon
carbide ceramic, high temperature concrete, cast iron and alumina
ceramic showed that the five materials have about the same effective
discharge efficiency.

Taking into account the combination of the requirements of a TES
system, rocks can be considered as feasible solution. They are abundant
and freely available in many areas, economical and requires only
transport to the site, thermally and chemically stable in a wide
temperature range, non-toxic and non-flammable. They have high
specific heat, good thermal conductivity, very low thermal expansion
coefficient and high mechanical resistance to thermal cycling (the
melting point of all rocks exceeds 900 °C). Moreover, rocks act both as
heat transfer surface and storage medium and does not require an
expensive HTF. Their processing is easy and the heat transfer is good
when used with air [7,29,83,114–118].

The choice of HTF is also an important component of TES systems.

Table 1
Thermo-physical properties from literature of certain rock types.

Rock Density (g/
cm3)

Thermal conductivity at
20 °C (W/m. K)

Specific heat at
20 °C (J/Kg.k)

Thermal capacity
(kJ/m3K)

Uniaxial compressive
strength (MPa)

References

Granite 2.6–2.7 2,6–3.1 600–950 1560–2517 100–350 [29,34,38–52]
Limestone 2.3–2.8 2.0–3.0 683–908 1584–2506 30–250 [34,38–41,44,46,49,53–59]
Marble 2.6–2.7 2.3–3.2 800–883 2080–2366 50–200 [34,38–40,43,46,49,50,57]
Quartzite 2.5–2.6 2.9–5.7 623–830 1557–2191 150–300 [38,40,43,44,46,48,49,51,52,54,55,57,60–62]
Sandstone 2.2–2.6 1.7–2.9 694–950 1492–2508 20–260 [34,38–40,44,46,48,49,53,57,58,63–66]
Granodiorite 2.7 2.1–2.6 650–1020 1735–2784 252 [39–42,44,51,52,67]
Gabbro 2.9–3.0 1.5–2.6 600–1000 1722–3030 150–350 [39–42,45,46,48,50,51,55–57,68–70]
Basalt 2.3–3.0 1.2–2.3 700–1230 1603–3714 67–400 [39,40,43,44,46,48,49,51,56,63,68,71]
Hornfels 2.7 1.5–3.0 820 2246 100–533 [40,43,48,72]
Schist 2.6–2.8 2.1–3.0 790–1100 2085–3080 60–400 [39,40,44,51,52]
Quartzitic

sandstone
2.6–2.6 5.0–5.2 652 1714–1721 120 [48,50,73]

Rhyolite 2.3–2.6 1.6–2.3 785 1805–2041 120–250 [40,48,49,73–75]
Andesite 2.6–2.7 2.3–2.8 815 2127–2167 183–400 [39,40,51,66]
Calcareous

sandstone
2.7 4.4 652 1734 0.1–15.8 [55,76]

Steatite 2.7–3.0 2.5 980–1068 2626–3182 10.1 [77,78]
Dolerite 2.7–2.9 2.2–3.0 870–900 2305–2610 100–350 [39,44,51,57,79]
Slag 2.7 0.6 840 2268 – [80]
Gneiss 2.7 2.7–3.1 770–979 2080–2640 48–300 [40,51,81,82,86]
Clay 1.5–2.3 0.7–1.5 860–880 1320–1830 – [28,51,83]
Schale 2.8 1.1–2.1 820 (45 °C) 2255 (45 °C) 34–75 [40,58,79,84,85]
Diorite 2.8–3.0 2.5 1000 2800–3000 170–300 [40,51,86]
Argillite 2.3–2.6 2.1–2.3 838 1927–2136 [51,53]
Dolomite 2.8 2.1 802 2205–2269 150–170 [40,53,87]
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Gil et al. [12] studied different HTFs used for high temperature TES.
The typical HTF used are air, thermal oil, molten salt and water. Water
has high vapor pressure and corrosiveness. The majority of thermal oils
are costly, hazardous, limited in their temperature range and have high
vapor pressure which is lower than water. In this case, it was necessary
to use adequate infrastructure [62,119]. Molten salts are very corrosive
and their thermal conductivity is low. Moreover, they have melting
points above 200 °C which limits the extraction of the stored heat. In
this case, a temperature maintenance during the night when solar
energy is not available could lead to a high consumption of energy.

Comparing the HTFs used, air is the most abundant, cheaper and easily
available everywhere. It is inflammable, non-toxic, non-degradable and
more environmentally friendly. It can operate at low and high
temperature. According to Coutier and Faber [120], the most suitable
system to store heat utilizes air as HTF. In addition, with air the storage
operation is simple.

2.2. Packed rock bed thermal storage

Rock bed using air as HTF became one of the most optimal solutions

Table 2
The main characteristics from literature of the most common sensible thermal storage materials.

