SESSÃO POSTERS • 3

DETEÇÃO DE PLANOS DE FRACTURAÇÃO ATRAVÉS DE GEORADAR NUMA PEDREIRA DE GRANITO

DETECTION OF FRACTURE PLANES BY GEORADAR IN A GRANITE QUARRY

Neves, Samuel; ARROW4D - Consultores de Engenharia e Geofísica, Lda., Évora, Portugal, geral@arrow4d.pt Mirão, José; Laboratório Hercules, Universidade de Évora, Évora, Portugal, jmirao@uevora.pt Lopes, Luís; Instituto de Ciências da Terra, Departamento de Geociências, Universidade de Évora, Évora, Portugal, lopes@uevora.pt

Alves, Tiago; DGEG, Évora, Portugal, tf.pereiraalves@gmail.com Lisci, Carla; Laboratório Hercules, Universidade de Évora, Évora, Portugal, clisci@uevora.pt Pardal, Eduardo; Granialpa – Comércio e extração de granitos, Lda., Évora, Portugal, geopardal@gmail.com Martins, Rúben; Departamento de Geociências, Universidade de Évora, Évora, Portugal, rubenvm@uevora.pt

1 - INTRODUÇÃO

No sector da extração de pedra natural, em particular no granito, mármore e calcário, vive-se um bom momento económico. Contudo, face às novas exigências técnicas, ambientais e de segurança, é necessário que sejam disponibilizadas informações úteis e em tempo útil, de modo a responder às necessidades dos profissionais do sector. Neste sentido, é fundamental o desenvolvimento de métodos e metodologias científicas que permitam a monitorização constante do recurso natural sem colocar em causa a operacionalidade da atividade extrativa. O georadar é uma técnica não invasiva e não destrutiva que permite detetar diferenças na composição geológica das estruturas soterradas. Este método tem sido aplicado com sucesso em diferentes áreas, nomeadamente, geotecnia, arqueologia, ou monitorização ambiental. O objetivo deste trabalho visa a aplicação do método de georadar em detetar descontinuidades, como fraturas, falhas, diaclases e veios de quartzo na frente de uma pedreira de granito, localizada em Évora, e representar essas descontinuidades num modelo digital 3D. Este trabalho foi complementado com mapeamento 3D com recurso a drone.

2 - DETEÇÃO DE FRATURAS EM GRANITO COM GEORADAR

2.1 - Enquadramento geológico

O local de estudo escolhido situa-se numa pedreira de granitos e granodioritos em Évora (Fig. 1-a). Esta pedreira situa-se no maciço de Évora, parte integrante da Zona de Ossa Morena (ZOM) (Carvalhosa, 1983). Recentemente, Pereira e Oliveira (2003) subdividiram o extremo NW do Maciço de Évora em três zonas, com base na deformação e no grau metamórfico (Fig. 1-b): Zona de Cisalhamento de Montemor-o-Novo (ZCMN), Terrenos de Alto-grau Metamórfico de Évora (TAME) e Terrenos de grau-Intermédio de Évora (TMME). A zona de estudo enquadra-se na zona TAME.

a)

b)

Figura 1 –a) Fotografia aérea da pedreira em estudo, b) Zonamento geológico do Maciço de Évora.

O TAME estende-se ao longo de uma faixa com 15-20 km de largura e é formado por uma complexa associação estrutural de gnaisses e migmatitos cisalhados, associados a intrusões de largo espectro composicional (gabros, dioritos, tonalitos, granodioritos, granitos) com padrões internos, mais ou menos intensos, de orientação geral NW-SE. O CGM encontra-se intruído por corpos graníticos sem deformação aparente (Carvalhosa e Zbyszewski, 1994). A composição destas rochas de alto grau metamórfico é habitualmente granodiorítica, podendo conter alguma silimanite, cordierite e andaluzite (Carvalhosa e Zbyszewski, 1994).

2.2 - Equipamento e software utilizados

O método de georadar foi escolhido por não ser destrutivo e fornecer rapidamente uma visualização 3D da subsuperfície geológica. O equipamento utilizado é um zond-12 advanced, produzido pela Radsys, com antena de 500 MHz, tendo sido utilizados dois softwares de pós-processamento de dados, nomeadamente, o prism e o reflexw.

2.3 - Aquisição de dados

A primeira etapa da aquisição de dados consistiu na marcação de uma grelha no topo de uma frente de pedreira, com recurso a fitas métricas tradicionais. Foi marcada uma grelha com as seguintes dimensões: 6 m de largura e 12 m de comprimento (paralelo à frente de pedreira, Fig. 2). Os perfis foram realizados segundo o eixo longitudinal e afastados entre si de 50 cm, em configuração zig-zag.

Após a marcação no terreno, o georadar foi calibrado para as condições de trabalho locais, nomeadamente: tipo litológico, aplicação de filtros para eliminação de ruído, escolha de antena, e intervalo de amostragem. Tendo-se de seguida realizado a aquisição de dados através dos perfis de georadar. Durante o levantamento dos perfis, o utilizador visualizou diversas anomalias, tendo-as marcado no terreno para análise e comparação futura. Os perfis de georadar foram realizados paralelamente à frente de pedreira, e perpendicularmente às fraturas subverticais, de modo a obter reflexões mais intensas produzidas por planos de fracturação (Carreon-Freyre e Cerca, 2006; Theune et al., 2005).

a)

b)

Figura 2 – a) Levantamento *in situ* com georadar e antena de 500 MHz, b) área de prospeção e orientação dos perfis de georadar.

