
Universidade de Évora - Escola de Ciências e Tecnologia

Mestrado em Engenharia Informática

Dissertação

Performance Evaluation of Smart Contracts

Raul Alexandre Vaz Oliveira

Orientador(es) | Salvador Abreu

Évora 2022

Universidade de Évora - Escola de Ciências e Tecnologia

Mestrado em Engenharia Informática

Dissertação

Performance Evaluation of Smart Contracts

Raul Alexandre Vaz Oliveira

Orientador(es) | Salvador Abreu

Évora 2022

A dissertação foi objeto de apreciação e discussão pública pelo seguinte júri nomeado pelo Diretor
da Escola de Ciências e Tecnologia:

Presidente | Ĺıgia Maria Ferreira (Universidade de Évora)

Vogais | Salvador Abreu (Universidade de Évora) (Orientador)
Simão Melo de Sousa (Universidade da Beira Interior) (Arguente)

Évora 2022

To my family

Acknowledgments

First of all, I would like to express my gratitude to Salvador Abreu, my dissertation’s advisor, for his
continued support, revision and analysis of the different phases which this paper went through, in addition
to, the patience that was needed to deal with every inquiry that I had about anything related to what was
being done. Without his guidance and assistance, this dissertation would not be possible.

I would also like to thank my family for their constant support throughout the whole progress of, not only
this dissertation, but also, my entire academic journey.

And lastly, I would like to give a special thanks to all of my friends and colleagues, who either purposely
or unintentionally, transferred some of their knowledge onto me, who helped improve my skills, become
better at researching and understanding different topics, and also overall, to aiding me make the person
that I am today.

vii

Contents

Contents ix

List of Figures xiii

List of Tables xv

Acronyms xvii

Abstract xix

Sumário xxi

1 Introduction 1
1.1 Motivation . 2
1.2 Objectives . 2
1.3 Structure . 3

2 State of the Art 5
2.1 Blockchain . 5
2.2 Smart Contracts . 7
2.3 Languages . 9

2.3.1 High-level . 9
2.3.2 Execution . 9

2.4 Tezos . 9
2.5 Ethereum . 11
2.6 Gas . 12
2.7 Related Work . 13

ix

x CONTENTS

3 Tools & Frameworks 15
3.1 Environments . 15

3.1.1 Ubuntu . 16
3.1.2 Tezos-Client . 16
3.1.3 Powershell . 16
3.1.4 Node.js & npm . 16
3.1.5 Truffle . 16
3.1.6 Waffle . 17

3.2 Accounts . 18
3.3 Nodes . 20

3.3.1 Public Nodes . 20
3.3.2 Infura Node . 21

3.4 Languages . 21
3.4.1 SmartPy . 21
3.4.2 Liquidity . 21
3.4.3 LIGO . 22
3.4.4 Archetype . 22
3.4.5 Solidity . 22
3.4.6 Vyper . 23

3.5 Networks . 23
3.5.1 Florence Network . 23
3.5.2 Rinkeby Network . 27

4 Performance Analysis 35
4.1 Parametric Problems . 35

4.1.1 First N Primes . 36
4.1.2 First N Primes (List) . 36

4.1.3 First N Primes (Both) . 36

4.1.4 First N Primes (Map) . 37

4.1.5 N Queens . 37
4.1.6 Magic Squares . 39

4.2 Programs & Performance . 41

5 Comparison 49

6 Conclusion 57
6.1 Overview . 57
6.2 Future Work . 58

CONTENTS xi

Bibliography 61

A Source Codes 65

List of Figures

2.1 Simple example of how blocks are chained (from [AME19]) 6

3.1 truffle-config.js account mnemonic . 17
3.2 truffle-config.js node provider . 17
3.3 truffle-config.js compiler and optimizer . 17
3.4 waffle.json compiler and optimizer . 18
3.5 JSON file of account generated from faucet . 18
3.6 Activation of account generated . 19
3.7 Metamask account . 19
3.8 Rinkeby faucet . 20
3.9 Get account balance . 20
3.10 Infura node project . 21
3.11 Deploy contract command . 23
3.12 Contract deployed with success . 24
3.13 Contract transaction command . 24
3.14 Contract transaction with success . 24
3.15 SmartPy IDE . 25
3.16 Liquidity IDE . 25
3.17 LIGO IDE . 26
3.18 LIGO IDE (Michelson output) . 26
3.19 Archetype gitpod work space . 27
3.20 Truffle program compiled . 28
3.21 Truffle program migrated . 28
3.22 Waffle compiled contract ABI . 29

xiii

xiv LIST OF FIGURES

3.23 Waffle compiled contract bytecode . 30
3.24 Contract ABI and bytecode on MyEtherWallet . 30
3.25 Contract deployment on MyEtherWallet . 31
3.26 Etherscan information on contract deployment . 31
3.27 Vyper compiler bytecode and ABI . 32
3.28 Etherscan contract transaction . 32
3.29 Etherscan contract storage . 33

4.1 8-Queens solution in a chessboard . 38
4.2 Order 3 magic square solution . 41
4.3 Order 4 magic square solution . 41

5.1 Graph for FirstNPrimes gas values . 50
5.2 Graph for FirstNPrimesList gas values . 51
5.3 Graph for FirstNPrimesList gas values (constrained) . 51
5.4 Graph for FirstNPrimesBoth gas values . 52
5.5 Graph for FirstNPrimesMap gas values . 53
5.6 Graph for FirstNPrimesMap gas values (constrained) . 53

5.7 Graph for NQueens gas values . 54
5.8 Graph for NQueens gas values (constrained) . 54

5.9 Graph for MagicSquare gas values . 55

List of Tables

2.1 Denominations of Ether . 11

4.1 Gas Values of FirstNPrimes (1 of 2) . 42

4.2 Gas Values of FirstNPrimes (2 of 2) . 42

4.3 Gas Values of FirstNPrimesList (1 of 2) . 43

4.4 Gas Values of FirstNPrimesList (2 of 2) . 43

4.5 Gas Values of FirstNPrimesBoth (1 of 2) . 44

4.6 Gas Values of FirstNPrimesBoth (2 of 2) . 44

4.7 Gas Values of FirstNPrimesMap (1 of 2) . 45

4.8 Gas Values of FirstNPrimesMap (2 of 2) . 45

4.9 Gas Values of NQueens (1 of 2) . 46

4.10 Gas Values of NQueens (2 of 2) . 46

4.11 Gas Values of MagicSquare . 47

xv

Acronyms

ABI Application Binary Interface
API Application Programming Interface
DApps Decentralized Applications
DeFi Decentralized Finance
DSL Domain-Specific Language
EVM Ethereum Virtual Machine
HTTPS Hypertext Transfer Protocol Secure
IDE Integrated Development Environment

JSON JavaScript Object Notation

LPoS Liquid Proof-of-Stake
NFTs Non-Fungible Tokens

P2P Peer-to-Peer
PoA Proof-of-Authority

PoS Proof-of-Stake
PoW Proof-of-Work
ROM Read-only memory
RPC Remote Procedure Call

xvii

Abstract

Blockchain is a distributed ledger with records of transactions made between accounts stored in it through
blocks. This type of technology is becoming a part of our daily lives, due to its secure, immutable, verifiable
and transparent nature.

One relevant aspect of blockchain is that of smart contracts, these are very important and useful because
they can automatically carry out certain actions based on what was written in its code. Transactions which
should be carried out under specific conditions can be done more effectively by using a smart contract,
which explicitly incorporates those conditions in its code.

Since smart contracts are so critical, it is very important to make the correct decision when choosing a
high-level language to use to code these agreements. Different languages that essentially do the same
thing, can compile to a completely different set of instructions.

The objective of this dissertation is to compare the performance of different smart contract high-level
languages, set to carry out the same goal. We will compare languages from the Tezos and Ethereum
blockchains. Different languages will produce different low-level code, some of which will be more efficient,
as they will require less resources such as gas.

Keywords: Smart Contracts, Gas, Tezos, Ethereum, Blockchain, Performance, Evaluation, Comparison

xix

Sumário

Avaliação do Desempenho de Smart Contracts
Blockchain é um registo distribuído com documentações das transações feitas entre contas guardadas nele
através de blocos. É bastante provável que este tipo de tecnologia faça parte do nosso dia-a-dia, devido à
sua segura, imutável e transparente natureza.

Um aspecto importante da blockchain são contractos inteligentes, estes são muito importantes e úteis por
serem capazes de executar automaticamente certas ações baseadas no que foi escrito no seu código. Algu-
mas transações com condições particulares podem ser feitas mais rapidamente se um contrato inteligente
é utilizado e essas condições são escritas na sua lógica.

Devido aos contratos inteligentes serem tão valiosos, é muito importante fazer a decisão correta na escolha
de uma linguagem de alto nível para utilizar para programar estes acordos. Diferentes linguagens que
essencialmente fazem o mesmo, podem compilar para um conjunto de instruções completamente diferente.

O objectivo desta dissertação é comparar o desempenho de diferentes linguagens de alto nível de con-
tratos inteligentes escritos para fazerem a mesma coisa. Vão haver comparações entre as linguagens
das blockchains Tezos e Ethereum. Linguagens diferentes irão produzir diferentes códigos de baixo nível,
considerando algumas destas linguagens mais eficientes, devido a requererem menos recursos como gas.

Palavras chave: Contratos Inteligentes, Gas, Tezos, Ethereum, Blockchain, Desempenho, Avaliação, Com-
paração

xxi

1
Introduction

Blockchain is a relatively new technology which has being growing more and more recently, and may very
well be a part of our daily lives in the near future. Because it’s a distributed ledger, all of its users can
access every single transaction made, by anyone, to anyone, but can’t modify any of them because they
are immutable, making this technology extremely secure. Blockchains are now recognized as the ”fifth
evolution” of computing, the missing trust layer for the Internet because they are able to provide trust
in digital data. When information has been written into a blockchain database, it’s nearly impossible to
remove or change it. This capability has never existed before [Lau17].

Another important aspect of this technology is smart contracts. These are a set of instructions recorded on
the blockchain that execute actions when previously set conditions have been met and confirmed. These
programs are used to speed up transactions and are created through a trusted agreement between two
parties. These contracts are very useful, and because of this, if someone wishes to create one, it is really
important to be careful when choosing a smart contract language.

This dissertation will focus on the performance of equivalent programs in a variety of different smart
contract languages on two blockchains, Tezos and Ethereum. Programs that execute and perform the
same actions, in different languages, will compile to a distinct set of instructions, which will be evaluated
and then compared to each another.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

The use of smart contracts has increased to the point of being very useful and important. There have been
many applications created with the need to not be controlled by a single entity, in other words, the need
to make it decentralized.

So, Decentralized Applications (DApps) were invented, these are applications created on top of a blockchain,
in a Peer-to-Peer (P2P) network. They represent one of the latest advancements in decentralization
technology [Bas20]. The way these applications work is by having their backend code, which is written
into smart contracts, running in a decentralized environment, like a blockchain. They usually consist of
one or more smart contracts in conjunction with a user interface, meant to increase transparency around
commercial transactions, governmental processes, supply chains, and all those systems that currently require
mutual trust between user and provider [Inf19]. Once they are deployed into a blockchain network, they
cannot be tampered with, they can only be interacted with using what was already previously written into
its logic.

There are many areas where DApps are able to show their true potential, examples of this are: Decentralized
Finance (DeFi), creating new ways to borrow, lend, or invest money while disregarding the need of a
company or bank to hold the money; Supply chain management, reducing the production of counterfeit
goods, decreasing fraud, and ensuring a more efficient distribution system; and healthcare, making the
patients records more protected and controllable by the data owners, and improving healthcare models,
such as implementing new technologies to better the whole sector.

This is why it’s important to be careful when choosing a language to create the contracts which control
the operations of these applications. It’s a big reason for the motivation of this paper, because with the
stats of the performance of different languages in two distinct blockchains which have a large engagement
in smart contract development, a developer can have a better idea in choosing a language more appropriate
to what they plan to create into their decentralized application.

1.2 Objectives

As already mentioned, the goal with this dissertation is the understanding of different high-level smart
contract languages available on Tezos and Ethereum, and then the execution of programs that perform the
same actions in these languages and compare their performances with each other. At the end, with the
values gathered, tables and graphs will be made to better understand the data assembled, and conclusions
will be reached about the languages used.

In order to reach the main goal, it is necessary to research information on each of the blockchains, the nodes
that they have available, the respective networks that are run in the nodes, the smart contract languages
and their documentations, environments and compilers that each ledger will have accessible for its users,
as well as the creation and funding of accounts in order to be able to create and record a smart contract in
the blockchain and also send transactions to the smart contract address to perform different actions based
on the arguments sent. After all this, create relatively simple programs that do the same thing in distinct
languages, migrate them into the blockchain, call these programs with different argument numbers and use
the gas values originated from each transaction to represent the performance. Gather all these values and
for each different argument, compare the gas values given by each language and reach conclusions based
on what has been evaluated.

1.3. STRUCTURE 3

1.3 Structure

This dissertation is structured as follows: in chapter 2, we present a revision of current relevant state of the
art, speaking of the concepts important to this paper, as well as, some related work done by third parties.
Chapter 3 describes every single tool, framework and environment utilized in the progress to address and
reach the objectives stated. In chapter 4, every parametric problem chosen to be written into smart contract
code, will be described, in addition to, analyzing in table form, the performance of every language used in
each of the problems. And in chapter 5, the values shown in the previous chapter, will be displayed here
in a more suitable form, through the use of graphs, for a more easy understanding of the data calculated.
Lastly, chapter 6, concludes this dissertation with an overview of the most important aspects of the entire
paper, and also, a bit of information is given into what could potentially be carried out as future work of
this dissertation.

2
State of the Art

In this chapter we discuss the state of the art. The concept of blockchain and other specific aspects of it
will be explained, as this is the focus of everything that is mentioned and demonstrated in this work, while
also identifying the two specific blockchains used in this dissertation in conjunction with a brief look at how
each of them operates. We shall also explain what smart contracts are, how are these agreements useful
and the type of languages in which these smart contracts can be coded in. The concept of gas within the
blockchain will also be introduced and its relevance to this work will be described.

2.1 Blockchain

Before going into specifics about each of the two blockchains chosen and how they work, it is important to
first explain what blockchain technology consists of. A blockchain is a new type of shared database which
is able to store records and transactions between accounts. A big difference between this database and
the already existing ones that store people’s assets of value, like banks for example, is the trust involved.
People trust that banks won’t steal their money as the government regulates them. If a bank fails, people
trust that the government will ensure their deposits of money are safe [Gat17]. This trust doesn’t only

5

6 CHAPTER 2. STATE OF THE ART

occur in financial situations, it also applies to companies that have your personal information, like your
home address. We mindlessly trust that these entities that can see and manage this information won’t
reveal or share it with others. These databases are centralized networks, unlike the blockchain which is
a decentralized one, where everyone can see and validate transactions, it also removes the need of an
intermediary entity, creating transparency and trust. The blockchain allows people to transact directly
between each other with anything of value, this can be used for property, shares, money, digital files...
almost anything [Gat17].

As the name indicates, a blockchain is formed by blocks chained together. These blocks are where the
transactions are recorded, and when a block is considered full, all of its contents can be validated by being
broadcast by one or several nodes. These nodes share the same ledger across different systems, distributed
around the world. When a user performs a transaction, their client turns it into an hash code of a fixed
size and injects it into the node which they are making use of, after this it waits for the entire block to
be validated for it to at last inform the user that the operation was successfully included. If there is a
mistake of some sort with the code or the execution exceeds the gas limit, it doesn’t even transform the
transaction into an hash code, the client gives the user an error message instead. And when a block is
validated, an hash code is formed with all of its transactions with the addition of the previous block’s hash
code, making the blocks linked. In figure 2.1, a simplified version of how the blocks in a blockchain are
formed and connected can be seen.

Figure 2.1: Simple example of how blocks are chained (from [AME19])

This chain that exists between the blocks makes each block more secure the more blocks there are after
it. Since each block contains the hash from the previous one, if a hacker were to attempt to change any
piece of information contained in a block, he would have to change every single block after it, but even in
this scenario, the existence of the other nodes is proof of the integrity of the data, making it very easy to
detect that this version of the blockchain would not match with every other node in the network.

In order to perform any transaction, each account has to have a certain quantity of the cryptocurrency that
the blockchain provides. A cryptocurrency is a digital token that has a market value and are often traded
on exchanges like stocks [Lau17]. This cryptocurrency has real value if utilized on the main network of a
blockchain, and in order to obtain some, a person would have to either buy it or get it transferred from a
different account into theirs. There are also networks considered test networks. These networks are mostly

2.2. SMART CONTRACTS 7

used by developers for any testing of any kind. In this situation, obtaining funds is much simpler because
test networks are accompanied with a faucet, where someone can basically obtain as much as they would
like. However, some faucets either have a limit, within a certain time, per user, or a recommendation not
to abuse it. In these networks, the currency doesn’t have any real value outside of them and it only allows
a user to make transactions in the respective test network.

Each network has a protocol that defines how it is operated. This protocol states the variables of how it
works. It can describe things such as the size of a block, the number of blocks per cycle, improvements
in the execution language of smart contracts, optimizations to the gas utilized, the maximum time an
operation can wait until it gets approved or rejected, etc.

If a transaction is considered to be a valid transaction, it will be inserted into the block. Then, this block
must associate with the chain. All nodes must be aware of any updates occurring in the network, any node
that has a new block must inform all other nodes to update their local chains [AA19]. Although, making
use of this method would cause uncertainty if different nodes try to broadcast a new block at the same
time. So, in order to avoid this issue, a consensus algorithm is utilized in the blockchain.

Different blockchains and/or networks possess distinct ways to validate their transactions, and they all
consist in the usage of a certain consensus mechanism, but there are two consensus mechanisms which are
the most prevalent of them all. These two are called Proof-of-Work (PoW) and Proof-of-Stake (PoS).

In PoW, the members that wish to validate a block, have to solve a puzzle before doing so. The puzzle
they solve is known as the proof of work. It is a mathematical puzzle that is very difficult to solve but
easy to verify the answer once it has been solved [Gat17]. The ones who attempt to solve these puzzles
are called miners, and if successful will receive a certain amount of the respective cryptocurrency that the
blockchain provides for contributing their own power and electricity. An example of this could be, imagine
there is a rule that states that the hash code of an entire block must start with four zeros. The puzzle
here would be to go through every number to find one that when matched together with the rest of the
block would give an hash that would fit the rule. The first miner to find this specific number would be
rewarded, the number found would be easily confirmed by the other nodes that it works, and this block
would be added to the chain of blocks.

In PoS, the nodes chosen to validate a block, are chosen based on the amount of cryptocurrency that the
miner holds. This is an alternative consensus protocol that retains the advantages of PoW while overcoming
some of its weaknesses [OTJA21]. The bigger the amount someone has, the higher chance of them being
chosen, in other words, the more cryptocurrency the miner owns, the higher the mining power he has. The
main difference between this method and the PoW one, is the massive reduction in the cost of energy,
therefore being more environmentally friendly. This may make it more attractive for individuals to run
nodes in the network, which would increase decentralization and increase security [Lau17].

2.2 Smart Contracts

The arrival of Bitcoin in 2008 marks the birth of cryptocurrencies where the core technology that enables
them is the blockchain. And in 2014, Ethereum extended Bitcoin and introduced the smart contract
into the blockchain. This event greatly improved the ability to create and develop applications in the
blockchain, and it also made Ethereum one of the biggest motivators of blockchain technology, because
it made applications with smart contracts slowly become prevalent [HZL+21]. But the actual concept of
smart contracts is even older. The idea of them was introduced in the early 1990’s by computer scientist,
lawyer and cryptographer Nick Szabo, who in one of his papers, referred to them as “a set of promises,
specified in digital form, including protocols within which the parties perform on these promises” [Sch18].

8 CHAPTER 2. STATE OF THE ART

Smart contracts are programs stored in the blockchain with the intention of being automatically executed
when a certain condition is met. These programs are living on the chain, where the users can call them
with whatever arguments the contract allows and execute them. This is useful with agreements between
multiple parties, they are written into a smart contract so that everyone knows exactly what action would
perform automatically when a certain event is triggered.

The oldest piece of technology which most similarly resembles a smart contract is the vending machine.
Vending machines are defined as self-contained automatic machines that dispense goods when a form of
payment is made, they are programmed with certain rules that could be arranged in a contract, and perform
such rules [Sav16]. This would mean that, when wanting to operate a certain contract, the user would
have to send a fixed amount of money to run it, but not every function is obligated to be paid in order
to execute. Smart contracts function in the blockchain much like a normal account, they have an address
and also a balance, with the difference being the code written into it. Some functions of a contract may
require a certain amount of cryptocurrency to allow them to execute, others are free, and can be used as
much as anyone would want with no charge.

These contracts have a state, or storage, which can change based on what is possible to achieve in the
code. A smart contract can’t actually perform many functions against the blockchain since it is immutable.
It can, however, add or read the data of its own storage, but updating data is really an add function that
changes the current state [ZWM21].

In listing 2.1, a simple contract written in the Solidity language (see 3.4.5), can be seen. In this example, a
user can either deposit ether into this contract’s balance, or withdraw ether that was previously sent by this
user. In the beginning, a variable called “balances” is set, saving a map with the addresses of users as the key
and an unsigned integer representing the user’s balance as its associated value, this variable corresponds to
the storage of this contract. Whenever a user calls the deposit function, his respective balance is increased
in the state and decreased in his own account, and when the withdraw function is used, the opposite of this
occurs. In fact, the keyword “payable” on the function deposit, makes it mandatory to send some amount
of ether to execute this particular task, making that value sent, the amount to deposit into the respective
balance in the storage.

1 pragma solidity ^0.5.0
2
3 contract Bank {
4 mapping (address => uint256) public balances;
5 function deposit() external payable {
6 require(balances[msg.sender] + msg.value >= balances[msg.sender]);
7 balances[msg.sender] += msg.value;
8 }
9

10 function withdraw(uint256 amount) external {
11 require(amount <= balances[msg.sender]);
12 balances[msg.sender] -= amount;
13 msg.sender.transfer(amount);
14 }
15 }

Listing 2.1: Simple smart contract example

2.3. LANGUAGES 9

2.3 Languages

There are two different types of languages in which smart contracts can be displayed in, high-level and
execution. High-level languages are the ones that are more developer friendly and easier to write a contract
in. Execution languages are the ones that the blockchain itself accepts so that it can actually run the
contracts.

2.3.1 High-level

The high-level languages are constructed with a blockchain target in mind. The language must be able to
be compiled down to the respective execution level language of the blockchain. In the case of the Tezos
blockchain (see 2.4), the ones tested in this paper are:

• SmartPy
• Liquidity
• PascaLIGO
• CameLIGO
• ReasonLIGO
• Archetype

And in the case of the Ethereum blockchain (see 2.5), the ones tested in this paper are:

• Solidity
• Vyper

2.3.2 Execution

The execution languages are the ones that the blockchain itself uses in order to run the smart contracts.
In the Tezos blockchain (see 2.4), the six languages mentioned will be compiled to the low-level language
called Michelson, which is a stack-based language. And in the Ethereum blockchain (see 2.5), the two
languages mentioned will be compiled to Ethereum Virtual Machine (EVM) bytecode. Developers can, if
they prefer, write the contracts directly in Michelson, in the case of the Tezos blockchain, because it is
composed of instructions and operations that can be understood, although much harder than the high-level
languages. In the case of the Ethereum blockchain, developers are required to use the high-level languages
due to the bytecode not being human-readable.

2.4 Tezos

Tezos is an open-source decentralized platform for assets and applications that has the ability to evolve
by upgrading itself. This blockchain is an innovative one, because it improves multiple aspects of already
existing ones. It focuses on formal methods to improve safety and possesses the capacity to amend its
own protocol, the one that validates blocks and implements the consensus algorithm, through a voting
mechanism [ABT19]. Its own cryptocurrency is called tez, represented with the code XTZ.

The current Tezos protocol is based on a Liquid Proof-of-Stake (LPoS) consensus algorithm, which considers
the amount of tokens someone holds as the main resource to make the pool of block producers (in this
case called bakers) [ABT19].

10 CHAPTER 2. STATE OF THE ART

The selection of bakers from the baker pool is randomly made using a list of slots, this list has all the rolls
of every baker that has at least the minimum amount of tokens required to participate. An example of this
could be, let’s say the minimum amount of tokens is 10.000, a baker with 45.000 tokens, has 4 slots on
the list and therefore 4 rolls in the selection. The more rolls someone has, the bigger chance they have to
be selected. In addition to this, participants that do not have enough tokens or simply do not wish to bake
blocks, have the ability to delegate their tokens to another baker, potentially giving this baker more slots,
this is where the “Liquid” part of LPoS comes into play because much like in Liquid Democracy, one can
delegate its right to vote [ABT19].

Self-amendment means that Tezos can upgrade itself without the need of a hard fork, in other words,
without the need to divide the blockchain into two separate branches. Because of this, the coordination
and execution costs for future upgrades are reduced and improved protocols can be not only faster but also
more easily carried out.

In order to upgrade itself, the voting system functions in four different periods. First, there’s the proposal
period, where any baker can submit a proposal, bakers can upvote proposals submitted by others and
the most upvoted one advances to the next period; Second, the bakers vote to determine if the proposal
selected should be tested, if the quorum (percentage needed for approval) is met, it moves on to the testing
period; Third, a new test network is created to experiment with this proposal and during this period anyone
can evaluate and test it out; and fourth, the bakers vote once again to decide if they wish to promote the
protocol from the test network into the main network, and this also requires the quorum to be achieved,
in order to be approved [Goo14].

This blockchain is considered reliable when it comes to creating and publishing smart contracts, not only
because of the number of high-level languages available, but also due to the fact that its accepted Domain-
Specific Language (DSL), Michelson, was explicitly designed to facilitate the readability and verifiability
of contracts while being low level enough to fulfill the performance predictability requirement of on-chain
execution [ABT19]. When dealing with the cryptocurrency in Michelson code, the data type used is called
mutez, which is an alternative denomination of tez, 1 XTZ is equal to 106 mutez.

In listing 2.2, a simple contract displayed in Michelson can be seen. In Michelson, since it is a stack-based
language, the code part will consistently start off with a pair of the parameter and storage in the stack,
and it always ends with a pair of “NIL operation” and the updated value of the storage. This contract
takes an integer value as parameter and holds another integer as its storage. It duplicates the initial pair,
and chooses the first member of the 1st pair, and the second member of the 2nd pair, basically having the
parameter on top of the current storage value. It then adds them together and saves the new value in the
storage, overriding the old one.

1 parameter int;
2 storage int;
3 code { DUP ;
4 CAR ;
5 DIP {CDR};
6 ADD;
7 NIL operation ;
8 PAIR
9 }

Listing 2.2: Simple michelson contract example

2.5. ETHEREUM 11

Tezos was initially proposed in a whitepaper published in 2014 [Goo14], its test network was deployed in
June 2018, and the main network was launched in September 2018. And as of November 2021, there
have been 7 approved protocols tested, each with their initial corresponding to a letter of the alphabet,
the current approved one is called the Granada protocol, and there’s already an 8th one called Hangzhou
being tested in its respective test network. In the context of this paper, all of the smart contracts created
on the Tezos blockchain were published and tested on Florencenet (see 3.5.1), the test network running
Florence, the 6th protocol approved.

2.5 Ethereum

Ethereum is an open-source decentralized platform with the ability to allow applications and smart contracts
to run on it. Ethereum provides a blockchain with a built-in Turing complete programming language that
can be used to create systems for a number of different purposes, such as decentralized finance applications.
Another thing this platform permits is Non-Fungible Tokens (NFTs), these tokens represent digital art or
other items such as images, videos, audio, etc, and can be sold digitally as unique property from user
to user. Ethereum’s cryptocurrency is called ether, which is represented with the code ETH. In terms of
market capitalization, Ether is in second while Bitcoin is first.

Ether has many different denominations, some of the more used ones, in conjunction with their use and
value, in both wei and ether, are represented in table 2.1.

Name Value (Wei) Usage Value (ETH)
wei 1 Transaction fees 10−18

gwei 109 Gas prices 10−9

szabo / microether 1012 Transaction fees and protocol implementation 10−6

finney / milliether 1015 Microtransactions 10−3

ether 1018 Normal transactions 1

Table 2.1: Denominations of Ether

Unlike Tezos, Ethereum currently uses a PoW consensus algorithm. In this case, a certain block has a
difficulty limit, which is calculated from the previous block’s difficulty and timestamp. There is a “nonce”
hash which is the 64-bit number to be found and also a 256-bit “mixHash”, which is the result of combining
the “nonce” hash with the block’s hash, proving the proof of work [SDP18]. In other words, a miner tries
to find a specific number to which when combined with a block fits some sort of predefined rule. The first
miner to find this number gets rewarded and the block gets validated onto the blockchain. Even though, it
currently uses PoW, there are plans to upgrade it to PoS. In 2022, Ethereum plans to fully shift to a PoS
model, reducing the environmental impact of Ethereum by 99%, actually, right now it has both a PoW and
PoS chain running in parallel, having both chains with validators but only the PoW one processing users’
transactions [CNB21].

One advantage that Ethereum possesses in contrast to Tezos, is a bigger number of users. Because of
this, the blockchain is more decentralized due to the fact of more nodes existing, and also having a larger
developer community helps immensely in the development of smart contracts and, in extension, DApps,
causing the creation of more tools and frameworks available for the people to use. Compilers, debug
tools, libraries and more efficient environments to deploy and make transactions on smart contracts are all
examples of this.

This blockchain contains a Turing complete virtual machine or EVM (Ethereum Virtual Machine) which
is a simple 256-bit stack machine with a stack size of 1024, where all of the code is commited to the

12 CHAPTER 2. STATE OF THE ART

blockchain and accessed from the EVM as virtual Read-only memory (ROM) [BAI+18]. This is also where
the smart contracts are read and understood by the blockchain. The high-level languages are compiled
down to a low-level, stack-based bytecode language, usually considered EVM code. This code consists of a
series of bytes, where each byte represents an operation, which means that the code execution is basically
an infinite loop that consists of repeatedly carrying out the operation at the current program counter, which
begins at zero, and then incrementing the program counter by one, until the end of the code is reached,
or an error, “STOP” or “RETURN” instruction is detected [But13]. EVM bytecode is often represented
with a human-readable form called opcodes, which consists of a group of instructions. Opcodes, much like
Michelson code, possess instructions with different amounts of weight, meaning each one carries a distinct
gas value associated with it. A paper created in 2020 goes in-depth about opcodes, more specifically, it
does an analysis of Ethereum’s smart contracts’ source code, and how they are reflected on the opcode
level [BMM+20].

In the context of this paper, in order to deploy the contracts created, there was the need of getting the
bytecode and the contract Application Binary Interface (ABI), with the exception of Solidity programs
deployed through the truffle environment (see 3.1.5). This ABI, in the context of Ethereum, is an interface
referencing the state of the contract, as well as information about the functions in it. This is useful in the
case of DApps for example, in order to call a function from an application, one would call via the contract
ABI.

Ethereum’s whitepaper was originally published in 2013 by Vitalik Buterin, the founder of Ethereum, before
the project’s launch in 2015 [But13]. And, over the years, the platform has evolved, but the whitepaper
maintains as a useful point of reference and a precise depiction of the blockchain to this day.

There is also a yellowpaper associated with this blockchain [Woo21]. This paper thoroughly describes
Ethereum in a conglomerate of different concepts. It discusses its design, implementation, potential and
protocol it provides. It was originally created by Gavin Wood, co-founder of Ethereum, in 2014, and it is
currently being maintained by Nick Savers and other contributors from around the world.

Ethereum has a few public test networks available, in addition to the main network. These networks are
called “Görli”, “Kovan”, “Rinkeby” and “Ropsten”. In the context of this dissertation, all of the smart con-
tracts created on the Ethereum blockchain were published and tested on the test network Rinkeby (3.5.2),
which is a Proof-of-Authority (PoA) testnet.

2.6 Gas

In the context of both of the blockchains utilized in this dissertation, Tezos and Ethereum, gas represents
the computational cost related to a transaction. In these transactions, it is also included the deployment
and interaction with a smart contract. This means that the gas number of a transaction executed can and
will be used to represent the performance of a certain contract, which will be a very important aspect of
this work, because these values are what is going to represent how much effort was used in each interaction
and execution of each smart contract created throughout this paper. Each different instruction in the low
level languages costs a different amount of gas, which means, depending on the compilation, the resulting
set of instructions could amount to very different quantities of gas. Gas can also be used to determine how
much an account has to pay to make a certain transaction, for example, in Ethereum, if a transaction is
going to use 100.000 gas and the gas price is 0.000000001 ETH or 1 gwei, the price to pay to make this
transaction would have been 0.0001 ETH.

