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Previsão de Volatilidade para o Mercado de Ações Brasileiro (Índice BOVESPA) 

 

Resumo 

A volatilidade é uma medida de risco que, a partir da análise do comportamento de um 

ativo durante um determinado período, indica a velocidade de variação entre a queda 

e a subida. Ativos altamente voláteis apresentam oscilações rápidas e que podem 

acontecer de forma muito acentuada. Estudos sobre volatilidade como orientação de 

investimentos e instrumento de classificação de risco têm sido uma estratégia 

amplamente utilizada no mercado de capitais. O presente trabalho tem como objetivo 

analisar e prever a volatilidade do Índice BOVESPA (IBOV) empregando modelos da 

família ARCH/GARCH, bem como se existe uma relação de longo, curto prazo (ou ambos) 

entre o IBOV e os indicadores macroeconômicos auxiliares usando modelos 

VAR/VEC/ARDL. As séries analisadas são dados diárias não sequenciais de 2 de janeiro 

de 2019 a 30 de abril de 2020 (322 registros), e o período de previsão é de 5 de maio de 

2020 a 10 de julho de 2020 (42 registros). As seguintes variáveis foram utilizadas como 

indicadores auxiliares: o preço do barril do petróleo Brent em dólares americanos 

(Brent); o índice de diferença entre a taxa de retorno dos títulos brasileiros e a taxa 

oferecida pelos títulos do Tesouro Norte-Americano (EMBI); e a taxa de câmbio entre o 

dólar norte-americano e o real brasileiro (BRL_USD). Os resultados sugerem a utilização 

do modelo IGARCH(1,1) com erros GED e indicam que existe uma relação de curto prazo 

quando o IBOV é a variável dependente, embora o modelo ARDL tenha sido considerado 

insatisfatório. 

Palavras-chave: GARCH, volatilidade, previsão, indicadores, macroeconometria. 

  



Volatility Forecast for the Brazilian Stock Market (BOVESPA Index) 

 

Abstract 

Volatility is a measure of risk that, based on the behavior analysis of an asset during a 

certain period, indicates the speed at which it varies between falling and rising. Highly 

volatile assets show rapid oscillations that can happen very sharply. Studies on volatility 

as investment guidance and risk classification instrument have been a strategy widely 

used in the capital market. The present work aims to analyze and predict the volatility 

of the BOVESPA Index (IBOV) employing ARCH/GARCH family models, as well as whether 

there is a long-term, short-term (or both) relationship between the IBOV and the 

auxiliary macroeconomics indicators using VAR/VEC/ARDL models. The series analyzed 

are non-sequential daily information from January 2, 2019, to April 30, 2020 (322 

registers), and the forecast period is from May 5, 2020, to July 10, 2020 (42 registers). 

The following variables were used as auxiliary indicators: the price of a barrel of Brent 

oil in US dollars (Brent); the index of difference between the return rate on Brazilian 

bonds and the rate offered by bonds issued by the North American Treasury (EMBI); and 

the exchange rate between the US dollar and the Brazilian real (BRL_USD). The results 

suggest the use of the IGARCH model (1,1) with GED errors and indicate that there is a 

short-term relationship when IBOV is the dependent variable, although the ARDL model 

was considered non-satisfactory. 

Keywords: GARCH, volatility, forecast, indicators, macro econometrics. 
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1. Introduction 

In the last decades, there has been an outbreak in the number of investors seeking 

greater profitability, as well as trying to change their resource allocations beyond 

traditional investments, such as savings, for example. The market itself has created 

several investment options, satisfying both cautious and aggressive investors. Among 

these options, there are stocks, derivatives, fixed income securities, multimarket funds, 

private equity funds, private pension plans, gold, antiques, real estate, among others. 

The term ‘market’ can be understood as the process by which people interested in 

selling a product or service meet people interested in buying that same product or 

service. Both buyers and sellers, after an analysis of their alternatives, carry out the 

transaction that best meets their needs, establishing an equilibrium price in a process 

known as the law of supply and demand (Oliveira & Pacheco, 2017). 

Due to the advent of the pandemic caused by COVID-19, the current economic scenario 

is once more a volatile market with constant fluctuations, very difficult to make 

decisions, and much more opportunistic in terms of the search for a financial asset to be 

traded. The market was again “contaminated” with intense discussions about risk 

profile, which strategic position to take in the short-, medium-, or long-term, and when 

to "stop" a possible loss or gain to switch positions. 

Considering the uncertainties created in moments with high volatility, risk analysis is 

increasingly necessary for making investment decisions and for managing 

projects/portfolios; and a good understanding of the past scenario can offer future 

opportunities as stated by William Sharp, in 1990: 

“Although it is always perilous to assume that the future will be like the past, it is at least 

instructive to find out what the past was like. Experience suggests that for predicting 

future values, historic data appear to be quite useful with respect to standard deviations, 

reasonably useful for correlations, and virtually useless for expected returns”.  
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1.1. Theme Background and Justifications  

Theoretically, the volatility of an asset represents changes in its prices due to several 

factors related to the performance of the issuing company and the economic situation. 

