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Abstract: In past years, studies about Land Use and Land Cover (LULC) have been approached extensively in remote sensing 

for providing information on the environmental and global changes in the landscape. In the forest species mapping, one of 

the major challenges when using Sentinel-2 (S2A) multispectral data is to delineate and discriminate areas of heterogeneous 

forest components with spectral similarity at the canopy level. In this context, the main objective of this study was to evaluate 

the S2A data performance for LULC mapping, using a Random Forest classifier (RF). A set of 26 independent variables derived 

from the 2019 summer period S2A data, with a spatial resolution of 10 m, was used. A total of eight object-based LULC classes 

were created, four forest classes (Quercus suber, Quercus rotundifólia, Eucalyptus sp, and Pinus pinea) and four other uses. For 

this propose supervised classification method was applied using the RF classifier. The cartography accuracy assessment was 

performed using the statistics confusion matrix and Kappa coefficient (k). This study showed that the RF classifier achieved 

high overall accuracy (92%) and Kappa (91%) for the four forest classes defined using S2A data. 

Keywords: cartography; forest occupation; supervised classification. 

 

1. Introduction 

The LULC mapping using remote sensing techniques has been widely used to describe the composition and 
distribution of natural elements on the Earth's surface. In addition, the thematic maps reflect political decision-
making on land use planning and, above all, the human activities' effects on the forest resources. In Mediterranean 
ecosystems, one of the great challenges is to produce accurate LULC maps from complex data collected in areas 
with high landscape fragmentation [1]. The identification and spatial distribution of forest species are essential to 
prevent and control large-scale forest fires. In mainland Portugal, the forest occupation is the main land use, 
which corresponds to 36% of the territory, followed by areas of woods and pastures (31%), agricultural area (24%), 
urban use (5%), unproductive and inland waters (2% each) [2]. In this context, it is important to investigate the 
potential of remote sensing data for the mapping of Mediterranean ecosystems, for the possibility of providing 
valuable information on the forest species distribution that predominate in the landscape. For these reasons, maps 
contribute as an intermediate step in more complex analyses, such as landscape modeling, forest biomass 
estimation, and environmental monitoring [3,4]. 
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In recent decades, significant changes in remote sensing have increased the satellite images available that 
facilitates the Earth's surface monitoring in a more economical and technically feasible way at regular time 
intervals [5]. Several satellite types are available on open access platforms, as well as several non-commercial 
software packages have image analysis tools [6–8]. In June 2015, the Sentinel-2A (S2A) multispectral sensor (MSI) 
began its mission to monitor vegetation, with a five-day revisit time, open database resources, and high spatial 
resolution [9]. The MSI has 13 spectral bands, with a range wavelength from 443 to 2190 nm, covering areas of 
the visible spectrum (V), vegetation red edge bands (Red-edges), near-infrared (NIR), narrow infrared (Narrow 
NIR) and short wave infrared (SWIR) [9]. The spatial resolution of the data varies according to the band: B2, B3, 
B4 (V), and B8 (NIR) are provided at 10 m; B5, B6, B7, (Red-edges), B8a (Narrow NIR) B11, and B12 (SWIR) are 
provided at 20m and B1, B9 and B10 are 60m of spatial resolution. In addition, the S2A product offers corrected 
reflectance images at the base of the atmosphere (Bottom Of Atmosphere-BOA) [9]. Compared to the Landsat 
mission, Sentinel 2 advantages are presenting a larger spectral bands volume and surpassing the MODIS data in 
terms of spatial resolution (10–20 m vs. 250 m) [10].   

In addition to spectral information, vegetation and texture indices have improved LULC classes 
discrimination and classifier accuracy statistics [11,12]. Briefly, vegetation indices such as Green Normalized 
Difference Vegetation Index (GNDVI), Soil adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI), 
Normalized Difference Infrared Index (NDII), Normalized Difference Vegetation Index red-edge 1 narrow 
(NDRE 1) Normalized Difference Vegetation Index red-edge 2 narrow (NDRE 2) and Red-edge Chlorophyll Index 
(CI), can be used in images captured during the summer period. These indices gather combinations of pattern-
sensitive bands diverging from the spectral response in semiarid environments [13]. GNDVI has the ability to be 
five times more sensitive to variation in chlorophyll content by using a green band rather than a red band [14]; 
EVI is sensitive in regions with high biomass concentration [15]; NDII determines the water content of vegetation 
and plant water stress using the SWIR band [16]; SAVI reduces the effects of ground pixels[17]; NDRE 1 and 2 
are sensitive to small changes in the canopy, gap fraction, and senescence relative to red and green reflectance 
[18] and CI estimates the chlorophyll content of leaves based on the reflectance in narrow red-edged spectral 
bands [19].  