2.7. RELATED WORK 13

2.7 Related Work

With the rise of the blockchain technology, more people have been getting interested in this topic, and
therefore more projects and research have been conducted around it. There has been work done revolving
around the ledgers themselves, their efficiency, the way they operate, but also the smart contracts embedded
in them. Since smart contracts can be very practical and useful, a great deal of DApps were developed with
the usage of them. Real life examples of these include financial services, insurances and mortgage systems.
Studying and evaluating things such as the performance of these programs can be really important and
informative, especially if their use keeps increasing.

What follows is a few studies made in relation to the performance of different concepts involved in blockchain
technology, such as, the type of blockchain platforms used, smart contracts of a healthcare system, and
also, the evaluation of smart contracts in a blockchain architecture consisted of both on and off-blockchain
components. These are not exactly similar to this dissertation, but it involves topics such as the performance
of certain applications in blockchains and also the performance of different types of blockchain platforms,
which are somewhat related.

There is a paper, made in 2020, about the performance of permissioned blockchain platforms [MSA20].
Permissioned blockchains can be described as a blockchain with an additional layer of security since these
platforms require an access control layer. In this study, different platforms are analyzed, such as, a private
deployment of Ethereum, Quorum, Corda and Hyperledger Fabric, in metrics of throughput and network
latency. It concludes by saying that Hyperledger Fabric performs better than the other platforms.

In 2019, a study was made about the performance of smart contracts in specific healthcare environments
[LNB+19]. This paper proposes a solution for healthcare economics systems using blockchain. It evaluates
smart contracts, written in Solidity, of the presented solution in both the “Ropsten” test network and a
private instance. It also discusses costs related to using a private instance, in comparison to using the
Ethereum main network. It concludes stating that the performance in the “Ropsten” network resulted
in very similar values to the private instance, and also, that the financial costs of the main network of
Ethereum were higher when the number of transactions is high, however, when using the private instance,
the cost of the infrastructure and personnel must be considered.

And in 2020, an article was published about the creation and evaluation of smart contracts with the usage
of an hybrid on and off-blockchain architecture [SWS20]. This means that these smart contracts are being
tested on a environment with components from centralized and decentralized platforms, which the paper
states could be more adequate for certain applications. This hybrid architecture was built with the usage of
Ethereum, in connection with a centralized smart contract management system. Three different types of
blockchain were compared: on-chain, off-chain and hybrid. In the conclusion, it is mentioned that hybrid
solutions may be very effective for certain applications such as asset tracking, as well as, when dealing with
time related issues. In addition to this, a hybrid solution also reduces the costs involved when comparing
to a blockchain based solution.

3
Tools & Frameworks

In this chapter of the dissertation, we list and explain all the tools and frameworks which were used
throughout this work. The locations and environments in which the contracts were deployed will be
mentioned, the accounts created so it was possible to interact with the contracts and the respective test
networks of each blockchain chosen to interact with will be talked about. The nodes that were accessed
which contained the test networks will be mentioned. And also each one of the high-level languages that
were made use of to create the contracts in this paper will be described in more detail.

3.1 Environments

There are a few environments which were crucial to the realization of this paper, because these involved
in the interaction with the nodes of the blockchains, as well as, the deployment and interaction with the
smart contracts created. Some of these served as an interface between user and client of the blockchain,
others are frameworks which assist in different aspects.

15

16 CHAPTER 3. TOOLS & FRAMEWORKS

3.1.1 Ubuntu

Ubuntu is a Linux command-line interface. This terminal can be used to navigate through folders and
directories, and also the installation of packages and other programs. It’s really useful for file management,
development, administration, etc. In order to use this terminal on a Windows operating system, which is
the case, something called the “Windows subsystem for Linux” was installed, so Ubuntu can be run. The
version used here is “Ubuntu 18.04.5 LTS”, and this is the location where the tezos-client was installed.

3.1.2 Tezos-Client

Tezos-client is used as an interface between the user and the blockchain Tezos. This client reached Tezos
on version 9.0. To interact with the blockchain, it was necessary to install several binaries, which are
executable files, consisting of a client, a node, a baker and an endorser [TDR21]. In these files is also
included the respective network meant to work in, which in this case, is the Florence network. In order to
connect to a node, a user can either run their own node, or use a community node to access the Tezos
blockchain. This is the tool used to basically do everything in Tezos, in this case these things are: create
accounts with the usage of a faucet, deploy smart contracts (already compiled to Michelson code), execute
transactions with a certain argument of a specific smart contract address, and check the storage of a
contract. Not all of the Tezos’ smart contracts were deployed by using tezos-client, some languages were
able to deploy from their compiler interfaces.

3.1.3 Powershell

Powershell is a command-line terminal interface. In some versions it is called Windows Powershell, but
on later versions it’s just Powershell or Microsoft Powershell. With this tool, one can access, and explore
data in multiple locations, and just like Ubuntu, it can also be used to provide third-party packages to be
installed. The version used here is 5.1.19041.1320, and it was used to install npm, which in turn was used
to install and interact with the frameworks Truffle and Waffle.

3.1.4 Node.js & npm

Node.js is a JavaScript runtime environment designed to build scalable network applications with the use
of making connections to servers [OF21]. The version used is 14.16.1.

npm is a JavaScript package manager which requires Node.js to be installed in order to be able to run. The
free npm registry provides a public collection of over one million packages available, making it the largest
software registry in the world [nI21]. Among these packages, the ones installed and used were Truffle and
Waffle. The npm version used here is version 7.24.2.

3.1.5 Truffle

Truffle is a world class development environment, testing framework and asset pipeline for blockchains
using the Ethereum Virtual Machine (EVM), aiming to make life as a developer easier [Sui21]. Truffle
offers many useful tools, especially with a built-in smart contract compilation and deployment, which is
the primary aspect involved in this paper. Through the “truffle-config.js” file, the wallet of the account
can be associated, and also the provider of the node to be used. The Truffle version used is 5.4.0. All of

3.1. ENVIRONMENTS 17

the solidity contracts compiled with Truffle use the version 0.5.0 with compiler “solc”. The figures 3.1, 3.2
and 3.3 refer to configurations in the “truffle-config.js” file. In figure 3.1, the mnemonic of an account is
defined as a variable.

Figure 3.1: truffle-config.js account mnemonic

In figure 3.2, the definition of the node to be used is shown, in combination with the account’s mnemonic,
and also, the choosing of the correct test network id.

Figure 3.2: truffle-config.js node provider

And in figure 3.3, it can be seen the solidity compiler version, which is 0.5.0, and also, the location of
where the optimizer can be turned off and on (by changing “false” to “true”, and vice-versa).

Figure 3.3: truffle-config.js compiler and optimizer

3.1.6 Waffle

Waffle is a library for writing and testing smart contracts, and it is apparently simpler and faster than truffle
[Waf20]. This is a library with the intend to be simpler, with less dependencies, easy syntax to understand
and faster on execution. As can be seen in figure 3.4, the “waffle.json” makes use of the “solcjs” compiler
and uses the solidity version 0.6.2, which is the version the contracts compiled here are at. This file also
enables the possibility to turn the optimizer on or off, in addition to, defining the folder where the contracts
are, which is “./src”, and defining the folder where the compilation results of said contracts are, which is
“./build”.

18 CHAPTER 3. TOOLS & FRAMEWORKS

Figure 3.4: waffle.json compiler and optimizer

3.2 Accounts

There are two types of accounts that can be created on these blockchains, there are user accounts and
smart contract accounts. In Tezos, user account addresses start with “tz1”, and smart contract addresses
start with “KT1”. In Ethereum, they both start with “0x”. Here it will be mentioned the user accounts
created to interact with the deployment and transactions of the contracts. When an account is created, it
has something called “mnemonic”, that defines a list of strings which designates the identification of an
account.

In the case of Tezos blockchain, an account can be generated with the use of a faucet (test networks only),
which can then be activated by using tezos-client. In figure 3.5 a JavaScript Object Notation (JSON) file
can be seen with a generated account from a faucet.

Figure 3.5: JSON file of account generated from faucet

And in figure 3.6, the respective activation can be seen done on the Granada test network with around
1417 tez. This wasn’t the network used in this paper since it’s no longer maintained but the process is the
same. The activation is done using a public node and the account is given the alias “gtest”, calling the
JSON file shown in figure 3.5.

3.2. ACCOUNTS 19

Figure 3.6: Activation of account generated

In the case of the Ethereum blockchain, an account was created with the use of the tool MetaMask. This
was used as a crypto wallet of the account created. MetaMask is used as a browser extension and equips
the user with a key vault, secure login, token wallet and token exchange, which can be used to buy, store,
send or swap tokens [Met21]. In figure 3.7, the account used in this paper is seen, in combination with the
amount of ether that it holds and the last few transactions made.

Figure 3.7: Metamask account

And in order to fund this account with ether, a faucet was used. But, unlike the one in Tezos, which, when
a button is pressed, generates an account with a random amount of currency, in this one, the user has to

20 CHAPTER 3. TOOLS & FRAMEWORKS

have the account already created. In figure 3.8, Rinkeby’s faucet interface can be seen. In this faucet, each
person has to make a predefined post on one of two social media networks, twitter or facebook, with the
address wishing to be fund. The post only needs to be made once for each account. There are 3 options of
currency to get. The left amounts correspond to the ether to gain, and the right ones indicate a cool-down
to have to wait to use the faucet again. So if an individual chose the 18.75 ETH option, they would have
to wait 3 days (72 hours), to use the faucet once again.

Figure 3.8: Rinkeby faucet

3.3 Nodes

Like mentioned previously, one can either make use of a public community-run node to interact with the
networks, or run their own node, which is usually considered more secure. In the case of the Florence
Network, public nodes were used, due to the fact that the local node couldn’t sync up to the current
version of the blockchain. And in the case of the Rinkeby network, a tool named Infura was used to
connect to the blockchain.

3.3.1 Public Nodes

Multiple public nodes were utilized on the Tezos blockchain. Every time a certain action was executed
using tezos-client, whether it be, creating a user account, deploying a smart contract or interacting with
a contract, there was the need to point out the respective node to interact with. The public nodes used
consisted of “smartpy.io” nodes and “giganode.io” nodes. Tezos Giganode has, since October of 2021,
been shutdown, so the “smartpy.io” ones were more used has of late. For the making of this work, the
nodes “testnet-tezos.giganode.io” and “florencenet.smartpy.io” were the ones who were accessed the most.
To connect to a node using tezos-client, one would have to do “-A” indicating the address with the node
in front, and then “-P” with the number of the port and then “-S” which is used to connect to the node.
And after all of this, the command wanted to be executed. In figure 3.9, an example can be seen. In this
example, the account balance of the “gtest” account created earlier (see figure 3.6), is retrieved. The “?”
represents the tez symbol, which Ubuntu couldn’t process.

Figure 3.9: Get account balance

3.4. LANGUAGES 21

3.3.2 Infura Node

Infura is an Application Programming Interface (API) provider, helping developers get easy, simple access
to the Ethereum blockchain by making use of their nodes. Infura built services and APIs around JSON
Remote Procedure Call (RPC) over both Hypertext Transfer Protocol Secure (HTTPS) and WebSocket
that someone can use with their favorite libraries and frameworks, on four Ethereum networks [Inf21]. In
other words, by using Infura, I am not running my own node exactly, but basically using a framework that
gives me access to a node of my own.

After signing up and creating a project, there is a project ID, in the project’s node general details, which
is shown in figure 3.10. In this case, the endpoint which has the ID was used in the “truffle-config.js” file,
which can be seen on figure 3.2.

Figure 3.10: Infura node project

3.4 Languages

In this section it will be mentioned a brief description of every single high-level language chosen to evaluate
in this dissertation. It will be indicated as well, the versions of the languages in each of the problems
used and described in section 4.1. In terms of how they were compiled and deployed is explained and
demonstrated in section 3.5.

3.4.1 SmartPy

SmartPy is a Python based language for the Tezos blockchain, which is available through a Python library
which comes with a framework built for testing and compilation of the programs. It also possesses an
explorer area, where someone could deploy a previously compiled contract. The versions used are 0.6.9 (on
FirstNPrimes), 0.6.11 (on FirstNPrimesList, FirstNPrimesBoth and NQueens), 0.7.1 (on FirstNPrimesMap)
and 0.7.4 (on MagicSquare).

3.4.2 Liquidity

Liquidity is a functional language for the Tezos blockchain, which borrows syntax from the languages OCaml
and ReasonML, with focus on security. It contains a testing and compiler framework and a deployment

22 CHAPTER 3. TOOLS & FRAMEWORKS

method for the Dune network, which is a platform of applications over a blockchain. It also possesses a
way to decompile Michelson code into Liquidity, which is very interesting. All of the programs written in
Liquidity in this paper are done so in version 2.0.

3.4.3 LIGO

The LIGO languages are functional languages composed of three different languages, which can be used
on the Tezos blockchain. LIGO was created to bring a familiar interface in three distinct aspects.

PascaLIGO

PascaLIGO is one of the LIGO languages, which has a syntax inspired by Pascal. The versions used
are 0.20.0 (on FirstNPrimes), 0.21.0 (on FirstNPrimesList and FirstNPrimesBoth), 0.22.0 (on NQueens),
0.23.0 (on FirstNPrimesMap) and 0.25.0 (on MagicSquare).

CameLIGO

CameLIGO is another of the LIGO languages, which has a functional style inspired by OCaml. The
versions used are 0.20.0 (on FirstNPrimes), 0.21.0 (on FirstNPrimesList and FirstNPrimesBoth), 0.22.0
(on NQueens), 0.23.0 (on FirstNPrimesMap) and 0.25.0 (on MagicSquare).

ReasonLIGO

And ReasonLIGO has a ReasonML similar syntax that goes off of the strong points of OCaml, this is probably
why they ReasonLIGO and CameLIGO are so alike. The versions used are 0.20.0 (on FirstNPrimes), 0.21.0
(on FirstNPrimesList and FirstNPrimesBoth), 0.22.0 (on NQueens), 0.23.0 (on FirstNPrimesMap) and
0.25.0 (on MagicSquare).

3.4.4 Archetype

Archetype is a DSL for the Tezos blockchain, where it restricts the type of programs that can be expressed.
The reason for this is that it makes this language easy to specify and verify formally. Like Liquidity, it also
focuses on security. It provides a work space framework which consists of compilation and deployment of
contracts. The versions used are 1.2.6 (on FirstNPrimes, FirstNPrimesList and FirstNPrimesBoth), 1.2.7
(on FirstNPrimesMap and NQueens) and 1.2.8 (on MagicSquare).

3.4.5 Solidity

Solidity is a statically-typed, object-oriented language for the Ethereum blockchain. It’s most likely the most
used out of all the high-level languages mentioned in this paper, due to being the main one of Ethereum
(the biggest of the two blockchains), where most of its smart contracts are written in this language. The
contracts made in Truffle have the version 0.5.0 in all of the problems, and the ones made in Waffle have
the version 0.6.2 in all of the problems as well.

3.5. NETWORKS 23

3.4.6 Vyper

Vyper is a strongly-typed language for the Ethereum blockchain, which leverages Python’s unique features.
Vyper was created intentionally restrictive in order to make the contracts more secure and easier to inspect,
which is why it possesses less attributes than Solidity. All of the Vyper programs created, are done so in
version 0.2.13.

3.5 Networks

Here are the test networks determined to deploy the contracts into. After setting up the accounts with the
respective currencies and a way to access the nodes needed to reach these networks, compiled contracts
can now be deployed, or in some cases, compiled and deployed in the same framework.

3.5.1 Florence Network

Florence network is a Tezos test network, which was the network chosen due to, not only being the newest
test network at the beginning of its usage in this work (around June 2021), but also in comparison to the
previous one, it had gas optimizations. It came with reduced gas consumption in smart contract execution
by increasing the efficiency of gas computation inside the Michelson interpreter [TAF21b].

In the case of the Florence network, contracts were deployed and interacted using tezos-client and a public
node. This is not the case with all of the Tezos’ languages though, and those cases will be shown further
ahead. But for now, an example of a contract, already in Michelson code, is going to be shown being
deployed into the Granada network, and also being interacted with.

As an example, the “FirstNPrimes” (see 4.1.1) program made in CameLIGO, was deployed on Granadanet.
The command used to achieve this can be seen in figure 3.11.

Figure 3.11: Deploy contract command

In this command, it’s done the access to the node, and then, by being in the appropriate directory, it
originates the contract, already compiled to Michelson from CameLIGO, of “FirstNPrimes”. It is given a
name, and then a number is transferred from the user account into it, in this case, there’s no need to
send an actual amount bigger than zero because this contract doesn’t enforce payable transactions, nor
does it need money in its balance. The “–init ’0”’ means it initializes the contract’s storage at 0, and the
“–burn-cap 0.2”, puts a cap on the amount of tez to burn with this operation, otherwise it would default
to 0. After the operation being successful and injecting it in the node, in figure 3.12, it can be seen what
is shown next.

24 CHAPTER 3. TOOLS & FRAMEWORKS

Figure 3.12: Contract deployed with success

At the end, is shown the initial storage, the address of the new contract created on the network, the storage
size and the consumed gas for this operation. There’s also balance updates on how much tez was spent
from the user account used to make this transaction.

And then, a transaction is made into this newly deployed contract, and figure 3.13 shows the command
that was used to call the contract with the argument 100.

Figure 3.13: Contract transaction command

In this command, the node is accessed, sending 0 tez to the contract because there is no need to send more,
the account address is used to identify the contract to use (the alias, “firstnprimes_cameligo_granada”
created before, would’ve also worked here, since this contract was deployed in the same location, the alias
is saved locally as that specific address), and then the argument 100 sent to make the transaction. In
figure 3.14, we see the aftermath of said transaction.

Figure 3.14: Contract transaction with success

And here, we can see the parameter sent, the updated storage, which is now 541, since this is the 100th
prime number and this is the intended result so it’s correct. We see that the storage got increased by 1
byte, the gas consumed and also the balance update of the user account.

3.5. NETWORKS 25

But before being able to deploy, one would need the respective compiled Michelson code of each program.
All the following examples were shown with the FirstNPrimes program (see 4.1.1).

In SmartPy, the SmartPy Integrated Development Environment (IDE) was used to write, test and compile
SmartPy code. In figure 3.15, the contract written in SmartPy can be seen, and also the compiled Michelson
code on the right.

Figure 3.15: SmartPy IDE

This website also contains an explorer area, where the compiled contract could be deployed. This was
tested but the results in gas were the same as doing it in tezos-client.

In Liquidity, the Liquidity IDE was used to write, test and compile Liquidity written programs, shown in
figure 3.16. These were deployed on tezos-client.

Figure 3.16: Liquidity IDE

In the LIGO languages, the LIGO IDE was used to write, test and compile all three of the LIGO languages.
These were deployed on tezos-client. In figure 3.17, the LIGO IDE can be seen with a program written in
CameLIGO, by choosing the respective language at the top.

26 CHAPTER 3. TOOLS & FRAMEWORKS

Figure 3.17: LIGO IDE

And by clicking “Run” on the “Compile Contract” function, we can see the Michelson output at the bottom
below the program written, as can be seen in figure 3.18.

Figure 3.18: LIGO IDE (Michelson output)

In the case of the Archetype language, the website possesses a button which redirects the user to gitpod.io.
After logging in with GitHub, it creates a fresh work space with previously made archetype contracts.

3.5. NETWORKS 27

Figure 3.19: Archetype gitpod work space

The FirstNPrimes program is created here, the details of account “gtest” are imported and activated with
commands “completium-cli import faucet ftest_acc.json as ftest”, and “completium-cli switch account”
to switch to it. Now there’s two ways to go about here. Either the command “completium-cli generate
michelson FirstNPrimes.arl” is used to just get the Michelson code, or the command “completium-cli deploy
FirstNPrimes.arl” to deploy right away. In figure 3.19, this interface with the code and the terminal can be
seen, with the second command executed.

3.5.2 Rinkeby Network

Rinkeby network is a PoA test network for the Ethereum blockchain. PoA is a variation of the PoS. In this
consensus algorithm, the nodes who are known for a while and trusted are chosen to validate the blocks. A
validator doesn’t need to stake any of its assets, like in PoS, but instead its own reputation. This basically
means they stake the amount of time they have spent in the network, this becomes better than PoS in the
sense that in PoS, the more wealthy get more of the benefits, but here its the oldest members who get
the rewards, which in turn, runs into the issue of only a few nodes being in charge, which highly decreases
decentralization. [OTJA21].

The Ethereum blockchain has different free test networks available to the public. It has four test networks,
and each one of these correspond to a unique ID. These networks are “Görli” with an ID of 6284, “Kovan”
with an ID of 42, “Ropsten” with an ID of 3 and the relevant one used here “Rinkeby” with an ID of 4.
This ID is the network ID indicated in the “truffle-config.js” file, to tell Truffle that the provider link of
Infura corresponds to a Rinkeby node (see 3.2).

28 CHAPTER 3. TOOLS & FRAMEWORKS

In the case of the Rinkeby network, contracts got compiled in various different ways. With the use of Truffle,
Waffle, a private environment and MyEtherWallet. All of these ways will be shown through examples, and
also how the transactions were deployed and executed.

Figure 3.20: Truffle program compiled

Figure 3.21: Truffle program migrated

In Truffle, after setting up the truffle-config.js file, and putting the solidity programs wanted to be com-
piled and deployed (because truffle does both) on the “contracts” folder, a variable is set in the file

3.5. NETWORKS 29

“2_deploy_contracts.js” that calls the “.sol” file which calls a function to deploy said variable. After this,
on Powershell, while being on the truffle project created directory, the command “npx truffle compile” is
used to compile all of the contracts and the compiled versions go to the folder “build”, also called artifacts,
as can be seen on figure 3.20.

In this case, like before, the program FirstNPrimes (see 4.1.1) written in Solidity, was chosen as an example.

And then, after having the specific contracts meant to be deployed on the “2_deploy_contracts.js” con-
figured to be migrated, the command “npx truffle migrate –network rinkeby” can be issued to deploy the
chosen contracts into Rinkeby. Sometimes, “–reset” is needed in front of the command due to already
having deployed these programs previously. This command then executes a dry-run simulation of the mi-
gration, and then if everything goes well, it does the actual migration. In figure 3.21, the migration can
be seen.

In this case, it says “Replacing “FirstNPrimes_V3””, because this is migrating a program which was
deployed previously under the same name. It shows the new contract’s address, the transaction hash, the
user account address used to make this transaction, the amount of gas used, the gas price, and also, the
total cost of ether taken from the user account.

Before going on to show how to interact with this contract, the remaining examples are going to show how
the waffle solidity programs and the vyper programs were compiled and deployed.

Figure 3.22: Waffle compiled contract ABI

30 CHAPTER 3. TOOLS & FRAMEWORKS

Figure 3.23: Waffle compiled contract bytecode

Using the same problem, and being on the waffle directory, while having this specific program in the “src”
folder, the user can run the command “npm build run”, and waffle will compile every solidity program in
the “src” folder and put the JSON files of the result of the compilation on the “build” folder. This JSON
file possesses a lot of diferent information, but most importantly, it has the two necessary things needed
to deploy, which are, the contract ABI and the bytecode. The contract ABI can be seen figure 3.22 and
the bytecode on figure 3.23. This figure doesn’t show the entirety of the bytecode, which in this case, is
642 characters long.

And in order to deploy this contract, because this was only the compilation, the interface MyEtherWallet
assisted in the deployment of the smart contract into the Ethereum blockchain. In this case, the Infura
node provider is not used. In figure 3.24, after connecting the MetaMask account with the website,
the information given to MyEtherWallet is shown. And in figure 3.25, MetaMask shows how much this
deployment transaction would cost. After confirming, a notification is received and clicked on.

Figure 3.24: Contract ABI and bytecode on MyEtherWallet

3.5. NETWORKS 31

Figure 3.25: Contract deployment on MyEtherWallet

This notification opens a page on Etherscan, where it has information about the transaction that just
occurred. Which can be seen on figure 3.26.

Figure 3.26: Etherscan information on contract deployment

32 CHAPTER 3. TOOLS & FRAMEWORKS

Here, the transaction hash can be seen, along with, the block where it was inserted, the address of the
account created, with the transaction fee showed earlier, the gas price paid to the miner and the gas used
in this transaction.

Figure 3.27: Vyper compiler bytecode and ABI

And finally, the last way used to compile programs, in this case, Vyper programs, was with the use of a
private virtual environment and the vyper compiler. The compiler uses version 0.2.13. Important to note,
that the Vyper programs were also tested on Truffle and Waffle and the results were the same. This private
environment is used on Ubuntu. To activate, the command “source ∼/vyper-venv/bin/activate” is used.
After putting the terminal on the directory where the vyper programs are, they are ready to be compiled.

By using “vyper FirstNPrimesVy.vy”, it outputs the bytecode of the program, and if “vyper -f abi First-
NPrimesVy.vy” is used, the terminal shows the contract ABI. In figure 3.27, the respective outputs of both
commands are shown.

These were the methods used to compile and deploy the contracts in Rinkeby. But, in order to actually
interact with them and send arguments to make transactions, Etherscan was used. Using the contract
address, one can access the previously deployed contracts in the blockchain. Here, though, the contracts
had to be verified first, with their program code, before being able to make transactions with them. After
this, the account is connected with the website and the transaction is made and verified on MetaMask,
as demonstrated in figure 3.28. After waiting a bit and receiving the usual notification, an etherscan page
with information on the transaction is shown, much like in figure 3.26.

Figure 3.28: Etherscan contract transaction

3.5. NETWORKS 33

If we go back, and go to the “Read Contract” tab, we can access the storage. After executing the
transaction with argument 100, we can see in figure 3.29 the respective storage, 541, which is the correct
output.

Figure 3.29: Etherscan contract storage

4
Performance Analysis

In this chapter, we discuss the parametric problems chosen to be used as a benchmark in the performance
evaluation. These problems were written in the high-level smart contract languages already mentioned
in section 2.3.1. The only language which was used more than once is Solidity, it was tested on the
truffle environment with the optimization off and on, and it was also tested on the waffle library with
optimization off and on. The Vyper language was evaluated in truffle, waffle and in a vyper compiler in
a virtual environment, and the outcome was the same for all, therefore only one instance of this language
will be displayed. Afterwards, the evaluation of the contracts created and deployed will be mentioned and
represented with the various deployment and transaction gas values.

4.1 Parametric Problems

In this section, there will be a listing and explanation of the parametric problems chosen and written into
smart contracts. The names of the programs are “FirstNPrimes”, “FirstNPrimesList”, “FirstNPrimesBoth”,
“FirstNPrimesMap”, “NQueens” and “MagicSquare”.

The choice of the problems to represent and transform into smart contracts was made with the idea that
an argument could be increased to see the rise of the gas values. With the programs “NQueens” and

35

36 CHAPTER 4. PERFORMANCE ANALYSIS

“MagicSquare”, the arguments increase in a linear manner, but in the other ones, which are to reach the
N prime number with different approaches, the arguments are increased in a distinct manner, it starts with
the argument 100, it increases by 10% of the previous value (the growth of a number is done by doing the
respective rise by the percentage of the prior number rounded to the tenths, with one decimal point, but
the arguments used are rounded to the integer), until reaching 214, then it increases by 25% until reaching
523, finally it increases by 50% thrice, ending with the final argument of 1766. This totals 16 arguments,
not counting the gas value of the deployment of the contracts in the respective blockchains.

4.1.1 First N Primes

This first parametric problem chosen was one where the argument given is N, and the program, starting
at 3, goes 2 by 2 checking if the number at the moment is a prime number or not. A prime number is a
number in which it is only divisible by itself and 1, and no other value. Another variable starts at 3 every
time a new number is inspected and going 2 by 2 until the square root of the current number, checks if
the current number is divisible by this second one, if it is, moves onto the next number, while increasing
a counter every time a prime number is found and goes through all first N prime numbers. This counter
starts at 1, considering the number 2 right away. Every time a number is checked, it increments 2 and
checks again. This program keeps running while the counter variable is smaller than the N argument.
Initially, it was meant to save all the primes calculated until the Nth one in the storage of the contract,
but unfortunately that resulted in a very big storage which sometimes was too large and it caused errors or
the transactions were executed with an increased gas number which made the program overflow too soon.
Ultimately, the decision made was to only save the last prime found in the state, which is the Nth prime
number.

4.1.2 First N Primes (List)

In this problem, basically the same thing as the previous one occurs, but the difference here is that it starts
with a list or array (depending of what data types each language has available) with the value 2 in it, and
the counter of primes found at 1. It goes 2 by 2 much like the original problem, but in order to check
whether or not the number is prime, it doesn’t go 2 by 2 until the square root of the current one, instead
it goes through all the values already inserted in the list, and checks if the number is divisible by every
member; if it is divisible by at least one, another variable exists, starting at 0, to basically state whether
the number is prime or not. After going through every element of the list, this variable is either 0 or 1,
if it’s 0, the current number inspected is not divisible by any of the numbers in the list and therefore is
a prime number and gets added to the list, and the prime counter is also incremented; if it’s 1, it found
at least one element by which it is divisible by and therefore not a prime, in this case, the variable gets
reset, which means set back to 0. Then, the variable where the current number was just examined gets
incremented by 2 and the loop repeats until it finds the Nth prime.

4.1.3 First N Primes (Both)

This one is a combination of two previous programs. It goes 2 by 2 until the square root of the current
number, but there’s also a list/array of the primes found. Instead of having a second variable which goes 2
by 2, like the first program, it goes through the members of the list, like the second program, but with the
difference that it comes to a stop until it reaches the square root of the current number, or finds a divisible
number, and doesn’t verify the entirety of the list of primes found at the moment. After this cycle, it does

4.1. PARAMETRIC PROBLEMS 37

one last examination to determine if the loop stopped because it reached the square root of the current
number or found a number by which it is divisible. This is done by a condition checking the divisibility by
the value in the latest index verified in the loop. If the current one is divisible by this number, that’s the
reason the cycle came to an end and it means it’s not a prime; if it isn’t, that means it reached the square
root of the number, getting to the conclusion that this specific number is prime.

The issue here is that in most of the high-level languages, which just happens to be all of the Tezos
languages, it is impossible to access the index of a list. To circumvent this, in these languages, a map is
used instead, with the id representing the index, and the keys representing the primes saved so far. Because
of this change, a fourth problem was created, which is similar to “FirstNPrimesList” but with a map called
“FirstNPrimesMap”, just to compare the performance of the usage of a list versus a map in the Tezos
languages. This also means that the Solidity and Vyper languages are not considered in this program due
to a map never being used in these programs.

4.1.4 First N Primes (Map)

In this problem, like mentioned before, the program does exactly the same as “FirstNPrimesList” but does
it with a map as opposed to a list. The one with a list makes use of a variable, which is 0 or 1, that like
mentioned before, indicates whether the current number is prime or not. Along with this, in this program,
there is an additional variable representing the index, used to check and increment each position in the
map. Before incrementing by 2 and checking the next number, both this variable and the one that can
only have 0 or 1 are reset to 0. Like mentioned before, Solidity and Vyper were not tested here.

4.1.5 N Queens

This program is slightly bigger than the previous ones. This problem is the classic one of placing N queens
in a chessboard of size NxN, without any one of them attacking the others. Thinking of the rules of how
the pieces move in chess, in the case of the queen, she can move horizontally, vertically and diagonally,
basically she can move any number of squares in any direction [Ead16]. With this in mind, this program,
while in the progress of placing the queens, shouldn’t place a queen in the same line, column or diagonal
of another. It takes as an argument a value N, which will determine the number of queens to place, as well
as the length of the side of the board. In the state of the contract, the board is saved, which is represented
by a map in the Tezos languages and by an array in the Ethereum ones. Chessboard are two dimensional,
but a one dimensional data type is enough to save it, the index of the array or id of the map will represent
the row and the value of this position is the column. For example, if N = 4, then an acceptable solution
could be the following, where the values on the left are the keys or indexes, representing the row, and the
ones on the right are the respective values, representing the column:

Queens : [0, 1, 2, 3] = [1, 3, 0, 2]

Ignoring the N’s of 2, 3, and below and equal to 0, since it is impossible to find a solution in these cases,
the program goes and places the queens one by one until having all of them on the board. It does this
by putting a queen in the first position accessible, and then moves onto the next row, where it takes into
account the restrictions of spaces based on the previous queens already placed. Every time a queen is
placed on the board a variable increments, saving the number of queens already put down, and if a queen
is removed, this variable decrements. When placing a certain queen, it goes through every row (until
the current one), sees where the other queens are located, and blocks those specific columns, while also,
blocking the two diagonals of each queen in the current row, as long as it doesn’t go outside the bounds

38 CHAPTER 4. PERFORMANCE ANALYSIS

of the board. This means that if queen 1 (row 0) is in the second position (position 1) and we’re placing
queen 2 (row 1), it blocks the positions equal to the position of the other queen minus the distance between
rows, which is 0 in this case, and equal to the same position plus the distance between rows, which is 2. It
would also block position 1, since this column was already used. If this program finds a situation where it
cannot place a queen in a single row, due to every position being blocked by the previous queens, it goes
into backtracking mode, and goes back. What it does here, is it goes to the latest placed queen and moves
it to the next available space, if the queen is already on the last available space in a row, it deletes her,
decreases the counting of queens variable, and keeps going back until it finds a new spot for any queen.