Material Characteristics Disadvantages

Density (g/
cm3)

Thermal conductivity at
20 °C (W/m K)

Specific heat at
20 °C (J/kg K)

Thermal capacity
(kJ/m3K)

References

Concrete 2.2–2.7 0.9–2.0 750–1130 1680–3005 [8,29,38,46,88,89] 1. Decrease of compressive strength at 400 °C
[12]

2. Decomposition at about 450 °C [2]
3. - Low tensile strength [102]

HT concrete 2.8 1.0 916 2519 [61,90] 1. - Low thermal conductivity
High alumina

concrete
2.4 0.2 980 2352 [2,91] 1. - High volumetric expansion [2] and low

thermal conductivity
Reinforced

concrete
2.2 1.5 850 1870 [12] 1. - High form cost [102]

2. - Difficulty of machining
Cement mortar 1.9–2.0 0.6–0.7 642 1194–1309 [92,93] 1. - Low thermal conductivity and energy

density
Castable ceramic 3.5 1.4 866 3031 [12,27] 1. - High investment cost [103]

2. - Deterioration at high temperature
(> 400 °C) [27]

Alumina ceramics 3.8–4.0 18.0–33.0 755–880 2831–3484 [31,61,94,95] 1. - Long time and high cost of production
Silicon carbide

ceramics
3.2 120.0 750 2407 [61] 1. - Higher cost and long process times [104]

2. - Limited thermal shock resistance [74]
Brick 1.7–1.8 0.5–0.7 840 1419–1512 [8,80] 1. - Low thermal conductivity and energy

density
Brick magnesia 3.0 5.0–5.1 1130–1150 3390–3450 [12,29] 1. - Low resistance to thermal shock [105]
Silica fire bricks 1.8 1.5 1000 1820 [12] 1. - Low strength [106]
Soil (clay) 1.5 1.3 880 1276 [80] 1. - Low energy density
Soil (dry) 1.3 0.3 795 1001 [8] 1. - Low thermal conductivity
Soil with gravel 2.0 0.5 1840 3680 [28] 1. - Low thermal conductivity
Silica-based

refractory
2.3 1.8 863 2019 [80] 1. - Higher cost

Copper 8.3–9.0 372.0–385.0 383–419 3178–3729 [8,29,80] 1. - Higher thermal expansion and cost [18]
Iron-Cast iron 7.2–7.9 29.3–73.0 465–837 3348–6612 [8,13,61,80] 1. - Higher thermal expansion, high cost [107]

and high weight [18]
Aluminum 2.7 204.0–238.4 896–945 2419–2551 [77,80] 1. - Higher thermal expansion [18]
Lead 11.3 35.3 131 1485 [96] 1. - High cost [18] and low thermal capacity.
Steel- Cast steel 7.8 40.0–50.0 571–600 4453–4680 [12,77] 1. - High thermal expansion, high weight [18]

and high cost
Steel Slag 3.0 2.0–3.5 996 2968 [62] 1. - Higher cost [62,108]
Cofalit 3.1 1.4–2.7 800–1034 2496–3226 [6,97] 1. - Long time of production (cost)
Graphite 2.2–2.3 122.0–155.0 401–610 882–1378 [80,98] 1. - Oxidation into CO2 in contact with air at

high temperature [98]
Soda-lime glass 2.7 0.9 703 1905 [98] 1. - Low thermal conductivity
Sodium chloride 2.2 6.5–7.0 850–860 1836–1861 [12,80] 1. - High thermal expansion coefficient and

decrease of density with temperature [109]
Molten salts 0.5–2.6 0.2–2.0 1500 1350–3900 [6,99,100] 1. - Low thermal conductivity [110]

2. - Need of complex equipment [5,111]
3. - Higher cost and high freezing point

[12,15,112]
Solar salt 1.9 0.5 1495 2825 [62] 1. - Low thermal conductivity
Mineral oil 0.8 0.1 2600 2002 [100,101] 1. - Low thermal conductivity

2. - Expensive and environmentally unfriendly
Synthetic oil 0.9 0.1 2100–2300 1890–2070 [12,100,101] 1. - Low thermal conductivity

2. - High costs and limited life [36]
3. - Not environmentally friendly [36,79]
4. - Degradation at high temperature

(> 400 °C) [113]
Liquid sodium 0.9 71.0 1300 1105 [12] 1. - High vapor pressure (dangerousness)
Water 1.0 0.6 4187 4174 [45] 1. - Limited temperature and low thermal

conductivity [19]
2. - High vapor pressure [18] and

corrosiveness
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for thermal storage in solar power plants because it offers several
advantages such as low investment cost, efficiency, reliability and
environmentally friendliness [29,79,114,121–123]. It is well suited for
CSP plants since it is a simple technique allowing high overall thermal
efficiency [29,36,55,77,114,120,123]. According to Heller and Gauché
[122] and Barton et al. [117], it does not need an additional heat
exchanger between the collector and the heat tank.

A schematic of a packed rock bed storage unit is shown in Fig. 1.
During the charge phase, the hot fluid received from solar collectors
enters through the top of bed (downward) and transfers heat to the
rocks. During the discharge phase, when energy is needed, the low
temperature fluid circulates in the opposite direction (from the bottom)
and heated by the rocks. Charging from the top allows maintaining of
thermal stratification in the bed [114]. Packed bed is generally well
insulated to avoid the heat losses. According to Okello et al. [7], the
total energy stored in a bed containing only rocks from initial average
temperature Ti to final average temperature Tf is given by

E ρ C ε V T T= (1 − ) ( − )rocks r p r f i, (1)

where Erocks is the energy stored in Joule, ρr is the density of rock in kg/
m3, Cp,r is the specific heat capacity of rock in J/kg.K, ε is the void
fraction without unit and V is the total volume of the storage container
in m3. Ti and Tf are in Kelvin.