2.4 - Processamento de dados, análise e interpretação

Após conclusão dos trabalhos de campo, os dados são transferidos para computador adequado, para processamento individual de todos os perfis. Esta operação consistiu na correção da amplitude (*gain function, gain YX*) com a profundidade, remoção de interferências gerais e pontuais (*background filter, butterword bandpass, average XY filter*), aplicação de filtros para correção do posicionamento das antenas (*moveout correction*), e migração (*kirchhoff migration, timedepth convertion*) para averiguar o posicionamento e a forma geométrica das reflexões.

Através dos radargramas (Fig. 3) foram assinaladas as anomalias detetadas, e registadas através de pontos tridimensionais, dando origem a um conjunto de planos de descontinuidade. Foram aplicados métodos numéricos de modo a obter por cada plano de fracturação uma malha triangular numérica (forma de

representação num referencial tridimensional digital). Esta nova ferramenta de visualização da estrutura sub-superficial geológica no espaço tridimensional permite o estudo e análise de diferentes parâmetros técnicos, nomeadamente, identificação e geolocalização de volumes com maior grau de fracturação (permite o encaminhamento deste tipo de recurso para um determinado produto comercial), e vice-versa, volumes com baixo nível de fracturação serem aproveitados para aplicações de rocha ornamental de alta qualidade. Para além desta aplicação, é possível verificar a orientação e inclinação dos planos de fratura, de modo a mitigar situações de perigosidade.

Figura 3 – Esquema geral de processamento de dados: a) radargramas, b) modelo digital 3D de planos de fracturação e veios, c) e d) integração do modelo 3D de planos de fracturação com o modelo digital 3D da superfície da pedreira.

Foi verificado que o georadar detetou veios de quartzo e descontinuidades, sendo identificados pela intensidade do sinal, bem como a orientação dos veios. A deteção destes veios é importante, porque muitas vezes são impercetíveis à visão humana. A não perceção destes veios e/ou descontinuidades não permite antecipar zonas de menor produção, originando uma perda drástica de valor económico da pedra, por não se obterem blocos com dimensão comerciável e/ou apresentarem vários defeitos (manchas escuras, veios com concentração de quartzo, etc.).

Esta abordagem permite ao dono e ao responsável técnico da pedreira terem modelos de previsão 3D georreferenciados de qualidade da pedra, bem como da volumetria associada. Apresenta-se como uma boa ferramenta de gestão do recurso natural, bem como a mitigação de eventuais situações de perigosidade devido à presença de falhas eventualmente perigosas.

SIGAUBI2019 | 505

2.5 - Validação

Os resultados obtidos por georadar foram comparados com a fotografia aérea da frente de pedreira estudada. Verifica-se que os planos de fracturação mais abertos são mais visíveis, enquanto os planos de microfracturação e veios de quartos são maioritariamente impercetíveis, exceto em condições muito especiais. A Figura 4 apresenta a comparação do radargrama mais próximo da beira da frente de pedreira (afastado de 1m) com a fotografia aérea. Verifica-se que existe uma forte correlação entre as imagens, o que valida a aplicação de georadar para deteção de planos de fracturação em pedreiras de granito.

Figura 4 - Comparação entre fotografia aérea e radargrama mais próximo da frente de pedreira (1 m de afastamento), e identificação dos principais planos de fracturação.

3 - CONCLUSÕES

A aplicação do método de georadar na frente de uma pedreira de granito em Évora foi bem-sucedida. Detetou-se que os principais planos de fracturação, bem como outros planos de microfracturação e veios de quartzo. Durante este trabalho foi desenvolvida uma nova forma de visualizar os planos de fracturação num referencial tridimensional digital, onde os planos de fracturação foram enquadrados geograficamente e topograficamente através do modelo digital 3D realizado com drone. A combinação destas técnicas (georadar mais mapeamento 3D com drone) permitiu a calibração do modelo 3D de georadar, bem como a melhoria significativa da interpretação dos resultados de georadar. A vantagem desta aplicação irá permitir ao dono e responsável técnico da pedreira terem modelos de previsão 3D georreferenciados de qualidade da pedra bem como da volumetria associada. Em suma, esta tecnologia é uma boa ferramenta de gestão do recurso natural bem como de mitigação de eventuais situações de perigosidade.

REFERÊNCIAS

Carvalhosa, A. (1983). Esquema geológico do Maciço de Évora. Com. Serv. Geol. Portugal, 69, pp.201-208.

- Carvalhosa, A., Zbyszewski, G. (1994). *Carta Geológica de Portugal 1:50.000 Notícia explicativa da folha 35-D, Montemor-o-Novo*. Instituto Geológico e Mineiro, 86 pp.
- Carreon-Freyre, D. C., Cerca, M. (2006). Delineating the near-surface geometry of the fracture system affecting the Valley of Querétaro, Mexico: Correlation of GPR signatures and physical properties of sediments. *Near Surface Geophysics*, 4(1), pp. 49-55.
- Pereira, Z., Oliveira, J. T. (2003). Estudo palinostratigráfico do sinclinal da Estação de Cabrela: implicações tectonostratigráficas. *VI Congresso Nacional de Geologia*, UNL, Lisboa, pp. 118-119.
- Theune, U., Schmitt, D. R., Sacchi, M. D. (2005). Mapping fractures with GPR at Turtle Mountain. *CSEG annual convention*, CSEG, Calgary.