In the case of N = 4, this is exactly what happens. It starts by putting the 1st queen in position 0 of row
0, it goes to the next row, blocking positions 0 and 1, and places the 2nd one on position 2. And then,
when it tries to place the 3rd one, it notices that both columns of the previous queens and the diagonals of
the second one, blocked the entire row, making it impossible to put a queen in this situation. To fix this,
it backtracks and changes queen number two to position 3, then it tries again on the 3rd queen and this
time there is a spot available on position 1, so it gets placed there. Now there’s another issue, it tries to
put the fourth and final queen but it is again impossible, the two previous queens block everything for this
row and so the only thing left is to backtrack the board once again. It deletes the third queen since there
isn’t another spot after the current one to place (in this row), and then does the same thing for queen
number two since it is in the last position. It tries the whole board again, going to the very first queen
and changes it to position 1 from 0. It then puts the second one in position 3, since this is the only one
available, goes to the 3rd queen, putting it on the first location free on the row, which is position 0, and
finally the last queen has only one spot to be put in, and it is position 2, where it is placed, finishing the
board and reaching a solution.

The program uses this algorithm for any N argument, with some requiring more backtracking iterations
than others, which will be shown and discussed a bit ahead with the respective gas values.

Running this program with N = 8, the solution that it encounters, can be viewed in figure 4.1 in the form
of a chessboard. With this visualization, it can be seen that none of the queens share the same row, column
or diagonal.

8 QZ0Z0Z0Z
7 Z0Z0L0Z0
6 0Z0Z0Z0L
5 Z0Z0ZQZ0
4 0ZQZ0Z0Z
3 Z0Z0Z0L0
2 0L0Z0Z0Z
1 Z0ZQZ0Z0

a b c d e f g h

Figure 4.1: 8-Queens solution in a chessboard

4.1. PARAMETRIC PROBLEMS 39

4.1.6 Magic Squares

Out of all of the problems chosen to create into smart contracts, this one originated the largest program. It
involves the creation of magic squares of order N, or in other words, a NxN magic square. This square, in
order to be classified as a magic square, has to fulfill some restrictions. A magic square is a square divided
into a square number of cells in which, natural numbers, all different, are arranged in such a way that the
same sum is found in each row, each column and each of the two main diagonals [Ses19]. This sum, called
the magic constant, let’s say M, can be calculated using the following formula:

M = N × N2 + 1

2

This program, much as the others, takes the number N as an argument, this N defines the length of the
side of the square to be made, since it designates its order. To construct the square, all of the numbers
that are available to use range from 1 to N2, and their usage in the square cannot be repeated. Just
like the n-queens problem, in theory, it presents itself in a two dimensional environment, but a simple one
dimensional data type is enough, for instance, using an array or map is sufficient to save the magic square.
The square will be saved in the storage of the contract with one of the aforementioned variable types.

There are multiple different ways to tackle this problem, some being faster but restrictive and others acting
much slower. Three distinct algorithms were previously tested and experimented with before reaching the
one chosen to be evaluated in this paper.

The first one was a simple filling one, which had as many iterations as cells in the square, so time wise
it was very quick. It always starts in the cell in the middle of the first row, putting the number 1, and
moving in a diagonal manner, with one cell above and one to the right of the previous one, filling it with
the numbers available in order 1 by 1. If it went out of bounds of the square it wrapped around to the
opposite side, and if, after placing a number and moving to the next cell, it encounters an already filled
cell, it ignores the diagonal movement and goes one cell down instead. This way of finding a solution is
very fast, would always end up with a magic square but has two issues with it. First it barely increases the
gas value when the N argument increases a great deal of times. This makes the program eventually reach
an overflow on storage capacity before it even gets to exceed the gas limit. Second, this form of filling the
square only works with odd N arguments, if the number is even, this strategy doesn’t work.

Another method tested involved using permutations to find a solution. It would generate every permutation
with the numbers from 1 to N2, and in each instance created, it would have a different order of the sequence
and would check the sums of the lines, columns and both the main diagonals to see if it was a magic square,
if not, it moved on to the next permutation, if it was, it finished and saved the solution found in the state.
The mechanism used in the generation of the permutations is called Heap’s algorithm, which involved in
obtaining all permutations only by interchanging two of the objects between each permutation and its
predecessor [Hea63]. This method was more gas exhaustive than the previous one, but to an excessive
degree. When using N equal to 3, the smallest magic square possible to achieve, it would be somewhat
fast, but with N as 4, it would take an enormous amount of time, and therefore, gas would obviously
overflow.

The last experimental method involved the usage of backtracking like it was used in the n-queens problem.
This procedure travels from cell to cell filling it with the first number unoccupied, while keeping track of
the numbers being used and the ones free to use. When it reaches the end of each row, it checks the sum
and sees if it is equal to the magic constant. Does the same when it comes to the end of each column and
also in the bottom corners, so it can check each of the main diagonals sums. Basically, it doesn’t have to
fill the entire grid with numbers to inspect every one of the different sums, saving a great deal of time. In

40 CHAPTER 4. PERFORMANCE ANALYSIS

other words, by the time it reaches the second row, it should be certain that the first row adds up to the
magic constant. This method proved to be faster than the permutations one, showing capacity of reaching
a solution when N is 3 and 4, but when it is bigger than 4, it takes far too long.

Finally, the one actually implemented and evaluated here is one where it uses a method of superposition.
This specific sub-method of superposition, because there are several, was discovered by Leonhard Euler.
The original paper was called “De quadratis magicis”, it was written in Latin in 1776 and was published
in 1849. The translated English version was published in 2004. In this paper, Euler basically explains that
magic squares can be constructed with the usage of Latin letters in one square and Greek letters in another.
These two squares’ cells can then be paired up resulting in a square where each pair is different from each
other, while following some restrictions and general rules depending if the N is even or odd [Eul04].

In the case of this program, instead of using Latin and Greek letters, numbers starting at 0 until reaching
N-1 were used in both the initial squares, following the respective restrictions, the pairing of the two squares
should be unique for each cell and, after the calculations, it should result in a magic square. So, in the
beginning, the code starts by filling the first main diagonal of square A (A and B are the initial squares),
and the second main diagonal of square B, in the following manner: if N is odd, it takes the value in the
middle of the 0 to N-1 range, and fills the entirety of both diagonals with it; if N is even, it starts at 0,
and fills 1 by 1, increasing this value by 1 for each cell, the diagonal of A, starting at the top left corner,
and does the same thing with B, but starting with the top right corner instead. After this, it goes and fills
the opposite diagonals of both of the squares, this time is the second main diagonal of A and the first of
B. The way it achieves this, is starting at the bottom left corner of A and the top left of B, if N is odd, it
simply goes from 0 to N-1 and fills them 1 by 1 in order, while ignoring the middle cell, since it is already
filled. If N is even, it is slightly different, because for each position, it has to block and not place a number
which already exists in that row or column, so there are no repetitions.

One important thing to note, is that throughout the filling of both these squares, if it notices there are
two numbers placed in the same cell position in each square, it saves that pair to make sure it doesn’t
get repeated later. Another aspect of the program, is that it uses coordinates when dealing with squares,
but since it is a one dimensional data type, in order to access each specific cell it calculates coordinate X
multiplied by N plus the coordinate Y. If, for example, N is 3, and it wants to access the position with the
coordinates (1,1), by doing the math, it results in the position 4 (1 × 3 + 1), which is the index or key of
whatever data type is being used.

After dealing with both main diagonals in both squares, it goes on to fill the rest of the squares. It
accomplishes this with the use of backtracking. This backtracking is different than the one previously
mentioned, because in the earlier one it was a backtracking method for the magic square itself, and it
would check the sums when the time for it arose. In this case, it is filling the rest of the squares with
the numbers ranging from 0 to N-1, but, with the restriction that they cannot repeat in the same row or
column. And since the diagonals are already filled and each of their cells are distinct at this point, it is not
necessary to check those. So, it does that, it goes and for each empty cell, it keeps track of the numbers
already used in that respective row and column, and inserts one that is not in use yet. If it comes to a
situation where there’s an empty cell but all of the numbers in the range are unavailable, it goes back to
the previous cell, removing the pair previously saved, since it is about to alter pairs made before.

Following the filling of the entirety of both A and B squares, it comes down to a simple calculation in each
pair of cells to get to the final square. This determination is done by passing from cell to cell, on both
squares at the same time, and multiplying the value in square A with N and adding the value in square
B plus one. If all is done correctly, the final result should be a magic square without the need to check
the sums throughout the whole program. So it can be illustrated in a more visual manner, the next two
figures, will show how squares A and B would look like with this procedure and also their resulting square.

4.2. PROGRAMS & PERFORMANCE 41

Since the process is slightly different depending if the N is odd or even, two examples are shown in both
these cases. In figure 4.2, we can see the squares A and B and the resulting magic square when N is 3.

1 0 2

2 1 0

0 2 1

A

0 2 1

2 1 0

1 0 2

B

4 3 8 15

9 5 1 15

2 7 6 15

15 15 15 15 15

Figure 4.2: Order 3 magic square solution

As can be seen, each pair forms a different number, if we take the values in coordinates (2,1), which are
the numbers 2 in A and 0 in B, and doing the calculation explained beforehand, it results in 7 (2 × 3 + 0
+ 1), which is the number in the same position in the magic square on the right. The outer layer of the
resulting square shows that each sum correctly equals to the intended magic constant. And the same thing
occurs in figure 4.3, where we can see the squares A and B and the resulting magic square when N is 4.

0 3 1 2

2 1 3 0

3 0 2 1

1 2 0 3

A

1 3 2 0

2 0 1 3

0 2 3 1

3 1 0 2

B

2 16 7 9 34

11 5 14 4 34

13 3 12 6 34

8 10 1 15 34

34 34 34 34 34 34

Figure 4.3: Order 4 magic square solution

This method of superposition shown here, should in principle work for every integer with N greater or equal
to 3 with the exception of 6. It is not certain if it works with 9 or higher because using the programs
evaluated here, some reached the solution of N = 7, which was the maximum accomplished, and 8 worked
in theory (done by hand).

4.2 Programs & Performance

Here it will be shown the gas values calculated with every language in each parametric problem, displayed in
table form, and afterwards, references will be made to the source code structures of each program written
and created in each of the languages.

All of the transactions done, were executed on the test networks Florencenet (see 3.5.1), for Tezos, and
Rinkeby (see 3.5.2), for Ethereum. And it’s important to keep in mind that each of these locations possess
different gas limits on the transactions. Rinkeby has a gas limit of around 30.000.000 and Florencenet has
a gas limit of 1.040.000. Because of this, the languages tested on Rinkeby, which are Solidity and Vyper
(5 instances, since there’s 4 for Solidity), are usually going to have bigger gas values than the Tezos’ ones.
This difference will be dealt with in chapter 5, but for now, comparisons with the languages in different
blockchains will be made based on the arguments that they successfully executed.

The language Solidity is tested four times, with the usage of truffle with the optimization on and off, and

42 CHAPTER 4. PERFORMANCE ANALYSIS

in waffle, with the optimization on and off as well, these four instances are indicated with “Solidity T.ON”,
“Solidity T.OFF”, “Solidity W.ON”, “Solidity W.OFF”, respectively. The numbers in the top row of the
tables are the arguments used in each transaction. The word “Deploy” represents the gas value of the
deployment of each corresponding contract into the blockchain.

In tables 4.1 and 4.2, all of the gas values calculated for the program FirstNPrimes (see 4.1.1) can be seen
in all of the high-level languages referenced in the state of the art (see 2.3.1), and the solidity variations.

Language Deploy 100 110 121 133 146 161 177 195
SmartPy 4304 8474 8967 9484 10227 10979 11981 13001 14283
Liquidity 7275 19951 21679 23481 26094 28730 32226 35769 40240

PascaLIGO 4543 10848 11619 12420 13585 14756 16299 17856 19825
CameLIGO 4222 9299 9909 10544 11465 12394 13622 14866 16436

ReasonLIGO 4222 9299 9909 10544 11465 12394 13622 14866 16436
Archetype 9150 87639 96304 104995 117947 130643 146245 161319 180962

Solidity T.ON 128509 180091 203259 227496 262463 297824 344857 392653 452807
Solidity T.OFF 140161 193955 219206 245625 283744 322295 373590 425724 491335
Solidity W.ON 115867 171827 193777 216742 249867 283368 327929 373217 430209
Solidity W.OFF 130951 185682 209715 234862 271139 307830 356653 406279 468728

Vyper 158082 416710 476250 538842 628436 719400 840968 965104 1120656

Table 4.1: Gas Values of FirstNPrimes (1 of 2)

Language 214 268 334 419 523 785 1178 1766
SmartPy 15598 20035 26149 34663 46734 82709 148659 272039
Liquidity 44780 60151 81246 110477 151823 274442 498056 914684

PascaLIGO 21804 28508 37651 50232 67949 120095 214427 389023
CameLIGO 18025 23405 30772 40957 55342 97895 175292 319180

ReasonLIGO 18025 23405 30772 40957 55342 97895 175292 319180
Archetype 198427 258456 334351 429867 556302 887510 Overflow Overflow

Solidity T.ON 514314 722101 1008038 1405584 1968788 3644617 6711528 12441571
Solidity T.OFF 558449 785188 1097298 1531357 2146422 3977160 7328702 13592278
Solidity W.ON 488494 685379 956328 1333066 1866804 3455069 6361954 11793329
Solidity W.OFF 532620 748457 1045579 1458830 2044429 3787603 6979119 12944027

Vyper 1284284 1825758 2574352 3620906 5107498 9554892 17740708 Overflow

Table 4.2: Gas Values of FirstNPrimes (2 of 2)

One important aspect to note first, is that the values demonstrated here, are not the speed of the programs,
even though, the words “slower” and “faster” (and similar) will still be used. These values represent the
gas (see 2.6) amount used in each transaction.

All of these programs source codes are listed at the very end of this paper in the appendix A. SmartPy (see
A.1), Liquidity (see A.2), PascaLIGO (see A.3), CameLIGO (see A.4), ReasonLIGO (see A.5), Archetype (see
A.6), Solidity (see A.7) and Vyper (see A.8).

With the values shown here, we can notice a few different things. It can be seen that SmartPy, CameLIGO
and ReasonLIGO start off with smallest values in deployment, this is actually the only moment where
SmartPy is not faster than every single other program. Throughout the whole testing of the rest of the
arguments, SmartPy is the fastest program in the Tezos blockchain, while in Ethereum, Solidity compiled
in waffle with the optimization on is the best one. In terms of the worst ones, Liquidity and Archetype are

4.2. PROGRAMS & PERFORMANCE 43

the slowest programs (of the Tezos’ ones), with Archetype overflowing (passing the gas transaction limit),
on the two last arguments, while Liquidity almost overflowed on the last one. And Vyper is the slowest
(of the Ethereum languages), overflowing as well on the last argument, but not worse than Archetype.
Solidity when optimized in both truffle and waffle, is better than their non-optimized counterparts. Another
interesting thing to point out, is that both CameLIGO and ReasonLIGO have the same exact gas values.
This is because, even though, they are slightly different programs, they compiled to the same Michelson
code. This occurrence apparently happens on every single program, so to avoid repetition, it will only be
described here.

In tables 4.3 and 4.4, all of the gas values calculated for the program FirstNPrimesList (see 4.1.2) can
be seen in all of the high-level languages referenced in the state of the art (see 2.3.1), and the solidity
variations.

Language Deploy 100 110 121 133 146 161 177 195
SmartPy 3948 25479 29697 34334 41971 50167 61241 72925 89827
Liquidity 6396 72909 86332 101090 125397 151488 186744 223946 277769

PascaLIGO 5233 34154 39773 45937 56068 66923 81565 96992 119278
CameLIGO 4213 26225 30513 35223 42975 51289 62515 74353 91470

ReasonLIGO 4213 26225 30513 35223 42975 51289 62515 74353 91470
Archetype 5259 43826 51390 59707 73319 87931 107639 128439 158458

Solidity T.ON 151441 2550110 3072782 3648162 4596839 5616209 6994941 8451065 10559400
Solidity T.OFF 166093 2601099 3133812 3720181 4686909 5725585 7130318 8613801 10761614
Solidity W.ON 141157 2187972 2635422 3127963 3939990 4812483 5992492 7238688 9042973
Solidity W.OFF 154729 2330170 2806549 3330866 4195246 5123894 6379749 7705936 9625923

Vyper 2725126 4724261 5687642 6747813 8495587 10373079 12911926 15592679 19473561

Table 4.3: Gas Values of FirstNPrimesList (1 of 2)

Language 214 268 334 419 523 785 1178 1766
SmartPy 106088 172148 276541 439877 708797 Overflow Overflow Overflow
Liquidity 329551 539958 872513 Overflow Overflow Overflow Overflow Overflow

PascaLIGO 140693 227536 364482 578394 930120 Overflow Overflow Overflow
CameLIGO 107929 174753 280267 445253 716755 Overflow Overflow Overflow

ReasonLIGO 107929 174753 280267 445253 716755 Overflow Overflow Overflow
Archetype 187364 304482 489317 778292 Overflow Overflow Overflow Overflow

Solidity T.ON 12589233 20845536 Overflow Overflow Overflow Overflow Overflow Overflow
Solidity T.OFF 12829337 21239054 Overflow Overflow Overflow Overflow Overflow Overflow
Solidity W.ON 10780027 17844994 29024363 Overflow Overflow Overflow Overflow Overflow
Solidity W.OFF 11474232 18991095 Overflow Overflow Overflow Overflow Overflow Overflow

Vyper 23209209 Overflow Overflow Overflow Overflow Overflow Overflow Overflow

Table 4.4: Gas Values of FirstNPrimesList (2 of 2)

All of these programs source codes are listed in appendix A, as follows. SmartPy (see A.9), Liquidity (see
A.10), PascaLIGO (see A.11), CameLIGO (see A.12), ReasonLIGO (see A.13), Archetype (see A.14),
Solidity (see A.15) and Vyper (see A.16).

With this one, a lot of more overflows can be seen. This is because the programs reach an overflow on the
gas limit in much earlier arguments than the previous problem. It makes sense, because instead of stopping
when it encounters a number which the current one being checked is divisible by or when it reaches the
square root of the current number, it keeps going through the entire list of primes found so far. In this one,
just like the previous one, SmartPy is overall the best language, it doesn’t exceed the limit with arguments
equal or less than 523. The same thing occurs with the LIGO languages. One interesting thing happens

44 CHAPTER 4. PERFORMANCE ANALYSIS

in two contracts that is distinct from the previous values, which is, Archetype is better than Liquidity on
this one, and is able to execute one more argument than Liquidity is, before overflowing. When speaking
of Solidity and Vyper, it can be seen that they are worse than all of the Tezos’ languages, Vyper is still the
worst one (and overall as well in this program) and, this time, one of the Solidity instances was able to do
an extra argument in comparison with the others. This instance, with waffle and optimization on, is and
was proved to be better of the 4 before as well. Vyper has a much higher deploy value, probably because
in this language, every variable needs to be initialized, and since it uses an array of 2000 positions (to save
the primes found), every single one of those positions had to be initialized.

In tables 4.5 and 4.6, all of the gas values calculated for the program FirstNPrimesBoth (see 4.1.3) can
be seen in all of the high-level languages referenced in the state of the art (see 2.3.1), and the solidity
variations.

Language Deploy 100 110 121 133 146 161 177 195
SmartPy 5845 11350 11982 12620 13523 14410 15582 16782 18267
Liquidity 9528 26079 28155 30242 33250 36196 40049 43952 48840

PascaLIGO 6758 21253 23344 25529 28889 32332 36893 41600 47989
CameLIGO 5300 13300 14232 15169 16522 17847 19572 21314 23501

ReasonLIGO 5300 13300 14232 15169 16522 17847 19572 21314 23501
Archetype 7374 78058 85839 93637 105243 116613 130580 144081 161659

Solidity T.ON 167653 404473 456790 509646 584268 657634 754800 854598 977898
Solidity T.OFF 181885 421242 475786 530883 608721 685239 786541 890542 1019090
Solidity W.ON 155209 352667 397820 443437 507853 571184 655033 741133 847531
Solidity W.OFF 167065 367501 414671 462316 529642 595822 683438 773381 884565

Vyper 2755900 709770 800000 891053 1020029 1146696 1314649 1487041 1700271

Table 4.5: Gas Values of FirstNPrimesBoth (1 of 2)

Language 214 268 334 419 523 785 1178 1766
SmartPy 19694 24527 31079 39807 51694 85726 144328 249052
Liquidity 53456 69214 90385 118360 156372 264084 447674 772629

PascaLIGO 54068 77067 111206 161624 240047 507174 Overflow Overflow
CameLIGO 25558 32582 41980 54358 71148 118503 198838 340369

ReasonLIGO 25558 32582 41980 54358 71148 118503 198838 340369
Archetype 177260 230865 298579 383636 495994 789525 Overflow Overflow

Solidity T.ON 1096653 1498867 2045678 2775861 3771360 6630638 11569487 20422693
Solidity T.OFF 1142824 1562006 2131683 2892159 3928860 6905296 12044524 21253584
Solidity W.ON 949975 1296965 1768572 2398204 3256531 5721129 9977109 17604281
Solidity W.OFF 991571 1354125 1846834 2504542 3401167 5975387 10420067 18384499

Vyper 1905388 2601286 3547936 4812095 6536711 11492637 20056716 Overflow

Table 4.6: Gas Values of FirstNPrimesBoth (2 of 2)

All of these programs source codes are listed in appendix A, as follows. SmartPy (see A.17), Liquidity (see
A.18), PascaLIGO (see A.19), CameLIGO (see A.20), ReasonLIGO (see A.21), Archetype (see A.22),
Solidity (see A.23) and Vyper (see A.24).

In this one, it can be observed way less overflows than the previous one. It makes sense, because even
though it uses a list of the primes found so far, it doesn’t go all the way through but stops when it finds
a number which a current one is divisible by or until it reaches the square root of the current number.
This makes this problem a combination of the two previous ones, which in theory, it should make it overall
better than the first one, FirstNPrimes, but it doesn’t. This is because, although it should be faster,

4.2. PROGRAMS & PERFORMANCE 45

when comparing in terms of the gas usage, this one makes use of data types like arrays and maps and
their respective constant access is more gas exhaustive than just using integer variables. This is not the
case for every single language though. SmartPy and Liquidity, start off with worse gas values here than
in FirstNPrimes but the increase in gas is lowered, which can be noticed at argument 1178 for SmartPy
and 785 for Liquidity, from this point on, its more efficient in FirstNPrimesBoth than in FirstNPrimes. In
the case of the LIGO languages, they are all worse than in FirstNPrimes, especially PascaLIGO which is
extensively worse, growing so much more that it even overflows in the last two arguments. This is the
first program so far where Liquidity is better than PascaLIGO, even if it starts better in the first half of
arguments. Archetype, from the beginning to the end, is better here than in the first program. When
mentioning the solidity instances, in general, they are worse than in the first program, but in this case, both
of the Solidity ones tested in waffle are better than the two in truffle. And when compared to the rest of
the languages, they are better than PascaLIGO, Archetype and Vyper. Vyper here, like in FirstNPrimesList,
has a high deploy value because of the need to initialize the variables, especially the array of primes. And
also, Vyper is worse here than in FirstNPrimes.

In tables 4.7 and 4.8, all of the gas values calculated for the program FirstNPrimesMap (see 4.1.4) can be
seen in all of the high-level languages referenced in the state of the art (see 2.3.1), with the exception of
Solidity and Vyper.

Language Deploy 100 110 121 133 146 161 177 195
SmartPy 4400 44093 52095 60900 75413 91002 112079 134332 166544
Liquidity 8703 166147 198494 234095 292796 355859 441145 531202 661591

PascaLIGO 6266 108718 129582 152529 190348 230954 285845 343782 427631
CameLIGO 5412 65547 77685 91029 113019 136621 168518 202177 250881

ReasonLIGO 5412 65547 77685 91029 113019 136621 168518 202177 250881
Archetype 5448 45957 53930 62699 77054 92469 113262 135212 166895

Table 4.7: Gas Values of FirstNPrimesMap (1 of 2)

Language 214 268 334 419 523 785 1178 1766
SmartPy 197548 323612 523018 835243 Overflow Overflow Overflow Overflow
Liquidity 787103 Overflow Overflow Overflow Overflow Overflow Overflow Overflow

PascaLIGO 508318 836310 Overflow Overflow Overflow Overflow Overflow Overflow
CameLIGO 297736 488155 789149 Overflow Overflow Overflow Overflow Overflow

ReasonLIGO 297736 488155 789149 Overflow Overflow Overflow Overflow Overflow
Archetype 197408 321067 516275 821529 Overflow Overflow Overflow Overflow

Table 4.8: Gas Values of FirstNPrimesMap (2 of 2)

All of these programs source codes are listed in appendix A, as follows. SmartPy (see A.25), Liquidity (see
A.26), PascaLIGO (see A.27), CameLIGO (see A.28), ReasonLIGO (see A.29) and Archetype (see A.30).

This problem was created to compare the usage of a map with a list in the Tezos languages. Overall,
throughout the arguments, they are all slower in comparison with FirstNPrimesList. Every language over-
flows either one or more arguments sooner with the exception of Archetype, which has the smallest increase,
that overflows in the same spot here as in FirstNPrimesList, but with a superior gas value. In the case
of going through the whole gathering of primes found at any given moment, it seems like the Archetype
language is the only one that gets only slightly worse, when using a map as opposed to a list, in comparison
to the rest of the languages, which get a lot worse.

46 CHAPTER 4. PERFORMANCE ANALYSIS

All of the transactions performed on the problems NQueens and MagicSquare have their arguments increase
in a linear manner, one by one. The tables representing these two problems will have a “Deploy” column
to represent the deployment of the contract, much like in the previous ones. In NQueens, it is impossible
to have a solution to this problem when N is 2 or 3, but the gas values will be shown anyway, because
the code deals with these cases by skipping them. In MagicSquare, when N is 1 or 2, there is no solution
possible, but the values will be displayed anyway just to show the progression of the increase in gas, even
though, in the programs it results in a square that isn’t a magic square in these situations.

In tables 4.9 and 4.10, all of the gas values calculated for the program NQueens (see 4.1.5) can be seen in
all of the high-level languages referenced in the state of the art (see 2.3.1), and the solidity variations.

Language Deploy 1 2 3 4 5 6 7 8
SmartPy 9045 9824 9812 9812 10080 9955 11706 10229 20055
Liquidity 37635 38522 38479 38479 39982 39109 49169 40487 94321

PascaLIGO 22448 23347 23314 23314 24438 23813 30443 24725 58038
CameLIGO 11500 12373 12358 12358 12730 12546 14967 12913 26345

ReasonLIGO 11500 12373 12358 12358 12730 12546 14967 12913 26345
Archetype 17485 18368 18355 18355 19114 18701 23781 19452 46659

Solidity T.ON 296829 26677 28758 31040 50046 42894 168852 65611 765727
Solidity T.OFF 322690 26825 28880 31162 51079 43464 175775 67215 803457
Solidity W.ON 284829 26652 28750 31032 49009 42431 160627 64012 720263
Solidity W.OFF 305295 26802 28869 31151 49592 42757 163380 64678 732766

Vyper 381598 55364 55011 55011 81526 66151 264466 94741 1206917

Table 4.9: Gas Values of NQueens (1 of 2)

Language 9 10 11 12 13 14 15
SmartPy 13525 21036 15483 45357 25374 321919 248490
Liquidity 58341 98413 68553 225641 120514 Overflow Overflow

PascaLIGO 35517 59122 41117 131807 70113 941713 715818
CameLIGO 17380 27552 19996 60361 33331 433392 333328

ReasonLIGO 17380 27552 19996 60361 33331 433392 333328
Archetype 28469 48592 33539 112589 59283 834386 638231

Solidity T.ON 303160 841680 447870 2632581 1164175 28242737 20473306
Solidity T.OFF 316720 882771 468370 2763119 1220305 29395025 21351941
Solidity W.ON 286699 791299 422331 2472017 1093376 26831113 19389566
Solidity W.OFF 291089 803788 428483 2509032 1109042 27141288 19620648

Vyper 468497 1321380 692879 4082153 1822999 Overflow Overflow

Table 4.10: Gas Values of NQueens (2 of 2)

All of these programs source codes are listed in appendix A, as follows. SmartPy (see A.31), Liquidity (see
A.32), PascaLIGO (see A.33), CameLIGO (see A.34), ReasonLIGO (see A.35), Archetype (see A.36),
Solidity (see A.37) and Vyper (see A.38).

On this case, we can see that, unlike the first N primes problems, the values don’t increase every time
N increases, it changes in a “up, down, up, down” pattern. This is because some arguments use more
iterations of backtracking than others, looking at these values, it seems like it increases on even N’s and
decreases on odd N’s. The values for N equal to 2 and 3 are also the same because of the skipping the code
does, mentioned earlier. In the solidity instances, for some reason, the values for 2 and 3 are different, even

4.2. PROGRAMS & PERFORMANCE 47

though, the code executes the same set of instructions. It seems that the simple increase in the number
of the argument is enough to alter the gas value for Solidity. Overall, they all execute successfully with
arguments until 15, with the exception of Liquidity and Vyper, which overflow on the last two. SmartPy
seems to be the best once again, with CameLIGO and ReasonLIGO not too far behind. Archetype here is
faster than PascaLIGO, which is interesting. It seems the more complex the problem, the better Archetype
is compared to PascaLIGO. Another thing observed is that PascaLIGO in this case had to use “for” cycles
as well as “while’s”, which seems to have punished the gas values. In Solidity’s cases, the waffle versions
seem to be better than the truffle ones, and when the optimization is on, it’s the best of the Ethereum’s
languages.

In table 4.11, all of the gas values calculated for the program MagicSquare (see 4.1.6) can be seen in all
of the high-level languages referenced in the state of the art (see 2.3.1), and the solidity variations.

Language Deploy 1 2 3 4 5 6 7
SmartPy 39540 40185 40276 40596 41108 43052 Impossible 401192
Liquidity 97548 98537 98768 99796 101380 107790 Impossible Overflow

PascaLIGO 128863 129909 130243 132417 135334 147674 Impossible Overflow
CameLIGO 49441 50342 50463 50954 51722 54771 Impossible 621052

ReasonLIGO 49441 50342 50463 50954 51722 54771 Impossible 621052
Archetype 64468 65433 65608 66494 67910 73765 Impossible Overflow

Solidity T.ON 823567 29817 40345 69085 114593 257360 Impossible Overflow
Solidity T.OFF 903234 30249 40903 70520 117296 265504 Impossible Overflow
Solidity W.ON 795425 29653 39933 67584 111207 246727 Impossible Overflow
Solidity W.OFF 854709 30016 40406 68445 112563 250139 Impossible Overflow

Vyper 1733642 136617 143627 169649 212220 381032 Impossible Overflow

Table 4.11: Gas Values of MagicSquare

All of these programs source codes are listed in appendix A, as follows. SmartPy (see A.39), Liquidity (see
A.40), PascaLIGO (see A.41), CameLIGO (see A.42), ReasonLIGO (see A.43), Archetype (see A.44),
Solidity (see A.45) and Vyper (see A.46).

In MagicSquare, it is not possible to find a solution with the arguments 1, 2, and also 6 (given the method
used). 1 and 2 are still displayed just to show the progression of the gas even though the result is not a
magic square, but 6 was not even considered. In this last program, probably the most exhaustive of them
all, due to the fact of overflowing quite early, it can be seen that most of the languages cannot execute
the argument 7 with success. The only ones that could were SmartPy, CameLIGO and ReasonLIGO. Like
the previous one, Archetype is better than PascaLIGO, reinforcing the case that the more complex the
problem is, and also the more “for” cycles it has, the worse its performance becomes. This also makes
Liquidity better than PascaLIGO. Vyper is the worst again in the Ethereum’s cases and between the solidity
instances, it seemed, with the gas values that they were exhibiting, that they were capable of executing
the argument 7, but this wasn’t the case. It also appears that, just like previously, the waffle instances are
better, and the best case is when the optimization is on in waffle.