There is several works reported on various aspects of packed bed
thermal storage including experimental tests and modeling with a
particular interest devoted to the rock bed with air as HTF that is
deployed in several CSP power plants. Among these works, only a few
have studied the thermophysical properties, the mechanical behavior at
elevated temperatures and the thermal cycling resistance of the rocks.
Furthermore, limited knowledge exists on the relevant properties of
rocks used as medium of storage. In 1980, Curto and Stern [124]
proposed a solar power of electricity production based on a packed bed
of slag rock heated by air at approximately 540 °C to store about
5000 MWhth. They pointed out that slag is thermally and mechanically
stable in structure up to 1200 °C. However, Allen [79] thermally cycled
slag samples between 30 °C and 510 °C and found that they all broke
apart within 60 cycles. In 1982, Coutier and Farber [120] presented a
numerical model and conducted experiments to describe the heat

transfer process within a rock bed using air as working fluid. They
measured the thermal properties of different rock types. The thermal
conductivity of rocks used is very low (about 0.48 W/m K), which is a
drawback for a thermal storage system. In 1984, Beasley and Clark
[125] compared experimental data of a packed rock bed thermal
storage with a developed two-dimensional numerical model. Air was
used as HTF in their study. In 1990, Ammar and Ghoneim [83]
presented a thermal storage unit packed with spheres of clay (natural
rock) and based on solar-air heating systems. They optimized the
parameters of the bed by the aid of a developed computer program.
The thermal conductivity indicated in this study (about 0.72 W/m K) is
also low for a storage material. In 1991, Meier et al. [123] developed a
mathematical model describing the thermal behavior of a packed bed of
rocks with high temperature air as HTF (up to 700 °C), and built an
experimental container to validate this model. In the same year, Fricker
[118] discussed the suitability of five varieties of rocks for thermal
storage and showed the great potential of using rock beds at high
temperature. The rocks studied were thermally cycled between 20 and
600 °C and the limestones are among those that desintegrated. In 1991
also, Sagara and Nakahara [126] developed a theoretical model of the
heat transfer process within a packed bed of gravel with air as heat
transfer medium. In 2002, Pacheco et al. [127] developed a pilot scale
thermocline thermal storage system filled with rocks. They showed that
quartzite and silica sand are the most suitable storage materials in
combination with molten salt used as working fluid. Same result was
obtained by Brosseau et al. [112] in 2005 by testing several rock types.
Nevertheless, Mills [113] stated that the sand and rock containing the
silica caused the oil to degrade when used as HTF.

Recently, some other works have been reported about the numerical
investigation and the experimental validation of the rock beds with air
as the medium of heat transfer. In 2011, Hänchen et al. [77] analyzed a
packed bed of steatite rock for air-based CSP plants at temperature up
to 520 °C and developed a heat transfer model for the storage system.
They found that the overall efficiency exceeds 90% and the volumetric
heat capacity is the most relevant property of the storage material. One
year later, Zanganeh et al. [55] studied 6.5 MWhth packed bed of rocks
at temperatures up to 650 °C using air as HTF, and described a pilot-
scale for use at solar thermal plants. They experimentally measured the
thermal properties of the five types of rocks used in the packed bed.
Among these rocks there is the limestone that is unsuitable at elevated
temperatures [118]. An additional study to that of Hänchen et al. [77]
is presented by Barton [117] in 2013. He developed and numerically
solved a formulation for one-dimensional flow of air through a packed
bed of steatite rock for the case when air exhibits density variations
with temperature. The thermophysical properties of this rock are the
same as those used by Hänchen et al. [77]. In 2014, Liu et al. [121]
studied experimentally the heat storage and heat transfer behavior of
compressed air flowing through a rock bed of granite rock at tempera-
ture up to 120 °C. They measured experimentally the specific heat
capacity in the range of 20–170 °C. In the same year, Okello et al. [7]
presented an experimental setup to investigate the thermal behavior of
TES system with combination of rock particles and phase change
material (PCM) with air as HTF at about 350 °C. They showed that
the insertion of PCM into the rock bed increases the energy content of
the bed and decreases the thermal stratification and the transient
charging efficiencies. With the aim of testing the suitability of rocks for
thermal storage, thermal cycling was conducted by Allen et al. [128]
between 350 °C and 500–530 °C, at rates of 2 °C/min. The results
showed that the dolerite withstood thermal cycling well and can be
used in packed bed thermal storage.

Most recently, in 2015, Zavattoni et al. [129] evaluated the thermal
stratification of an industrial-scale TES system based on a packed bed of
river pebbles (gravel) with 25 m3 in volume and air as working fluid.
They have not provided the thermophysical properties of these rocks. In
other work, Singh et al. [115] studied the thermal performance of a
packed bed TES system filled with 8500 kg of rock pebbles and air as

Fig. 1. Schematic of a packed rock bed storage unit with operating principle.
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HTF. They found that heat retrieval efficiency of this bed was better
compared to the packed bed filled with PCM and the heat storage
capacity can be increased by using medium-sized rock pebbles (5 cm
equivalent diameter). In 2016, Grirate et al. [130] compared the
potential of six rocks proposed as storage materials and their compat-
ibility with synthetic oil as HTF. They experimentally measured the
thermophysical properties of these rocks in the temperature range
between 25 and 300 °C and found that quartzite and cipolin rock are
the most suitable filler materials for TES. They stated that, unlike the
thermal oil, the air is fully compatible with rocks. The study carried out
by Hoffmann [62] on the compatibility of vegetable oils with rocks
showed the degradation of the oils with quartzite and slag rock. In other
work, Jemmal et al. [81] investigated the potential of two gneiss rocks
as storage materials for an operating temperature of 550 °C. They
experimentally measured the thermophysical and chemical properties
of these rocks. Thermal cycling tests carried out by Allen et al. [128]
showed the cracking of gneiss after several thermal cycles. In their
article, they summarized the method of formation of most rock types
and characteristics susceptible to affect the suitability of rocks for
thermal storage.