Texture measurements describe heterogeneity in the tonal values of pixels within a defined area of an image 
and can be used to identify objects or regions of interest [20]. For LULC classification purposes, the texture 
measurements of a Gray Level Co-occurrence Matrix (GLCM), proposed by [21], has been the most adopted 
method for providing additional information when the spectral information is not sufficient for heterogeneous 
landscape classification [20]. Second-order statistics, such as the GLCM method, consists on a co-occurrence 
matrix that uses the relationship between neighboring pixels to characterize the texture [22]. The GLCM method 
analyzes the existing co-occurrences between each pair of pixels in an image, that is, it analyzes the spatial 
relationship between a set of pixels (given a distance and different angles) [21,23]. As an independent source of 
information from spectral value data, the inclusion of GLCM measurements generally improves the accuracy of 
classification images [1,24,25]. Among the approaches in the literature, GLCM textures can be calculated from the 
principal components (Principal Component Analysis - PCAs) of the spectral bands set or vegetation indices 
[13,23]. This strategy has as main objective to simplify and reduce the number of independent variables and 
correlated information [26]. 
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Additonally the characteristics of the image, anothers importants points must be considered, is the selection 
of training samples and classification methods in order to obtain a accurate classification. In Mediterranean 
ecosystems, where there is great structural and botanical diversity with high spectral variability [27], supervised 
classification methods based on machine learning methods/techniques have attracted the attention for being able 
to deal with large volumes of complex and non-parametric data [28,29]. In supervised mode, classification 
algorithms determine a LULC class based on training the spectral signatures of user-selected LULC classes, where 
object-based discrimination includes different land cover labels [6,12,30]. More information on supervised 
classification methods can be found in [31]. In LULC classification studies with Sentinel 2A images, Random 
Forest (RF) has been more used algorithm for attaining better performances are achieved when compared to other 
classifiers [3,29,32–34]. When generating a thematic map, statistical analyzes to assess accuracy can be obtained 
through the confusion matrix. The confusion matrix is a square matrix that, through the correlation of information 
from the reference data (understood as soil truth) with the classified data, assigns statistical values of the quality 
of the digital image classification [35]. In this way, accuracy values such as overall, user, and producer accuracy 
and Kappa statistic can be derived from this matrix, being useful in the interpretation of the degree of precision 
and coherence of a resulted thematic map [36–38].  

In this context, the main objective of this study was to evaluate the performance of S2A data for LULC 
mapping, using the RF classifier, for mapping the forest occupation in Central Alentejo region, Portugal.  

 
2. Materials and Methods 
2.1. Description of the study area 

This study was conducted in Central Alentejo (NUT-Nomenclature of Territorial Units for Statistical 
Purposes III region)[39], located in the south of mainland Portugal, with a territorial extension of 7 393 Km² 
(Figure 1). This region characterized by Mediterranean climate, whit hot, dry summers (June to September) and 
cold, rainy winters (October to January). The forest occupation has around 338.53 thousand ha, the predominant 
species are Quercus suber (53%), Quercus rotundifólia (35%), Eucalyptus sp. e Pinus pinea in low percentage [2]. 

 
Figure 1. Study area in false color composite (RGB - Bands 4, 8, and 3) using Sentinel-2A image. 
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The landscape is dominated by agroforestry sistems named “montado” [40]. These systems are composed by 
Quercus suber and/or Quercus rotundifolia, caracterised by low densities are irregular spatial arragement frequently 
with an understorey composed of shruby and hebaceos species [41]. The “montado” is classified as a High Natural 
Value Agricultural System by the European Environment Agency [42] and listed in the Habitats Directive as 
habitats of conservation value [43]. The “montados”of Quercus suber have as their main product bark (cork) and 
those of Quercus rotundifólia fruit [44]. The species can occur in pure and mixed stands [45]. The forests of 
Eucalyptus sp and Pinus pinea are distributed in the area in small mosaics, occupying about 6 and 5% of the forest 
area, respectively [2]. The pure even aged stands of Eucalyptus sp. are mostly intended for the production of short-
fiber cellulose pulp, paper, and biomass for energy production [46]. Pinus pinea stands frequently pure even aged 
or mixed with Quercus suber, have as its main product edible pine nuts, which are a traditional ingredient in 
Mediterranean cuisine [47]. 