After doing all these transactions on all of the programs constructed for these different problems, some
conclusions can be reached. SmartPy is the fastest, not only of the Tezos’ languages, but also overall.
Liquidity, Archetype and Vyper are the worst overall, with PascaLIGO not too far ahead, being only better
in smaller programs with not much complication. CameLIGO and ReasonLIGO are always behind SmartPy
but not by too much. And the Solidity program compiled in waffle with the optimization on is the best
overall of the Ethereum’s languages.

5
Comparison

In this section, the gas values calculated and gathered in the previous chapter, inside the programs and
performance section (see 4.2), will be demonstrated in a more visually friendly approach. This visualization
is achieved using graphs, which will be constructed with the gas values shown beforehand. Making use of
this way, the making of comparisons and conclusions between the languages and programs can be more
easily done.

The graphs will be created in the following way. The x-axis will represent the arguments of the respective
program, while the y-axis will represent the gas values calculated. Each line in the graph will represent
the languages used, each one displayed with a different color and also the Tezos’ languages will be shown
with solid lines, while the Ethereum ones will be manifested in dashed lines, to distinguish each of the two
blockchains. The dots in each line mark an argument of the problem defined at that location. And also,
the value 0 in the x-axis is not a program argument but it represents the deployment of the contract.

To deal with the difference in the gas transaction limit, the graphs will be built with two y-axis. The Tezos’
languages will share the left y-axis, which ranges from 0 to 1.040.000, and the Ethereum’s languages will
share the right y-axis, which ranges from 0 to 30.000.000.

49

50 CHAPTER 5. COMPARISON

When a certain program overflows on an argument or multiple arguments, in the graph, it will shown the
line until the argument that it is capable of executing, and then cut off, ending the line there.

In figure 5.1, the graph for the first problem, FirstNPrimes (see 4.1.1), is demonstrated with all of the
languages tested.

Figure 5.1: Graph for FirstNPrimes gas values

By observing the graph, we can more easily distinguish the differences between the languages in the two
distinct blockchains. First, it can be seen that the first two, the worst ones, Archetype and Vyper are cut
off before the last argument, this is because of overflowing in one argument, in the case of Vyper, and
two, in the case of Archetype. Looking at the growth in the lines, it can be observed that Archetype is
the worst, followed by Vyper and then Liquidity. Then afterwards, the four Solidity instances being very
close together, with the order (from worst to best) Solidity (Truffle Off), Solidity (Waffle Off), Solidity
(Truffle On) and Solidity (Waffle On). After this, it’s PascaLIGO, ReasonLIGO (and CameLIGO on top of
the same line because of having the same gas values), and ending with the best one, SmartPy.

This basically shows that the language SmartPy is the most efficient in this case, having the least growth of
gas throughout the arguments while testing this particular problem. This does not mean that this language
is the only one that should be used in cases like this, there are restrictions that apply to each language,
and also every developer has its preference to what type of programming language they prefer to use or
are more accustomed to. In addition to, a user can’t create a smart contract in a high-level language in a
specific blockchain with the intention to deploy in a distinct one. For example, a developer can’t construct
a smart contract in Liquidity, with the intent to use and interact with the Ethereum blockchain. Liquidity
does not compile to EVM bytecode so this would be impossible.

In figures 5.2 and 5.3, the graphs for the second problem, FirstNPrimesList (see 4.1.2), are demonstrated
with all of the languages tested.

This problem is shown in two different visualizations. On the first one, every argument is marked in the x-
axis, but since in this problem, every single smart contract created ends up overflowing after the argument
523, another graph was constructed with the arguments more constrained, showing only until the last

51

argument executed by the different programs, so that the lines are more easily viewed.

Figure 5.2: Graph for FirstNPrimesList gas values

Figure 5.3: Graph for FirstNPrimesList gas values (constrained)

Since the other problems are shown with the arguments in their entirety, it was decided to the same here,
and then because of the amount of overflows, a more focused version was created to more closely view
the values represented in the graph. Here, Vyper is the worst, even with the deploy (argument 0) value
much higher than the rest. This is because of the need to initialize every position in each array. After
this, it goes, from worst to best, Solidity (Truffle Off), Solidity (Truffle On), Solidity (Waffle Off) and
Solidity (Waffle On). And then, it’s all of the Tezos’ ones, starting with Liquidity, and then Archetype and

52 CHAPTER 5. COMPARISON

PascaLIGO. At the end, it’s hard to notice, but the orange line is ReasonLIGO (with CameLIGO behind it
having the same values) and the blue one barely visible, just under the orange line, is SmartPy, being the
best one once again.

In this problem, it is observed that all of the Ethereum languages are worse than every language in Tezos.
This could be because, even though, the problem goes through the entirety of the list or array of primes
currently found, in the cases of Tezos, this is the only program where a list was used (with a map used in
the others due to the inability to access a specific index in lists in these languages), and there are actually
predefined ways of doing this in each language.

In figure 5.4, the graph for the third problem, FirstNPrimesBoth (see 4.1.3), is demonstrated with all of
the languages tested.

Figure 5.4: Graph for FirstNPrimesBoth gas values

In this graph, we can see more similarities with the first problem’s graph, as opposed to the second problem.
Starts off with Archetype as the worst one, but then something odd occurs. PascaLIGO is the second worse
language, being much more gas exhaustive here than in the first graph (see 5.1). Vyper is not too far
ahead either with the same deploy issue as before, but if we look closely, we can see that at the beginning
PascaLIGO was actually slightly better than Vyper, but the growth in gas is much worse than Vyper, that
it overcame it in gas amount. Also, it is not certain, but if the programs didn’t overflow in the next couple
of arguments, it’s possible that the growth in the PascaLIGO line would become larger than in Archetype,
potentially overcoming it and turning itself into the worst one overall. It is not certain as to why PascaLIGO
got much worse in this case, it could be due to the fact of not dealing with maps very well.

The remainder of the graph seems to follow a similar trend as the first one with some differences. After
Vyper, we have Liquidity, which is very close to the Solidity instances, where in the first problem it found
itself farther apart. Then the Solidity instances are presented in a different order here, Solidity (Truffle
Off), Solidity (Truffle On), Solidity (Waffle Off) and Solidity (Waffle On) (shown from worst to best),
where Solidity with waffle optimization turned off is faster than Solidity with truffle optimization turned
on. Then at the end, what was shown before its shown again here, ReasonLIGO (and CameLIGO) take
second place and SmartPy appears as the best one.

53

In figures 5.5 and 5.6, the graphs for the fourth problem, FirstNPrimesMap (see 4.1.4), are demonstrated
with all of the languages tested.

Figure 5.5: Graph for FirstNPrimesMap gas values

Figure 5.6: Graph for FirstNPrimesMap gas values (constrained)

In this one, the same procedure applied to FirstNPrimesList was done here as well, two graphs were made
because the programs overflow too soon, in this case, they all exceed the gas limit past the argument 419.
This one problem was basically created just to compare with FirstNPrimesList, on the Tezos’ languages.
The result is pretty straightforward, they all got worse, with the difference that Archetype in this case, is
so much better than the others, to the point of even surpassing SmartPy and taking the lead this time.

54 CHAPTER 5. COMPARISON

The rest are in the same order, with ReasonLIGO and CameLIGO a bit farther away from SmartPy on this
one.

In figures 5.7 and 5.8, the graphs for the fifth problem, NQueens (see 4.1.5), are demonstrated with all of
the languages tested.

Figure 5.7: Graph for NQueens gas values

Figure 5.8: Graph for NQueens gas values (constrained)

In this problem, it was decided to display the gas values in two graphs. The first one has all the arguments
used, but the second focuses more on the end side, having a better view on the fluctuation that occurs in
the last few arguments. This one is a little more strange than the previous problems, due to the values

55

gathered changing up and down constantly, which makes some sense given the backtracking method used
in this problem and the fact that some arguments (odd ones), use less iterations of it than other ones (even
ones). This one is slightly tougher to read since they are more jumbled together, but Liquidity is the worst
one, followed by Vyper, which both overflow after the argument 13. The Solidity instances almost overflow
but don’t, with PascaLIGO mixed in them, but if noticed carefully, the line growth from argument 14 to
15 indicates it being worse than the Solidity instances, even though, it has a better value on the argument
14 than most of the instances. Then there’s Archetype, then ReasonLIGO (with CameLIGO behind it of
course), and ending with the usual winner, SmartPy.

In figure 5.9, the graph for the sixth and final problem, MagicSquare (see 4.1.6), is demonstrated with all
of the languages tested.

Figure 5.9: Graph for MagicSquare gas values

In this one, there is a very big rise from argument 5 to 7. Most of the programs have similar values in the
first arguments, but then on the last argument, they all overflow with the exception of 3. The worst one
here is PascaLIGO, followed by Liquidity and then Archetype. Then something strange transpires. The
next languages are ReasonLIGO (with CameLIGO behind) and SmartPy, which are able to go and execute
argument 7 successfully, but then it’s Vyper and after, the Solidity instances, which do not and overflow.
While in the process of creating the contracts and interacting with them after deploying, everything indicated
that these were going to be able to execute the last argument, or at least, the Solidity ones were, since
they were giving low gas results. But they weren’t capable, and the blockchain gave back a transaction
error saying that there was a gas overflow that passed the limit. Let’s hope this was the actual program
performing correctly and just reaching the limit normally and not stuck on something that was wrongfully
coded, like an infinite loop. Just to be thorough, the Solidity code was tested using a debugging tool before
deploying, but since the program is too big, it was impossible to do so with the last argument before it
crashed.

In conclusion, in terms of the most efficient ones, SmartPy is the best, not only on Tezos but overall, and
Solidity on waffle with optimization on is the best of the Ethereum ones. Vyper is the worst in Ethereum
and overall. Liquidity, Archetype and PascaLIGO are the worst in Tezos, changing from one to another
constantly. Liquidity has the most complicated code and is probably the worst of the three.

6
Conclusion

This chapter will essentially conclude this dissertation with an overview of everything which was discussed
and analyzed, and also conclusions about the performance evaluations made will be mentioned. After-
wards, a segment describing what could make this paper better will be represented, with more information
in conjunction with some potential modifications and additions to the testing to have more results of
performances to be used for comparison.

6.1 Overview

This dissertation strove to research distinct high-level languages in two different blockchains, Tezos and
Ethereum, after acquiring the knowledge of what these blockchains consist of and how they work. After
the understanding of each different language, and how to interact and deploy smart contracts into test
networks of both of the ledgers, the objective was to test these equivalent contracts and arrange every gas
value obtained, representing the performance, so that in the end, they could be listed and then compared
with every other language also utilized and reach conclusions with the evaluations done.

57

58 CHAPTER 6. CONCLUSION

The groundwork part of this dissertation proved fundamental to the better understanding of every single
concept interacted with and relevant to this respective work. Learning what is and how a blockchain works,
and also what do smart contracts consist of and how useful these agreements are, helped with the choosing
of the two blockchains, Tezos and Ethereum to be tested here.

Reading and understanding the documentation of every language used, and also the tools available to create
the contracts and also deploy these understandings, in the respective languages, assisted in the creation of
each smart contract in each different language.

Parametric problems chosen to be turned into smart contracts to be evaluated were described in detail
with emphasis on the most important aspects of each of the problems. Arguments designed to test each
program in transactions were listed and their growth explained.

Transactions were carried out on every contract integrated into the blockchains and the respective gas
values registered. Afterwards, these numbers were displayed, discussed and also transformed into graphs
for a better understanding of the values compared to each other.

The conclusions made with these comparisons is that the language SmartPy was the superior one, not only
on the Tezos blockchain, but also overall. With Solidity compiled using waffle with the optimization on
was the best for Ethereum. ReasonLIGO and CameLIGO (since they both always compiled to the same
Michelson code), were tied for second best after SmartPy. Vyper was the worst language on Ethereum
and overall. Archetype and PascaLIGO were really awful in some cases but not in others. And Liquidity
was the worst one in the Tezos languages, although being slightly hard to tell. This information gives a
better understanding of how to choose a high-level language. So, for example, in the case of a developer
preferring or being more familiar to programming in the OCaml language and wanting to interact with the
Tezos blockchain, they would have the choice between Liquidity and CameLIGO (since these two are the
closest to OCaml), and these results show that CameLIGO would’ve been more gas efficient.

6.2 Future Work

Despite having gathered these values corresponding to the performance of each of the languages experi-
mented, there were some issues encountered and also there’s always potential expansions to increase what
was achieved in this dissertation, such as the gathering of data, the ledgers used, or even the tools and
environments employed here.

One obvious case is having more languages, which increases information gathered about the performances
by having more data available. There is a language called “Yul”, which works as a intermediate language
for Ethereum and is used as a good target for high-level optimization for the EVM, which was a potential
extra language to have here, but the way the contracts are interacted with in Ethereum is by deploying
them using the bytecode and contract ABI and then confirm the code of the contract using a tool called
Etherscan. This language compiles its contracts with bytecode and contract ABI but etherscan does not
have “Yul” as one of its language options, only Solidity and Vyper. The same thing occurred with “Yul+”,
which was a low level extension to “Yul”. There was another one called “Fe”, which was an easy to learn
language, inspired by Python and Rust, but it’s in its early stages, which means it wouldn’t be possible to
confirm its code on Etherscan. There were other cases explored, these ones on Tezos, such as “fi”, which
apparently did not have loops in the language so it was impossible to use. “Morley” and “Indigo eDSL”
were also attempted but errors occurred in their installations, therefore there was no way of compiling
contracts in these languages. All of these languages listed here could potentially be future work if they
get more development and more tools to engage with them in a more later time, and also, the languages
tested here, could also be updated to more recent versions.

6.2. FUTURE WORK 59

Another aspect to modify in the future is the use of newer protocols of the blockchains. In Ethereum,
there hasn’t been a new one since the development of this paper but in the case of the Tezos blockchain,
the test network used had the protocol Florence, which, has of the end of November 2021, Florence is no
longer being maintained, due to the fact of there being two new test networks available, “Granadanet” and
“Hangzhounet”, with the protocols “Granada” and “Hangzhou” running respectively, and the “Granada”
protocol came with several improvements to the performance which resulted in a dramatic reduction of
the gas costs in Michelson, observing a decrease of a factor of three to six in the gas consumed in the
execution of already deployed contracts [TAF21a]. Out of curiosity, the program MagicSquare written in
Archetype was tested in “Granadanet”, and was able to successfully execute the argument 7, as opposed
to the one in Florencenet, which couldn’t.

Another potential extension to this paper, is the use of more smart contract friendly blockchains. Tezos
and Ethereum were chosen due to the fact of having various tools, languages and environments to develop
smart contracts in, but more blockchains could also apply to this fact and could join the original two in
the evaluation of the performance of their smart contracts.

Lastly, the metric used to measure the performance. In this dissertation it was gas, because this number is
shown in every single transaction and deployment of each contract. This could be increased to have more
metrics to evaluate, such as the size of the storage of the contract, which the Tezos blockchain already
shows but the Ethereum one doesn’t. And also, although not sure how, the metric of time could be studied
as well. It can’t be through the time a transaction takes to complete, because by the end of it, when the
client shows you that it was validated, this corresponds to the whole block as well and not just the specific
transaction. Potentially, it could be done by creating a fork of the network being tested into a private one,
so that every transaction is local only, but it’s not sure if it would work to study the time measure, and if
it does it would require a lot of effort.

In summary, the addition of new high-level languages and usage of the ones experimented on a more newer
version, the update of the protocols used in the networks, in conjunction with, increasing the number of
blockchains to be used as a testing ground, and also, the expansion of different metrics to use in the
evaluation of the performance of the contracts, are all potential extensions to this dissertation.

Bibliography

[AA19] Shikah J. Alsunaidi and Fahd A. Alhaidari. A survey of consensus algorithms for blockchain
technology. In 2019 International Conference on Computer and Information Sciences (ICCIS),
pages 1–6, 2019.

[ABT19] Victor Allombert, Mathias Bourgoin, and Julien Tesson. Introduction to the tezos blockchain.
In 2019 International Conference on High Performance Computing Simulation (HPCS), pages
1–10, 2019.

[AME19] Cc Agbo, Qusay Mahmoud, and J. Eklund. Blockchain technology in healthcare: A systematic
review. Healthcare, 7:56, 04 2019.

[BAI+18] Joseph J. Bambara, Paul R. Allen, Kedar Iyer, Rene Madsen, Solomon Lederer, and Michael
Wuehler. Blockchain: A Practical Guide to Developing Business, Law, and Technology Solu-
tions. McGraw-Hill Education, 2018.

[Bas20] Imran Bashir. Mastering Blockchain : a deep dive into distributed ledgers, consensus protocols,
smart contracts, DApps, cryptocurrencies, Ethereum, and more. Packt Publishing, 2020.

[BMM+20] Stefano Bistarelli, Gianmarco Mazzante, Matteo Micheletti, Leonardo Mostarda, Davide Sestili,
and Francesco Tiezzi. Ethereum smart contracts: Analysis and statistics of their source code
and opcodes. Internet of Things, 11:100198, 2020.

[But13] Vitalik Buterin. Ethereum whitepaper - a next-generation smart contract and decentralized
application platform. https://ethereum.org/en/whitepaper/, 2013. Last accessed 25
November 2021.

[CNB21] Taylor Locke CNBC. Ethereum just hit an all-time high of above $4,400 af-
ter a recent upgrade. here’s what to know. https://www.cnbc.com/2021/10/28/
what-to-know-about-ethereum-altair-upgrade-and-proof-of-stake.html, October
2021. Last accessed 25 November 2021.

[Ead16] James Eade. Chess for Dummies. John Wiley & Sons, Inc., 2016.

[Eul04] Leonhard Euler. On magic squares. https://arxiv.org/abs/math/0408230, 2004. Last
accessed 18 November 2021.

61

https://ethereum.org/en/whitepaper/
https://www.cnbc.com/2021/10/28/what-to-know-about-ethereum-altair-upgrade-and-proof-of-stake.html
https://www.cnbc.com/2021/10/28/what-to-know-about-ethereum-altair-upgrade-and-proof-of-stake.html
https://arxiv.org/abs/math/0408230

62 BIBLIOGRAPHY

[Gat17] Mark Gates. Blockchain: Ultimate guide to understanding blockchain, bitcoin, cryptocurren-
cies, smart contracts and the future of money. CreateSpace Independent Publishing Platform,
2017.

[Goo14] L. M Goodman. Tezos - a self-amending crypto-ledger, 2014.

[Hea63] B. R. Heap. Permutations by Interchanges. The Computer Journal, 6(3):293–298, 11 1963.

[HZL+21] Bin Hu, Zongyang Zhang, Jianwei Liu, Yizhong Liu, Jiayuan Yin, Rongxing Lu, and Xiaodong
Lin. A comprehensive survey on smart contract construction and execution: paradigms, tools,
and systems. Patterns, 2(2):100179, 2021.

[Inf19] Roberto Infante. Building Ethereum Dapps: Decentralized applications on the Ethereum
blockchain. Manning Publications, 2019.

[Inf21] Infura. Infura - documentation. https://infura.io/docs, 2021. Last accessed 29 November
2021.

[Lau17] Tiana Laurence. Blockchain for Dummies. John Wiley & Sons, Inc., 2017.

[LNB+19] Roben Castagna Lunardi, Henry Cabral Nunes, Vinicius da Silva Branco, Bruno Hugentobler
Lippert, Charles Varlei Neu, and Avelino Francisco Zorzo. Performance and cost evaluation of
smart contracts in collaborative health care environments. CoRR, 2019.

[Met21] MetaMask. Metamask - about. https://metamask.io/, 2021. Last accessed 29 November
2021.

[MSA20] Ahmed Afif Monrat, Olov Schelén, and Karl Andersson. Performance evaluation of permis-
sioned blockchain platforms. In 2020 IEEE Asia-Pacific Conference on Computer Science and
Data Engineering (CSDE), pages 1–8, 2020.

[nI21] npm Inc. npm - about. https://www.npmjs.com/, 2021. Last accessed 28 November 2021.

[OF21] Node.js OpenJS Foundation. Node.js - about. https://nodejs.org/en/about/, 2021. Last
accessed 28 November 2021.

[OTJA21] Damilare Peter Oyinloye, Je Sen Teh, Norziana Jamil, and Moatsum Alawida. Blockchain
consensus: An overview of alternative protocols. Symmetry, 13(8), 2021.

[Sav16] Alexander Savelyev. Contract Law 2.0: «Smart» Contracts As the Beginning of the End of
Classic Contract Law. PhD thesis, National Research University Higher School of Economics,
2016.

[Sch18] Ruben Schulpen. Smart contracts in the netherlands. Master’s thesis, Tilburg University, 2018.

[SDP18] Bikramaditya Singhal, Gautam Dhameja, and Priyansu Panda. Beginning Blockchain, chapter
How Ethereum Works, pages 219–266. Apress, 2018.

[Ses19] Jacques Sesiano. Magic Squares: Their History And Construction From Ancient Times To AD
1600. Springer International, 2019.

[Sui21] Truffle Suite. Truffle overview. https://trufflesuite.com/docs/truffle/overview,
2021. Last accessed 28 November 2021.

[SWS20] Ellis Solaiman, Todd Wike, and Ioannis Sfyrakis. Implementation and evaluation of smart
contracts using a hybrid on- and off-blockchain architecture. Concurrency and Computation:
Practice and Experience, 33(1):e5811, 2020.

https://infura.io/docs
https://metamask.io/
https://www.npmjs.com/
https://nodejs.org/en/about/
https://trufflesuite.com/docs/truffle/overview

BIBLIOGRAPHY 63

[TAF21a] Nomadic Labs Tezos Agora Forum. Announcing granada. https://forum.tezosagora.org/
t/announcing-granada/3183, 2021. Last accessed 24 November 2021.

[TAF21b] Nomadic Labs Tezos Agora Forum. Florence: Our next protocol upgrade proposal. https:
//forum.tezosagora.org/t/florence-our-next-protocol-upgrade-proposal/2816,
2021. Last accessed 29 November 2021.

[TDR21] Nomadic Labs Tezos Developer Resources. How to get tezos. https://tezos.gitlab.io/
introduction/howtoget.html, 2021. Last accessed 28 November 2021.

[Waf20] Waffle. Waffle documentation. https://ethereum-waffle.readthedocs.io/en/latest/,
2020. Last accessed 28 November 2021.

[Woo21] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. https://
ethereum.github.io/yellowpaper/paper.pdf, 2021. Last accessed 27 November 2021.

[ZWM21] Matt Zand, Xun Wu, and Mark Anthony Morris. Hands-On Smart Contract Development with
Hyperledger Fabric V2: Building Enterprise Blockchain Applications. O’Reilly Media, 2021.

https://forum.tezosagora.org/t/announcing-granada/3183
https://forum.tezosagora.org/t/announcing-granada/3183
https://forum.tezosagora.org/t/florence-our-next-protocol-upgrade-proposal/2816
https://forum.tezosagora.org/t/florence-our-next-protocol-upgrade-proposal/2816
https://tezos.gitlab.io/introduction/howtoget.html
https://tezos.gitlab.io/introduction/howtoget.html
https://ethereum-waffle.readthedocs.io/en/latest/
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

A
Source Codes

In this appendix, the source code of every single smart contract program created will be listed. Programs
were written in all 8 languages mentioned previously (see 2.3.1), in all of the parametric problems (see 4.1),
with the exception of “FirstNPrimesMap” (see 4.1.4), where only 6, the Tezos’ ones, were tested. The only
aspect that differs from the Solidity programs tested in truffle and waffle is the version number. It’s 0.5.0
in truffle and 0.6.2 in waffle. Another thing to note is that every listing of code shown is displayed with the
Solidity language style, since this is the only language which had a predefined style. And also, a repository of
all of these programs can be found on https://github.com/RaulOliveira20/dissertation_smart_
contracts.

1 import smartpy as sp
2
3 class FirstNPrimes_V3(sp.Contract):
4 def __init__(self):
5 self.init(last_prime = sp.int(0))
6
7 @sp.entry_point
8 def n_primes(self, num):
9 p = sp.local("p", 1)

65

https://github.com/RaulOliveira20/dissertation_smart_contracts
https://github.com/RaulOliveira20/dissertation_smart_contracts

66 APPENDIX A. SOURCE CODES

10 i = sp.local("i", 3)
11 x = sp.local("x", 3)
12 n = sp.local("n", num)
13
14 sp.while p.value < n.value:
15
16 sp.while (i.value % x.value != 0) & (x.value * x.value <= i.value):
17 x.value += 2
18
19 sp.if (i.value % x.value != 0) | (i.value == 3):
20 p.value += 1
21
22 x.value = 3
23
24 i.value += 2
25
26 sp.if (n.value <= 1):
27 self.data.last_prime = 2
28 sp.else:
29 self.data.last_prime = i.value - 2

Listing A.1: FirstNPrimes in SmartPy

1 type storage = int
2
3 let%entry n_primes (num : int) _ =
4
5 let p = 1 in
6 let i = 3 in
7
8 let _, i =
9 Loop.left (fun (p, i) ->

10
11 let x = 3 in
12 let x, i =
13 Loop.left (fun (x, i) ->
14
15 let (_, rem) = match i / x with
16 | Some qr -> qr
17 | None -> failwith "division by 0 impossible" in
18
19 if (rem <> (0 : nat) & x * x <= i) then (Left (x + 2), i)
20 else (Right x, i)
21) x i
22 in
23
24 let (_, rem) = match i / x with
25 | Some qr -> qr
26 | None -> failwith "division by 0 impossible" in
27
28 let p =
29 if (rem <> (0 : nat) || i = 3) then p + 1 else p + 0
30 in
31
32 if (p < num) then (Left p, (i + 2))
33 else (Right p, i)
34) p i
35 in
36

67

37 let i =
38 if (num <= 1) then 2 else i
39 in
40
41 ([], i)

Listing A.2: FirstNPrimes in Liquidity

1 type storage is int
2
3 type parameter is
4 Primes of int
5
6 type return is list (operation) * storage
7
8 function firstnprimes (const num : int) : storage is
9 block {

10 var p : int := 1;
11 var i : int := 3;
12 var x : int := 3;
13
14 while p < num block {
15 while (i mod x =/= 0n) and (x * x <= i) block {
16 x := x + 2;
17 };
18
19 if i mod x =/= 0n or i = 3 then p := p + 1 else skip;
20
21 x := 3;
22
23 i := i + 2;
24 };
25
26 if num <= 1 then i := 2 else i := i - 2
27
28 } with i
29
30 function main (const action : parameter; const store : storage) : return is
31 ((nil : list (operation)),
32 case action of
33 Primes (n) -> firstnprimes (n)
34 end)

Listing A.3: FirstNPrimes in PascaLIGO

1 type storage = int
2
3 type parameter =
4 Primes of int
5
6 type return = operation list * storage
7
8 let firstnprimes (num : int) : storage =
9 let p : int = 1 in

10 let i : int = 3 in
11 let x : int = 3 in
12

68 APPENDIX A. SOURCE CODES

13 let rec while_one (num, p, i, x : int * int * int * int) : int =
14 let rec while_two (i, x : int * int) : int =
15 if i mod x <> 0n && x * x <= i then while_two(i, x + 2) else x
16 in
17 let x : int = while_two (i, x) in
18
19 let p : int = if i mod x <> 0n || i = 3 then p + 1 else p in
20
21 let x : int = 3 in
22
23 if p < num then while_one(num, p, i + 2, x) else i
24 in
25
26 let i : int =
27 if p < num then while_one(num, p, i, x) else i
28 in
29
30 let i : int = if num <= 1 then 2 else i in
31 i
32
33 let main (action, store : parameter * storage) : return =
34 ([] : operation list),
35 (match action with
36 Primes (n) -> firstnprimes (n))

Listing A.4: FirstNPrimes in CameLIGO

1 type storage = int;
2
3 type parameter =
4 Primes (int)
5
6 type return = (list (operation), storage);
7
8 let firstnprimes = ((num) : (int)) : storage =>
9 let p = 1;

10 let i = 3;
11 let x = 3;
12
13 let rec while_one = ((num, p, i, x) : (int, int, int, int)) : int =>
14 let rec while_two = ((i, x) : (int, int)) : int =>
15 if ((i mod x != 0n) && (x * x <= i)) {while_two(i, x + 2);} else {x;};
16
17 let x = while_two(i, x);
18
19 let p = if ((i mod x != 0n) || (i == 3)) {p + 1;} else {p;};
20
21 let x = 3;
22
23 if (p < num) {while_one(num, p, i + 2, x);} else {i};
24
25 let i = if (p < num) {while_one(num, p, i, x)} else {i};
26
27 if (num <= 1) {2} else {i};
28
29 let main = ((action, store) : (parameter , storage)) : return => {
30 (([] : list (operation)),
31 (switch (action) {
32 | Primes (n) => firstnprimes (n)}))

69

33 };

Listing A.5: FirstNPrimes in ReasonLIGO

1 archetype FirstNPrimes
2
3 variable primes : int = 0
4
5 function while_two (i : int, x : int) : int {
6 var y : int = x;
7 var j : int = i;
8
9 iter z to 49 do

10 if (j % y <> 0 and y * y <= j) then y := y + 2;
11 done;
12
13 return y
14 }
15
16 function while_one (num : int, p : int, i : int, x : int) : int {
17 var y : int = x;
18 var j : int = i;
19 var pp : int = p;
20 var nn : int = num * 5;
21
22 iter z to nn do
23 if pp < num then
24 (
25 y := while_two(j, y);
26
27 if j % y <> 0 or j = 3 then pp := pp + 1;
28
29 y := 3;
30
31 j += 2;
32);
33 done;
34
35 return j
36 }
37
38 entry n_primes (num : int) {
39 var p : int = 1;
40 var i : int = 3;
41 var x : int = 3;
42
43 if (p < num) then i := while_one(num, p, i, x);
44
45 if (num <= 1) then primes := 2 else primes := i - 2
46 }

Listing A.6: FirstNPrimes in Archetype

1 pragma solidity ^0.5.0;
2
3 contract FirstNPrimes_V3 {
4

70 APPENDIX A. SOURCE CODES

5 uint primes;
6
7 function n_primes(uint num) public {
8
9 uint p = 1;

10 uint i = 3;
11 uint x = 3;
12
13 while (p < num)
14 {
15 while ((i % x != 0) && (x * x <= i))
16 x += 2;
17
18 if ((i % x != 0) || (i == 3))
19 p += 1;
20
21 x = 3;
22
23 i += 2;
24 }
25
26 if (num <= 1)
27 primes = 2;
28 else
29 primes = i - 2;
30 }
31
32 function getPrimes() public view returns (uint) {
33 return primes;
34 }
35 }

Listing A.7: FirstNPrimes in Solidity

1 primes: public(uint256)
2
3 @external
4 def n_primes (num : uint256):
5 p: uint256 = 1
6 i: uint256 = 3
7 x: uint256 = 3
8
9 for y in range(8000):

10 if p < num:
11 for z in range(150):
12 if i % x != 0 and x * x <= i:
13 x += 2
14 else:
15 break
16
17 if i % x != 0 or i == 3:
18 p += 1
19
20 x = 3
21
22 i += 2
23 else:
24 break
25
26
27 if num <= 1:

71

28 self.primes = 2
29 else:
30 self.primes = i - 2

Listing A.8: FirstNPrimes in Vyper

1 import smartpy as sp
2
3 class FirstNPrimesList(sp.Contract):
4 def __init__(self):
5 self.init(last_prime = sp.int(0), primes = sp.list())
6
7 @sp.entry_point
8 def n_primes(self, num):
9 self.data.primes = [2]

10 p = sp.local("p", 1)
11 i = sp.local("i", 3)
12 c = sp.local("c", 0)
13 n = sp.local("n", num)
14
15 sp.while p.value < n.value:
16
17 sp.for x in self.data.primes:
18 sp.if (i.value % x == 0):
19 c.value = 1
20
21 sp.if (c.value == 0):
22 self.data.primes.push(i.value)
23 p.value += 1
24
25 c.value = 0
26
27 i.value += 2
28
29 self.data.primes = [2]
30 sp.if (n.value <= 1):
31 self.data.last_prime = 2
32 sp.else:
33 self.data.last_prime = i.value - 2