From the literature, it can be pointed out that rocks are very
important in TES systems and can be used for thermal storage at low
and elevated temperatures. However, very few studies have been
conducted to determine their thermophysical properties and their
ability to undergo thermal cycling. The latter is an important factor
since a CSP plant is expected to several years. The suitable rock should
therefore be selected as carefully as the other components in the storage
system. In the next part, the characteristics of the rocks including
thermal cycling resistance and thermophysical properties will be
studied to select the most suitable rocks for thermal storage.

3. Experimental work

The experimental approach and the selection of the most promising
rock samples are presented here.

3.1. Testing rock

Rock samples were taken from various sites in Morocco. They were
identified in the Geology Department of Ibn Zohr University. A
geological map is presented in Fig. 2 to show the sample locations. It
shows that rocks are available in most regions of Morocco. The
designation, type and origin of studied rock samples are listed in
Table 3.

3.2. Characterization and rock types suited to thermal storage

In order to test the performances of rocks for high temperature TES
and to know which rock type is suitable for this application, we
determined the thermal cycling resistance and the thermo-physical
and mechanical properties of these rocks. These parameters are very
important to evaluate the thermal performance and lifetime of the
storage unit.

3.2.1. Density, porosity and hardness
In the thermal storage field, physical and mechanical properties of

the storage material are important. Rocks need to have sufficiently high
compressive strength to avoid crushing at the bottom of the tank by the
load of rocks stacked above them. The crushed rocks can block the
airflow passage. According to the literature, there are very strong
relationships between hardness and compressive strength. Hardness
measurement is therefore used to predict the compressive strength of
rocks. A high density is desirable to increase the thermal capacity of
storage. It can also increase the compressive strength of rock.

Porosity plays a significant role in mechanical properties of rocks. In
our previous work [73], we have shown, for rocks that cannot
withstand high temperature, that the porosity increases and hardness
decreases with repeated thermal cycles. Such diminishment could imply
undesirable problems in the storage tank.

Apparent density and particles density are obtained by dividing the
weight of the sample by its volume. The mass is measured using an
electronic scale (resolution of 0.1 g). After the mass measurement, rock
was placed in a vase filled with water to absorb the maximum of water.
The latter was removed from the surface and the volume of the rock was
measured using a graduated test tube. Porosity was determined by
dividing the volume of sample by the volume of pore. The hardness test
was carried out using a durometer instrument type FM 700e with a load
of 2 kg during ten seconds. The test was conducted by applying an axial
load to the sample and measuring the corresponding deformation.
Experiments were conducted three times for each sample to ensure the
reproducibility of the measurements and the average values were used.

The measured properties for all rock types are summarized in
Table 3. Loss on ignition is the mass loss resulting from the heating
of the rocks at temperatures of 650 °C. Density and hardness of the
samples range, respectively, from 2137 to 2864 kg/m3 and from 40 to
310.9 HV. The average values of porosity are, respectively, 3.4, 3.26
and 8.4 for igneous, metamorphic and sedimentary rocks. High porosity
of sedimentary rocks is due to the fact that grains are not filled during
sedimentation.

The relationship between hardness (HV), density (ρ) and porosity

Fig. 2. Samples location in geological map of Morocco.
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(p) for all tested rocks is shown in Fig. 3. As expected, hardness and
density decrease as porosity increases. Logarithmic regression is used to
provide the correlation between the three physical properties. The best
fit correlation is represented between hardness and porosity with a
coefficient of determination R2 =0.674.

Rock strength is generally greater for fine-grained rocks [131] and
those containing quartz as binding material [92,128]. It decreases with
increase in porosity [132,133]. In the following, the thermal cycling
resistance tests are presented and discussed.

Table 3
Designation, origin and measured properties of all studied rocks.

Rock category Sample Rock type Location Bulk density
(g/cm3)

Particle density
(g/cm3)

Porosity (%) Loss on
Ignition (%)

Hardness
(HV)

State after the last thermal
cycle

Igneous GT1 Granite Tafraout 2.606 2.659 1.99 0.32 224.5 Disintegration (12)
GT2 Granite Tafraout 2.712 2.734 0.80 0.17 255.4 Disintegration (45)
GHA Granite High Atlas 2.725 2.788 2.26 1.18 144.3 Disintegration (8)
BET Dolerite Tafraout 2.715 2.800 3.04 0.73 163.6 Stability (150)
MHA Microgranite High Atlas 2.647 2.737 3.28 1.69 150.1 Fragility (70)
GOS Granodiorite Oued Souss 2.727 2.848 4.25 0.66 171.3 Stability (150)
GDT Granodiorite Tarsouate 2.596 2.728 4.84 0.18 134.3 Cracking (60)
BO1 Basalt Oued Souss 2.681 2.845 5.76 0.62 157.6 Stability (150)
BO2 Basalt Oued Souss 2.661 2.695 1.26 0.36 114.5 Stability (150)
BTI Basalt Tinghir 2.622 2.852 8.06 1.07 102.7 Stability (150)
RIM Rhyolite ImiMiki 2.640 2.651 0.41 0.52 310.9 Stability (150)
RAA Rhyolite Anti-Atlas 2.601 2.698 3.59 0.18 175.4 Stability (150)
AAA Andesite Anti-Atlas 2.716 2.872 5.43 1.39 123.6 Stability (150)
AHA Andesite High Atlas 2.655 2.851 6.87 1.02 124.9 Stability (150)
GIM Gabbro Imilchil 2.864 2.896 1.10 0.92 210.9 Stability (150)
GBH Gabbro High Atlas 2.664 2.738 2.70 1.46 175.9 Stability (150)
GID Gabbro Ida Ougnidif 2.713 2.776 2.27 2.92 226.5 Stability (150)