 
2.2 Data preprocessing and dataset 

The S2A image processing procedures are synthetically represented in the workflow (Figure 2). Four stages 
were needed to generate the LULC mapping.  
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Figure 2. Workflow of the data processing, and validation steps implemented from Sentinel 2A images. 

 
The acquisition of S2A products were made on the Copernicus Open Access Hub platform [48]. In total, it 

was necessary to use four S2A images sets to cover the entire study area. In this work, ten S2A Multispectral (MSI) 
band sets were used the mosaics were made per band with the ETRS 1989 - Portugal reference system. 
Theaquisition images date was September 2, 2019, with cloud filtering of less than 10%. For forest classification 
studies, in the summer season, shows more probability to find images with a lower clouds covers, in addition, to 
increase the contrast between the spectral classes of the forest canopy cover and the layers of soil understory 
vegetation, which are mostly dry, in this season [13]. Thus, to have all bands with the same spatial resolution, a 
nearest-neighbor interpolation scaling procedure was used to reduce the 20 m bands (5, 6, 7, 8A, 11, and 12) to 
10m [49].  

Seven vegetation indices (VIs) were selected to extract information about the spectral vegetation behavior in 
relation to the ground and differentiate it from other surface targets [13,50]. The VIs used were: GNDVI, SAVI, 
EVI, NDII, NDRE 1 and 2, and CI (Table 1). To optimize indices texture, the Principal Component Analysis (PCA) 
was applied to the 10 spectral bands set of the S2A images [26,51]. PCA summarizes most of the data variation of 
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the ten spectral bands of S2A, compressing redundant data embedded in each spectral channel [52]. Although 
studies indicate that the first principal component gathers most of the information on the separability of land use 
classes [23,53], in this work, were used the three firts components, they explain 99.56% of the spectral variation 
of the data set considered [1]. On the 3 PCA’s, GLCM texture measurements (Average, Variance and Correlation), 
were extracted with a moving window size 9 × 9, in all directions (0°, 45°, 90°, and 135°), with quantization of 32 
gray levels, based on variogram method [54,55]. In the literature, the configurations for GLCM textures and the 
definition of the ideal size of the moving window are still dependent on the land use characteristics and the 
diversity of the bands [56,57]. Thus, a window size suggested by [54] was used in this study to improve 
classification accuracy in heterogeneous landscapes with varying sizes of training features. Adopting a smaller 
window is more recommended for homogeneous terrain types and with fixed training plot sizes [58]. For these 
proposes was used the free software, Sentinel Application Platform (SNAP) 7.0 [59].   

 
Table 1. Vegetation indices and GLCM textural measures derived from Sentinel-2A images. 

Type Description Equation 

Vegetation 
Indices 

(VIs) 

GNDVI 
Green Normalized Difference 

Vegetation Index 
𝑁𝐼𝑅 − 𝐺𝑟𝑒𝑒𝑛

𝑁𝐼𝑅 + 𝐺𝑟𝑒𝑒𝑛
 

SAVI Soil Adjusted Vegetation Index 1.5 × 
𝑁𝐼𝑅 − 𝑅𝑒𝑑

8 × (𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 0.5)
 

NDII Normalized Difference Infrared Index 
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅 1

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅 1
 

EVI Enhanced Vegetation Index 2.5 ×  ൬
𝑁𝐼𝑅 −  𝑅𝑒𝑑

(𝑁𝐼𝑅 − 6 × 𝑅𝑒𝑑 − (𝑅𝑒𝑑 − 7.5 ∗ 𝐵𝑙𝑢𝑒) + 1)
൰ 

NDRE 1 Normalized Difference Red Edge Index 1 
𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 4 − 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 1

𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 4 + 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 1
 

NDRE 2 Normalized Difference Red Edge Index 2 
𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 4 − 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 3

𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 4 + 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 3
 

CI Red-edge Chlorophyll Index 
𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 2

𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 1
 

 GLCM 
Textural 
Measures 

Mean 
Average of the grey level sum distribution 
of the image 

෍ 𝑖 𝑃௜,௝

ேିଵ

௜,௝ୀ଴
 

Variance 
  

Measures the dispersion (relative to the 
mean) of the grey level distribution 

෍ 𝑖𝑃௜,௝ (𝑖 −  𝜇)ଶ
ேିଵ

௜,௝ୀ଴
 

Correlation  

Measures linear greyscale dependencies 
in the image and describes the similarity 
between column or row elements in 
GLCM. 