Listing A.9: FirstNPrimesList in SmartPy

1 type storage = int
2
3 let%entry n_primes (num : int) _ =
4
5 let p = 1 in
6 let i = 3 in
7 let l = [2] in
8
9 let t = (l, p) in

10
11 let i, _ =
12 Loop.left (fun (i, t) ->
13
14 let l = t.(0) in
15 let p = t.(1) in

72 APPENDIX A. SOURCE CODES

16
17 let c = 0 in
18
19 let c = List.fold (fun (x, c) ->
20
21 let (_, rem) = match i / x with
22 | Some qr -> qr
23 | None -> failwith "division by 0 impossible" in
24
25 if (rem = (0 : nat)) then 1 else c
26
27) l c;
28 in
29
30 let l =
31 if (c = 0) then i :: l else l
32 in
33
34 let p =
35 if (c = 0) then p + 1 else p + 0
36 in
37
38 let t = (l, p) in
39
40 if (p < num) then (Left (i + 2), t)
41 else (Right i, t)
42) i t
43 in
44
45 let i =
46 if (num <= 1) then 2 else i
47 in
48
49 ([], i)

Listing A.10: FirstNPrimesList in Liquidity

1 type storage is int
2
3 type parameter is
4 Primes of int
5
6 type return is list (operation) * storage
7
8 function firstnprimes (const num : int) : storage is
9 block {

10 var p : int := 1;
11 var i : int := 3;
12 var c : int := 0;
13 var s : set (int) := set [2];
14
15 while p < num block {
16 for x in set s block {
17 if i mod x = 0n then c := 1 else skip;
18 };
19
20 if c = 0 then
21 block {
22 s := Set.add (i, s);

73

23 p := p + 1
24 }
25 else skip;
26
27 c := 0;
28
29 i := i + 2;
30 };
31
32 if num <= 1 then i := 2 else i := i - 2
33
34 } with i
35
36 function main (const action : parameter; const store : storage) : return is
37 ((nil : list (operation)),
38 case action of
39 Primes (n) -> firstnprimes (n)
40 end)

Listing A.11: FirstNPrimesList in PascaLIGO

1 type storage = int
2
3 type parameter =
4 Primes of int
5
6 type return = operation list * storage
7
8 let firstnprimes (num : int) : storage =
9 let p : int = 1 in

10 let i : int = 3 in
11 let c : int = 0 in
12 let s : int set = Set.empty in
13 let s : int set = Set.add 2 s in
14
15 let rec while_one (num, p, i, c, s : int * int * int * int * int set) : int =
16 let sum (c, e : int * int) : int = if i mod e = 0n then 1 else c in
17 let c : int = Set.fold sum s c in
18
19 let s : int set = if c = 0 then Set.add i s else s in
20 let p : int = if c = 0 then p + 1 else p in
21
22 let c : int = 0 in
23
24 if p < num then while_one(num, p, i + 2, c, s) else i
25 in
26
27 let i : int =
28 if p < num then while_one(num, p, i, c, s) else i
29 in
30
31 let i : int = if num <= 1 then 2 else i in
32 i
33
34 let main (action, store : parameter * storage) : return =
35 ([] : operation list),
36 (match action with

74 APPENDIX A. SOURCE CODES

37 Primes (n) -> firstnprimes (n))

Listing A.12: FirstNPrimesList in CameLIGO

1 type storage = int;
2
3 type parameter =
4 Primes (int)
5
6 type return = (list (operation), storage);
7
8 let firstnprimes = ((num) : (int)) : storage =>
9 let p = 1;

10 let i = 3;
11 let c = 0;
12 let s : set (int) = Set.empty;
13 let s : set (int) = Set.add (2, s);
14
15 let rec while_one = ((num, p, i, c, s) : (int, int, int, int, set (int))) : int =>
16 let sum = ((c, e) : (int, int)) : int => if (i mod e == 0n) {1} else {c};
17 let c : int = Set.fold (sum, s, c);
18
19 let s : set (int) = if (c == 0) {Set.add (i, s)} else {s};
20 let p : int = if (c == 0) {p + 1} else {p};
21
22 let c = 0;
23
24 if (p < num) {while_one(num, p, i + 2, c, s);} else {i};
25
26 let i = if (p < num) {while_one(num, p, i, c, s)} else {i};
27
28 if (num <= 1) {2} else {i};
29
30 let main = ((action, store) : (parameter , storage)) : return => {
31 (([] : list (operation)),
32 (switch (action) {
33 | Primes (n) => firstnprimes (n)}))
34 };

Listing A.13: FirstNPrimesList in ReasonLIGO

1 archetype FirstNPrimesList
2
3 variable primes : int = 0
4
5 entry n_primes (num : int) {
6 var l = [2];
7 var i : nat = 3;
8 var c : int = 0;
9 var p : int = 1;

10 var nn : int = num * 5;
11
12 iter z to nn do
13 if p < num then
14 (
15 for e in l do
16 if i % e = 0 then c := 1;

75

17 done;
18
19 if c = 0 then
20 (
21 l := prepend(l, i);
22 p := p + 1;
23);
24
25 c := 0;
26
27 i += 2;
28);
29 done;
30
31 if (num <= 1) then primes := 2 else primes := i - 2
32 }

Listing A.14: FirstNPrimesList in Archetype

1 pragma solidity ^0.5.0;
2
3 contract FirstNPrimesList {
4
5 uint last_prime;
6
7 function n_primes(uint num) public {
8 uint[] memory primes = new uint[](num);
9 primes[0] = 2;

10
11 uint p = 1;
12 uint i = 3;
13 uint c = 0;
14 uint ch = 0;
15
16 while (p < num)
17 {
18 while (c < p)
19 {
20 if (i % primes[c] == 0)
21 ch = 1;
22
23 c += 1;
24 }
25
26 if (ch == 0)
27 {
28 primes[p] = i;
29 p += 1;
30 }
31
32 c = 0;
33 ch = 0;
34
35 i += 2;
36 }
37
38 if (num <= 1)
39 last_prime = 2;
40 else

76 APPENDIX A. SOURCE CODES

41 last_prime = i - 2;
42 }
43
44 function getPrimes() public view returns (uint) {
45 return last_prime;
46 }
47 }

Listing A.15: FirstNPrimesList in Solidity

1 primes: public(uint256)
2
3 @external
4 def n_primes (num : uint256):
5 p: uint256 = 1
6 i: uint256 = 3
7 c: uint256 = 0
8 ch: uint256 = 0
9 s: uint256[2000] = [2,0,

10 0,
11 0,
12 0,
13 0,
14 0,
15 0,
16 0,
17 0,
18 0,
19 0,
20 0,
21 0,
22 0,
23 0,
24 0,
25 0,
26 0,
27 0,
28 0,
29 0,
30 0,
31 0,
32 0,
33 0,
34 0,
35 0,
36 0,
37 0,
38 0,
39 0,
40 0,
41 0,
42 0,
43 0,
44 0,
45 0,
46 0,
47 0,
48 0,
49 0,

77

50 0,
51 0,
52 0,
53 0,
54 0,
55 0,0]
56
57 for y in range(8000):
58 if p < num:
59 for z in range(2000):
60 if s[c] != 0:
61 if i % s[c] == 0:
62 ch = 1
63
64 c += 1
65 else:
66 break
67
68 if ch == 0:
69 s[p] = i
70 p += 1
71
72 c = 0
73 ch = 0
74
75 i += 2
76 else:
77 break
78
79
80 if num <= 1:
81 self.primes = 2
82 else:
83 self.primes = i - 2

Listing A.16: FirstNPrimesList in Vyper

1 import smartpy as sp
2
3 class FirstNPrimesBoth(sp.Contract):
4 def __init__(self):
5 self.init(last_prime = sp.int(0), m = {0 : 2})
6
7 @sp.entry_point
8 def n_primes(self, num):
9 p = sp.local("p", 1)

10 i = sp.local("i", 3)
11 c = sp.local("c", 0)
12 n = sp.local("n", num)
13
14 sp.while p.value < n.value:
15
16 sp.while (i.value % self.data.m[c.value] != 0) & (self.data.m[c.value] * self

.data.m[c.value] <= i.value):
17 c.value += 1
18
19 sp.if (i.value % self.data.m[c.value] != 0):
20 self.data.m[p.value] = i.value
21 p.value += 1

78 APPENDIX A. SOURCE CODES

22
23 c.value = 0
24
25 i.value += 2
26
27 self.data.m = {0 : 2}
28
29 sp.if (n.value <= 1):
30 self.data.last_prime = 2
31 sp.else:
32 self.data.last_prime = i.value - 2

Listing A.17: FirstNPrimesBoth in SmartPy

1 type storage = int
2
3 let%entry n_primes (num : int) _ =
4
5 let p = 1 in
6 let i = 3 in
7 let m = (Map [0,2] : (int, int) map) in
8
9 let t = (m, p) in

10
11 let i, _ =
12 Loop.left (fun (i, t) ->
13
14 let m = t.(0) in
15 let p = t.(1) in
16
17 let c = 0 in
18
19 let _, c = Loop.left (fun (m, c) ->
20
21 let mz = match Map.find c m with
22 | None -> failwith ("id is not in the map", c)
23 | Some v -> v
24 in
25
26 let (_, rem) = match i / mz with
27 | Some qr -> qr
28 | None -> failwith "division by 0 impossible"
29 in
30
31 if (rem <> (0 : nat) & mz * mz <= i) then (Left m, (c + 1))
32 else (Right m, c)
33) m c;
34 in
35
36 let mz = match Map.find c m with
37 | None -> failwith ("id is not in the map", c)
38 | Some v -> v
39 in
40
41 let (_, rem) = match i / mz with
42 | Some qr -> qr
43 | None -> failwith "division by 0 impossible"
44 in
45

79

46 let m =
47 if (rem <> (0 : nat)) then Map.add p i m else m
48 in
49
50 let p =
51 if (rem <> (0 : nat)) then p + 1 else p + 0
52 in
53
54 let t = (m, p) in
55
56 if (p < num) then (Left (i + 2), t)
57 else (Right i, t)
58) i t
59 in
60
61 let i =
62 if (num <= 1) then 2 else i
63 in
64
65 ([], i)

Listing A.18: FirstNPrimesBoth in Liquidity

1 type storage is int
2
3 type parameter is
4 Primes of int
5
6 type return is list (operation) * storage
7
8 type pr is map (int, int);
9

10 function access (const k : int; const m : pr) : int is
11 case m[k] of
12 Some (val) -> val
13 | None -> (failwith ("No value associated.") : int)
14 end
15
16 function firstnprimes (const num : int) : storage is
17 block {
18 var m : pr := map [0 -> 2];
19 var i : int := 3;
20 var p : int := 1;
21 var c : int := 0;
22
23 var mz : int := access(0, m);
24
25 while p < num block {
26 while (i mod mz =/= 0n) and (mz * mz <= i) block {
27 c := c + 1;
28 mz := access(c, m);
29 };
30
31 if i mod mz =/= 0n then {
32 m[p] := i;
33 p := p + 1;
34 }
35 else skip;
36

80 APPENDIX A. SOURCE CODES

37 var mz := access(0, m);
38
39 i := i + 2;
40 };
41
42 if num <= 1 then i := 2 else i := i - 2
43
44 } with i
45
46 function main (const action : parameter; const store : storage) : return is
47 ((nil : list (operation)),
48 case action of
49 Primes (n) -> firstnprimes (n)
50 end)

Listing A.19: FirstNPrimesBoth in PascaLIGO

1 type storage = int
2
3 type parameter =
4 Primes of int
5
6 type return = operation list * storage
7
8 type pr = (int, int) map
9

10 let access (k, m : int * pr) : int =
11 match Map.find_opt k m with
12 Some value -> value
13 | None -> (failwith "No value associated." : int)
14
15 let firstnprimes (num : int) : storage =
16 let m : pr = Map.literal [0, 2] in
17 let p : int = 1 in
18 let i : int = 3 in
19 let c : int = 0 in
20
21 let rec while_one (m, num, p, i : pr * int * int * int) : int =
22 let rec while_two (m, mz, i, c : pr * int * int * int) : int =
23 if i mod mz <> 0n && mz * mz <= i then while_two(m, access(c, m), i, c + 1)

else mz
24 in
25
26 let mz : int = while_two (m, 2, i, 0) in
27
28 let m : pr = if i mod mz <> 0n then Map.add p i m else m in
29 let p : int = if i mod mz <> 0n then p + 1 else p in
30
31 if p < num then while_one(m, num, p, i + 2) else i
32 in
33
34 let i : int =
35 if p < num then while_one(m, num, p, i) else i
36 in
37
38 let i : int = if num <= 1 then 2 else i in
39 i
40
41 let main (action, store : parameter * storage) : return =

81

42 ([] : operation list),
43 (match action with
44 Primes (n) -> firstnprimes (n))

Listing A.20: FirstNPrimesBoth in CameLIGO

1 type storage = int;
2
3 type parameter =
4 Primes (int)
5
6 type return = (list (operation), storage);
7
8 type pr = map (int, int);
9

10 let access = ((k, m) : (int, pr)) : int => {
11 switch (Map.find_opt (k, m)) {
12 | Some value => value
13 | None => (failwith ("No value associated.") : int)
14 }
15 }
16
17 let firstnprimes = ((num) : (int)) : storage =>
18 let m = Map.literal([(0, 2)]);
19 let p = 1;
20 let i = 3;
21 let c = 0;
22
23 let rec while_one = ((m, num, p, i) : (pr, int, int, int)) : int =>
24 let rec while_two = ((m, mz, i, c) : (pr, int, int, int)) : int =>
25 if ((i mod mz != 0n) && (mz * mz <= i)) {while_two(m, access(c, m), i, c + 1)

;} else {mz;};
26
27 let mz = while_two(m, 2, i, 0);
28
29 let m = if (i mod mz != 0n) {Map.add(p, i, m);} else {m;};
30 let p = if (i mod mz != 0n) {p + 1;} else {p;};
31
32 if (p < num) {while_one(m, num, p, i + 2);} else {i};
33
34 let i = if (p < num) {while_one(m, num, p, i)} else {i};
35
36 if (num <= 1) {2} else {i};
37
38 let main = ((action, store) : (parameter , storage)) : return => {
39 (([] : list (operation)),
40 (switch (action) {
41 | Primes (n) => firstnprimes (n)}))
42 };

Listing A.21: FirstNPrimesBoth in ReasonLIGO

1 archetype FirstNPrimesBoth
2
3 variable primes : int = 0
4
5 entry n_primes (num : int) {

82 APPENDIX A. SOURCE CODES

6
7 var p : int = 1;
8 var i : int = 3;
9 var c : nat = 0;

10 var nn : int = num * 5;
11 var m : map<nat, int> = [(0, 2i)];
12
13 iter z to nn do
14 if p < num then
15 (
16 iter w to 32 do
17 if i % m[c] <> 0 and m[c] * m[c] <= i then
18 c := c + 1
19 done;
20
21 if i % m[c] <> 0 then
22 (
23 m := put(m, abs(p), i);
24 p := p + 1;
25);
26
27 c := 0;
28
29 i += 2;
30);
31 done;
32
33 if (num <= 1) then primes := 2 else primes := i - 2
34 }

Listing A.22: FirstNPrimesBoth in Archetype

1 pragma solidity ^0.5.0;
2
3 contract FirstNPrimesBoth {
4
5 uint last_prime;
6
7 function n_primes(uint num) public {
8 uint[] memory primes = new uint[](num);
9 primes[0] = 2;

10
11 uint p = 1;
12 uint i = 3;
13 uint c = 0;
14
15 while (p < num)
16 {
17 while (i % primes[c] != 0 && primes[c] * primes[c] <= i)
18 c += 1;
19
20 if (i % primes[c] != 0)
21 {
22 primes[p] = i;
23 p += 1;
24 }
25
26 c = 0;
27

83

28 i += 2;
29 }
30
31 if (num <= 1)
32 last_prime = 2;
33 else
34 last_prime = i - 2;
35 }
36
37 function getPrimes() public view returns (uint) {
38 return last_prime;
39 }
40 }

Listing A.23: FirstNPrimesBoth in Solidity

1 primes: public(uint256)
2
3 @external
4 def n_primes (num : uint256):
5 p: uint256 = 1
6 i: uint256 = 3
7 c: uint256 = 0
8 s: uint256[2000] = [2,0,
9 0,

10 0,
11 0,
12 0,
13 0,
14 0,
15 0,
16 0,
17 0,
18 0,
19 0,
20 0,
21 0,
22 0,
23 0,
24 0,
25 0,
26 0,
27 0,
28 0,
29 0,
30 0,
31 0,
32 0,
33 0,
34 0,
35 0,
36 0,
37 0,
38 0,
39 0,
40 0,
41 0,
42 0,
43 0,

84 APPENDIX A. SOURCE CODES

44 0,
45 0,
46 0,
47 0,
48 0,
49 0,
50 0,
51 0,
52 0,
53 0,
54 0,0]
55
56 for y in range(8000):
57 if p < num:
58 for z in range(150):
59 if s[c] != 0 and i % s[c] != 0 and s[c] * s[c] <= i:
60 c += 1
61 else:
62 break
63
64 if i % s[c] != 0:
65 s[p] = i
66 p += 1
67
68 c = 0
69
70 i += 2
71 else:
72 break
73
74
75 if num <= 1:
76 self.primes = 2
77 else:
78 self.primes = i - 2

Listing A.24: FirstNPrimesBoth in Vyper

1 import smartpy as sp
2
3 class FirstNPrimesMap(sp.Contract):
4 def __init__(self):
5 self.init(last_prime = sp.int(0), primes = {0 : 2})
6
7 @sp.entry_point
8 def n_primes(self, num):
9 p = sp.local("p", 1)

10 i = sp.local("i", 3)
11 c = sp.local("c", 0)
12 d = sp.local("d", 0)
13 n = sp.local("n", num)
14
15 sp.while p.value < n.value:
16
17 sp.while (c.value < p.value):
18 sp.if (i.value % self.data.primes[c.value] == 0):
19 d.value = 1
20 c.value += 1
21

85

22 sp.if (d.value == 0):
23 self.data.primes[p.value] = i.value
24 p.value += 1
25
26 c.value = 0
27 d.value = 0
28
29 i.value += 2
30
31 self.data.primes = {0 : 2}
32 sp.if (n.value <= 1):
33 self.data.last_prime = 2
34 sp.else:
35 self.data.last_prime = i.value - 2

Listing A.25: FirstNPrimesMap in SmartPy

1 type storage = int
2
3 let%entry n_primes (num : int) _ =
4
5 let p = 1 in
6 let i = 3 in
7 let m = (Map [0,2] : (int, int) map) in
8
9 let t = (m, p) in

10
11 let i, _ =
12 Loop.left (fun (i, t) ->
13
14 let m = t.(0) in
15 let p = t.(1) in
16
17 let c = 0 in
18 let d = 0 in
19
20 let cd = (c, d) in
21
22 let _, cd = Loop.left (fun (m, cd) ->
23
24 let c = cd.(0) in
25 let d = cd.(1) in
26
27 let mz = match Map.find c m with
28 | None -> failwith ("id is not in the map", c)
29 | Some v -> v
30 in
31
32 let (_, rem) = match i / mz with
33 | Some qr -> qr
34 | None -> failwith "division by 0 impossible"
35 in
36
37 let d =
38 if (rem = (0 : nat)) then 1 else d
39 in
40
41 let c = c + 1 in
42

86 APPENDIX A. SOURCE CODES

43 let cd = (c, d) in
44
45 if (cd.(0) < p) then (Left m, cd)
46 else (Right m, cd)
47) m cd;
48 in
49
50 let d = cd.(1) in
51
52 let m =
53 if (d = 0) then Map.add p i m else m
54 in
55
56 let p =
57 if (d = 0) then p + 1 else p
58 in
59
60 let t = (m, p) in
61
62 if (p < num) then (Left (i + 2), t)
63 else (Right i, t)
64) i t
65 in
66
67 let i =
68 if (num <= 1) then 2 else i
69 in
70
71 ([], i)

Listing A.26: FirstNPrimesMap in Liquidity

1 type storage is int
2
3 type parameter is
4 Primes of int
5
6 type return is list (operation) * storage
7
8 type pr is map (int, int);
9

10 function access (const k : int; const m : pr) : int is
11 case m[k] of
12 Some (val) -> val
13 | None -> (failwith ("No value associated.") : int)
14 end
15
16 function firstnprimes (const num : int) : storage is
17 block {
18 var m : pr := map [0 -> 2];
19 var i : int := 3;
20 var p : int := 1;
21 var c : int := 0;
22 var d : int := 0;
23
24 var mz : int := access(0, m);
25
26 while p < num block {
27 while (c < p) block {

87

28 if i mod mz = 0n then {
29 d := 1;
30 }
31 else skip;
32
33 mz := access(c, m);
34
35 c := c + 1;
36 };
37
38 if d = 0 then {
39 m[p] := i;
40 p := p + 1;
41 }
42 else skip;
43
44 var mz := access(0, m);
45
46 c := 0;
47 d := 0;
48
49 i := i + 2;
50 };
51
52 if num <= 1 then i := 2 else i := i - 2
53
54 } with i
55
56 function main (const action : parameter; const store : storage) : return is
57 ((nil : list (operation)),
58 case action of
59 Primes (n) -> firstnprimes (n)
60 end)

Listing A.27: FirstNPrimesMap in PascaLIGO

1 type storage = int
2
3 type parameter =
4 Primes of int
5
6 type return = operation list * storage
7
8 type pr = (int, int) map
9

10 let access (k, m : int * pr) : int =
11 match Map.find_opt k m with
12 Some value -> value
13 | None -> (failwith "No value associated." : int)
14
15 let firstnprimes (num : int) : storage =
16 let m : pr = Map.literal [0, 2] in
17 let p : int = 1 in
18 let i : int = 3 in
19 let c : int = 0 in
20
21 let rec while_one (m, num, p, i : pr * int * int * int) : int =
22 let rec while_two (m, mz, i, c, d : pr * int * int * int * int) : int =
23 let d =

88 APPENDIX A. SOURCE CODES

24 if i mod mz = 0n then 1 else d
25 in
26
27 if c < p then while_two(m, access(c, m), i, c + 1, d) else d
28 in
29
30 let d : int = while_two (m, 2, i, 0, 0) in
31
32 let m : pr = if d = 0 then Map.add p i m else m in
33 let p : int = if d = 0 then p + 1 else p in
34
35 let c = 0 in
36 let d = 0 in
37
38 if p < num then while_one(m, num, p, i + 2) else i
39 in
40
41 let i : int =
42 if p < num then while_one(m, num, p, i) else i
43 in
44
45 let i : int = if num <= 1 then 2 else i in
46 i
47
48 let main (action, store : parameter * storage) : return =
49 ([] : operation list),
50 (match action with
51 Primes (n) -> firstnprimes (n))

Listing A.28: FirstNPrimesMap in CameLIGO

1 type storage = int;
2
3 type parameter =
4 Primes (int)
5
6 type return = (list (operation), storage);
7
8 type pr = map (int, int);
9

10 let access = ((k, m) : (int, pr)) : int => {
11 switch (Map.find_opt (k, m)) {
12 | Some value => value
13 | None => (failwith ("No value associated.") : int)
14 }
15 }
16
17 let firstnprimes = ((num) : (int)) : storage =>
18 let m = Map.literal([(0, 2)]);
19 let p = 1;
20 let i = 3;
21 let c = 0;
22
23 let rec while_one = ((m, num, p, i) : (pr, int, int, int)) : int =>
24 let rec while_two = ((m, mz, i, c, d) : (pr, int, int, int, int)) : int =>
25 let d = if (i mod mz == 0n) {1;} else {d;};
26
27 if (c < p) {while_two(m, access(c, m), i, c + 1, d);} else {d;};
28

89

29 let d = while_two(m, 2, i, 0, 0);
30
31 let m = if (d == 0) {Map.add(p, i, m);} else {m;};
32 let p = if (d == 0) {p + 1;} else {p;};
33
34 let c = 0;
35 let d = 0;
36
37 if (p < num) {while_one(m, num, p, i + 2);} else {i};
38
39 let i = if (p < num) {while_one(m, num, p, i)} else {i};
40
41 if (num <= 1) {2} else {i};
42
43 let main = ((action, store) : (parameter , storage)) : return => {
44 (([] : list (operation)),
45 (switch (action) {
46 | Primes (n) => firstnprimes (n)}))
47 };

Listing A.29: FirstNPrimesMap in ReasonLIGO

1 archetype FirstNPrimesMap
2
3 variable primes : int = 0
4
5 entry n_primes (num : int) {
6 var m : map<nat, nat> = [(0, 2)];
7 var i : nat = 3;
8 var c : int = 0;
9 var p : int = 1;

10 var nn : int = num * 5;
11
12 iter z to nn do
13 if p < num then
14 (
15 for (k, v) in m do
16 if i % v = 0 then c := 1;
17 done;
18
19 if c = 0 then
20 (
21 m := put(m, abs(p), i);
22 p := p + 1;
23);
24
25 c := 0;
26
27 i += 2;
28);
29 done;
30
31 if (num <= 1) then primes := 2 else primes := i - 2
32 }

Listing A.30: FirstNPrimesMap in Archetype

90 APPENDIX A. SOURCE CODES

1 import smartpy as sp
2
3 class NQueens(sp.Contract):
4 def __init__(self):
5 self.init(m = {0 : 0}, used = {0 : 0})
6 #"m" is the board //id is row, value is column
7 #"used" are the spots where the current can/cannot be put in (1 is blocked, 0 is

open)
8
9 @sp.entry_point

10 def n_queens(self, num):
11 self.data.m = {}
12 self.data.used = {}
13 n = sp.local("n", num) #number of queens to put on nxn board
14 count = sp.local("count", 0) #put on board so far
15 k = sp.local("k", 0) #go through the ones already on the board to

compare to current one
16 d = sp.local("d", 0) #check diagonals
17 v = sp.local("v", 0) #add or sub to diagonals
18 back = sp.local("back", False) #check if its backtracking
19
20 sp.if (n.value <= 0) | (n.value == 2) | (n.value == 3):
21 self.data.m = {}
22 sp.else:
23 sp.while count.value < n.value:
24 sp.if count.value == 0:
25 sp.if back.value == False:
26 self.data.m[count.value] = 0
27 sp.else:
28 self.data.m[count.value] += 1
29
30 back.value = False
31
32 count.value += 1
33
34 sp.else:
35 sp.while k.value < count.value:
36 v.value = self.data.m[k.value]
37 self.data.used[v.value] = 1
38 d.value = count.value - k.value
39
40 sp.if v.value + d.value < n.value:
41 self.data.used[v.value + d.value] = 1
42
43 sp.if v.value - d.value >= 0:
44 self.data.used[v.value - d.value] = 1
45
46 k.value += 1
47
48 sp.if back.value == True:
49 v.value = self.data.m[count.value]
50 k.value = 0
51 sp.while k.value < v.value + 1:
52 self.data.used[k.value] = 1
53 k.value += 1
54 back.value = False
55
56 k.value = 0
57
58 sp.while self.data.used.get(k.value, default_value = 0) == 1:
59 k.value += 1

91

60
61 sp.if k.value >= n.value:
62 back.value = True
63 count.value -= 1
64 sp.else:
65 self.data.m[count.value] = k.value
66 count.value += 1
67
68 k.value = 0
69 self.data.used = {}

Listing A.31: NQueens in SmartPy

1 type storage = (int, int) map
2
3 let%entry n_queens (n : int) _ =
4
5 let m =
6 if (n <= 0 or n = 2 or n = 3) then Map [] else
7
8 let m = (Map [] : (int, int) map) in
9 let used = (Map [] : (int, int) map) in

10 let count = 0 in
11 let k = 0 in
12 let d = 0 in
13 let v = 0 in
14 let back = false in
15
16 let t = (m, count, back, used, k, d, v) in
17
18 let _, t =
19 Loop.left (fun (_, t) ->
20
21 let m = t.(0) in
22 let count = t.(1) in
23 let back = t.(2) in
24 let used = t.(3) in
25 let k = t.(4) in
26 let d = t.(5) in
27 let v = t.(6) in
28
29 let t = (m, count, back, used, k, d, v) in
30
31 let t =
32 if count = 0 then
33 let m = t.(0) in
34 let count = t.(1) in
35 let back = t.(2) in
36 let used = t.(3) in
37 let k = t.(4) in
38 let d = t.(5) in
39 let v = t.(6) in
40
41 let t = (m, count, back, used, k, d, v) in
42
43 let t =
44 if back = false then
45 let m = t.(0) in
46 let count = t.(1) in

92 APPENDIX A. SOURCE CODES

47 let back = t.(2) in
48 let used = t.(3) in
49 let k = t.(4) in
50 let d = t.(5) in
51 let v = t.(6) in
52 let m = Map.add count 0 m in
53 let t = (m, count, back, used, k, d, v) in
54 t
55 else
56 let m = t.(0) in
57 let count = t.(1) in
58 let used = t.(3) in
59 let k = t.(4) in
60 let d = t.(5) in
61 let v = t.(6) in
62
63 let x = match Map.find count m with
64 | None -> failwith ("id is not in the map", count)
65 | Some x -> x
66 in
67
68 let x = x + 1 in
69
70 let m = Map.add count x m in
71
72 let back = false in
73
74 let t = (m, count, back, used, k, d, v) in
75 t
76 in
77 let m = t.(0) in
78 let count = t.(1) in
79 let back = t.(2) in
80 let used = t.(3) in
81 let k = t.(4) in
82 let d = t.(5) in
83 let v = t.(6) in
84
85 let count = count + 1 in
86
87 let t = (m, count, back, used, k, d, v) in
88
89 t
90
91 else
92 let _, t =
93 Loop.left (fun (_, t) ->
94 let m = t.(0) in
95 let count = t.(1) in
96 let back = t.(2) in
97 let used = t.(3) in
98 let k = t.(4) in
99

100 let v =
101 match Map.find k m with
102 | None -> failwith ("id is not in the map", k)
103 | Some v -> v
104 in
105
106 let used = Map.add v 1 used in
107 let d = count - k in

93

108
109 let used =
110 if v + d < n then
111 let vd = v + d in
112 Map.add vd 1 used
113 else
114 used
115 in
116
117 let used =
118 if v - d >= 0 then
119 let dv = v - d in
120 Map.add dv 1 used
121 else
122 used
123 in
124
125 let k = k + 1 in
126 let t = (m, count, back, used, k, d, v) in
127
128 if (k < count) then (Left m, t)
129 else (Right m, t)
130) m t
131 in
132
133 let back = t.(2) in
134
135 let t =
136 if back = true then
137 let m = t.(0) in
138 let count = t.(1) in
139 let back = t.(2) in
140 let used = t.(3) in
141 let d = t.(5) in
142
143 let v =
144 match Map.find count m with
145 | None -> failwith ("id is not in the map", count)
146 | Some v -> v
147 in
148
149 let k = 0 in
150 let t = (m, count, back, used, k, d, v) in
151
152 let _, t =
153 Loop.left (fun (_, t) ->
154 let m = t.(0) in
155 let count = t.(1) in
156 let back = t.(2) in
157 let used = t.(3) in
158 let k = t.(4) in
159 let d = t.(5) in
160 let v = t.(6) in
161
162 let used = Map.add k 1 used in
163
164 let k = k + 1 in
165 let t = (m, count, back, used, k, d, v) in
166
167 if (k < v + 1) then (Left used, t)
168 else (Right used, t)

94 APPENDIX A. SOURCE CODES

169) used t
170 in
171
172 let back = false in
173
174 let t = (t.(0), t.(1), back, t.(3), t.(4), t.(5), t.(6)) in
175
176 t
177
178 else
179 t
180 in
181
182 let t = (t.(0), t.(1), t.(2), t.(3), 0, t.(5), t.(6)) in
183 let used = t.(3) in
184
185 let _, t =
186 Loop.left (fun (_, t) ->
187
188 let m = t.(0) in
189 let count = t.(1) in
190 let back = t.(2) in
191 let used = t.(3) in
192 let k = t.(4) in
193 let d = t.(5) in
194 let v = t.(6) in
195
196 let value =
197 match Map.find k used with
198 | None -> 0
199 | Some value -> value
200 in
201
202 let k = k + 1 in
203 let t = (m, count, back, used, k, d, v) in
204
205 if (value = 1) then (Left used, t)
206 else (Right used, t)
207) used t
208 in
209
210 let k = t.(4) in
211 let k = k - 1 in
212 let t = (t.(0), t.(1), t.(2), t.(3), k, t.(5), t.(6)) in
213
214 let t =
215 if k >= n then
216 let m = t.(0) in
217 let count = t.(1) in
218 let used = t.(3) in
219 let k = t.(4) in
220 let d = t.(5) in
221 let v = t.(6) in
222
223 let back = true in
224 let count = count - 1 in
225 let t = (m, count, back, used, k, d, v) in
226
227 t
228 else
229 let m = t.(0) in