Sedimentary LO1 Limestone Oued Souss 2.600 2.921 10.99 0.65 71.6 Fragmentation (72)
LO2 Limestone Oued Souss 2.578 3.023 14.72 1.69 77.4 White surface (22)
LAO Limestone Agadir Oufella 2.612 2.947 11.37 1.31 82.5 White surface (95)
LL1 Limestone Lakhsas 2.652 2.891 8.27 0.04 95.8 Cracking (12)
LL2 Limestone Lakhsas 2.675 2.802 4.53 0.10 99.6 White surface (12)
LI1 Limestone ImiMiki 2.653 2.875 7.72 0.96 95.2 Cracking (50)
LI2 Limestone ImiMiki 2.560 2.840 9.86 3.48 66.4 Fragmentation (2)
LI3 Limestone ImiMiki 2.653 2.884 8.01 2.14 106.7 White surface (80)
SO1 Sandstone Oued Souss 2.643 2.716 2.69 0.97 156.4 Stability (150)
SO2 Sandstone Oued Souss 2.563 2.716 5.63 1.12 158.4 Stability (150)
SDA Sandstone Argana 2.486 2.720 8.60 2.03 40.0 Stability (150)
CSL Calcareous

sandstone
Lakhsas 2.579 2.784 7.36 0.87 102.8 Cracking (48)

GPS Gypsum Safi 2.137 2.368 9.76 19.2 48 White surface (2)

Metamorphic HOT Hornfels Tafraout 2.667 2.884 7.52 0.68 129.6 Stability (150)
AHT Andalusite

hornfels
Tafraout 2.594 2.765 6.18 2.11 93.1 Stability (150)

SH1 Schist High Atlas 2.698 2.874 6.12 0.77 46.5 Separation (5)
SH2 Schist High Atlas 2.659 2.804 5.17 0.49 154.9 Stability (150)
SH3 Schist High Atlas 2.591 2.971 12.79 0.80 72.1 Stability (150)
QZT Quartzite Tafraout 2.650 2.698 1.78 0.06 185.9 Stability (150)
QID Quartzite Ida Ougnidif 2.600 2.627 1.03 0.24 252.7 Stability (150)
MBK Marble Khénifra 2.614 2.717 3.79 0.72 110.1 White surface (38)
MBT Marble Tiflet 2.653 2.720 2.46 0.39 128.9 Cracking (30)
MBB Marble Benslimane 2.678 2.759 2.93 0.27 137.7 Cracking (32)
MBS Marble Sefrou 2.540 2.709 6.24 2.35 149.3 Cracking (28)
QS1 Quartzitic

sandstone
Oued Souss 2.761 2.773 0.43 1.19 183.4 Stability (150)

QS2 Quartzitic
sandstone

Oued Souss 2.746 2.760 0.51 0.71 209.6 Stability (150)

QS3 Quartzitic
sandstone

Oued Souss 2.776 2.787 0.39 0.87 205.3 Stability (150)

QS4 Quartzitic
sandstone

Oued Souss 2.670 2.725 2.02 1.59 162.2 Stability (150)

QS5 Quartzitic
sandstone

Oued Souss 2.690 2.762 2.60 1.98 123.4 Stability (150)

QS6 Quartzitic
sandstone

Oued Souss 2.702 2.736 1.24 1.23 187.3 Stability (150)

QS7 Quartzitic
sandstone

Oued Souss 2.800 2.820 0.71 0.38 241.6 Stability (150)

QS8 Quartzitic
sandstone

Oued Souss 2.698 2.711 0.48 0.87 243.2 Stability (150)

QS9 Quartzitic
sandstone

Oued Souss 2.651 2.700 1.81 1.28 223.2 Stability (150)

QS10 Quartzitic
sandstone

Oued Souss 2.650 2.740 3.28 0.57 113.9 Stability (150)

QS11 Quartzitic
sandstone

Oued Souss 2.605 2.664 2.21 1.04 205.0 Stability (150)
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3.2.2. Thermal cycling resistance
In order to determine their ability to undergo thermal cycling, the

rock samples were thermally cycled between room temperature and
650 °C at rates of 25 °C/min in a heating apparatus (high temperature
furnace) and at atmospheric pressure. The specimens were placed in the
furnace for approximately 60 min and then cooling in ambient condi-
tions for 40 min at same rates. Fig. 4 shows the shape of studied rock
samples. The average equivalent diameter is equal to 4 cm. The choice
of higher heating rates reduces the number of cycles performed for each
sample. Moreover, after each initial charging and discharging cycle of
the bed, the rocks will be suddenly exposed to higher rate of
temperature change. In this case, it is possible that microcracks will
appear in the first cycles. These microcracks can be expanded during
thermal cycling even under normal charging rates (1–2 °C/min).

Infrared images of a rock sample during the charging cycle and the
temperature difference between the air in the furnace and the rock
sample are shown in Fig. 5. It can be found from these photographs that
during the charging period, the sample takes the oven temperature step
by step until the temperature difference is zero. It follows from this that
rock is compatible with air.

The physical changes in the rock specimens were carefully exam-
ined after each thermal cycle. The results are summarized in Table 3.
Values in parentheses indicate the number of cycles performed for each
sample. Photographs of four important statuses in which one can find
rocks after performing the thermal cycling are presented in Fig. 6.