Factors related to the performance of companies are, for example, good/bad news 

about individual corporations, regarding their organizational, administrative, or 

economic-financial aspects, which can be, more specifically, the internal and external 

competition, the advent of substitute products, costs, and supply of inputs, 

environmental regulation, changes in taxation and changes in the company's 

management. The economic factors that can influence an asset’s volatility include 

inflation, interest, and exchange rates; in addition to the legal/institutional aspect, oil 

prices, recession, and world growth. 

The market uses volatility “to try to predict prices in future settlement contracts, that is, 

a measure of expected changes in prices based on changes recorded in the past. Thus, 

volatility indicates what the average price change of an object asset would be if the 

market repeated past variations” (Costa, 2002). 

Forecasting volatility is particularly important in the Brazilian market, as “there is 

empirical evidence that Brazilian assets and indices are considerably more volatile than 

their North American, European, and Japanese counterparts” (Duarte, Pinheiro, & Heil, 

1996). 

 

1.2. Formulation of the Problem and Objectives 

The adequate forecast of volatility allows agents operating in the market to obtain 

competitive advantages, as they anticipate market movement in scenarios with high 

instability, for example.  

The main objective of the present study is to predict the volatility of the BOVESPA Index 

(IBOV) through ARCH/GARCH family models while using daily macroeconomic 
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indicators, namely, the price of a barrel of Brent oil in US dollars; the index of difference 

between the return rate on Brazilian bonds and the rate offered by bonds issued by the 

US Treasury; and the exchange rate between the US dollar and the Brazilian real as 

regressors for the IBOV mean.  

As specific or secondary objectives, the statistical properties and predictive capacity of 

models, as well as whether there is a long-term, short-term (or both) relationship 

between the variables under consideration will be evaluated through VAR/VEC/ARDL 

models.  

During the elaboration, this work generated the following questions: 

✓ How is it possible to model daily BOVESPA Index volatility? 

✓ Which selected macroeconomic indicators can influence the daily IBOV? 

✓ Is there a causality relationship between the variables under consideration?  

These questions motivated the emergence of the present work and, therefore, will be 

answered here. 
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2. Literature 

The literature involving the use of statistical modeling to analyze volatility and the 

relationship between macroeconomic indicators, such as GDP, interest rates, 

commodities, inflation, currency parity, among others, is quite extensive and 

widespread over the years.  

 

2.1. Literature Regarding Volatility 

Gaio, Pesanha, Oliveira, & Ázara (2007) empirically analyzed the volatility of the 

BOVESPA index returns between January 03, 2000, and December 29, 2005, using 

Autoregressive Conditional Heteroskedastic (ARCH) models. The empirical results 

suggested strong signs of persistence and asymmetry in the volatility of the series' 

returns. In addition, all models of the estimated ARCH performed well, highlighting the 

Gaussian Exponential Generalized ARCH(1,1) (EGARCH(1,1)) model, with the best fit 

considering the quality criteria. 

Jubert, Paixão, Monte, & de Lima (2008) used GARCH, Threshold ARCH (TARCH), and 

EGARCH models to analyze the volatility pattern of Brazilian stock indexes between 2006 

and 2007, namely the BOVESPA Index (IBOVESPA) and the sectoral indexes: Electric 

Energy Index (IEE), Corporate Sustainability Index (ISE), Industrial Sector Index (INDX) 

and the Telecommunications Index (ITEL). According to the authors, “asymmetric 

models showed the leverage effect in which negative returns are more associated with 

clusters of volatility, that is, negative shocks cause greater instability in the stock 

market”. The empirical conclusions corroborated the theoretical expectations since the 

symmetric and asymmetric models have reasonably similar estimates. 

Abanto-Valle, Migon, & Lachos (2012) utilized a “stochastic volatility in mean (SVM) 

model using the class of symmetric scale mixtures of normal (SMN) distributions. The 

SMN distributions form a class of symmetric thick-tailed distributions that includes the 

normal one as a special case, providing a robust alternative to estimation in SVM models 
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in the absence of normality”. The method was illustrated by analyzing daily stock return 

data from IBOVESPA. According to the model selection criteria, as well as out-of-sample 

forecasting, the authors discovered that the SVM model with slash distribution provides 

a significant improvement in model fit, as well as a prediction for the IBOVESPA data 

over the usual normal model. 

Ceretta, da Costa, Righi, & Müller (2013) investigated “intraday data on a 10-minute 

interval and compared the major market index in South America, the IBOVESPA, and 

sync up with the S&P 500 in New York”. The main target was to “determine differences 

of volatility, in the Brazilian index, before and after the opening bell in New York”. The 

authors utilized the GARCH approach “matching up times that both markets were open 

and comparing to the hours that the Brazilian index was trading alone, without the direct 

influence of one of the North American main indexes, the S&P 500”. As a result, the 

authors were “able to disclose that this difference in volatility exists”. 

Oliveira & Andrade (2013) compared the Bayesian estimates obtained for the ARCH 

family process parameters with the normal and Student distributions for the conditional 

distribution of the BOVESPA Index return series. According to the authors, the results 

showed that “the Bayesian approach provided satisfactory estimates and that the 

GARCH process with Student 𝑡-distribution adjusted better to the data”. 