95

230 let count = t.(1) in
231 let back = t.(2) in
232 let used = t.(3) in
233 let k = t.(4) in
234 let d = t.(5) in
235 let v = t.(6) in
236
237 let m = Map.add count k m in
238 let count = count + 1 in
239 let t = (m, count, back, used, k, d, v) in
240
241 t
242 in
243
244 let m = t.(0) in
245 let count = t.(1) in
246 let back = t.(2) in
247 let d = t.(5) in
248 let v = t.(6) in
249
250 let k = 0 in
251 let used = Map [] in
252 let t = (m, count, back, used, k, d, v) in
253
254 t
255 in
256
257 if (t.(1) < n) then (Left m, t)
258 else (Right m, t)
259) m t
260 in
261
262 let m = t.(0) in
263
264 m
265 in
266
267 ([], m)

Listing A.32: NQueens in Liquidity

1 type storage is map (int, int)
2
3 type parameter is
4 NQueens of int
5
6 type return is list (operation) * storage
7
8 type q is map (int, int)
9

10 function access (const k : int; const m : q) : int is
11 case m[k] of
12 Some (val) -> val
13 | None -> 0
14 end
15
16 function n_queens (const n : int) : storage is
17 block {
18 var m : q := map [];

96 APPENDIX A. SOURCE CODES

19 var used : q := map [];
20 var count : int := 0;
21 var k : int := 0;
22 var d : int := 0;
23 var v : int := 0;
24 var back : bool := False;
25
26 if n <= 0 or n = 2 or n = 3 then
27 count := n
28 else {
29 skip;
30 };
31
32 while count < n block {
33 if count = 0 then {
34 if back = False then
35 m[count] := 0;
36 else {
37 v := access(count, m);
38 m[count] := v + 1;
39
40 back := False
41 };
42
43 count := count + 1
44 }
45 else {
46 for i := k to count -1 block {
47 v := access(i, m);
48 used[v] := 1;
49 d := count - i;
50
51 if v + d < n then
52 used[v + d] := 1
53 else skip;
54
55 if v - d >= 0 then
56 used[v - d] := 1
57 else skip;
58 };
59
60 if back = True then {
61 v := access(count, m);
62 for i := 0 to v block {
63 used[i] := 1;
64 };
65
66 back := False
67
68 } else skip;
69
70 k := 0;
71
72 for i := 0 to n-1 block {
73 if access(k, used) = 1 then
74 k := k + 1;
75 else
76 i := n-1;
77 };
78
79 if k >= n then {

97

80 back := True;
81 count := count - 1
82 }
83 else {
84 m[count] := k;
85 count := count + 1
86 };
87
88 k := 0;
89 used := map [0->0]
90 }
91 }
92
93 } with m
94
95 function main (const action : parameter; const store : storage) : return is
96 ((nil : list (operation)),
97 case action of
98 NQueens (n) -> n_queens (n)
99 end)

Listing A.33: NQueens in PascaLIGO

1 type storage = (int, int) map
2
3 type parameter =
4 NQueens of int
5
6 type return = operation list * storage
7
8 type q = (int, int) map
9 type t = q * int * bool

10
11 let access (k, m : int * q) : int =
12 match Map.find_opt k m with
13 Some value -> value
14 | None -> 0
15
16 let n_queens (n : int) : storage =
17 let m : q = Map.empty in
18 let used : q = Map.empty in
19 let count : int = 0 in
20 let k : int = 0 in
21 let back : bool = false in
22
23 let count =
24 if (n <= 0 || n = 2 || n = 3) then n else count
25 in
26
27 let rec main_while(used, k, t, n : q * int * t * int) : q =
28 let (_, count, _) : t = t in
29
30 let t =
31 if count = 0 then (
32 let (m, count, back) : t = t in
33
34 let t =
35 if back = false then (
36 let m = Map.add count 0 m in

98 APPENDIX A. SOURCE CODES

37 (m, count, back)
38) else (
39 let mz = access(count, m) in
40 let mz = mz + 1 in
41 let m = Map.add count mz m in
42
43 let back = false in
44 (m, count, back)
45)
46 in
47
48 let (m, count, back) = t in
49
50 (m, count + 1, back)
51) else (
52 let (m, count, back) : t = t in
53
54 let rec while_diagonals(m, n, k, count, used : q * int * int * int * q) :

q =
55 let v = access(k, m) in
56 let used = Map.add v 1 used in
57 let d = count - k in
58 let vd = v + d in
59 let dv = v - d in
60
61 let used =
62 if v + d < n then Map.add vd 1 used else used
63 in
64
65 let used =
66 if v - d >= 0 then Map.add dv 1 used else used
67 in
68
69 let k = k + 1 in
70
71 if k < count then while_diagonals(m, n, k, count, used) else used
72 in
73
74 let used =
75 if k < count then while_diagonals(m, n, k, count, used) else used
76 in
77
78 let used =
79 if back = true then (
80 let v = access(count, m) in
81 let k = 0 in
82
83 let rec while_fill(used, k, v : q * int * int) : q =
84 let used = Map.add k 1 used in
85
86 let k = k + 1 in
87
88 if k < v + 1 then while_fill(used, k, v) else used
89 in
90
91 if k < v + 1 then while_fill(used, k, v) else used
92) else used
93 in
94
95 let back =
96 if back = true then false else back

99

97 in
98
99 let k = 0 in

100
101 let rec while_find_empty(used, k : q * int) : int =
102 let k = k + 1 in
103
104 if access(k, used) = 1 then while_find_empty(used, k) else k
105 in
106
107 let k =
108 if access(k, used) = 1 then while_find_empty(used, k) else k
109 in
110
111 let back = if k >= n then true else back in
112 let m = if k >= n then m else Map.add count k m in
113 let count = if k >= n then count - 1 else count + 1 in
114
115 (m, count, back)
116)
117 in
118
119 let (m, count, back) = t in
120
121 if count < n then main_while(used, k, t, n) else m
122 in
123
124 let t : t = (m, count, back) in
125
126 let m =
127 if count < n then main_while(used, k, t, n) else m
128 in
129
130 m
131
132 let main (action, store : parameter * storage) : return =
133 ([] : operation list),
134 (match action with
135 NQueens (n) -> n_queens (n))

Listing A.34: NQueens in CameLIGO

1 type storage = map (int, int);
2
3 type parameter =
4 NQueens (int)
5
6 type return = (list (operation), storage);
7
8 type q = map (int, int);
9 type t = (q, int, bool);

10
11 let access = ((k, m) : (int, q)) : int => {
12 switch (Map.find_opt (k, m)) {
13 | Some value => value
14 | None => 0
15 }
16 }
17

100 APPENDIX A. SOURCE CODES

18 let n_queens = ((n) : (int)) : storage =>
19 let m : q = Map.empty;
20 let used : q = Map.empty;
21 let count = 0;
22 let k = 0;
23 let back = false;
24
25 let count = if (n <= 0 || n == 2 || n == 3) {n;} else {count;};
26
27 let rec main_while = ((used, k, t, n) : (q, int, t, int)) : q =>
28 let (_, count, _) : t = t;
29
30 let t =
31 if (count == 0) {
32 let (m, count, back) : t = t;
33
34 let t =
35 if (back == false) {
36 let m = Map.add(count, 0, m);
37 (m, count, back);
38 } else {
39 let mz = access(count, m);
40 let mz = mz + 1;
41 let m = Map.add(count, mz, m);
42
43 let back = false;
44 (m, count, back);
45 };
46
47 let (m, count, back) = t;
48
49 (m, count + 1, back);
50 } else {
51 let (m, count, back) : t = t;
52
53 let rec while_diagonals = ((m, n, k, count, used) : (q, int, int, int, q)

) : q =>
54 let v = access(k, m);
55 let used = Map.add(v, 1, used);
56 let d = count - k;
57 let vd = v + d;
58 let dv = v - d;
59
60 let used = if (v + d < n) {Map.add(vd, 1, used);} else {used;};
61
62 let used = if (v - d >= 0) {Map.add(dv, 1, used);} else {used;};
63
64 let k = k + 1;
65
66 if (k < count) {while_diagonals(m, n, k, count, used);} else {used;};
67
68 let used = if (k < count) {while_diagonals(m, n, k, count, used);} else {

used;};
69
70 let used =
71 if (back == true) {
72 let v = access(count, m);
73 let k = 0;
74
75 let rec while_fill = ((used, k, v) : (q, int, int)) : q =>
76 let used = Map.add(k, 1, used);

101

77
78 let k = k + 1;
79
80 if (k < v + 1) {while_fill(used, k, v);} else {used;};
81
82 if (k < v + 1) {while_fill(used, k, v);} else {used;};
83 } else {used;};
84
85 let back = if (back == true) {false;} else {back;};
86
87 let k = 0;
88
89 let rec while_find_empty = ((used, k) : (q, int)) : int =>
90 let k = k + 1;
91
92 if (access(k, used) == 1) {while_find_empty(used, k);} else {k;};
93
94 let k = if (access(k, used) == 1) {while_find_empty(used, k);} else {k;};
95
96 let back = if (k >= n) {true;} else {back;};
97 let m = if (k >= n) {m;} else {Map.add(count, k, m);};
98 let count = if (k >= n) {count - 1;} else {count + 1;};
99

100 (m, count, back);
101 };
102
103 let (m, count, back) = t;
104
105 if (count < n) {main_while(used, k, t, n);} else {m;};
106
107 let t : t = (m, count, back);
108
109 let m = if (count < n) {main_while(used, k, t, n);} else {m;};
110
111 m;
112
113 let main = ((action, store) : (parameter , storage)) : return => {
114 (([] : list (operation)),
115 (switch (action) {
116 | NQueens (n) => n_queens (n)}))
117 };

Listing A.35: NQueens in ReasonLIGO

1 archetype NQueens
2
3 variable queens : map<nat, nat> = []
4
5 entry n_queens (num : int) {
6
7 var m : map<nat, nat> = [];
8 var used : map<nat, nat> = [];
9 var n : nat = abs(num);

10 var count : int = 0;
11 var k : nat = 0;
12 var back : bool = false;
13 var it : nat = 0;
14
15 if (n = 1 or n = 5) then it := n + 1 else (

102 APPENDIX A. SOURCE CODES

16 if (n = 4 or n = 7) then it := 13 else (
17 if (n = 6 or n = 9 or n = 11) then it := n * 9 + 3 else (
18 if (n = 8) then it := 220 else (
19 if (n = 10) then it := n * 20 else (
20 if (n = 13) then it := n * 16 + 2 else (
21 if (n = 12) then it := n * 43 else (
22 if (n = 14) then it := 3790 else (
23 if (n = 15) then it := 2705
24)
25)
26)
27)
28)
29)
30)
31);
32
33 if (n <= 0 or n = 2 or n = 3) then m := [] else (
34 iter i to it do
35 if count < n then (
36 if count = 0 then (
37 if back = false then m := put(m, abs(count), 0) else (
38 var t = m[abs(count)];
39 t := t + 1;
40 m := put(m, abs(count), t);
41 back := false
42);
43
44 count := count + 1
45) else (
46 iter a to count + 1 do
47 if k < count then (
48 var v = m[k];
49 used := put(used, v, 1);
50 var d = count - k;
51 var vd = v + d;
52 var dv = v - d;
53
54 if vd < n then used := put(used, abs(vd), 1);
55
56 if dv >= 0 then used := put(used, abs(dv), 1);
57
58 k := k + 1
59);
60 done;
61
62 if back = true then (
63 var v = m[abs(count)];
64 k := 0;
65
66 iter e to v + 2 do
67 if k < v + 1 then (
68 used := put(used, k, 1);
69 k := k + 1
70);
71 done;
72
73 back := false
74);
75
76 k := 0;

103

77
78 iter o to n + 1 do
79 var c = contains(used, k);
80
81 if c = true then k := k + 1
82 done;
83
84 if k >= n then (
85 back := true;
86 count := count - 1
87) else (
88 m := put(m, abs(count), k);
89 count := count + 1
90);
91
92 k := 0;
93 used := []
94);
95);
96 done;
97);
98
99 queens := m

100 }

Listing A.36: NQueens in Archetype

1 pragma solidity ^0.5.0;
2
3 contract NQueens {
4
5 uint[] q;
6
7 function n_queens(uint num) public {
8 uint[] memory m = new uint[](num);
9 uint[] memory used = new uint[](num);

10 uint count = 0;
11 uint k = 0;
12 uint d = 0;
13 uint v = 0;
14 bool back = false;
15
16 if (num == 1 || num >= 4)
17 {
18 while (count < num)
19 {
20 if (count == 0)
21 {
22 if (back == false)
23 m[count] = 0;
24 else
25 {
26 m[count] += 1;
27
28 back = false;
29 }
30
31 count += 1;
32 }

104 APPENDIX A. SOURCE CODES

33 else
34 {
35 while (k < count)
36 {
37 v = m[k];
38 used[v] = 1;
39 d = count - k;
40 int dv = int (v - d);
41
42 if (v + d < num)
43 used[v + d] = 1;
44
45 if (dv >= 0)
46 used[uint (dv)] = 1;
47
48 k += 1;
49 }
50
51 if (back == true)
52 {
53 v = m[count];
54 k = 0;
55
56 while (k < (v + 1))
57 {
58 used[k] = 1;
59 k += 1;
60 }
61
62 back = false;
63 }
64
65 k = 0;
66
67 while (k < num && used[k] == 1)
68 k += 1;
69
70 if (k >= num)
71 {
72 back = true;
73 count -= 1;
74 }
75 else
76 {
77 m[count] = k;
78 count += 1;
79 }
80
81 k = 0;
82 used = new uint[](num);
83 }
84 }
85 }
86
87 q = m;
88 }
89
90 function getPositions() public view returns (uint[] memory) {
91 return q;
92 }

105

93 }

Listing A.37: NQueens in Solidity

1 queens: public(uint256[15])
2
3 @external
4 def n_queens (num : uint256):
5 m: uint256[15] = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
6 used: uint256[15] = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
7 count: uint256 = 0
8 k: uint256 = 0
9 d: uint256 = 0

10 v: uint256 = 0
11 back: bool = False
12
13 if num == 1 or num >= 4:
14 for x in range(4000):
15 if count < num:
16 if count == 0:
17 if back == False:
18 m[count] = 0
19 else:
20 m[count] += 1
21 back = False
22
23 count += 1
24 else:
25 for y in range(15):
26 if k < count:
27 v = m[k]
28 used[v] = 1
29 d = count - k
30
31 if v + d < num:
32 used[v + d] = 1
33
34 if v >= d:
35 used[v - d] = 1
36
37 k += 1
38 else:
39 break
40
41 if back == True:
42 v = m[count]
43 k = 0
44
45 for z in range(15):
46 if k < v + 1:
47 used[k] = 1
48 k += 1
49 else:
50 break
51
52 back = False
53
54 k = 0
55

106 APPENDIX A. SOURCE CODES

56 for a in range(15):
57 if k < num and used[k] == 1:
58 k += 1
59 else:
60 break
61
62 if k >= num:
63 back = True
64 count -= 1
65 else:
66 m[count] = k
67 count += 1
68
69 k = 0
70 used = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
71 else:
72 break
73
74 self.queens = m

Listing A.38: NQueens in Vyper

1 import smartpy as sp
2
3 #program gets a magic square of NxN with superposition (Euler's method)
4 #N = 6 doesn't work with this method
5 class MagicSquareSP(sp.Contract):
6 def __init__(self):
7 self.init(a = {0 : 0}, b = {0 : 0}, used = {0 : 0}, use = {0 : 0}, m = {0 : 0})
8 #"a" is the first square
9 #"b" is the second square

10 #"used" is the numbers left to use (or in use)
11 #"use" is same as "used" (to check both squares at once)
12 #"used" is for "a", "use" is for "b"
13 #"m" is 1st used to check the pairs of numbers being used
14 #and at the end is the final square which should be magic
15
16 @sp.entry_point
17 def magic_square(self, num):
18 self.data.a = {}
19 self.data.b = {}
20 self.data.used = {}
21 self.data.use = {}
22 self.data.m = {}
23 n = sp.local("n", num)
24 i = sp.local("i", 0)
25 j = sp.local("j", 0)
26 s = sp.local("s", 0)
27 k = sp.local("k", 0)
28 t = sp.local("t", 0)
29 p = sp.local("p", 0)
30 back = sp.local("back", False)
31 b_o = sp.local("b_o", 0)
32 b = sp.local("b", False)
33 #b_o is used to check if either "used" or "use" overflowed
34 #0 = no overflow or "use" overflowed , 1 = "used" overflowed
35 #2 = both "used" and "use" overflowed
36
37 t.value = abs(n.value - 1) / abs(2)

107

38 k.value = abs(n.value - 1)
39
40 #fill main diagonal of "a" and 2nd diagonal of "b"
41 sp.while (i.value < n.value):
42 sp.if (n.value % 2 == 0):
43 t.value = i.value
44
45 s.value = i.value * n.value + j.value
46 p.value = i.value * n.value + k.value
47 self.data.a[s.value] = t.value
48 self.data.b[p.value] = t.value
49 i.value = i.value + 1
50 j.value = j.value + 1
51 k.value = abs(k.value - 1)
52
53 i.value = abs(n.value - 1)
54 j.value = 0
55 p.value = 0
56 k.value = 0
57 t.value = abs(n.value - 1) / abs(2)
58
59 sp.if (n.value % 2 == 1):
60 self.data.used[t.value] = 1
61 self.data.m[t.value * n.value + t.value] = 1
62
63 #fill 2nd diagonal of "a" and main diagonal of "b"
64 sp.while (j.value < n.value):
65 sp.if (i.value == j.value) & (n.value != 1):
66 i.value = abs(i.value - 1)
67 j.value = j.value + 1
68 p.value = p.value + 1
69
70 s.value = i.value * n.value + j.value
71
72 sp.if (n.value % 2 == 1):
73 sp.while (self.data.used.get(k.value, default_value = 0) == 1):
74 k.value = k.value + 1
75 sp.else:
76 sp.while (self.data.used.get(k.value, default_value = 0) == 1) | (k.value

== i.value) | (k.value == j.value):
77 k.value = k.value + 1
78
79 self.data.a[s.value] = k.value
80 self.data.used[k.value] = 1
81
82 s.value = k.value * n.value + self.data.b[s.value]
83 self.data.m[s.value] = 1
84
85 s.value = p.value * n.value + j.value
86 self.data.b[s.value] = k.value
87
88 s.value = self.data.a[s.value] * n.value + k.value
89 self.data.m[s.value] = 1
90
91 i.value = abs(i.value - 1)
92 j.value = j.value + 1
93 p.value = p.value + 1
94 k.value = 0
95
96 self.data.used = {}
97 i.value = 0

108 APPENDIX A. SOURCE CODES

98 j.value = 0
99 k.value = 0

100
101 #filling the rest of "a" and "b" with backtracking
102 sp.while (i.value < abs(n.value - 1)) | (j.value < abs(n.value - 1)):
103 t.value = i.value + j.value
104 #checks if current position is one of the diagonals
105 sp.if (i.value == j.value) | (t.value == abs(n.value - 1)):
106 sp.if (back.value == False):
107 sp.if (j.value < abs(n.value - 1)):
108 j.value = j.value + 1
109 sp.else:
110 i.value = i.value + 1
111 j.value = 0
112 sp.else:
113 sp.if (j.value > 0):
114 j.value = abs(j.value - 1)
115 sp.else:
116 i.value = abs(i.value - 1)
117 j.value = abs(n.value - 1)
118
119 sp.else:
120 k.value = 0
121
122 #go through current line/column (of "a" and "b")
123 #to mark the values that cannot be chosen in
124 #"a" on "used" and in "b" on "use"
125 sp.while (k.value < n.value):
126 sp.if (k.value != j.value):
127 s.value = i.value * n.value + k.value
128
129 p.value = self.data.a.get(s.value, default_value = n.value)
130 sp.if (p.value != n.value):
131 self.data.used[p.value] = 1
132
133 p.value = self.data.b.get(s.value, default_value = n.value)
134 sp.if (p.value != n.value):
135 self.data.use[p.value] = 1
136
137 sp.if (k.value != i.value):
138 s.value = k.value * n.value + j.value
139
140 p.value = self.data.a.get(s.value, default_value = n.value)
141 sp.if (p.value != n.value):
142 self.data.used[p.value] = 1
143
144 p.value = self.data.b.get(s.value, default_value = n.value)
145 sp.if (p.value != n.value):
146 self.data.use[p.value] = 1
147
148 k.value = k.value + 1
149
150 #restrict the position a(1.0) for a faster filling
151 sp.if (i.value == 1) & (j.value == 0):
152 k.value = 0
153
154 sp.if (n.value % 2 == 0):
155 t.value = n.value / 2
156 sp.else:
157 t.value = abs(n.value - 1)
158

109

159 sp.while (k.value < t.value):
160 self.data.used[k.value] = 1
161 k.value = k.value + 1
162
163 #restrict the position b(1.2) for a faster filling
164 sp.if (i.value == 1) & (j.value == 2):
165 k.value = 0
166
167 t.value = abs(n.value / 2 - 1)
168
169 sp.while (k.value < t.value):
170 self.data.use[k.value] = 1
171 k.value = k.value + 1
172
173 #restrict the position b(1.3) for a faster filling
174 sp.if (i.value == 1) & (j.value == 3):
175 k.value = 0
176 t.value = 3
177
178 sp.while (k.value < t.value):
179 self.data.use[k.value] = 1
180 k.value = k.value + 1
181
182 sp.if (back.value == True):
183 s.value = i.value * n.value + j.value
184 k.value = self.data.a[s.value]
185 t.value = self.data.b[s.value]
186 self.data.a[s.value] = n.value
187 self.data.b[s.value] = n.value
188
189 s.value = k.value * n.value + t.value
190 self.data.m[s.value] = 0
191
192 sp.if (b_o.value == 2):
193 k.value = k.value + 1
194 t.value = t.value + 1
195 sp.else:
196 sp.if (b_o.value == 1):
197 k.value = k.value + 1
198 t.value = 0
199 sp.else:
200 t.value = t.value + 1
201
202 sp.else:
203 k.value = 0
204 t.value = 0
205 b_o.value = 0
206
207 #find open value to put in "a"
208 sp.while (self.data.used.get(k.value, default_value = 0) == 1):
209 k.value = k.value + 1
210
211 #find open value to put in "b"
212 sp.while (self.data.use.get(t.value, default_value = 0) == 1):
213 t.value = t.value + 1
214
215 ##
216 #Possible scenarios from this point on:
217 #1. back = false, no overflow , see if pair exists, go thru all pair opts.

If all exist, back with b_o = 1
218 #2. back = false, k overflow , backtrack with b_o = 1

110 APPENDIX A. SOURCE CODES

219 #3. back = false, t overflow , backtrack with b_o = 0
220 #4. back = false, both k and t overflow , backtrack with b_o = 2
221 #5. back = true, no overflow , see if pair exists, go thru all pair opts.

If all exist, back with b_o = 1
222 #6. back = true, k overflow , backtrack with b_o = 0
223 #7. back = true, t overflow , t = 0, k = k + 1, go thru all pair opts. If

all exist, back with b_o = 1
224 #8. back = true, both k and t overflow , back with b_o = 0
225 ##
226
227 #this covers scenarios 1, 5 and 7
228 sp.if ((k.value < n.value) & (t.value < n.value)) | ((back == True) & (k.

value < n.value)):
229 sp.if (t.value >= n.value):
230 t.value = 0
231 k.value = k.value + 1
232
233 #go through all possible pairs, if all exist backtrack with b_o = 1
234 sp.while (k.value < n.value) & (b.value == False):
235 sp.while (self.data.used.get(k.value, default_value = 0) == 1):
236 k.value = k.value + 1
237
238 sp.while (self.data.use.get(t.value, default_value = 0) == 1):
239 t.value = t.value + 1
240
241 sp.if (t.value >= n.value) | (k.value >= n.value):
242 k.value = k.value + 1
243 t.value = 0
244 sp.else:
245 s.value = k.value * n.value + t.value
246 sp.if (self.data.m.get(s.value, default_value = 0) != 1):
247 self.data.m[s.value] = 1
248 s.value = i.value * n.value + j.value
249 self.data.a[s.value] = k.value
250 self.data.b[s.value] = t.value
251
252 b.value = True
253 sp.else:
254 t.value = t.value + 1
255
256 sp.if (t.value >= n.value):
257 k.value = k.value + 1
258 t.value = 0
259
260 #if b is true, it means it found an open pair, if not, all were taken
261 sp.if (b.value == True):
262 sp.if (j.value < abs(n.value - 1)):
263 j.value = j.value + 1
264 sp.else:
265 i.value = i.value + 1
266 j.value = 0
267
268 b.value = False
269 back.value = False
270 sp.else:
271 sp.if (j.value > 0):
272 j.value = abs(j.value - 1)
273 sp.else:
274 i.value = abs(i.value - 1)
275 j.value = abs(n.value - 1)
276

111

277 back.value = True
278 b_o.value = 1
279
280 sp.else:
281 #this covers scenarios 2, 3 and 4
282 sp.if (back.value == False):
283 sp.if (k.value >= n.value) & (t.value >= n.value):
284 b_o.value = 2
285 sp.else:
286 sp.if (k.value >= n.value):
287 b_o.value = 1
288 sp.else:
289 b_o.value = 0
290 #this covers scenarios 6 and 8
291 sp.else:
292 b_o.value = 0
293
294 sp.if (j.value > 0):
295 j.value = abs(j.value - 1)
296 sp.else:
297 i.value = abs(i.value - 1)
298 j.value = abs(n.value - 1)
299
300 back.value = True
301
302
303 k.value = 0
304 self.data.used = {}
305 self.data.use = {}
306
307
308 self.data.m = {}
309 i.value = 0
310 j.value = 0
311 #multiplying "a" by N, then adding "b" and one
312 sp.while (i.value < n.value):
313 s.value = i.value * n.value + j.value
314 t.value = self.data.a[s.value]
315 k.value = self.data.b[s.value]
316 p.value = t.value * n.value + k.value + 1
317 self.data.m[s.value] = p.value
318
319 sp.if (j.value < abs(n.value - 1)):
320 j.value = j.value + 1
321 sp.else:
322 i.value = i.value + 1
323 j.value = 0
324
325
326 self.data.a = {}
327 self.data.b = {}
328 self.data.used = {}
329 self.data.use = {}

Listing A.39: MagicSquare in SmartPy

1 type storage = (int, int) map
2
3 let%entry magic_square (num : int) _ =

112 APPENDIX A. SOURCE CODES

4
5 let a = (Map [] : (int, int) map) in
6 let b = (Map [] : (int, int) map) in
7 let used = (Map [] : (int, int) map) in
8 let m = (Map [] : (int, int) map) in
9 let i = 0 in

10 let j = 0 in
11 let back = false in
12 let b_o = 0 in
13
14 let (t, _) = match (num - 1) / 2 with
15 | Some qr -> qr
16 | None -> failwith "division by 0 impossible" in
17
18 let k = num - 1 in
19
20 let ab = (a, b) in
21 let ijk = (i, j, k) in
22
23 let ab, _ =
24 Loop.left (fun (ab, ijk) ->
25 let (_, r) = match num / 2 with
26 | Some qr -> qr
27 | None -> failwith "division by 0 impossible" in
28
29 let t =
30 if (r = (0 : nat)) then ijk.(0) else t
31 in
32
33 let s = ijk.(0) * num + ijk.(1) in
34 let p = ijk.(0) * num + ijk.(2) in
35
36 let a = ab.(0) in
37 let b = ab.(1) in
38 let a = Map.add s t a in
39 let b = Map.add p t b in
40 let ab = (a, b) in
41
42 let i = ijk.(0) in
43 let j = ijk.(1) in
44 let k = ijk.(2) in
45 let i = i + 1 in
46 let j = j + 1 in
47 let k = k - 1 in
48 let ijk = (i, j, k) in
49
50 if (ijk.(0) < num) then (Left ab, ijk)
51 else (Right ab, ijk)
52) ab ijk;
53 in
54
55 let i = num - 1 in
56 let j = 0 in
57 let p = 0 in
58
59 let (t, _) = match (num - 1) / 2 with
60 | Some qr -> qr
61 | None -> failwith "division by 0 impossible" in
62
63 let (_, r) = match num / 2 with
64 | Some qr -> qr

113

65 | None -> failwith "division by 0 impossible" in
66
67 let used =
68 if r = (1 : nat) then Map.add t 1 used else used
69 in
70
71 let m =
72 if r = (1 : nat) then Map.add (t * num + t) 1 m else m
73 in
74
75 let ijp = (i, j, p) in
76 let a = ab.(0) in
77 let b = ab.(1) in
78 let abum = (a, b, used, m) in
79
80 let abum, _ =
81 Loop.left (fun (abum, ijp) ->
82 let ijp =
83 if (ijp.(0) = ijp.(1) & num <> 1) then
84 let i = ijp.(0) - 1 in
85 let j = ijp.(1) + 1 in
86 let p = ijp.(2) + 1 in
87 (i, j, p)
88 else
89 ijp
90 in
91
92 let s = ijp.(0) * num + ijp.(1) in
93
94 let k = 0 in
95 let used = abum.(2) in
96
97 let k =
98 if (r = (1 : nat)) then
99 let k, _ = Loop.left (fun (k, used) ->

100 let mz = match Map.find k used with
101 | None -> 0
102 | Some v -> v
103 in
104
105 if (mz = 1) then (Left (k + 1), used)
106 else (Right k, used)
107) k used;
108 in
109 k
110 else
111 let k, _ = Loop.left (fun (k, used) ->
112 let mz = match Map.find k used with
113 | None -> 0
114 | Some v -> v
115 in
116
117 if (mz = 1 || k = ijp.(0) || k = ijp.(1)) then (Left (k + 1), used)
118 else (Right k, used)
119) k used;
120 in
121 k
122 in
123
124 let a = abum.(0) in
125 let used = abum.(2) in

114 APPENDIX A. SOURCE CODES

126
127 let a = Map.add s k a in
128 let used = Map.add k 1 used in
129
130 let b = abum.(1) in
131 let m = abum.(3) in
132
133 let x = match Map.find s b with
134 | None -> 0
135 | Some v -> v
136 in
137
138 let s = k * num + x in
139 let m = Map.add s 1 m in
140
141 let s = ijp.(2) * num + ijp.(1) in
142 let b = Map.add s k b in
143
144 let x = match Map.find s a with
145 | None -> 0
146 | Some v -> v
147 in
148
149 let s = x * num + k in
150 let m = Map.add s 1 m in
151
152 let (i, j, p) = ijp in
153 let i = i - 1 in
154 let j = j + 1 in
155 let p = p + 1 in
156
157 let ijp = (i, j, p) in
158 let abum = (a, b, used, m) in
159
160 if (ijp.(1) < num) then (Left abum, ijp)
161 else (Right abum, ijp)
162) abum ijp;
163 in
164
165 let i = 0 in
166 let j = 0 in
167 let abmij = (abum.(0), abum.(1), abum.(3), i, j) in
168 let backbo = (back, b_o) in
169
170 let abmij, _ =
171 Loop.left (fun (abmij, backbo) ->
172 let t = abmij.(3) + abmij.(4) in
173
174 let abmijbackbo =
175 if (abmij.(3) = abmij.(4) || t = (num - 1)) then
176 let abmij =
177 if (backbo.(0) = false) then
178 let abmij =
179 if (abmij.(4) < (num - 1)) then
180 let j = abmij.(4) + 1 in
181 (abmij.(0), abmij.(1), abmij.(2), abmij.(3), j)
182 else
183 let i = abmij.(3) + 1 in
184 let j = 0 in
185 (abmij.(0), abmij.(1), abmij.(2), i, j)
186 in