∑ 𝑖𝑃௜,௝ −  𝜇௫ 𝜇௬
ேିଵ
௜,௝ୀ଴

𝜎௫ 𝜎௬

 

where, P(i,j) is a normalized grey-tone spatial dependence matrix such that SUM(i,j = 0, N- 1) (P(i,j)) = 1; i and j represent the 

rows and columns, respectively, for the measures of Mean, Variance and Correlation; μ is the mean, for the Variance textural 

measure; and N is the number of distinct grey levels in the quantized image; μx. μy, σx, and σy are the means and standard 

deviations of px and py, respectively, for the correlation textural measure. 
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The software SNAP was also used to obtain the importance of each independent variable to the class 

separability in the classification process. To complement this information, it was computer the Jeffries–Matsushita 
(J–M) distance for all possible combinations of pair of classes. For this measure, with range from 0 to 2, where, 
the value 2 indicate the completely separability of classes, values from 1.99 to 1.5 the classes are clearly separate, 
between 1 and 1.5 the classes are separable with some confusion and below 1.5 the classes are not separable [11]. 

  
2.3 Supervised classification 
2.3.1 Definition of LULC classes and selection of training features 

In the application of the supervised classification method, the LULC classes were defined by creating polygons 
(Regions of Interest – ROIs features) with uniform distribution of samples over the ground cover according to the 
area characteristics [30]. In the definition of training and validation samples, the prior recognition of the study area 
is essential for create training samples to guide the image classification process [6]. Therefore, to deliniate the ROIs 
features of each LULC class, auxiliary data was used to identify the classes in the reference image. Were used images 
from Google Sattellite integrated on the OGC Catalog Service for the Web (CSW) standard metadata catalogue 
service in QGIS [60] and Land Use and Occupation Map (COS) from 2018 [61]. The ROIs features were defined using 
the tool “Active ROI pointer” from the Semi-Automatic Classification Plugin version 7.8.34, available as open-source 
and free in QGIS 3.16.0 [62]. 

In this way, eight predominant LULC classes were defined, being four forest classes and four classes of other 
uses. The set of other LULC uses classes were grouped: Water surfaces: areas of soil that are covered by water; 
Baresoil and artificial surfaces: areas with dry vegetation cover, rock outcrops, baeresoil, quarries, and urban areas, 
solar panel parks, greenhouse structures; Agricultural areas: irrigated crops, permanent agriculture areas (vines and 
olive groves); Shrub surface: correspond areas occupied mainly by shruby species spetaneous of the Mediterranean 
regions. Note that, in this study, we chose to include the baresoil class and urban areas in a single class (Soil and 
artificial surfaces). In the summer period, when there is low agriculture activity and low baeresoil moisture areas, 
the reflectance values are higher. Thus, the low spectral separability make it dificult to separate artificial surfaces 
and natural surfaces without vegetation (baresoil, quarries, urban area). The forest classes set were Eucaliptus sp., 
Pinus pinea, Quercus rotundifólia, and Quercus suber. Thus, ROIs features were used for the training and validation of 
the classification algorithm that determines discrimination rules between the different LULC classes.  