Maciel, Gomide, Ballini, & Yager (2013) performed a “nonlinear approach for realized 

volatility forecasting with jumps using a simplified evolving fuzzy system based on the 

concepts of data clouds”. The approach offered “an alternative nonparametric form of 

fuzzy rule antecedents that reflects the real data distribution without requiring any 

explicit aggregation operations or membership functions, thus providing a more 

autonomous and efficient algorithm. Empirical results based on the Brazilian Stock 

Market Index reveal the high potential of the evolving cloud-based fuzzy approach in 

modeling time-varying realized volatility with jump components, outperforming a 

traditional benchmark based on linear regression, as well as alternative evolving fuzzy 

systems”. 
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Kumar & Maheswaran (2014) provided a “framework to model and forecast daily 

volatility” based on the “additive bias-corrected extreme value volatility estimator (the 

Add RS estimator). Using the opening, high, low, and closing prices of S&P 500, CAC 40, 

IBOVESPA, and S&P CNX Nifty indices, the authors found that the logarithm of the Add 

RS estimator is approximately Gaussian and that a simple linear Gaussian long memory 

model can be applied to forecast the logarithm of the Add RS estimator. The forecast 

evaluation analysis indicated that “the conditional Add RS estimator provides better 

forecasts of realized volatility than alternative range-based and return-based models”. 

Kumari & Mahakud (2015) empirically analyzed the link between macroeconomic 

volatility and stock market volatility in the Indian Stock Market between July 1996 and 

March 2013 with the aid of VAR and ARCH modeling, in which the conditional volatility 

was extracted using models of univariate autoregressive conditional heteroskedasticity. 

The results suggested the above-mentioned linkage.  

Rotta & Valls Pereira, (2016) evaluated the financial contagion between stock market 

returns employing regime-switching dynamic correlation (RSDC) and using daily data 

from 1 February 2003 to 20 September 2012 with indices in the United States (S&P 500), 

the United Kingdom (FTSE100), Brazil (IBOVESPA), and South Korea (KOSPI). The authors 

modified the original RSDC model, introducing the Glosten-Jagannathen-Runkle GARCH 

models with normal residuals (GJR-GARCH-N) or t-Student residuals (GJR-GARCH-t), on 

the equation of conditional univariate variances, in order to capture the asymmetric 

effects in volatility and heavy tails. The study “compared the methodology with those 

frequently found in literature, and the model RSDC with two regimes was defined as the 

most appropriate for the selected sample with t-Student distribution in the 

disturbances. The adapted RSDC model can be used to detect contagion – considering 

the definition of financial contagion from the World Bank called very restrictive – with 

the help of the empirical exercise”. 

Bruhn, Calegario, Campos, & Sáfadi (2016) investigated the effects of political and 

macroeconomic events on the volatility of foreign direct investment (FDI) flows received 

by the Brazilian economy through ARCH and VAR models and intervention analysis. The 
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results suggested that political and macroeconomic events affect the volatility of FDI 

flows during the analyzed period. The results indicated “a negative effect of the 

corruption scandal known as the "Mensalão scandal1" and a positive effect of the 

"subprime crisis" and the payment of the Brazilian external debt on the volatility of 

Brazilian FDI inflows”. The results of the VAR model indicated that FDI inflows “had a 

positive effect on future FDI inflows in the following three-months period”. 

Horta & Ziegelmann (2018) considered the “stochastic evolution of the probability 

density functions (PDFs) of IBOVESPA intraday returns over business days, in a functional 

time series framework”. The authors found evidence that “the dynamic structure of the 

PDFs reduces to a vector process lying in a two-dimensional space”. First, the authors 

provided “further insights into the finite-dimensional decomposition of the curve 

process: it is shown that its evolution can be interpreted as a dynamic dispersion-

symmetry shift”. Second, the authors presented “an application to realized volatility 

forecasting, with a forecasting ability that is comparable to those of Heterogeneous 

Auto-Regressive (HAR) realized volatility models in the model confidence set 

framework". 

Maluf & Asano (2019) intended to “verify which models for the Value at Risk (VaR), 

among those that do not consider conditional volatility (Extreme Values Theory and the 

traditional Historical Simulation), and those that do consider it (GARCH and IGARCH)” 

are adequate for IBOVESPA. The authors implemented “backtesting of adherence and 

the independence of first and higher orders, over forecast horizons of 1 and 10 days. 

The results showed that only GARCH family models were adequate”. Thus, the authors 

recommended the utilization of internal risk models based on conditional volatility in 

order to minimize the occurrence of violation clusters”. 

Reghin & Lopes (2019) compared the VaR calculation using the parametric method 

(Exponentially Weighted Moving Average (EWMA) and GARCH) against the use of 

 
1 “The Mensalão scandal (a Brazilian neologism for big monthly payments) has drawn headlines 

throughout the country since 2005. Money was allegedly pulled from slush funds of the governing 
Workers' Party (Partido dos Trabalhadores, PT) and dealt out to Brazilian Congressmen in order to sway 
votes” (Damgaard, 2015). 
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feedforward neural networks and Long Short-Term Memory (LSTM) recurrent networks 

regarding the IBOVESPA. The result showed that “LSTM networks had a better 

performance when comparing the exception rate generated by the entire model. When 

analyzing periods of crisis or abrupt changes in behavior, LSTM, and Feedforward 

networks were less efficient in predicting VaR compared to the parametric method”. 