115

187 abmij
188 else
189 let abmij =
190 if (abmij.(4) > 0) then
191 let j = abmij.(4) - 1 in
192 (abmij.(0), abmij.(1), abmij.(2), abmij.(3), j)
193 else
194 let i = abmij.(3) - 1 in
195 let j = num - 1 in
196 (abmij.(0), abmij.(1), abmij.(2), i, j)
197 in
198 abmij
199 in
200 (abmij.(0), abmij.(1), abmij.(2), abmij.(3), abmij.(4), backbo.(0), backbo.(1))
201 else
202 let used = Map [] in
203 let use = Map [] in
204 let k = 0 in
205 let a = abmij.(0) in
206 let b = abmij.(1) in
207 let m = abmij.(2) in
208 let i = abmij.(3) in
209 let j = abmij.(4) in
210
211 let uu = (used, use) in
212
213 let uu, _ =
214 Loop.left (fun (uu, k) ->
215
216 let used = uu.(0) in
217 let use = uu.(1) in
218
219 let uu =
220 if (k <> j) then
221 let s = i * num + k in
222
223 let p = match Map.find s a with
224 | None -> num
225 | Some v -> v
226 in
227
228 let used =
229 if (p <> num) then
230 Map.add p 1 used
231 else
232 used
233 in
234
235 let p = match Map.find s b with
236 | None -> num
237 | Some v -> v
238 in
239
240 let use =
241 if (p <> num) then
242 Map.add p 1 use
243 else
244 use
245 in
246
247 (used, use)

116 APPENDIX A. SOURCE CODES

248 else
249 (used, use)
250 in
251
252 let used = uu.(0) in
253 let use = uu.(1) in
254
255 let uu =
256 if (k <> i) then
257 let s = k * num + j in
258
259 let p = match Map.find s a with
260 | None -> num
261 | Some v -> v
262 in
263
264 let used =
265 if (p <> num) then
266 Map.add p 1 used
267 else
268 used
269 in
270
271 let p = match Map.find s b with
272 | None -> num
273 | Some v -> v
274 in
275
276 let use =
277 if (p <> num) then
278 Map.add p 1 use
279 else
280 use
281 in
282
283 (used, use)
284 else
285 (used, use)
286 in
287
288 let k = k + 1 in
289
290 if (k < num) then (Left uu, k)
291 else (Right uu, k)
292) uu k;
293 in
294
295 let used = uu.(0) in
296 let use = uu.(1) in
297
298 let used =
299 if (i = 1) & (j = 0) then
300 let k = 0 in
301
302 let (q, r) = match num / 2 with
303 | Some qr -> qr
304 | None -> failwith "division by 0 impossible" in
305
306 let t =
307 if (r = (0 : nat)) then q else (num - 1)
308 in

117

309
310 let used, _ =
311 Loop.left (fun (used, k) ->
312
313 let used = Map.add k 1 used in
314 let k = k + 1 in
315
316 if (k < t) then (Left used, k)
317 else (Right used, k)
318) used k;
319 in
320 used
321 else
322 used
323 in
324
325 let use =
326 if (i = 1) & (j = 2) then
327 let k = 0 in
328
329 let (q, _) = match num / 2 with
330 | Some qr -> qr
331 | None -> failwith "division by 0 impossible" in
332 let t = q - 1 in
333
334 let use = if (t > 0) then
335 let use, _ =
336 Loop.left (fun (use, k) ->
337
338 let use = Map.add k 1 use in
339 let k = k + 1 in
340
341 if (k < t) then (Left use, k)
342 else (Right use, k)
343) use k;
344 in
345 use
346 else
347 use
348 in
349
350 use
351 else
352 use
353 in
354
355 let use =
356 if (i = 1) & (j = 3) then
357 let k = 0 in
358 let t = 3 in
359
360 let use, _ =
361 Loop.left (fun (use, k) ->
362
363 let use = Map.add k 1 use in
364 let k = k + 1 in
365
366 if (k < t) then (Left use, k)
367 else (Right use, k)
368) use k;
369 in

118 APPENDIX A. SOURCE CODES

370 use
371 else
372 use
373 in
374
375 let abmkt = (a, b, m, 0, 0) in
376
377 let abmkt =
378 if (backbo.(0) = true) then
379 let s = i * num + j in
380 let k = match Map.find s abmkt.(0) with
381 | None -> num
382 | Some v -> v
383 in
384 let t = match Map.find s abmkt.(1) with
385 | None -> num
386 | Some v -> v
387 in
388 let a = Map.add s num abmkt.(0) in
389 let b = Map.add s num abmkt.(1) in
390
391 let s = k * num + t in
392 let m = Map.add s 0 abmkt.(2) in
393
394 let tk = (t, k) in
395 let tk =
396 if (backbo.(1) = 2) then
397 (tk.(0) + 1, tk.(1) + 1)
398 else
399 let tk =
400 if (backbo.(1) = 1) then
401 (0, tk.(1) + 1)
402 else
403 (tk.(0) + 1, tk.(1))
404 in
405 tk
406 in
407 (a, b, m, tk.(1), tk.(0))
408 else
409 (abmkt.(0), abmkt.(1), abmkt.(2), 0, 0)
410 in
411
412 let b_o = backbo.(1) in
413 let b_o =
414 if (backbo.(0) = true) then
415 b_o
416 else
417 0
418 in
419 let backbo = (backbo.(0), b_o) in
420
421 let k = abmkt.(3) in
422 let t = abmkt.(4) in
423
424 let k, _ =
425 Loop.left (fun (k, used) ->
426
427 let f = match Map.find k used with
428 | None -> 0
429 | Some v -> v
430 in

119

431
432 if (f = 1) then (Left (k + 1), used)
433 else (Right k, used)
434) k used;
435 in
436
437 let t, _ =
438 Loop.left (fun (t, use) ->
439
440 let f = match Map.find t use with
441 | None -> 0
442 | Some v -> v
443 in
444
445 if (f = 1) then (Left (t + 1), use)
446 else (Right t, use)
447) t use;
448 in
449
450 let abmijbackbo =
451 if ((k < num & t < num) || (backbo.(0) = true & k < num)) then
452 let tk =
453 if (t >= num) then
454 (0, k + 1)
455 else
456 (t, k)
457 in
458
459 let t = tk.(0) in
460 let k = tk.(1) in
461
462 let abmktij = (abmkt.(0), abmkt.(1), abmkt.(2), k, t, i, j) in
463 let bb = false in
464
465 let abmktij, bb =
466 Loop.left (fun (abmktij, _) ->
467
468 let k = abmktij.(3) in
469 let k, _ =
470 Loop.left (fun (k, used) ->
471
472 let f = match Map.find k used with
473 | None -> 0
474 | Some v -> v
475 in
476
477 if (f = 1) then (Left (k + 1), used)
478 else (Right k, used)
479) k used;
480 in
481
482 let t = abmktij.(4) in
483 let t, _ =
484 Loop.left (fun (t, use) ->
485
486 let f = match Map.find t use with
487 | None -> 0
488 | Some v -> v
489 in
490
491 if (f = 1) then (Left (t + 1), use)

120 APPENDIX A. SOURCE CODES

492 else (Right t, use)
493) t use;
494 in
495
496 let abmktbb =
497 if (t >= num || k >= num) then
498 (abmktij.(0), abmktij.(1), abmktij.(2), k + 1, 0, false)
499 else
500 let s = k * num + t in
501 let f = match Map.find s abmktij.(2) with
502 | None -> 0
503 | Some v -> v
504 in
505
506 let abmktbb =
507 if (f <> 1) then
508 let m = Map.add s 1 abmktij.(2) in
509 let s = abmktij.(5) * num + abmktij.(6) in
510 let a = Map.add s k abmktij.(0) in
511 let b = Map.add s t abmktij.(1) in
512 (a, b, m, k, t, true)
513 else
514 let t = t + 1 in
515 let tk = (t, k) in
516 let tk =
517 if (t >= num) then
518 (0, k + 1)
519 else
520 (tk)
521 in
522 (abmktij.(0), abmktij.(1), abmktij.(2), tk.(1), tk.(0), false)
523 in
524
525 abmktbb
526 in
527
528 let bb = abmktbb.(5) in
529 let abmktij =
530 (abmktbb.(0), abmktbb.(1), abmktbb.(2), abmktbb.(3), abmktbb.(4),

abmktij.(5), abmktij.(6))
531 in
532
533 if (abmktij.(3) < num & bb = false) then (Left abmktij, bb)
534 else (Right abmktij, bb)
535) abmktij bb;
536 in
537
538 let ijbackbo =
539 if (bb = true) then
540 let ij =
541 if (abmktij.(6) < (num - 1)) then
542 (abmktij.(5), abmktij.(6) + 1)
543 else
544 (abmktij.(5) + 1, 0)
545 in
546 (ij.(0), ij.(1), false, backbo.(1))
547 else
548 let ij =
549 if (abmktij.(6) > 0) then
550 (abmktij.(5), abmktij.(6) - 1)
551 else

121

552 (abmktij.(5) - 1, num - 1)
553 in
554 (ij.(0), ij.(1), true, 1)
555 in
556 (abmktij.(0), abmktij.(1), abmktij.(2), ijbackbo.(0), ijbackbo.(1),

ijbackbo.(2), ijbackbo.(3))
557
558 else
559 let b_o =
560 if (backbo.(0) = false) then
561 let b_o =
562 if (k >= num & t >= num) then
563 2
564 else
565 let b_o =
566 if (k >= num) then
567 1
568 else
569 0
570 in
571 b_o
572 in
573 b_o
574 else
575 0
576 in
577
578 let ij =
579 if (j > 0) then
580 (i, j - 1)
581 else
582 (i - 1, num - 1)
583 in
584
585 (abmkt.(0), abmkt.(1), abmkt.(2), ij.(0), ij.(1), true, b_o)
586 in
587
588 abmijbackbo
589 in
590
591 let abmij = (abmijbackbo.(0), abmijbackbo.(1), abmijbackbo.(2), abmijbackbo.(3),

abmijbackbo.(4)) in
592
593 let backbo = (abmijbackbo.(5), abmijbackbo.(6)) in
594
595 if (abmij.(3) < (num - 1) || abmij.(4) < (num - 1)) then (Left abmij, backbo)
596 else (Right abmij, backbo)
597) abmij backbo;
598 in
599
600 let m = Map [] in
601 let abij = (abmij.(0), abmij.(1), 0, 0) in
602
603 let m, _ =
604 Loop.left (fun (m, abij) ->
605 let s = abij.(2) * num + abij.(3) in
606 let t = match Map.find s abij.(0) with
607 | None -> 0
608 | Some v -> v
609 in
610 let k = match Map.find s abij.(1) with

122 APPENDIX A. SOURCE CODES

611 | None -> 0
612 | Some v -> v
613 in
614 let p = t * num + k + 1 in
615
616 let m = Map.add s p m in
617
618 let ij =
619 if (abij.(3) < (num - 1)) then
620 (abij.(2), abij.(3) + 1)
621 else
622 (abij.(2) + 1, 0)
623 in
624
625 let abij = (abij.(0), abij.(1), ij.(0), ij.(1)) in
626
627 if (abij.(2) < num) then (Left m, abij)
628 else (Right m, abij)
629) m abij;
630 in
631
632 ([], m)

Listing A.40: MagicSquare in Liquidity

1 type storage is map (int, int)
2
3 type parameter is
4 MagicSquare of int
5
6 type return is list (operation) * storage
7
8 type q is map (int, int)
9

10 function access (const k : int; const m : q) : int is
11 case m[k] of
12 Some (val) -> val
13 | None -> 0
14 end
15
16 function accessN (const k : int; const m : q; const n : int) : int is
17 case m[k] of
18 Some (val) -> val
19 | None -> n
20 end
21
22 function magicsquare (const n : int) : storage is
23 block {
24 var a : q := map [];
25 var b : q := map [];
26 var used : q := map [];
27 var use : q := map [];
28 var m : q := map [];
29 var i : int := 0;
30 var j : int := 0;
31 var s : int := 0;
32 var k : int := 0;
33 var t : int := 0;
34 var p : int := 0;

123

35 var back : bool := False;
36 var b_o : int := 0;
37 var bb : bool := False;
38
39 t := (n - 1) / 2;
40 k := (n - 1);
41
42 while i < n block {
43 if n mod 2 = 0n then {
44 t := i;
45 } else skip;
46
47 s := i * n + j;
48 p := i * n + k;
49 a[s] := t;
50 b[p] := t;
51 i := i + 1;
52 j := j + 1;
53 k := k - 1;
54 };
55
56 i := n - 1;
57 j := 0;
58 p := 0;
59 k := 0;
60 t := (n - 1) / 2;
61
62 if n mod 2 = 1n then {
63 used[t] := 1;
64 m[t * n + t] := 1;
65 } else skip;
66
67 while j < n block {
68 if (i = j) and (n =/= 1) then {
69 i := i - 1;
70 j := j + 1;
71 p := p + 1;
72 } else skip;
73
74 s := i * n + j;
75
76 if n mod 2 = 1n then {
77 for z := 0 to n block {
78 if access(k, used) = 1 then
79 k := k + 1;
80 else
81 z := n;
82 }
83 } else {
84 for z := 0 to n block {
85 if (access(k, used) = 1) or (k = i) or (k = j) then
86 k := k + 1;
87 else
88 z := n;
89 }
90 };
91
92 a[s] := k;
93 used[k] := 1;
94
95 s := k * n + access(s, b);

124 APPENDIX A. SOURCE CODES

96 m[s] := 1;
97
98 s := p * n + j;
99 b[s] := k;

100
101 s := access(s, a) * n + k;
102 m[s] := 1;
103
104 i := i - 1;
105 j := j + 1;
106 p := p + 1;
107 k := 0;
108 };
109
110 used := map [0->0];
111 i := 0;
112 j := 0;
113 k := 0;
114
115 while (i < (n - 1)) or (j < (n - 1)) block {
116 t := i + j;
117
118 if (i = j) or (t = (n - 1)) then {
119 if (back = False) then {
120 if (j < (n - 1)) then
121 j := j + 1;
122 else {
123 i := i + 1;
124 j := 0;
125 };
126 } else {
127 if (j > 0) then
128 j := j - 1;
129 else {
130 i := i - 1;
131 j := n - 1;
132 };
133 };
134 } else {
135 k := 0;
136
137 for z := 0 to n block {
138 if k < n then {
139 if k =/= j then {
140 s := i * n + k;
141
142 p := accessN(s, a, n);
143 if p =/= n then
144 used[p] := 1;
145 else skip;
146
147 p := accessN(s, b, n);
148 if p =/= n then
149 use[p] := 1;
150 else skip;
151 } else skip;
152
153 if k =/= i then {
154 s := k * n + j;
155
156 p := accessN(s, a, n);

125

157 if p =/= n then
158 used[p] := 1;
159 else skip;
160
161 p := accessN(s, b, n);
162 if p =/= n then
163 use[p] := 1;
164 else skip;
165 } else skip;
166
167 k := k + 1;
168 }
169 else z := n;
170 };
171
172 if (i = 1) and (j = 0) then {
173 k := 0;
174
175 if (n mod 2 = 0n) then
176 t := n / 2;
177 else
178 t := n - 1;
179
180 for z := 0 to t block {
181 if (k < t) then {
182 used[k] := 1;
183 k := k + 1;
184 } else z := t;
185 }
186 } else skip;
187
188 if (i = 1) and (j = 2) then {
189 k := 0;
190 t := n / 2 - 1;
191
192 for z := 0 to t block {
193 if (k < t) then {
194 use[k] := 1;
195 k := k + 1;
196 } else z := t;
197 }
198 } else skip;
199
200 if (i = 1) and (j = 3) then {
201 k := 0;
202 t := 3;
203
204 for z := 0 to t block {
205 if (k < t) then {
206 use[k] := 1;
207 k := k + 1;
208 } else z := t;
209 }
210 } else skip;
211
212 if (back = True) then {
213 s := i * n + j;
214 k := access(s, a);
215 t := access(s, b);
216 a[s] := n;
217 b[s] := n;

126 APPENDIX A. SOURCE CODES

218
219 s := k * n + t;
220 m[s] := 0;
221
222 if (b_o = 2) then {
223 k := k + 1;
224 t := t + 1;
225 } else {
226 if (b_o = 1) then {
227 k := k + 1;
228 t := 0;
229 } else t := t + 1;
230 };
231 } else {
232 k := 0;
233 t := 0;
234 b_o := 0;
235 };
236
237 for z := 0 to n block {
238 if access(k, used) = 1 then
239 k := k + 1;
240 else
241 z := n;
242 };
243
244 for z := 0 to n block {
245 if access(t, use) = 1 then
246 t := t + 1;
247 else
248 z := n;
249 };
250
251 if ((k < n) and (t < n)) or ((back = True) and (k < n)) then {
252 if (t >= n) then {
253 t := 0;
254 k := k + 1;
255 } else skip;
256
257 for zz := 0 to (n*n) block {
258 if (k < n) and (bb = False) then {
259 for z := 0 to n block {
260 if access(k, used) = 1 then
261 k := k + 1;
262 else
263 z := n;
264 };
265
266 for z := 0 to n block {
267 if access(t, use) = 1 then
268 t := t + 1;
269 else
270 z := n;
271 };
272
273 if (t >= n) or (k >= n) then {
274 k := k + 1;
275 t := 0;
276 } else {
277 s := k * n + t;
278 if (access(s, m) =/= 1) then {

127

279 m[s] := 1;
280 s := i * n + j;
281 a[s] := k;
282 b[s] := t;
283
284 bb := True;
285 } else {
286 t := t + 1;
287
288 if (t >= n) then {
289 k := k + 1;
290 t := 0;
291 } else skip;
292 };
293 };
294
295 } else zz := n*n;
296 };
297
298 if (bb = True) then {
299 if (j < (n - 1)) then
300 j := j + 1;
301 else {
302 i := i + 1;
303 j := 0;
304 };
305
306 bb := False;
307 back := False;
308 } else {
309 if (j > 0) then
310 j := j - 1;
311 else {
312 i := i - 1;
313 j := n - 1;
314 };
315
316 back := True;
317 b_o := 1;
318 }
319 } else {
320 if (back = False) then {
321 if (k >= n) and (t >= n) then
322 b_o := 2
323 else {
324 if (k >= n) then
325 b_o := 1
326 else
327 b_o := 0
328 };
329 } else b_o := 0;
330
331 if (j > 0) then
332 j := j - 1;
333 else {
334 i := i - 1;
335 j := n - 1;
336 };
337
338 back := True;
339 };

128 APPENDIX A. SOURCE CODES

340
341 k := 0;
342 used := map[0->0];
343 use := map[0->0];
344 };
345
346 };
347
348 m := map[0->0];
349 i := 0;
350 j := 0;
351
352 while i < n block {
353 s := i * n + j;
354 t := access(s, a);
355 k := access(s, b);
356 p := t * n + k + 1;
357 m[s] := p;
358
359 if j < (n - 1) then
360 j := j + 1;
361 else {
362 i := i + 1;
363 j := 0;
364 };
365 }
366
367 } with m
368
369 function main (const action : parameter; const store : storage) : return is
370 ((nil : list (operation)),
371 case action of
372 MagicSquare (n) -> magicsquare (n)
373 end)

Listing A.41: MagicSquare in PascaLIGO

1 type storage = (int, int) map
2
3 type parameter =
4 MagicSquare of int
5
6 type return = operation list * storage
7
8 type q = (int, int) map
9

10 let access (k, m : int * q) : int =
11 match Map.find_opt k m with
12 Some value -> value
13 | None -> 0
14
15 let accessN (k, m, n : int * q * int) : int =
16 match Map.find_opt k m with
17 Some value -> value
18 | None -> n
19
20 let magicsquare (n : int) : storage =
21 let a : q = Map.empty in
22 let b : q = Map.empty in

129

23 let used : q = Map.empty in
24 let m : q = Map.empty in
25 let i : int = 0 in
26 let j : int = 0 in
27 let s : int = 0 in
28 let k : int = 0 in
29 let t : int = 0 in
30 let p : int = 0 in
31 let back : bool = false in
32 let b_o : int = 0 in
33 let bb : bool = false in
34
35 let t = (n - 1) / 2 in
36 let k = (n - 1) in
37
38 let rec diagonal_one(a, b, n, i, j, k : q * q * int * int * int * int) : (q * q) =
39
40 let t =
41 if n mod 2 = 0n then i else t
42 in
43
44 let s = i * n + j in
45 let p = i * n + k in
46 let a = Map.add s t a in
47 let b = Map.add p t b in
48 let i = i + 1 in
49 let j = j + 1 in
50 let k = k - 1 in
51
52 if i < n then diagonal_one(a, b, n, i, j, k) else a, b
53 in
54
55 let a, b =
56 if i < n then diagonal_one(a, b, n, i, j, k) else a, b
57 in
58
59 let i = n - 1 in
60 let t = (n - 1) / 2 in
61
62 let m, used =
63 if n mod 2 = 1n then (
64 Map.add (t * n + t) 1 m, Map.add t 1 used
65) else m, used
66 in
67
68 let rec diagonal_two(a, b, used, m, n, i, j, p : q * q * q * q * int * int * int *

int) : (q * q * q) =
69 let i, j, p =
70 if (i = j) && (n <> 1) then i - 1, j + 1, p + 1 else i, j, p
71 in
72
73 let s = i * n + j in
74 let k = 0 in
75
76 let k =
77 if n mod 2 = 1n then (
78 let rec while_dt_odd(used, k : q * int) : int =
79 let k = k + 1 in
80 let v = access(k, used) in
81
82 if v = 1 then while_dt_odd(used, k) else k

130 APPENDIX A. SOURCE CODES

83 in
84
85 let v = access(k, used) in
86 let k =
87 if v = 1 then while_dt_odd(used, k) else k
88 in
89 k
90) else (
91 let rec while_dt_even(used, k, i, j : q * int * int * int) : int =
92 let k = k + 1 in
93 let v = access(k, used) in
94
95 if (v = 1) || (k = i) || (k = j) then while_dt_even(used, k, i, j)

else k
96 in
97
98 let v = access(k, used) in
99 let k =

100 if (v = 1) || (k = i) || (k = j) then while_dt_even(used, k, i, j)
else k

101 in
102 k
103)
104 in
105
106 let a = Map.add s k a in
107 let used = Map.add k 1 used in
108
109 let s = k * n + access(s, b) in
110 let m = Map.add s 1 m in
111
112 let s = p * n + j in
113 let b = Map.add s k b in
114
115 let s = access(s, a) * n + k in
116 let m = Map.add s 1 m in
117
118 let i = i - 1 in
119 let j = j + 1 in
120 let p = p + 1 in
121
122 if j < n then diagonal_two(a, b, used, m, n, i, j, p) else a, b, m
123 in
124
125 let a, b, m =
126 if j < n then diagonal_two(a, b, used, m, n, i, j, p) else a, b, m
127 in
128
129 let used : q = Map.empty in
130 let i = 0 in
131 let j = 0 in
132 let k = 0 in
133
134 let rec backtrack(a, b, m, n, i, j, b_o, back : q * q * q * int * int * int * int *

bool) : (q * q) =
135 let t = i + j in
136
137 let a, b, m, i, j, b_o, back =
138 if (i = j) || (t = (n - 1)) then (
139 let i, j =
140 if back = false then (

131

141 if (j < (n - 1)) then i, j + 1 else i + 1, 0
142) else (
143 if (j > 0) then i, j - 1 else i - 1, n - 1
144)
145 in
146 a, b, m, i, j, b_o, back
147) else (
148 let k = 0 in
149 let used : q = Map.empty in
150 let use : q = Map.empty in
151
152 let rec while_mark_used(a, b, used, use, k, i, j, n : q*q*q*q*int*int*int

*int) : (q * q) =
153 let used, use =
154 if (k <> j) then (
155 let s = i * n + k in
156
157 let p = accessN(s, a, n) in
158 let used =
159 if (p <> n) then Map.add p 1 used else used
160 in
161
162 let p = accessN(s, b, n) in
163 let use =
164 if (p <> n) then Map.add p 1 use else use
165 in
166 used, use
167) else used, use
168 in
169 let used, use =
170 if (k <> i) then (
171 let s = k * n + j in
172
173 let p = accessN(s, a, n) in
174 let used =
175 if (p <> n) then Map.add p 1 used else used
176 in
177
178 let p = accessN(s, b, n) in
179 let use =
180 if (p <> n) then Map.add p 1 use else use
181 in
182 used, use
183) else used, use
184 in
185
186 let k = k + 1 in
187
188 if (k < n) then while_mark_used(a, b, used, use, k, i, j, n) else

used, use
189 in
190
191 let used, use =
192 if (k < n) then while_mark_used(a, b, used, use, k, i, j, n) else

used, use
193 in
194
195 let used =
196 if (i = 1) && (j = 0) then (
197 let k = 0 in
198 let t = if (n mod 2 = 0n) then n / 2 else n - 1 in

132 APPENDIX A. SOURCE CODES

199
200 let rec while_a10(used, k, t : q * int * int) : q =
201 let used = Map.add k 1 used in
202 let k = k + 1 in
203
204 if k < t then while_a10(used, k, t) else used
205 in
206 if k < t then while_a10(used, k, t) else used
207) else used
208 in
209
210 let use =
211 if (i = 1) && (j = 2) then (
212 let k = 0 in
213 let t = n / 2 - 1 in
214
215 let rec while_b12(use, k, t : q * int * int) : q =
216 let use = Map.add k 1 use in
217 let k = k + 1 in
218
219 if k < t then while_b12(use, k, t) else use
220 in
221 if k < t then while_b12(use, k, t) else use
222) else use
223 in
224
225 let use =
226 if (i = 1) && (j = 3) then (
227 let k = 0 in
228 let t = 3 in
229
230 let rec while_b13(use, k, t : q * int * int) : q =
231 let use = Map.add k 1 use in
232 let k = k + 1 in
233
234 if k < t then while_b13(use, k, t) else use
235 in
236 if k < t then while_b13(use, k, t) else use
237) else use
238 in
239
240 let a, b, m, k, t, b_o =
241 if back = true then (
242 let s = i * n + j in
243 let k = access(s, a) in
244 let t = access(s, b) in
245 let a = Map.add s n a in
246 let b = Map.add s n b in
247 let s = k * n + t in
248 let m = Map.add s 0 m in
249
250 let k, t =
251 if b_o = 2 then k + 1, t + 1 else (
252 if b_o = 1 then k + 1, 0 else k, t + 1
253)
254 in
255
256 a, b, m, k, t, b_o
257) else (
258 a, b, m, 0, 0, 0
259)

133

260 in
261
262 let rec while_find_used(used, k : q * int) : int =
263 let k = k + 1 in
264 let v = access(k, used) in
265 if (v = 1) then while_find_used(used, k) else k
266 in
267
268 let v = access(k, used) in
269 let k =
270 if (v = 1) then while_find_used(used, k) else k
271 in
272
273 let rec while_find_use(use, t : q * int) : int =
274 let t = t + 1 in
275 let v = access(t, use) in
276 if (v = 1) then while_find_use(use, t) else t
277 in
278
279 let v = access(t, use) in
280 let t =
281 if (v = 1) then while_find_use(use, t) else t
282 in
283
284 let a, b, m, i, j, b_o, back =
285 if ((k < n) && (t < n)) || ((back = true) && (k < n)) then (
286 let k, t = if t >= n then k + 1, 0 else k, t in
287
288 let rec while_pairs(a,b,m,used,use,n,i,j,k,t,bb : q*q*q*q*q*int*

int*int*int*int*bool) : (q*q*q*bool) =
289 let v = access(k, used) in
290 let k =
291 if (v = 1) then while_find_used(used, k) else k
292 in
293
294 let v = access(t, use) in
295 let t =
296 if (v = 1) then while_find_use(use, t) else t
297 in
298
299 let a, b, m, k, t, bb =
300 if (t >= n) || (k >= n) then a, b, m, k + 1, 0, bb else (
301 let s = k * n + t in
302 let v = access(s, m) in
303 let a, b, m, k, t, bb =
304 if (v <> 1) then (
305 let m = Map.add s 1 m in
306 let s = i * n + j in
307 let a = Map.add s k a in
308 let b = Map.add s t b in
309
310 a, b, m, k, t, true
311) else (
312 let t = t + 1 in
313 if t >= n then a, b, m, k + 1, 0, bb
314 else a, b, m, k, t, bb
315)
316 in
317 a, b, m, k, t, bb
318)
319 in

134 APPENDIX A. SOURCE CODES

320
321 if (k < n) && (bb = false) then
322 while_pairs(a,b,m,used,use,n,i,j,k,t,bb)
323 else a, b, m, bb
324 in
325 let a, b, m, bb =
326 if (k < n) && (bb = false) then
327 while_pairs(a,b,m,used,use,n,i,j,k,t,false)
328 else a, b, m, bb
329 in
330
331 let i, j, b_o, back =
332 if bb = true then (
333 if (j < (n - 1)) then i, j + 1, b_o, false
334 else i + 1, 0, b_o, false
335) else (
336 if j > 0 then i, j - 1, 1, true
337 else i - 1, n - 1, 1, true
338)
339 in
340
341 a, b, m, i, j, b_o, back
342) else (
343 let b_o =
344 if back = false then (
345 if (k >= n) && (t >= n) then 2 else (
346 if k >= n then 1 else 0
347)
348) else 0
349 in
350
351 let i, j =
352 if j > 0 then i, j - 1 else i - 1, n - 1
353 in
354
355 let back = true in
356
357 a, b, m, i, j, b_o, back
358)
359 in
360
361 a, b, m, i, j, b_o, back
362)
363 in
364
365 if (i < (n - 1)) || (j < (n - 1)) then backtrack(a,b,m,n,i,j,b_o,back) else a, b
366 in
367
368 let a, b =
369 if (i < (n - 1)) || (j < (n - 1)) then backtrack(a,b,m,n,i,j,b_o,back) else a, b
370 in
371
372 let m : q = Map.empty in
373 let i = 0 in
374 let j = 0 in
375
376 let rec final_while(a,b,m,n,i,j : q*q*q*int*int*int) : q =
377 let s = i * n + j in
378 let t = access(s, a) in
379 let k = access(s, b) in
380 let p = t * n + k + 1 in

135

381 let m = Map.add s p m in
382
383 let i, j =
384 if j < (n - 1) then i, j + 1 else i + 1, 0
385 in
386 if i < n then final_while(a,b,m,n,i,j) else m
387 in
388 let m =
389 if i < n then final_while(a,b,m,n,i,j) else m
390 in
391
392 m
393
394 let main (action, store : parameter * storage) : return =
395 ([] : operation list),
396 (match action with
397 MagicSquare (n) -> magicsquare (n))

Listing A.42: MagicSquare in CameLIGO

1 type storage = map (int, int);
2
3 type parameter =
4 MagicSquare (int)
5
6 type return = (list (operation), storage);
7
8 type q = map (int, int);
9

10 let access = ((k, m) : (int, q)) : int => {
11 switch (Map.find_opt (k, m)) {
12 | Some value => value
13 | None => 0
14 }
15 }
16
17 let accessN = ((k, m, n) : (int, q, int)) : int => {
18 switch (Map.find_opt (k, m)) {
19 | Some value => value
20 | None => n
21 }
22 }
23
24 let magicsquare = ((n) : (int)) : storage =>
25 let a : q = Map.empty;
26 let b : q = Map.empty;
27 let used : q = Map.empty;
28 let m : q = Map.empty;
29 let i : int = 0;
30 let j : int = 0;
31 let s : int = 0;
32 let k : int = 0;
33 let t : int = 0;
34 let p : int = 0;
35 let back : bool = false;
36 let b_o : int = 0;
37 let bb : bool = false;
38
39 let t = ((n - 1) / 2);

136 APPENDIX A. SOURCE CODES

40 let k = (n - 1);
41
42 let rec diagonal_one = ((a, b, n, i, j, k) : (q, q, int, int, int, int)) : (q, q) =>
43
44 let t = if (n mod 2 == 0n) {i;} else {t};
45
46 let s = i * n + j;
47 let p = i * n + k;
48 let a = Map.add(s, t, a);
49 let b = Map.add(p, t, b);
50 let i = i + 1;
51 let j = j + 1;
52 let k = k - 1;
53
54 if (i < n) {diagonal_one(a, b, n, i, j, k);} else {(a, b)};
55
56
57 let a, b = if (i < n) {diagonal_one(a, b, n, i, j, k);} else {(a, b)};
58
59
60 let i = n - 1;
61 let t = (n - 1) / 2;
62
63 let m, used =
64 if (n mod 2 == 1n) {
65 (Map.add((t * n + t), 1, m), Map.add(t, 1, used));
66 } else {(m, used)};
67
68
69 let rec diagonal_two = ((a, b, used, m, n, i, j, p) : (q, q, q, q, int, int, int, int