In their report, Zhang et al. [134] discussed the change of physico-
mechanical properties of rock after high temperature treatment (up to
500 °C) and showed that this change is related to the dehydroxylation
of water and the expansion of solid mineral. Recently, in our paper
[73], we discussed the parameters influencing lifetime of rock during

thermal cycling and we concluded that the deterioration of rock
properties is due to the increases of porosity and microcracks with
thermal cycling. This does not always mean that rocks with higher
initial porosity are susceptible to degradation with thermal cycling.
They sometimes suffer less from fracture compared to the rocks with
lower initial porosity.

Disintegration of limestone samples LO1, LL1, LI1 and LI2, calcar-
eous sandstone sample CSL and marble samples MBT, MBB and MBS is
due to the decomposition at high temperature of CaCO3 (the main
constituent of carbonated rocks) giving CaO and CO2. Calcium oxide
(CaO) appears as a white color on the surface of limestone samples LO2,
LAO, LL2 and LI3, marble sample MBK and gypsum sample GPS. The
white powder and the poorly bonded particles can block the flow
passages and reduce the heat transfer between air and rock in the bed
[128]. This means that these rocks are unsuitable for use in high
temperature thermal storage.

The cracking of granite samples GT1, GT2 and GHA, microgranite
sample MHA and granodiorite sample GDT are formed mostly at the
grain boundaries between minerals [135,136]. The phenomenon is
attributed to the increase of microcracks (especially when temperature
exceeds 500 °C) as a result of unequal thermal expansion and thermal
properties of rock-forming minerals having differing sizes
[128,134,137]. These rocks are therefore unsuitable for use in high
temperature TES.

Most of schists like sample SH1 can split apart into sheets at high
temperature, but some others can withstand thermal cycling like
samples SH2 and SH3. This is due to the non-equal schistosity. The
sample SH1 has a higher degree of foliation compared to the samples
SH2 and SH3.

The reasons for which the other rocks were remained mechanically
stable for more than 150 thermal cycles are the following: the basalt
samples BO1, BO2 et BTI, the andesite samples AAA and AHA, and the
rhyolite samples RIM and RAA are volcanic rocks with fine particle
sizes and cemented aspect. They are the result of rapid cooling, causing
the resistance to thermal shocks. Hornfel samples HOT and AHT, and
quartzite samples QZT and QID are metamorphic rocks that are formed
under a combination of high temperature and high pressure. This gives
them a compact structure and a good resistance to thermal cycling.
Sandstone samples SO1, SO2 and SDA, dolerite sample BET, granodior-
ite sample GOS, gabbro samples GIM, GBH and GID, and quartzitic
sandstone samples QS1-QS11 resist well to thermal cycling because
they are fine-grained rocks well cemented and having small sizes of
quartz mineral, leading to a resistance to the formation of microcracks
in the minerals and between grains. This encourages the use of them as
storage materials at high temperatures.

The results listed above are in good agreement with those of Allen
et al. [128] and Homand-Etienne and Troalen [138]. The first ones used
a heating rate of 2 °C/min and found that granite and quartz disin-
tegrate during thermal cycling while the dolerite and sandstone remain
stable. The second used a heating rates of 0.8–1.6 °C/min and found
that limestone and granite are cracking when heated from 200 °C to
700 °C.

In the following, the thermal capacity of rocks that have withstood
thermal cycling are measured and discussed.

3.2.3. Thermal capacity
The most important parameter in thermal storage applications is the

heat capacity (product of specific heat capacity cp and density ρ) which
determines the ability to store sensible thermal energy [9,77]. It should
be high [1,35,128] and greater than 1 MJ/m3K [92] to reduce the
storage volume required (cost) [6,31] and thermal losses from the bed,
and to improve the overall efficiency of a plant.

The specific heat capacity of rock samples in powder form (parti-
cles) was measured using a differential scanning calorimeter (DSC)
analysis. The equipment used is a DSC 131 Evo manufactured by
Setaram. A mass of about 150 mg was used for each sample and the

Fig. 3. Relationship between hardness, density and porosity.

Fig. 4. Shape of rock samples.
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heating rate was 10 °C/min. Before being placed into the DSC, samples
were accurately weighed and then placed in aluminum crucibles. The
results at four different working temperatures (Table 4) show that
specific heat capacity of rock increases with increasing temperature. It
increases by about 60% between 25 and 500 °C. For all the samples, the
heat capacity at room temperature ranges from 2.05 to 2.52 MJ/m3 K.
These values seem to be consistent with the literature as shown in
Table 2.

The specific heat capacity of rock samples in solid form (bulk) was
calculated using the following relationship

c = (1 − p)c + pcp,b p,p p,a (2)

where p is the rock porosity in %. cp,b, cp,p and cp,a are, respectively, the
specific heat capacity of bulk sample, specific heat capacity of particle
sample and specific heat capacity of the air. The data of specific heat
capacity of the air was taken in Ref. [139] using the following
relationship

c T T T= 4, 475.10 + 9, 584.10 − 4, 314.10 + 1061p a a a a,
−7 3 −4 2 −1 (3)

where Ta is the temperature of the air in Kelvin (K) and cp,a is in J/kg K.
In Fig. 7, thermal capacity at ambient temperature is linearly

correlated with specific heat capacity of selected rocks with a coeffi-
cient of determination equal to 0.858. This is not unexpected, since the
specific heat capacity values were used in calculating the thermal
capacity values. The relationship between ρcp and ρ is

ρc c= 2. 2352 + 368. 95p p (4)

where ρ is the density in g/cm3, cp is the specific heat capacity in J/kg.K
and ρcp is the thermal capacity in kJ/m3 K.