Bezerra & Albuquerque (2019) employed machine learning techniques to forecast 

financial volatility. The authors implemented “a standard Support Vector Regression 

model with Gaussian and Morlet wavelet kernels on daily returns of two stock market 

indexes: USA (SP&500) and Brazil (IBOVESPA) over the period 2008 to 2016. The random 

walk, GARCH(1,1), and GJR(1,1) on the skewed t-Student distribution serve as 

comparison models by using Mean Squared Error (MSE) and the Diebold-Mariano test. 

The empirical analysis suggests that the SVR can beat the random walk model in the USA 

(S&P 500) and Brazilian (IBOVESPA) markets at a one-period ahead forecasting horizon”. 

Shaik & Maheswaran (2020) propose an unbiased robust volatility estimator, the Add 

Extreme Value Robust Volatility Estimator (AEVRVE) which, according to the authors, is 

2-3 times more efficient than the Classical Robust Volatility Estimator (CRVE) based on 

extreme values of asset prices. The authors used “a procedure to remove the downward 

bias present in the data even without increasing the number of steps in the stock price 

path”, as well as performed Monte Carlo simulations to “show the properties of 

unbiasedness and efficiency regarding the empirical data based on global stock indices, 

namely CAC 40, DOW, IBOVESPA, NIKKEI, S&P 500 and SET 50”. 

Vartanian (2020) studied the “contagion of volatility between the commodity prices and 

the IBOVESPA, through a multivariate GARCH model, to verify the possibility of 

diversification of investments. The research hypothesized that there is a strong 

relationship between the commodity prices and the IBOVESPA index, with the presence 

of the contagion effect, which inhibits the diversification of investments between the 

stocks that make up the index and the commodities on the international scene. The 

results partially corroborated the hypothesis formulated, since it was possible to 

observe a strong increase in conditional covariance between the two variables during 
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the international financial crisis. On the other hand, the conditional correlation between 

the IBOVESPA and the commodity prices showed that the relationship between the 

variables was relatively small in the periods before and after the 2008 crisis, which 

suggests that concomitant investments in commodities and the IBOVESPA constitute a 

risk diversification strategy, contrary to what is commonly supposed”. 

 

2.2. Literature Regarding the Influence of Indicators 

EMBI 

Casotti (2010) analyzed the presence of a common factor affecting the volatilities of the 

exchange rate between Brazilian and North American currencies, the BOVESPA Index 

(IBOVESPA) and the Emerging Market Bond Index + Brazil (EMBI+ Brazil). The work 

intended to extract this latent factor applying the quasi-maximum likelihood estimator 

into an adapted stochastic volatility model using daily data between 2001 and 2009. The 

estimation required “the Kalman filtering on its diffuse version, once it is supposed that 

the volatilities follow a non-stationary process. The results indicated the presence of one 

common factor driving the mentioned volatilities, confirming the expectations”. 

Triandafil, Brezeanu, & Huidumac (2011) studied “the CEE (Central and Eastern Europe) 

countries volatility captured by the exchange rate dynamics”. The volatility was analyzed 

from the perspective of the permanent and transitory dimensions. The authors 

concluded that “volatility is of long-term nature in the CEE countries, with a certain 

degree of peculiarity in terms of shock reaction. The authors also conducted an analysis 

on the key determinants of the exchange rate volatility wherein the following variables 

originating in financial markets were selected - EMBI spreads, Central Bank interest rate 

- as well as macroeconomic fundamentals - inflation, CROI index - in order to identify 

factors by which volatility pattern can be depicted. The key result of the research points 

toward a deep correlation of the exchange rate volatility between the CEE countries and 

the Euro Zone, implying the necessity to develop strong financial management 

strategies at the macroeconomic level, capable of annihilating the transmission belt 
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crisis mechanisms”. 

Montes & Tiberto (2012) considered the “empirical evidence about (i) the influence of 

macroeconomic variables and economic policies on country risk (EMBI) and (ii) the 

influence of macroeconomic variables and country risk on the main Brazilian index of 

the stock market (IBOVESPA)”. The period of analysis runs from December 2001 to 

September 2010. The study analyzed “the role that macroeconomic fundamentals plays, 

but also the role that the credibility of the regime of inflation targeting and the 

reputation of the central bank play in lessening country risk and in the improvement of 

the stock market performance. The empirical evidence was obtained through the 

application of ordinary least squares (OLS), generalized method of moments (GMM), 

and GMM systems. The results suggested that monetary policy and public debt 

management, as well as credibility and reputation affect country risk and the 

performance of the Brazilian stock market”. 

Villalba Padilla & Flores-Ortega (2014) studied the variance behavior of three variables: 

(a) the main Mexican stock market index (CPI), (b) the Emerging Markets Bond Index for 

Mexico (EMBI) as country risk indicator and, (c) the price of the Mexican crude oil basket 

exports mix (MEZCLA) that included three oil types (Olmeca, Istmo, and Maya). The 

study included daily data between December 31, 2001, and July 15, 2013. The results of 

the Granger causality test indicated that there is an interrelation between the three 

series. In the case of the IPC and the EMBI, it was found that there is causality from the 

IPC to the EMBI from the second day of lag, likewise, the findings indicated that the EMBI 

does not cause the IPC. On the other hand, it was verified that the causality is 

bidirectional between the IPC and the MEZCLA, considering that the MEZCLA causes the 

IPC in delay 2. Finally, the relationship between the EMBI and the MEZCLA is that the 

first series does cause the second, but not vice versa. 