 
2.3.2 Random Forest Classification  

Random Forest (RF) is a non-parametric machine learning algorithm, developed by [63], in which data set is 
frequantly divided in two sub samples; the training and the validation. The RF builds multiple decision trees, 
based on random bootstrapping of training data, overcoming the overfitting generated with the Decision Trees 
(DT) classifier [63,64]. In the data training step, the RF operates by building several of DT, in which each division 
of the tree is determined using a random subset of the predictors at each node. The resulting output is predicted 
by the majority of unweighted “votes” for each class, averaged over all trees [32,65]. The validation data set, 
produces an internal and unbiased estimate of the generalization error using out-of-bag (OOB) samples [66]. One 
of the advantages of using RF as a classifier is the easy parameterization, the ability to manage collinear resources 
and high-dimensional data [67], as well as, it is robust against overfitting and outliers [68]. 
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In this study, the free and open-source software package Orfeo ToolBox (OTB) [69], was used for the 
supervised classification process and for the analysis of precision statistics of the LULC mapping. OTB has a wide 
application of object-oriented machine learning classification algorithms, which include supervised methods such 
as Support Vector Machines (SVM), Artificial Neural Networks (ANN), and Random Forest (RF) [70]. Thus, the 
ROIs were selected by the independent stratified random selection method, where 70% were used to train the 
classifier, while 30% to validation, in the accuracy assessment (Table 2) [71–73]. The RF classification algorithm 
was applied to the 26 independent variables by the OTB 7.1.0 tool package, implemented in the QGIS 3.16.0-
Hannover platform. The number of trees was 500, with a depth of 25, and the OOB error was set to 0.01 [74]. The 
number of trees chosen proves to be sufficient to obtain a good classification result, since higher values present 
similar results, have a processing time and the change of the other parameters has little influence, as they remain 
with an OOB error value [67,75–78]. 

 
Table 2: Training and validation samples for each LULC class collected as group of pixels. 

Sets LULC Classes 
ROIs features 

Number 

Pixels Number 

70% Training 30% Validation Total 

Other Uses Classes 

Water Surfaces 29 77 966 33 414 111 380 
Soil and Artificial Surfaces 29 45 829 19 641 654 70 

Agricultural surfaces 231 142 326 60 997 203 323 
Shrub Surface 192 30 867 13 229 44 096 

Forest Classes 

Eucalyptus sp. 227 119 346 51 149 170 495 
Pinus pinea 334 103 311 44 276 147 587 

Quercus rotundifólia 1 111 155 681 66 720 222 401 
Quercus suber 685 160 406 68 745 229 151 

 

2.3.3 Accuracy Assessment 
After the supervised classification step, statistics methods play an important role in assessing the accuracy of 

classification mapping [79]. By comparing the classified map with the reference image, using the information from 
the validation samples, accuracy statistics can be derived by the confusion matrix. Thus, in this study, the LULC 
map was evaluated by the most popular metrics (overall (OA) producer’s (PA) and user’s (UA) accuracies and Kappa 
statistics) using 30% of the samples set for validation of the reference data [80,81]. The AO, PA, and UA can be 
categorized as follows: very high accuracy (over 90%), high accuracy (80-89%), acceptable accuracy (70-79%), low 
accuracy (less than 69%) [35]. The Kappa Coefficient (k) is a measure of map accuracy most used in remote sensing, 
proposed by [82]. The Kappa coefficient [35,83], considers that values above 0.8 present thematic maps with a high 
level of agreement between the resulted map and the ground truth [82].  

 

3. Results 

The analysis of the spectral separability of the J-M measure revealed that when comparing the pairs of classes 
from the set of other uses with the forest classes, the values of J-M were 2.0, being completely separable. On the 
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other hand, in the comparison made between pairs of forest classes, the J-M measure presented a value of 1.9, 
being clearly separable. 

The results for the accuracy statistics derived from the RF classifier approaches are shown in Table 3. 
Specifically, the OA, PA, UA and Kappa coefficient were obtained of the confusion matrix. The overall accuracy 
in the case of the single model was 92.16%, while the Kappa coefficient of 91.04%. The set of classes with other 
uses, obtained UA (commission errors) values that ranged between 93.45% and 99.92%, and PA (omission errors) 
value ranged between 93.78% and 99.70%. However, as the objective of this study was to show the performance 
of the RF algorithm for the forest classes set, the classified map is shown in Figure 2. For these classes, the UA 
values ranged between 80.93% and 90.00% and PA ranged between 85.79% and 89.06%.  

 
Table 3: Accuracy assessment for the forest classes set obtained by RF classification. 