Eq. (4) is usable for predicting the thermal capacity of selected rocks
from specific heat capacity data. The difference between average
measured thermal capacity of selected rocks and that calculated using
Eq. (4) is 46 kJ/m3 K, which is 2% of the average measured value of
2270 kJ/m3 K. This agrees with the results of Beck [140] which pointed
out that the thermal capacity of rocks is equal to 2300 kJ/m3 K±20%.

Fig. 8 shows the distribution of thermal capacities of selected rock
samples. The most frequent value is situated between 2200 and
2300 kJ/m3 K followed by that situated between 2300 and 2400 kJ/
m3 K. These values represent quite high thermal capacities that point
out the suitable capacity of rocks to store the heat. Furthermore, all

tested rocks have thermal capacity values greater than 2000 MJ/m3 K,
above the minimum of 1000 kJ/m3 K suggested by Özkahraman et al.
[92].

3.2.4. Thermal conductivity
Thermal conductivity describes the ability of a material to conduct

heat. It is among the relevant thermo-physical properties of a storage
material [10] since it improves the dynamics of charge/discharge of a
storage system [6]. Xu et al. [61], Allen [79] and Meier et al. [123]
reported that it is preferable to use small particles with good thermal
conductivity so that the inner volume of the rock may heat up or cool
down completely during the charging and discharging process and for
better thermal stratification (see Fig. 9). Thermal stratification in-
creases the efficiency of thermal cycling [141] and thermal storage
[142]. It can be achieved for high conductivity inside the particles and
lower conductivity between adjacent particles in axial direction. Singh
et al. [143] found that the stratification coefficient is maximum for a
bed of spheres. Xu et al. [61] reported that to obtain high discharging
efficiency, the thermal conductivity of solid particles must be high, but
it should not be large to avoid raising thermal conduction between
particles. Furthermore, with high thermal conductivity, the rate of
charging and discharging will be much faster [79,144] thereby
increasing the thermal performance of TES [25]. In other words, to
ensure efficient heat transfer between HTF and rock [145], it is
necessary to make reference to the Biot number (Bi). If the Bi is less
than 0.1, it means that the internal resistance is negligible and the
temperature distribution in the rock is uniform [120,142]. Saez and
McCoy [146] found that, if Bi «1, the temperature of the fluid and that
of the solid in packed bed will be identical. So, it is better to use small
particles with nearly spherical shape and good thermal conductivity
(> 1 W/m K) which means having a Bi less than about 0.1.

Average thermal conductivity values taken from literature are
presented in Table 2. Using the equation developed by Zoth and Hanel
[147], we can presented thermal conductivity as a function of
temperature for different rock types (Fig. 10). From Table 2 and
Fig. 10, it can be concluded that rocks have good values of thermal
conductivity.

In general, for most rocks and minerals, thermal conductivity
decreases with increase in temperature [42,44,148] and increases with
increase in quartz content [149] and density [150]. Seipold [151]

Fig. 5. Infrared photos of a rock sample in the furnace over time.

Fig. 6. The important statuses of rocks after thermal cycling: (a) Degradation of schist sample SH1 by separation of layers, (b) cracking of granite sample GT2, (c) formation of white layer
to the surface of marble sample MBT and stability of gabbro sample GID.
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indicated that when a rock has high thermal conductivity at room
temperature, the decrease with temperature will be stronger.

The obtained results of thermal and physico-mechanical properties,
and the literature review show that all the studied rocks are suitable for
low temperature thermal storage, but the results of thermal cycling
show that some rock samples are suitable for high temperature and the
others did not, which necessitated to be removed from the list of studied
rocks in order to avoid any damages in the storage unit. In Figs. 11 and
12, the thermal conductivity and hardness are plotted as a function of
thermal capacity. Thermal conductivity data are based on the literature

values given in Table 2. As can be seen, gabbro, quartzitic sandstone,
dolerite, granodiorite and hornfels are those that combine the best
properties. Most of thermal capacity values at 300 °C are located
between 2700 and 2900 kJ/m3 K, which proves the suitability of rocks
in thermal storage. The highest thermal capacity at room temperature is
related to the quartzitic sandstone QS1 (2527 kJ/m3 K). In term of
energy storage density (Table 4), dolerite sample BET, sandstone
sample SO1, schist sample SH2, hornfels sample AHT and quartzitic
sandstone samples QS1, QS2, QS3 and QS5 are the optimal rocks.

It is evident from this article and previous articles that quartz is the

Table 4
Calculated energy storage density and measured specific heat capacity of selected rocks at four different temperatures.

Sample cp (J/kg K) ρcp (kJ/m3K) ρcp (kWh/m3K) Energy storage density (kWh/m3) cp (J/kg K) cp (J/kg K) cp (J/kg K)
(25 °C) (25 °C) (25 °C) (ΔT=400 °C) (100 °C) (300 °C) (500 °C)