Exchange Rate  

Ali, Ziaei, & Anwar (2012) studied the “impact of the global crisis over intertwining 

between exchange rates and stock prices is examined in Brazil. Average nominal 
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exchange with US Dollar and BOVESPA stock exchange index on weekly basis covering 

the period from May 5, 2003, to September 6, 2011, is used for analysis. Furthermore, 

data were divided into three sub-periods i.e., pre-crisis, crisis period and post-crisis 

period Results of the unit root test revealed that data of both markets were found to be 

non-stationer)' and integrated at order one. The Johansen cointegration test is applied 

to investigate the movement of exchange rates and stock prices during three sub-

periods. The results show that no proof of cointegration is found during the pre-crisis 

period but only single cointegration is found during and post-crisis period. Thereafter, 

the Granger causality test is applied which postulates that bilateral causality is found 

between exchange rates and stock prices in the pre-crisis period. It can be suggested 

with the help of results that both series are affected by each other in the short run. 

During crisis and post-crisis periods suggested that stock prices are significantly Granger 

cause to exchange rates”.  

Garcia (2015) evaluated the impact of macroeconomic factors on the flow of foreign 

investment in the Brazilian stock market for the period from 2002 to 2014. After 

performing the unit root test, the analysis considered vector autoregressive models to 

construct Granger causality tests, as well as the evaluation of impulse response 

functions and variance decomposition. The results indicated that the IBOVESPA, the 

R$/U$S exchange rate, the S&P 500, the US interest rate, the commodities prices, and 

previous lags of the foreign investment have the most influence in the reversal of foreign 

capital on the Brazilian Stock Market. 

Duy (2016) examined the variability of the Vietnamese Stock Exchange between 2005 

and 2014 using VECM modeling and with the aid of secondary indicators, such as the 

consumer price; industrial production; interest rate; exchange rate of the local currency 

over the US dollar; retail oil prices; gross domestic product and gold prices. The author 

highlighted the individualized impact of each indicator on the variable of interest. 

Oil 

Da Silva, Bertella, & Magner Pereira (2014) “investigated empirically if national 
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macroeconomic variables (industrial production, inflation, real interest rate, domestic 

credit risk, and real exchange rate) and international ones (index of the American stock 

exchange, the U.S. interest rate and the price of oil) can explain the behavior of long 

and/or short-term index of the São Paulo Stock Exchange (BOVESPA) from 1995 to 2007, 

with monthly data. An econometric methodology of error correction models was 

applied resulting in evidence of a positive long-term relationship with the BOVESPA 

index to the American stock market and price of oil and negative for the U.S interest rate 

and credit risk. From a dynamic point of view, the BOVESPA index was identified as the 

only adjustment variable for deviations from a long-term relationship and significant 

temporal precedence for most variables, indicating the possibility of previous 

assessment of the future behavior of the Brazilian stock index”. 

Bagchi (2017) examined the “dynamic relationship between crude oil price volatility and 

stock markets in the emerging economies like BRIC (Brazil, Russia, India, and China) 

countries in the context of sharp continuous fall in the crude oil price in recent times. 

The author adopted an Asymmetric Power ARCH (APARCH) model which considers long 

memory behavior, speed of market information, asymmetries, and leverage effects. 

“Findings: For BOVESPA, MICEX, BSE Sensex, and crude oil there is an asymmetric 

response of volatilities to positive and negative shocks and a negative correlation exists 

between returns and volatility indicating that negative information will create greater 

volatility. However, for the Shanghai Composite positive information has a greater effect 

on stock price volatility in comparison to negative information. The study results also 

suggest the presence of long memory behavior and persistent volatility clustering 

phenomenon amongst crude oil price and stock markets of the BRIC countries. 

Originality/value: First, the author has considered crude oil prices up to January 31, 

2016, so that the study can reflect the impact of the declining trend of crude oil prices 

on the stock indices which is also regarded as “new oil price shock” to measure the 

volatility between crude oil price and stock market indices of BRIC countries. Second, 

the volatility is captured by the APARCH model which considers long memory behavior, 

speed of market information, asymmetries, and leverage effects”. 

Gçdek (2017) analyzed the “impact of oil price changes on the Russian (RTS), Brazilian 
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(BOVESPA), and Norwegian (OSEAX) stock exchange index level” during the period from 

the beginning of July 2014 to the end of June 2017. “The analysis used an econometric 

model built in accordance with the Engel-Granger methodology. The results of this 

analysis showed that the impact of oil prices on financial markets of crude oil exporter 

countries in the period was very varied. That impact was most visible in the case of 

Russia, somewhat weaker in the case of Brazil (in both cases, the fall in oil prices affected 

the value of the index). That impact was not determined in the case of Norway”. 