Sets LULC Classes User Accuracy (UA) Producer Accuracy (PA) 

Forest Classes 

Eucalyptus sp. 88.17 87.85 
Pinus pinea 89.75 89.06 

Quercus rotundifólia 80.93 85.79 
Quercus suber 90.00 86.77 

Overal Accuracy (OA) 92.16 
 

Kappa Coefficient 91.04 

 

 
Figure 2. Land use mapping with forest and other uses classes from Random Forest classifier. 
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4. Discussion 
In this study, it was identified that the most important Sentinel 2 spectral bands in the classification process 

were the red-edges and NIR (B8) and SWIR1(B11) bands. The red-edge bands were sensitive to chlorophyll levels 
a and b and their variations [84–86], while NIR is a wavelength that expresses the scattering canopy radiation [85], 
and the SWIR detects water content variations between different forest species [87,88]. Other LULC studies have 
also identified the same spectral bands as important variables for the LULC classification, especially for forest 
classes. Studies using single-date Sentinel 2 images to classify forest species in Germany, identified that the most 
important bands were red-edge 1 (B5), SWIR 1 (B11), and the blue band (B2) [76]. The same way, [72] used Sentinel 
2 single-date images for mapping LULC in the Roorkee region - India, identified that the NIR band (B8) had 
greater participation in spectral separability in forest classes with higher and lower density (N/ha). Also, [89] 
using Sentinel 2 images to map Eucalyptus sp. species, identified that the most important spectra in distinguishing 
the class were the green (B3), red-edge 3 (B7) red-edge 4 bands, or narrow NIR (B8A). 

Among the studied vegetation indices, few indices influenced the gain in classification accuracy. The SAVI 
index contributed to the soil adjustment constant in the background of the vegetation signal, an important factor 
when it comes to studies in the dry season and in semi-arid regions [17]. In addition, EVI had a greater 
relationship with sensitivity to biophysical changes in the forest canopy, such as leaf pigments, such as 
chlorophyll and leaf nitrogen, and regions of high biomass [90]. Works similar to ours also report the low impact 
of vegetation indices on the accuracy of LULC studies [55,91,92]. In the Mediterranean ecosystem, [92] when 
analyzing the importance of including eight vegetation indices of Sentinel 2 (GNDVI Green Normalized 
Difference Vegetation Index; NDVI Normalized Difference Vegetation Index; NDI45 Normalized Difference 
Index; S2REP Sentinel-2 Red-Edge Position Index; SAVI Soil-Adjusted Vegetation Index; MSAVI2 Second 
Modified Soil-Adjusted Vegetation Index; BI Brightness Index and CI Color Index), in the classification of four 
forest classes - holm oaks (Quercus ilex), cork oaks (Quercus suber), and Eucalyptus (E. globulus and E. camaldulensis) 
- and four of other uses, in Badajoz province (Spain), verified that only MSAVI 2 had a participation in the 
accuracy gains. In the Extremadura region in Spain, [55] verified that among the eight vegetation indices (BI 
Brightness Index, CI Color Index, GNDVI Green Normalized Difference Vegetation Index, MSAVI2 Second 
Modified Soil-Adjusted Vegetation Index, NDI45 Normalized Difference Index, NDVI Normalized Difference 
Vegetation Index, NDWI Normalized Difference Water Index, SAVI Soil Adjusted Vegetation Index) derived 
from Sentinel 2 data, only CI was important in the classification process of four forest classes – ENF: Evergreen 
needle leaf forest (Pinus pinaster, Pinus pinea); EBF: Evergreen broadleaf forest (Quercus rotundifolia, Quercus suber) 
TCC: Tree Canopy Cover>60%; DHS: Evergreen broadleaf forest (Quercus rotundifolia, Quercus suber) 20<TCC>60%, 
and DBF: Deciduous broadleaf forest (Quercus pyrenaica, Castanea sativa) - and nine other uses, using the RF 
classifier. Thus, we observed that, by including only vegetation indices in LULC studies, they may not produce 
good accuracy results. Trong et al [91], had lower accuracy results than our study, but they showed the 
importance of including textures indices to improve the accuracy in the LULC classification. 

In this study, the measures of variance and correlation of the GLCM textures, derived from principal 
components 2 and 3, were the bands of the greatest importance for the forest species classification. The GLCM 
metrics were more sensitive to canopy cover variation and abrupt changes in digital numbers between 
neighboring image pixels, which are more prominent in the dry season [93]. Furthermore, when studying forest 
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classes with heterogeneous and complex spatial distribution, these bands highlight the contrast in the boundaries 
of the stand [94]. Thus, the measure of GLCM variance had greater sensitivity in the intraclass visual borders, as 
it increases when it obtain higher or lower values when there is a large disparity in the gray level between pixels. 
On the other hand, the GLCM correlation measures are associated with the linear dependence between two 
neighboring pixels, and similar gray levels with higher values in areas far from edges tend to cluster [20]. Several 
LULC studies report that the inclusion of texture features can improve classification accuracy, as obtained in our 
study [3,75,76,95].  