Particle Bulk Particle Bulk Particle Bulk Particle Bulk

BET 864.8 869.8 2361 0.6559 262.3 921.2 925.3 1040.5 1045.8 1114.2 1126.2
GOS 822.5 831.3 2266 0.6297 251.8 896.3 903.1 1047.5 1054.5 1131.4 1147.4
BO1 837.3 848.4 2274 0.6318 252.7 890.8 900.4 1015.2 1026.6 1111.5 1134.3
BO2 816.8 819.5 2180 0.6057 242.2 874.4 876.7 1001.8 1004.5 1091.2 1096.5
BTI 825.9 842.3 2208 0.6134 245.3 884.4 898.3 999.2 1016.4 1052.3 1088.9
RIM 829.8 830.7 2193 0.6091 243.6 877.3 878.1 999.1 1000.0 1113.3 1115.0
RAA 811.1 819.0 2130 0.5917 236.6 874.8 881.4 1017.3 1024.3 1118.6 1132.6
AAA 847.0 856.9 2327 0.6464 258.5 902.0 910.4 1014.2 1025.0 1075.1 1098.5
AHA 818.7 833.2 2212 0.6144 245.7 874.4 886.9 978.1 994.2 1015.8 1049.5
GIM 776.3 779.1 2231 0.6198 247.9 838.7 841.1 955.4 958.3 999.9 1005.5
GBH 836.3 841.6 2242 0.6227 249.1 898.0 902.3 1037.0 1041.8 1138.7 1148.7
GID 750.0 756.4 2052 0.5700 228.0 858.3 862.8 1045.9 1049.7 1086.0 1095.6
SO1 920.5 923.5 2440 0.6780 271.2 959.8 962.4 1034.5 1039.3 1065.1 1077.0
SO2 856.2 866.0 2219 0.6165 246.6 898.6 907.5 1008.6 1020.1 1113.2 1135.4
SDA 923.6 932.7 2318 0.6440 257.6 941.9 951.8 1034.9 1050.2 1190.2 1217.4
HOT 832.0 846.9 2258 0.6274 250.9 909.9 920.9 1062.1 1073.4 1132.1 1160.3
AHT 949.9 954.8 2476 0.6879 275.1 984.2 988.7 1044.9 1055.3 1059.6 1087.2
SH2 891.2 898.4 2388 0.6635 265.4 921.9 928.9 1024.1 1033.9 1155.2 1173.4
SH3 869.9 890.3 2306 0.6407 256.3 916.2 934.1 1035.5 1058.1 1146.5 1192.5
QZT 768.9 773.6 2050 0.5694 227.7 848.0 851.8 1023.3 1026.7 1146.0 1152.5
QID 806.7 809.0 2103 0.5842 233.7 886.3 888.1 1054.9 1056.6 1160.1 1163.7
QS1 915.0 915.5 2527 0.7021 280.8 968.5 968.9 1083.9 1084.5 1159.5 1161.0
QS2 877.7 878.5 2412 0.6701 268.0 929.1 929.8 1020.5 1021.5 1045.5 1047.9
QS3 858.4 859.1 2384 0.6624 264.9 918.1 918.7 1045.4 1046.1 1126.2 1127.7
QS4 871.0 874.2 2334 0.6483 259.3 915.3 918.2 1025.9 1029.7 1125.0 1132.7
QS5 883.4 887.2 2386 0.6629 265.1 923.6 927.1 1029.4 1034.2 1132.8 1142.6
QS6 823.7 826.3 2232 0.6201 248.0 882.0 884.2 991.1 993.9 1032.7 1038.6
QS7 835.0 836.4 2341 0.6505 260.2 892.9 894.1 1008.2 1009.7 1066.4 1069.6
QS8 819.8 820.9 2214 0.6152 246.0 884.8 885.7 997.4 998.5 1021.6 1024.0
QS9 835.8 839.3 2224 0.6180 247.2 890.6 893.6 999.2 1003.1 1052.8 1061.1
QS10 849.0 855.0 2265 0.6293 251.7 916.4 921.0 1045.6 1051.1 1100.7 1114.0
QS11 803.1 808.1 2105 0.5847 233.9 868.7 872.9 995.4 1000.2 1051.3 1061.4

Fig. 7. Thermal capacity versus specific heat capacity of selected rocks. Fig. 8. Frequency distribution of thermal capacities.
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main mineral influencing rock properties. It is known by its high
thermal conductivity (7.7 W/mK) [152] compared to others rock-
forming minerals. Rocks with higher content of quartz can have
conductivities of about 3–5 W/m K [153]. Quartz has a large and
anisotropic thermal expansion as well as a large hardness. Furthermore,
materials including quartz are susceptible to rapid increase in volume
due to the α-β quartz transition [136,154]. This transition (expansion)

negatively affect thermal cycling resistance of rocks containing quartz
with larger sizes. Fig. 13 shows the X-ray diffraction spectrum of an
amorphous quartz from Tafraoute region (Anti-Atlas). The results of
thermal cycling and some other measured thermo-physical properties
were inserted in the Figure. The other peaks observed in the spectrum
are due to the traces of quartz.

4. Conclusion

Thermal energy storage is a promising technology that enhances the
efficiency of renewable energies. This paper demonstrates the potential
of rocks as candidate materials for high temperature thermal storage.
Based on the literature review and from the economic point of view,
natural rock can be used as very promising storage material for large-
scale CSP systems and especially when air is used as heat transfer fluid.

A variety of rock samples have been tested in this paper and the
studied parameters vary considerably within the same rock type. The
thermal cycling tests show that not all rocks are suitable for high
temperature storage. Some rock types have been damaged at high
temperatures. Based on these results and according to various criteria,
dolerite, granodiorite, hornfels, gabbro and quartzitic sandstone are the
best candidate to be implemented in a high temperature storage system.

Fig. 9. Effect of particles diameter and contact between particles on the thermal
stratification.

Fig. 10. Thermal conductivity of different rock types as a function of temperature [147].

Fig. 11. Thermal conductivity versus thermal capacity.

Fig. 12. Hardness versus thermal capacity at 300 °C.

Fig. 13. X-ray diffraction spectrum of quartz and other thermophysical properties.
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