Ferreira, Pereira, & Silva (2020) evaluated “how WTI (West Texas Intermediate) oil price 

shocks are related to the Brazilian economy as a whole, but also with each of the listed 

companies in IBOVESPA, searching for the relationships with different economic 

activities. Based on the Detrended Cross-Correlation Analysis coefficient”, the authors 

“concluded unsurprisingly that the most affected sectors are those most related to the 

use of oil. However, another important result is the significant correlation between oil 

price shocks and the returns of the financial sector, showing this particular sector's 

exposure to oil, i.e., this is one of the sectors most correlated with oil returns. This is 

relevant not only for investors but also for authorities because possible future oil shocks 

could have a high impact on the Brazilian financial sector”. 
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3. Analyzed Data 

The data under consideration vary from January 2, 2019, to July 10, 2020, and reflects 

the 364 closing prices2 of the Brazilian Stock Exchange (B3). The data was splitted into 

two subsets: in-sample (January 2, 2019, to April 30, 2020, containing 322 registers) and 

out-of-sample (May 5, 2020, to July 10, 2020, containing 42 registers). The first period 

denotes the information used for estimating the initial parameters and models 

selection, while the second period represents the information employed to evaluate 

forecast performance. Data analysis was performed using IBM SPSS Statistics, E-Views, 

Stata, and R. In all procedures, a significance level of 5% was adopted. The database 

comprises four variables and 1,288 unique observations that come from different 

sources, namely: 

• BOVESPA Index (IBOV): Brazilian Stock Exchange (B3), b3.com.br; 

• Price of the barrel of Brent oil in US dollars (barrel/dollar): Europe Brent Spot 

Price, eia.gov/dnav/pet/hist/RBRTED.htm; 

• Exchange rate, for purchase, between the Brazilian real and the US dollar 

(BRL_USD): Institute of Applied Economic Research (Instituto de Pesquisa Econômica 

Aplicada), ipeadata.gov.br/Default.aspx; 

• Emerging Markets Bond Index Plus (EMBI+): JP Morgan, jpmorgan.com. 

EMBI+ is an index based on bonds (debt securities) issued by emerging countries. It 

shows the financial returns obtained each day by a selected portfolio of securities from 

these countries. The unit of measurement is the base point. Ten basis points are 

equivalent to a tenth of 1%. The observations show the difference between the return 

rate on emerging country bonds and the return rate offered by bonds issued by the US 

Treasury. This difference is the spread, also known as the sovereign spread, and was 

 
2 The sample ignores days without activity in the Brazilian stock exchange, for example holidays and 

weekends. 

http://www.b3.com.br/
http://www.eia.gov/dnav/pet/hist/RBRTED.htm
http://www.ipeadata.gov.br/Default.aspx
http://www.jpmorgan.com/
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created to classify only countries that present a high level of risk according to rating 

agencies and that have issued bonds with a minimum value of US$ 500 million, with a 

maturity of at least 2.5 years. 

BOVESPA Index (IBOV or IBOVESPA) 

The BOVESPA Index is the most important indicator of the average performance of the 

Brazilian Stock Market, as it portrays the behavior of the main assets traded in Brazil. 

This market has more than 300 companies listed on the Country’s Stock Exchange, and 

the index currently comprises 75 stocks3 (Appendix 1 - Composition of the BOVESPA 

Index). The index reflects not only the changes in share prices but also the impact of the 

distribution of earnings, being considered an indicator that assesses the total return of 

its component shares. 

This indicator is the current value, in the local currency, of a theoretical portfolio of 

shares constituted on January 02, 1968, with a base value of 100 points, grounded on a 

hypothetical application.  

The criteria for choosing the stocks that comprise the portfolio are based, above all, on 

their participation in the volume of business and their presence in the trading sessions. 

Representativeness of the IBOVESPA: 

✓ In Terms of Liquidity:  

The stocks included in the theoretical portfolio of the BOVESPA Index account for more 

than 80% of the number of trades and financial volume verified in the spot market 

(round lots) of the Brazilian Stock Exchange (B3, 2021a). 

✓ In Terms of Stock Market Capitalization:  

 
3 Four companies account for 38.30% of the total participation in the current IBOV, namely: Vale (10.15%), 

Petrobras (10.37%), Itaú (10.19%) and Bradesco (7.58%). 
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The companies present in the theoretical portfolio of the BOVESPA Index are 

responsible, on average, for approximately 70% of the sum of the stock market 

capitalization of all companies with tradable assets. 

The BOVESPA Index is nothing more than a weighted sum of the stock prices included in 

its theoretical portfolio. The stocks are weighted by the market value of the company, 

i.e., the price of the stock times the number of shares outstanding. Therefore, the 

BOVESPA index is calculated using the following formula: 

𝑇𝑡 = ∑𝑃𝑖𝑡 𝑄𝑖𝑡

𝑛

𝑖=1

 

where: 

∙ 𝑇𝑡 is the BOVESPA Index at instant 𝑡; 

∙ 𝑛 is the total number of stocks comprising the theoretical portfolio; 

∙ 𝑃𝑖𝑡 is the last price of stock 𝑖 at instant 𝑡; 

∙ 𝑄𝑖𝑡 is the theoretical quantity of stock 𝑖 in the portfolio at instant 𝑡. 

The theoretical portfolio of IBOVESPA is valid for four months and has its selection 

updated in the periods from January to April, May to August, and September to 

December. The new list of stocks that are part of the index takes effect on the first 

Monday of the first month of each period, that is, in January, or May, or September. 