)) : (q, q, q) =>
70 let i, j, p = if ((i == j) && (n != 1)) {(i - 1, j + 1, p + 1)} else {(i, j, p)};
71
72 let s = i * n + j;
73 let k = 0;
74
75 let k =
76 if (n mod 2 == 1n) {
77 let rec while_dt_odd = ((used, k) : (q, int)) : int =>
78 let k = k + 1;
79 let v = access(k, used);
80
81 if (v == 1) {while_dt_odd(used, k);} else {k};
82
83 let v = access(k, used);
84 let k = if (v == 1) {while_dt_odd(used, k);} else {k};
85
86 k
87 } else {
88 let rec while_dt_even = ((used, k, i, j) : (q, int, int, int)) : int =>
89 let k = k + 1;
90 let v = access(k, used);
91
92 if ((v == 1) || (k == i) || (k == j)) {while_dt_even(used, k, i, j);}

else {k};
93
94 let v = access(k, used);
95 let k = if ((v == 1) || (k == i) || (k == j)) {while_dt_even(used, k, i,

j);} else {k};
96
97 k

137

98 };
99

100
101 let a = Map.add(s, k, a);
102 let used = Map.add(k, 1, used);
103
104 let s = k * n + access(s, b);
105 let m = Map.add(s, 1, m);
106
107 let s = p * n + j;
108 let b = Map.add(s, k, b);
109
110 let s = access(s, a) * n + k;
111 let m = Map.add(s, 1, m);
112
113 let i = i - 1;
114 let j = j + 1;
115 let p = p + 1;
116
117
118 if (j < n) {diagonal_two(a, b, used, m, n, i, j, p);} else {(a, b, m)};
119
120
121 let a, b, m = if (j < n) {diagonal_two(a, b, used, m, n, i, j, p);} else {(a, b, m)};
122
123 let used : q = Map.empty;
124 let i = 0;
125 let j = 0;
126 let k = 0;
127
128 let rec backtrack = ((a, b, m, n, i, j, b_o, back) : (q, q, q, int, int, int, int,

bool)) : (q, q) =>
129 let t = i + j;
130
131 let a, b, m, i, j, b_o, back =
132 if ((i == j) || (t == (n - 1))) {
133 let i, j =
134 if (back == false) {
135 if (j < (n - 1)) {(i, j + 1);} else {(i + 1, 0)};
136 } else {
137 if (j > 0) {(i, j - 1)} else {(i - 1, n - 1)};
138 };
139
140 (a, b, m, i, j, b_o, back)
141 } else {
142 let k = 0;
143 let used : q = Map.empty;
144 let use : q = Map.empty;
145
146 let rec while_mark_used = ((a, b, used, use, k, i, j, n) : (q,q,q,q,int,

int,int,int)) : (q, q) =>
147 let used, use =
148 if (k != j) {
149 let s = i * n + k;
150
151 let p = accessN(s, a, n);
152 let used = if (p != n) {Map.add(p, 1, used);} else {used};
153
154 let p = accessN(s, b, n);
155 let use = if (p != n) {Map.add(p, 1, use);} else {use};
156

138 APPENDIX A. SOURCE CODES

157 (used, use)
158 } else {(used, use)};
159
160 let used, use =
161 if (k != i) {
162 let s = k * n + j;
163
164 let p = accessN(s, a, n);
165 let used = if (p != n) {Map.add(p, 1, used);} else {used};
166
167 let p = accessN(s, b, n);
168 let use = if (p != n) {Map.add(p, 1, use);} else {use};
169
170 (used, use)
171 } else {(used, use)};
172
173
174 let k = k + 1;
175
176 if (k < n) {while_mark_used(a, b, used, use, k, i, j, n)} else {(used

, use)};
177
178
179 let used, use = if (k < n) {while_mark_used(a, b, used, use, k, i, j, n)}

else {(used, use)};
180
181
182 let used =
183 if ((i == 1) && (j == 0)) {
184 let k = 0;
185 let t = if (n mod 2 == 0n) {n / 2} else {n - 1};
186
187 let rec while_a10 = ((used, k, t) : (q, int, int)) : q =>
188 let used = Map.add(k, 1, used);
189 let k = k + 1;
190
191 if (k < t) {while_a10(used, k, t);} else {used};
192
193 if (k < t) {while_a10(used, k, t);} else {used};
194 } else {(used)};
195
196 let use =
197 if ((i == 1) && (j == 2)) {
198 let k = 0;
199 let t = n / 2 - 1;
200
201 let rec while_b12 = ((use, k, t) : (q, int, int)) : q =>
202 let use = Map.add(k, 1, use);
203 let k = k + 1;
204
205 if (k < t) {while_b12(use, k, t);} else {use};
206
207 if (k < t) {while_b12(use, k, t);} else {use};
208 } else {use};
209
210 let use =
211 if ((i == 1) && (j == 3)) {
212 let k = 0;
213 let t = 3;
214
215 let rec while_b13 = ((use, k, t) : (q, int, int)) : q =>

139

216 let use = Map.add(k, 1, use);
217 let k = k + 1;
218
219 if (k < t) {while_b13(use, k, t);} else {use};
220
221 if (k < t) {while_b13(use, k, t);} else {use};
222 } else {use};
223
224 let a, b, m, k, t, b_o =
225 if (back == true) {
226 let s = i * n + j;
227 let k = access(s, a);
228 let t = access(s, b);
229 let a = Map.add(s, n, a);
230 let b = Map.add(s, n, b);
231 let s = k * n + t;
232 let m = Map.add(s, 0, m);
233
234 let k, t =
235 if (b_o == 2) {(k + 1, t + 1);} else {
236 if (b_o == 1) {(k + 1, 0);} else {(k, t + 1)};
237 };
238
239 (a, b, m, k, t, b_o)
240 } else {
241 (a, b, m, 0, 0, 0)
242 };
243
244 let rec while_find_used = ((used, k) : (q, int)) : int =>
245 let k = k + 1;
246 let v = access(k, used);
247 if (v == 1) {while_find_used(used, k);} else {k};
248
249 let v = access(k, used);
250 let k = if (v == 1) {while_find_used(used, k);} else {k};
251
252 let rec while_find_use = ((use, t) : (q, int)) : int =>
253 let t = t + 1;
254 let v = access(t, use);
255 if (v == 1) {while_find_use(use, t);} else {t};
256
257 let v = access(t, use);
258 let t = if (v == 1) {while_find_use(use, t);} else {t};
259
260
261 let a, b, m, i, j, b_o, back =
262 if (((k < n) && (t < n)) || ((back == true) && (k < n))) {
263 let k, t = if (t >= n) {(k + 1, 0)} else {(k, t)};
264
265 let rec while_pairs = ((a,b,m,used,use,n,i,j,k,t,bb) : (q,q,q,q,q

,int,int,int,int,int,bool)) : (q,q,q,bool) =>
266 let v = access(k, used);
267 let k = if (v == 1) {while_find_used(used, k)} else {k};
268
269 let v = access(t, use);
270 let t = if (v == 1) {while_find_use(use, t)} else {t};
271
272
273 let a, b, m, k, t, bb =
274 if ((t >= n) || (k >= n)) {(a, b, m, k + 1, 0, bb)} else

{

140 APPENDIX A. SOURCE CODES

275 let s = k * n + t;
276 let v = access(s, m);
277 let a, b, m, k, t, bb =
278 if (v != 1) {
279 let m = Map.add(s, 1, m);
280 let s = i * n + j;
281 let a = Map.add(s, k, a);
282 let b = Map.add(s, t, b);
283
284 (a, b, m, k, t, true)
285 } else {
286 let t = t + 1;
287 if (t >= n) {(a, b, m, k + 1, 0, bb)}
288 else {(a, b, m, k, t, bb)};
289 };
290
291 (a, b, m, k, t, bb)
292 };
293
294
295 if ((k < n) && (bb == false)) {
296 while_pairs(a,b,m,used,use,n,i,j,k,t,bb)
297 } else {(a, b, m, bb)};
298
299 let a, b, m, bb =
300 if ((k < n) && (bb == false)) {
301 while_pairs(a,b,m,used,use,n,i,j,k,t,false)
302 } else {(a, b, m, bb)};
303
304
305 let i, j, b_o, back =
306 if (bb == true) {
307 if (j < (n - 1)) {(i, j + 1, b_o, false)}
308 else {(i + 1, 0, b_o, false)};
309 } else {
310 if (j > 0) {(i, j - 1, 1, true)}
311 else {(i - 1, n - 1, 1, true)};
312 };
313
314
315 (a, b, m, i, j, b_o, back)
316 } else {
317 let b_o =
318 if (back == false) {
319 if ((k >= n) && (t >= n)) {2} else {
320 if (k >= n) {1} else {0};
321 };
322 } else {0};
323
324
325 let i, j = if (j > 0) {(i, j - 1)} else {(i - 1, n - 1)};
326
327 let back = true;
328
329 (a, b, m, i, j, b_o, back)
330 };
331
332
333 (a, b, m, i, j, b_o, back)
334 };
335

141

336 if ((i < (n - 1)) || (j < (n - 1))) {backtrack(a,b,m,n,i,j,b_o,back)} else {(a, b
)};

337
338
339 let a, b = if ((i < (n - 1)) || (j < (n - 1))) {backtrack(a,b,m,n,i,j,b_o,back)} else

{(a, b)};
340
341
342 let m : q = Map.empty;
343 let i = 0;
344 let j = 0;
345
346 let rec final_while = ((a,b,m,n,i,j) : (q,q,q,int,int,int)) : q =>
347 let s = i * n + j;
348 let t = access(s, a);
349 let k = access(s, b);
350 let p = t * n + k + 1;
351 let m = Map.add(s, p, m);
352
353 let i, j = if (j < (n - 1)) {(i, j + 1)} else {(i + 1, 0)};
354
355 if (i < n) {final_while(a,b,m,n,i,j)} else {m};
356
357 let m = if (i < n) {final_while(a,b,m,n,i,j)} else {m};
358
359 m;
360
361 let main = ((action, store) : (parameter , storage)) : return => {
362 (([] : list (operation)),
363 (switch (action) {
364 | MagicSquare (n) => magicsquare (n)}))
365 };

Listing A.43: MagicSquare in ReasonLIGO

1 archetype MagicSquare
2
3 variable mag : map<int, int> = []
4
5 entry magicsquare (num : int) {
6 var a : map<int, int> = [];
7 var b : map<int, int> = [];
8 var used : map<int, int> = [];
9 var us : map<int, int> = [];

10 var m : map<int, int> = [];
11 var n : int = num;
12 var i : int = 0;
13 var j : int = 0;
14 var s : int = 0;
15 var p : int = 0;
16 var back : bool = false;
17 var b_o : int = 0;
18 var bb : bool = false;
19
20 var t = floor((n - 1) / 2);
21 var k = n - 1;
22
23 iter ii to n do
24 if i < n then (

142 APPENDIX A. SOURCE CODES

25 if n % 2 = 0 then (
26 t := i;
27);
28
29 s := i * n + j;
30 p := i * n + k;
31 a := put(a, s, t);
32 b := put(b, p, t);
33 i := i + 1;
34 j := j + 1;
35 k := k - 1;
36);
37 done;
38
39 i := n - 1;
40 j := 0;
41 p := 0;
42 k := 0;
43 t := floor((n - 1) / 2);
44
45 if n % 2 = 1 then (
46 used := put(used, t, 1i);
47 m := put(m, (t * n + t), 1i);
48);
49
50 iter jj to n do
51 if j < n then (
52 if (i = j) and (n <> 1) then (
53 i := i - 1;
54 j := j + 1;
55 p := p + 1;
56);
57
58 s := i * n + j;
59
60 if n % 2 = 1 then (
61 iter uu to n do
62 if contains(used, k) = true then k := k + 1
63 done;
64) else (
65 iter uu to n do
66 if (contains(used, k) = true or k = i or k = j) then k := k + 1
67 done;
68);
69
70 a := put(a, s, k);
71 used := put(used, k, 1i);
72
73 s := k * n + b[s];
74 m := put(m, s, 1i);
75
76 s := p * n + j;
77 b := put(b, s, k);
78
79 s := a[s] * n + k;
80 m := put(m, s, 1i);
81
82 i := i - 1;
83 j := j + 1;
84 p := p + 1;
85 k := 0;

143

86);
87 done;
88
89 used := [];
90 i := 0;
91 j := 0;
92 k := 0;
93
94 var it : int = 0;
95 if (n = 5) then it := 44 else (
96 if (n = 7) then it := 3862 else (
97 it := n * n;
98);
99);

100
101 var pp : option<int> = none;
102
103 iter baba to it do
104 if i < (n - 1) or j < (n - 1) then (
105 t := i + j;
106
107 if i = j or t = (n - 1) then (
108 if back = false then (
109 if j < (n - 1) then j := j + 1 else (
110 i := i + 1;
111 j := 0;
112);
113) else (
114 if j > 0 then j := j - 1 else (
115 i := i - 1;
116 j := n - 1;
117);
118);
119) else (
120 k := 0;
121
122 iter trtr to n do
123 if k < n then (
124 if k <> j then (
125 s := i * n + k;
126 pp := getopt(a, s);
127 p :=
128 match pp with
129 | some(v) -> v
130 | none -> n
131 end;
132 if p <> n then used := put(used, p, 1i);
133
134 pp := getopt(b, s);
135 p :=
136 match pp with
137 | some(v) -> v
138 | none -> n
139 end;
140 if p <> n then us := put(us, p, 1i);
141);
142
143 if k <> i then (
144 s := k * n + j;
145
146 pp := getopt(a, s);

144 APPENDIX A. SOURCE CODES

147 p :=
148 match pp with
149 | some(v) -> v
150 | none -> n
151 end;
152 if p <> n then used := put(used, p, 1i);
153
154 pp := getopt(b, s);
155 p :=
156 match pp with
157 | some(v) -> v
158 | none -> n
159 end;
160 if p <> n then us := put(us, p, 1i);
161);
162
163 k := k + 1;
164);
165 done;
166
167 if i = 1 and j = 0 then (
168 k := 0;
169
170 if n % 2 = 0 then t := floor(n / 2) else t := n - 1;
171
172 iter ij to t do
173 if (k < t) then (
174 used := put(used, k, 1i);
175 k := k + 1;
176);
177 done;
178);
179
180 if i = 1 and j = 2 then (
181 k := 0;
182
183 t := floor(n / 2) - 1;
184
185 iter ij to t do
186 if (k < t) then (
187 us := put(us, k, 1i);
188 k := k + 1;
189);
190 done;
191);
192
193 if i = 1 and j = 3 then (
194 k := 0;
195 t := 3;
196
197 iter ij to t do
198 if (k < t) then (
199 us := put(us, k, 1i);
200 k := k + 1;
201);
202 done;
203);
204
205 if back = true then (
206 s := i * n + j;
207 k := a[s];

145

208 t := b[s];
209 a := put(a, s, n);
210 b := put(b, s, n);
211
212 s := k * n + t;
213 m := put(m, s, 0i);
214
215 if (b_o = 2) then (
216 k := k + 1;
217 t := t + 1;
218) else (
219 if (b_o = 1) then (
220 k := k + 1;
221 t := 0;
222) else t := t + 1;
223);
224) else (
225 k := 0;
226 t := 0;
227 b_o := 0;
228);
229
230 iter kk to n do
231 if contains(used, k) = true then k := k + 1;
232 done;
233
234 iter tt to n do
235 if contains(us, t) = true then t := t + 1;
236 done;
237
238 if ((k < n and t < n) or (back = true and k < n)) then (
239 if (t >= n) then (
240 t := 0;
241 k := k + 1;
242);
243
244 var ti : int = 0;
245 if n = 5 then ti := 3 else (
246 if n = 7 then ti := 5 else (
247 ti := 1
248)
249);
250
251 iter zx to ti do
252 if k < n and bb = false then (
253 iter kk to n do
254 if contains(used, k) = true then k := k + 1;
255 done;
256
257 iter tt to n do
258 if contains(us, t) = true then t := t + 1;
259 done;
260
261 if t >= n or k >= n then (
262 k := k + 1;
263 t := 0;
264) else (
265 s := k * n + t;
266 pp := getopt(m, s);
267 p :=
268 match pp with

146 APPENDIX A. SOURCE CODES

269 | some(v) -> v
270 | none -> 0
271 end;
272 if p <> 1 then (
273 m := put(m, s, 1i);
274 s := i * n + j;
275 a := put(a, s, k);
276 b := put(b, s, t);
277
278 bb := true;
279) else (
280 t := t + 1;
281
282 if t >= n then (
283 k := k + 1;
284 t := 0;
285);
286);
287);
288);
289 done;
290
291 if bb = true then (
292 if j < (n - 1) then j := j + 1 else (
293 i := i + 1;
294 j := 0;
295);
296
297 bb := false;
298 back := false;
299) else (
300 if j > 0 then j := j - 1 else (
301 i := i - 1;
302 j := n - 1;
303);
304
305 back := true;
306 b_o := 1;
307);
308) else (
309 if back = false then (
310 if k >= n and t >= n then b_o := 2 else (
311 if k >= n then b_o := 1 else b_o := 0;
312);
313) else b_o := 0;
314
315 if j > 0 then j := j - 1 else (
316 i := i - 1;
317 j := n - 1;
318);
319
320 back := true;
321);
322
323 k := 0;
324 used := [];
325 us := [];
326);
327);
328 done;
329

147

330 m := [];
331 i := 0;
332 j := 0;
333
334 iter mm to n*n do
335 if i < n then (
336 s := i * n + j;
337 t := a[s];
338 k := b[s];
339 p := t * n + k + 1;
340 m := put(m, s, p);
341
342 if j < (n - 1) then j := j + 1 else (
343 i := i + 1;
344 j := 0;
345);
346);
347 done;
348
349 mag := m
350 }

Listing A.44: MagicSquare in Archetype

1 pragma solidity ^0.5.0;
2
3 contract MagicSquare {
4
5 uint[] mag;
6
7 function magic_square(uint num) public {
8 uint[] memory a = new uint[](num*num);
9 uint[] memory b = new uint[](num*num);

10 uint[] memory m = new uint[](num*num);
11
12 if (num == 1 || num == 2)
13 {
14 a = new uint[]((num+1)*(num+1));
15 b = new uint[]((num+1)*(num+1));
16 m = new uint[]((num+1)*(num+1));
17 }
18
19 uint[] memory used = new uint[](num + 3);
20 uint[] memory use = new uint[](num + 3);
21 uint i = 0;
22 uint j = 0;
23 uint s = 0;
24 uint k = 0;
25 uint t = 0;
26 uint p = 0;
27 bool back = false;
28 uint b_o = 0;
29
30 t = (num - 1) / 2;
31 k = (num - 1);
32
33 while (i < num)
34 {
35 if (num % 2 == 0)

148 APPENDIX A. SOURCE CODES

36 t = i;
37
38 s = i * num + j;
39 p = i * num + k;
40 a[s] = t;
41 b[p] = t;
42 i = i + 1;
43 j = j + 1;
44 k = k - 1;
45 }
46
47 i = num - 1;
48 j = 0;
49 k = 0;
50 t = (num - 1) / 2;
51
52 if (num % 2 == 1)
53 {
54 used[t] = 1;
55 p = t * num + t;
56 m[p] = 1;
57 }
58
59 p = 0;
60
61 while (j < num)
62 {
63 if (i == j && num != 1)
64 {
65 i = i - 1;
66 j = j + 1;
67 p = p + 1;
68 }
69
70 s = i * num + j;
71
72 if (num % 2 == 1)
73 {
74 while (used[k] == 1)
75 k = k + 1;
76 }
77 else
78 {
79 while (used[k] == 1 || k == i || k == j)
80 k = k + 1;
81 }
82
83 a[s] = k;
84 used[k] = 1;
85
86 s = k * num + b[s];
87 m[s] = 1;
88
89 s = p * num + j;
90 b[s] = k;
91
92 s = a[s] * num + k;
93 m[s] = 1;
94
95 i = i - 1;
96 j = j + 1;

149

97 p = p + 1;
98 k = 0;
99 }

100
101 used = new uint[](num + 3);
102 i = 0;
103 j = 0;
104 k = 0;
105
106
107 while (i < (num - 1) || j < (num - 1))
108 {
109 t = i + j;
110
111 if (i == j || t == (num - 1))
112 {
113 if (back == false)
114 {
115 if (j < (num - 1))
116 j = j + 1;
117 else
118 {
119 i = i + 1;
120 j = 0;
121 }
122 }
123 else
124 {
125 if (j > 0)
126 j = j - 1;
127 else
128 {
129 i = i - 1;
130 j = num - 1;
131 }
132 }
133 }
134 else
135 {
136 k = 0;
137
138 while (k < num)
139 {
140 if (k != j)
141 {
142 s = i * num + k;
143
144 if (k < j || (i == k || (i + k) == (num - 1)))
145 {
146 p = a[s];
147 used[p] = 1;
148 }
149
150 if (k < j || (i == k || (i + k) == (num - 1)))
151 {
152 p = b[s];
153 use[p] = 1;
154 }
155 }
156
157 if (k != i)

150 APPENDIX A. SOURCE CODES

158 {
159 s = k * num + j;
160
161 if (k < i || (k == j || (k + j) == (num - 1)))
162 {
163 p = a[s];
164 used[p] = 1;
165 }
166
167 if (k < i || (k == j || (k + j) == (num - 1)))
168 {
169 p = b[s];
170 use[p] = 1;
171 }
172 }
173
174 k = k + 1;
175 }
176
177 if (i == 1 && j == 0)
178 {
179 k = 0;
180
181 if (num % 2 == 0)
182 t = num / 2;
183 else
184 t = num - 1;
185
186 while (k < t)
187 {
188 used[k] = 1;
189 k = k + 1;
190 }
191 }
192
193 if (i == 1 && j == 2)
194 {
195 k = 0;
196
197 t = (num / 2) - 1;
198
199 while (k < t)
200 {
201 use[k] = 1;
202 k = k + 1;
203 }
204 }
205
206 if (i == 1 && j == 3)
207 {
208 k = 0;
209 t = 3;
210
211 while (k < t)
212 {
213 use[k] = 1;
214 k = k + 1;
215 }
216 }
217
218 if (back == true)

151

219 {
220 s = i * num + j;
221 k = a[s];
222 t = b[s];
223 a[s] = num;
224 b[s] = num;
225
226 s = k * num + t;
227 m[s] = 0;
228
229 if (b_o == 2)
230 {
231 k = k + 1;
232 t = t + 1;
233 }
234 else
235 {
236 if (b_o == 1)
237 {
238 k = k + 1;
239 t = 0;
240 }
241 else
242 t = t + 1;
243 }
244 }
245 else
246 {
247 k = 0;
248 t = 0;
249 b_o = 0;
250 }
251
252 while (used[k] == 1)
253 k = k + 1;
254
255 while (use[t] == 1)
256 t = t + 1;
257
258
259 if ((k < num && t < num) || (back == true && k < num))
260 {
261 if (t >= num)
262 {
263 t = 0;
264 k = k + 1;
265 }
266
267 back = false;
268
269 while (k < num && back == false)
270 {
271 while (used[k] == 1)
272 k = k + 1;
273
274 while (use[t] == 1)
275 t = t + 1;
276
277 if (t >= num || k >= num)
278 {
279 k = k + 1;

152 APPENDIX A. SOURCE CODES

280 t = 0;
281 }
282 else
283 {
284 s = k * num + t;
285
286 if (m[s] != 1)
287 {
288 m[s] = 1;
289 s = i * num + j;
290 a[s] = k;
291 b[s] = t;
292
293 back = true;
294 }
295 else
296 {
297 t = t + 1;
298
299 if (t >= num)
300 {
301 k = k + 1;
302 t = 0;
303 }
304 }
305 }
306 }
307
308 if (back == true)
309 {
310 if (j < (num - 1))
311 j = j + 1;
312 else
313 {
314 i = i + 1;
315 j = 0;
316 }
317
318 back = false;
319 }
320 else
321 {
322 if (j > 0)
323 j = j - 1;
324 else
325 {
326 i = i - 1;
327 j = num - 1;
328 }
329
330 back = true;
331 b_o = 1;
332 }
333 }
334 else
335 {
336 if (back == false)
337 {
338 if (k >= num && t >= num)
339 b_o = 2;
340 else

153

341 {
342 if (k >= num)
343 b_o = 1;
344 else
345 b_o = 0;
346 }
347 }
348 else
349 b_o = 0;
350
351 if (j > 0)
352 j = j - 1;
353 else
354 {
355 i = i - 1;
356 j = num - 1;
357 }
358
359 back = true;
360 }
361
362 k = 0;
363 used = new uint[](num + 3);
364 use = new uint[](num + 3);
365 }
366 }
367
368 m = new uint[](num*num);
369 i = 0;
370 j = 0;
371
372 while (i < num)
373 {
374 s = i * num + j;
375 t = a[s];
376 k = b[s];
377 p = t * num + k + 1;
378 m[s] = p;
379
380 if (j < (num - 1))
381 j = j + 1;
382 else
383 {
384 i = i + 1;
385 j = 0;
386 }
387 }
388
389 mag = m;
390 }
391
392 function getPositions() public view returns (uint[] memory) {
393 return mag;
394 }
395 }

Listing A.45: MagicSquare in Solidity

1 mag: public(uint256[49])

154 APPENDIX A. SOURCE CODES

2
3 @external
4 def magic_square (num : uint256):
5 a: uint256[49] = [0,
6 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
7 b: uint256[49] = [0,
8 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
9 used: uint256[9] = [0,0,0,0,0,0,0,0,0]

10 use: uint256[9] = [0,0,0,0,0,0,0,0,0]
11 m: uint256[49] = [0,
12 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
13 i: uint256 = 0
14 j: uint256 = 0
15 s: uint256 = 0
16 k: uint256 = 0
17 t: uint256 = 0
18 p: uint256 = 0
19 back: bool = False
20 b_o: uint256 = 0
21
22 t = (num - 1) / 2
23 k = num - 1
24
25 for x in range(8):
26 if i < num:
27 if num % 2 == 0:
28 t = i
29
30 s = i * num + j
31 p = i * num + k
32 a[s] = t
33 b[p] = t
34 i = i + 1
35 j = j + 1
36 if k > 0:
37 k = k - 1
38 else:
39 break
40
41 i = num - 1
42 j = 0
43 p = 0
44 k = 0
45 t = (num - 1) / 2
46
47 if num % 2 == 1:
48 used[t] = 1
49 m[t * num + t] = 1
50
51 for z in range(8):
52 if j < num:
53 if i == j and num != 1:
54 if i > 0:
55 i = i - 1
56 j = j + 1
57 p = p + 1
58
59 s = i * num + j
60
61 if num % 2 == 1:
62 for y in range(8):

155

63 if used[k] == 1:
64 k = k + 1
65 else:
66 break
67 else:
68 for y in range(8):
69 if used[k] == 1 or k == i or k == j:
70 k = k + 1
71 else:
72 break
73
74 a[s] = k
75 used[k] = 1
76
77 s = k * num + b[s]
78 m[s] = 1
79
80 s = p * num + j
81 b[s] = k
82
83 s = a[s] * num + k
84 m[s] = 1
85
86 if i > 0:
87 i = i - 1
88 j = j + 1
89 p = p + 1
90 k = 0
91 else:
92 break
93
94 used = [0,0,0,0,0,0,0,0,0]
95 i = 0
96 j = 0
97 k = 0
98
99 for w in range(4000):

100 if i < num - 1 or j < num - 1:
101 t = i + j
102
103 if i == j or t == num - 1:
104 if back == False:
105 if j < num - 1:
106 j = j + 1
107 else:
108 i = i + 1
109 j = 0
110 else:
111 if j > 0:
112 j = j - 1
113 else:
114 i = i - 1
115 j = num - 1
116 else:
117 k = 0
118
119 for v in range(8):
120 if k < num:
121 if k != j:
122 s = i * num + k
123

156 APPENDIX A. SOURCE CODES

124 if k < j or (i == k or i + k == num - 1):
125 p = a[s]
126 used[p] = 1
127 p = b[s]
128 use[p] = 1
129
130 if k != i:
131 s = k * num + j
132
133 if k < i or (k == j or k + j == num - 1):
134 p = a[s]
135 used[p] = 1
136 p = b[s]
137 use[p] = 1
138
139 k = k + 1
140 else:
141 break
142
143 if i == 1 and j == 0:
144 k = 0
145
146 if num % 2 == 0:
147 t = num / 2
148 else:
149 t = num - 1
150
151 for u in range(7):
152 if k < t:
153 used[k] = 1
154 k = k + 1
155 else:
156 break
157
158 if i == 1 and j == 2:
159 k = 0
160
161 t = num / 2 - 1
162
163 for uu in range(4):
164 if k < t:
165 use[k] = 1
166 k = k + 1
167 else:
168 break
169
170 if i == 1 and j == 3:
171 k = 0
172 t = 3
173
174 for uuu in range(4):
175 if k < t:
176 use[k] = 1
177 k = k + 1
178 else:
179 break
180
181 if back == True:
182 s = i * num + j
183 k = a[s]
184 t = b[s]

157

185 a[s] = num
186 b[s] = num
187
188 s = k * num + t
189 m[s] = 0
190
191 if b_o == 2:
192 k = k + 1
193 t = t + 1
194 else:
195 if b_o == 1:
196 k = k + 1
197 t = 0
198 else:
199 t = t + 1
200
201 else:
202 k = 0
203 t = 0
204 b_o = 0
205
206 for kk in range(8):
207 if used[k] == 1:
208 k = k + 1
209 else:
210 break
211
212 for tt in range(8):
213 if use[t] == 1:
214 t = t + 1
215 else:
216 break
217
218 if (k < num and t < num) or (back == True and k < num):
219 if t >= num:
220 t = 0
221 k = k + 1
222
223 back = False
224
225 for qq in range(49):
226 if k < num and back == False:
227 for kk in range(8):
228 if used[k] == 1:
229 k = k + 1
230 else:
231 break
232
233 for tt in range(8):
234 if use[t] == 1:
235 t = t + 1
236 else:
237 break
238
239 if t >= num or k >= num:
240 k = k + 1
241 t = 0
242 else:
243 s = k * num + t
244
245 if m[s] != 1:

158 APPENDIX A. SOURCE CODES

246 m[s] = 1
247 s = i * num + j
248 a[s] = k
249 b[s] = t
250
251 back = True
252 else:
253 t = t + 1
254
255 if t >= num:
256 k = k + 1
257 t = 0
258
259 else:
260 break
261
262 if back == True:
263 if j < num - 1:
264 j = j + 1
265 else:
266 i = i + 1
267 j = 0
268
269 back = False
270 else:
271 if j > 0:
272 j = j - 1
273 else:
274 i = i - 1
275 j = num - 1
276
277 back = True
278 b_o = 1
279
280 else:
281 if back == False:
282 if k >= num and t >= num:
283 b_o = 2
284 else:
285 if k >= num:
286 b_o = 1
287 else:
288 b_o = 0
289 else:
290 b_o = 0
291
292 if j > 0:
293 j = j - 1
294 else:
295 i = i - 1
296 j = num - 1
297
298 back = True
299
300 k = 0
301 used = [0,0,0,0,0,0,0,0,0]
302 use = [0,0,0,0,0,0,0,0,0]
303
304 else:
305 break
306

159

307 m = [0,
308 0,0,0,0,0,0,0,0,0]
309 i = 0
310 j = 0
311
312 for fin in range(49):
313 if i < num:
314 s = i * num + j
315 t = a[s]
316 k = b[s]
317 p = t * num + k + 1
318 m[s] = p
319
320 if j < num - 1:
321 j = j + 1
322 else:
323 i = i + 1
324 j = 0
325 else:
326 break
327
328 self.mag = m

Listing A.46: MagicSquare in Vyper

Contactos:
Universidade de Évora

Escola de Ciências e Tecnologia
Colégio Luis António Verney, Rua Romão Ramalho, nº59

7000 - 671 Évora | Portugal
Tel: (+351) 266 745 371

email: geral@ect.uevora.pt

	Contents
	List of Figures
	List of Tables
	Acronyms
	Abstract
	Sumário
	Introduction
	Motivation
	Objectives
	Structure

	State of the Art
	Blockchain
	Smart Contracts
	Languages
	High-level
	Execution

	Tezos
	Ethereum
	Gas
	Related Work

	Tools & Frameworks
	Environments
	Ubuntu
	Tezos-Client
	Powershell
	Node.js & npm
	Truffle
	Waffle

	Accounts
	Nodes
	Public Nodes
	Infura Node

	Languages
	SmartPy
	Liquidity
	LIGO
	Archetype
	Solidity
	Vyper

	Networks
	Florence Network
	Rinkeby Network

	Performance Analysis
	Parametric Problems
	First N Primes
	First N Primes (List)
	First N Primes (Both)
	First N Primes (Map)
	N Queens
	Magic Squares

	Programs & Performance

	Comparison
	Conclusion
	Overview
	Future Work

	Bibliography
	Source Codes