Thus, the high accuracy value and kappa coefficient shown in table 2 was achieved by the synergistic use 
between texture indices and spectral bands. In the individual assessment of the accuracy of each forest class, it 
was observed that there were some pixels that were incorrectly classified. However, a visual inspection was 
necessary to verify the spectral confusion points between the classified image and the reference image. Thus, 
when analyzing the J-M measure, was verified that all pairs of forest classes were clearly separable, with a value 
of 1.9. This separability was achieved by using the "Active ROI pointer" tool, which optimizes the process of 
marking ROIs features, which uses an algorithm that segments the image around a pixel seed, which includes 
spectrally homogeneous pixels in a feature [62]. The predicted regions that were incorrectly classified are located 
in mixed stands or with low spatial distribution, and also in transition zones between stands. In Mediterranean 
ecosystems, the classifier may have difficulty identifying the spatial arrangements of species speciacially in the 
montado systems, as species have heigh variability in their distribution pattern [13,96,97]. On the other hand, it 
can be noted that the class of Q. rotundifolia presented a lower user and producer accuracy than Q. suber. This 
reduction in individual accuracies is due to the spectral similarity between the Agricultural surfaces and Shrub 
Surface classes. Some Q. rotundifolia pixels were incorrectly classified in boundaries of areas of vineyards and 
olive groves which have very similar spectral ranges. Regarding Shrub Surface classes, spectral confusion 
occurred mainly in regions where the shrub signal was dominant in the reflectance of young Q. rotundifolia. The 
dominance of reflectance of understory vegetation or soils was also observed in growing forest stands, due to 
gaps between a sparse canopy structure [98,99]. Among the pairs of classes of Eucalyptus sp. and P. pinea, 
misclassifications were more frequent in riparian forests and orchards with spectrally similar signs. In addition, 
small fragments from the second rotation of Eucalyptus sp. and young P. pinea plantations influenced the signal 
change due to spatially open canopies. 

In general, in our study the RF classifier had good performance in overall accuracy and kappa statistics, 
reaching values similar or higher to the studies of [72,76,100]. Immitzer et al. [76] obtained an overall accuracy of 
66% and a kappa coefficient of 58% when classifying the species of P. abies, P. silvestris, Larix decidua, Abies alba, 
Fagus sylvatica, and Quercus sp., using RF classifier. LULC studies in the Mediterraneo ecosystem, [72] and [100], 
also reported an overall accuracy of 84% and 93% with a kappa coefficient of 83% and 73%, respectively. Other 
LULC studies using Sentinel 2 images can be found in [101]. One of the alternatives to improve the classification 
results of our work would be to include Sentinel-2 multitemporal images and use the synergy between Sentinel 
1 data, as shown in the studies [1,3,102–104]. Although the different window sizes test was not one of the 
objectives of this study, the mapping of forest classes in different window sizes can be an alternative to 
classification accuracy assessment.  
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5. Conclusion 
In this study, the RF algorithm produced a good accuracy for LULC classes for Central Alentejo, reaching an 

overall accuracy of 92.16% and a Kappa coefficient of 91.04%. In addition, images acquired in the summer con-
tributed to a good classification due to the lower occurrence of clouds and the distinctive spectral behaviour of 
the understory as well as between forest and other uses. 

For the forest classes set, the RF model performed well, despite the complexity of forest occupation in Central 
Alentejo, with high intraclass variability. 

The results confirm the potential of Sentinel 2A data in LULC mapping. The Sentinel-2 spectral bands and 
texture indices had the greatest contribution to the classification results. The images were useful in developing 
spatial estimates of forest cover and species distribution in complex and heterogeneous landscapes. 
 
Funding: This work is funded by Programa Operativo de Cooperação Transfronteiriço Espanha-Portugal (POCTEP); project 
CILIFO – Centro Ibérico para la Investigación y Lucha contra Incendios Forestales (0753_CILIFO_5_E) and by FCT- Founda-
tion for Science and Technology under the Project UIDB/05183/2020. 
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