This frequent reassessment makes it possible to add or exclude the stock index that 

started to meet or failed to respect some of the pre-established criteria. According to 

the methodology available at b3.com.br, eligible stocks which may be selected as IBOV 

constituents are those that meet the following cumulative criteria: 

(i) Being amongst the eligible stocks which, as measured in descending order by 

individual Tradability Ratio (IN) over a period comprising the three (3) previous portfolio 

cycles, collectively account for 85.0% of the total of such metric; 

http://www.b3.com.br/
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(ii) Having actively traded in at least 95.0% of the trading sessions held over a period 

comprising the three previous portfolio cycles; 

(iii) Having accounted for no less than 0.1% of the overall value traded on the cash equity 

market (round lots) over a period comprising the three previous portfolio cycles; 

(iv) Not being classified as a penny stock, whose weighted average value during the term 

of the theoretical portfolio before the rebalancing, disregarding the last day of that 

period, was less than R$ 1.00 (one real).  

It should be highlighted that these requirements were the same for 50 years, from 1968 

when the IBOVESPA was created. However, in 2014, there were some modifications4 

and the calculation of the index was changed. The stocks that meet the criteria required 

by the Stock Exchange are organized according to the Tradability Ratio (IN), which is 

“calculated to consider 1/3 of a component’s share of the overall number of trades and 

2/3 of the component’s share of the overall value traded on the cash equity market” 

(B3, 2021b). 

 

 
4 No company could represent more than 20% in the composition of the IBOVESPA and that the shares 

that make up this theoretical portfolio must correspond, cumulatively, to 85% of the negotiations that 
occurred in the period. 
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4. Theoretical Grounding  

Some econometric concepts are extremely important for understanding the study in this 

area and will be described individually. Those concepts are return (arithmetic return and 

geometric return), risk (market risk, operational risk, credit risk, and legal risk), volatility 

(historical volatility and implied volatility), and conditional heteroskedasticity. 

 

4.1. Return 

It is defined as a price variation, or index, that occurred in a certain period. It can also 

be understood as capital appreciation at the end of the investment horizon. Without 

considering dividends, the returns can be calculated in two ways: 

✓ Arithmetic return: if the asset price at period 𝑡 is denoted by 𝑃𝑡, the return 𝑅𝑡 

between instants 𝑡-1 and 𝑡, the arithmetic return is:  

𝑅𝑡 =
𝑃𝑡 − 𝑃𝑡−1

𝑃𝑡−1
=

𝑃𝑡

𝑃𝑡−1
− 1  ⇒   1 + 𝑅𝑡 =

𝑃𝑡

𝑃𝑡−1
 

✓ Geometric Return: logarithmic or log-return (𝑟𝑡) is defined as the log of the ratio 

between successive prices and can be defined as: 

𝑟𝑡 = 𝑙𝑜𝑔 (
𝑃𝑡

𝑃𝑡−𝑥
) = 𝑙𝑜𝑔 (

𝑃𝑡

𝑃𝑡−1
) + 𝑙𝑜𝑔 (

𝑃𝑡−1

𝑃𝑡−2
) + ⋯+ 𝑙𝑜𝑔 (

𝑃𝑡−𝑥+1

𝑃𝑡−𝑥
) 

If the variations are small, it can be proved through Taylor series expansion that the 

geometric and arithmetic returns are similar:  

𝑟𝑡 = 𝑙𝑜𝑔(1 + 𝑅𝑡) = ∑
(−1)𝑘+1

𝑘
𝑅1

𝑘 =

𝑛

𝑘=1

𝑅𝑡 −
1

2
𝑅𝑡

2 +
1

3
𝑅𝑡

3 − ⋯ 

If 𝑅𝑡 is small, the parcels with values of 𝑅𝑡
2 and higher-order will tend to zero, which will 
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result in:  

𝑟𝑡 ≈ 𝑅𝑡 

The log-return is more often employed due to its statistical properties, such as 

stationarity (Chapter 5.1) and ergodicity5. “The advantage of log-return is that its 

distribution can never lead to a negative price, which is consistent with the idea that this 

variable is always greater or equal to zero” (Jorion, 2004). Other relevant information 

refers to the use of the log-return in the comparison of assets in different measures, due 

to the converging properties due to the application of the logarithm. 

 

4.2. Risk 

Risk can be generally defined as “the possibility of occurring unexpected results” (La 

Rocque & Lowenkron, 2004). Therefore, market risk can be defined as a result of the 

chances of losses/gains resulting from possible changes in the prices of an Institution's 

active or passive variables. 

In finance theory, the relationship between risk and returns plays a significant role, and 

many theoretical models are utilized to study this linkage. For example, the Capital Asset 

Pricing Model (CAPM6) is “widely used in applications, such as estimating the cost of 

equity capital for firms and evaluating the performance of managed portfolios. The 

attraction of the CAPM is its powerfully simple logic and intuitively pleasing predictions 

about how to measure risk and about the relation between expected return and risk” 

 
5 “The ergodic hypothesis is a key analytical device of equilibrium statistical mechanics. It underlies the 

assumption that the time average and the expectation value of an observable are the same” (Peters, 
2019). 

6 “The Capital Asset Pricing Model (CAPM) for a security is a linear relationship between the expected 

excess return of the security and the expected excess return of the market. It was developed by William 
Sharpe, John Lintner and Jan Mossin. It is a useful framework to discuss idiosyncratic and systematic risk. 
The security market line is a powerful graphical construct of the CAPM. While the CAPM has strong 
underlying assumptions, recent research has relaxed many of these assumptions” (Bhattacharya, 2016). 
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(Fama & French, 2004). 

Financial risks can be classified into four categories: market risk, operational risk, credit 

risk, and legal risk (Duarte M. A., 1996). A representation of the types of financial risks 

can be observed in the diagram of Figure 1. 

✓ Market Risk: “depends on the behavior of the asset's price under market 

conditions. In order to understand and measure possible losses due to market 

fluctuations, it is important to identify and quantify, as accurately as possible, the 

volatilities and correlations of the factors that impact the asset's price dynamics”.  

✓ Operational Risk: “related to possible losses as a result of inadequate systems 

and/or controls, management failures, and human errors”.  

✓ Credit Risk: “linked with possible losses when one of the contractors does not 

honor its commitments. The losses here are related to the values that will no longer be 

received”. 

✓ Legal Risk: “associated with possible losses when a contract cannot be legally 

supported. This category includes the risks of losses due to insufficient documentation, 

insolvency, illegality, lack of representation, and/or authority on the part of a negotiator, 

et cetera”.  

 
Figure 1 - Types of Financial Risks 

- adapted from (Duarte M. A., 1996) - 

Market Risk

Credit Risk

Legal Risk

Operational Risk
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4.3. Volatility 

Volatility is a crucial management tool regarding the frequency/intensity of fluctuations 

in assets price and uncertainty associated with the financial investment in a determined 

period. When the volatility of a financial asset increases, so does the expected variation 

of the asset value, as well as its risk. On the other hand, lower volatility indicates small 

variations in the asset value. “Empirical results show that the volatility of a stock is much 

higher when the exchange is open than when it is closed. This suggests that, to some 

extent, trading itself causes stock price volatility” (Hull, 2013). 

Measuring volatility is not like measuring price because, while the price is something 

that can be observed at the current instant of time (directly), instantaneous volatility is 

not observable and requires price changes over time. 

There are two approaches to estimate the volatility (Hull, 2013): 

(i) Historical Volatility (HV) - is a dispersion measure of returns on a particular asset 

or market index over a predetermined period. Usually, it is quantified as the standard 

deviation of financial instrument´s returns in the given period (the larger the standard 

deviation value, the greater the volatility). 

The standard deviation is the most common, but not the only, way to estimate volatility. 

Especially, the historical volatility, also referred to as the asset's actual or realized 

volatility, can be modeled using ARCH/GARCH family models (Chapter 6.5). 

It is important to highlight that, although volatility and standard deviation are statistics 

that quantify fluctuations (herein, of the returns), these concepts should not be 

interpreted as synonyms. While the second can be applied more broadly (weight, height, 

quantity, volume, counts, et cetera), volatility can be understood as “the standard 

deviation over time”. 

For a sample of observed returns, the historical volatility (HV) on day 𝑡 is calculated as 

follow (Lahmiri, 2017): 



22 
 

𝐻𝑉𝑡 = [(
1

𝑛 − 1
)∑(𝑅𝑡 − 𝜇𝑅)2

𝑛

𝑡=1

]

1/2

 

where: 

∙ 𝑅𝑡 is the return (for example, the logarithmic return) observed on time 𝑡;  

∙ 𝜇𝑅 is the mean of the observed returns; and 

∙ 𝑛 is the sample size. 

(ii) Implied Volatility (IV) - also known as projected volatility, refers to the market’s 

perception of how volatile a stock is likely to be in the future (the expected magnitude 

of a stock's future price changes, as implied by the stock's option prices). The IV is 

represented as an annualized percentage. 

The critical question is to “examine whether volatility implied in the structured warrant’s 

or option’s price is an unbiased forecast of future volatility of the underlying asset over 

the option’s maturity” (Samsudin, Mohamad, & Sifat, 2021). In this context, and 

considering all financial activities (risk management, pricing of derivatives and hedging, 

portfolio selection, et cetera) there is a need to forecast volatility. 

It is important to highlight that the asymmetry of volatility, known as the leverage effect, 

is greater when returns are negative if compared to positive returns. This phenomenon 

is more accentuated during large declines, indicating that volatility is sensitive to 

reductions in the average asset price. 

Why predict volatility? 

Volatility in asset prices can affect the level of investment, as holders (investors) would 

be more afraid to make new investments in countries that are excessively volatile. 

Holders could interpret this volatility as an increase in risk in the return on assets and, 

thus, tend to seek lower-risk assets in other markets. 

In addition to the opportunity to make big gains, the excess of volatility can also increase 
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the cost of companies when financing an expansion project, as well as making the IPO7 

unfeasible since, in a situation of high volatility, investors will tend to prefer shares in 

well-known and large companies. This makes new issues of shares or IPOs by unknown 

or small firms difficult, or even such behavior would be nullifying the institutional 

function of the stock exchange. 

 

4.4. Conditional Heteroscedasticity 

In statistics, if the variance of a data set remains constant over time, the series is 

considered homoscedastic (Bollerslev, 1986), otherwise is considered heteroscedastic. 

In this context, when a time series presents a non-constant (fluctuating) variance over 

time is related to previous periods (for example, daily) of a time series, this series is 

considered conditional heteroskedastic. 

The specific behavior of time-varying variance can be observed, for example, in the 

series of financial returns, which is expressed by the existence of volatility clustering 

over time, that is “periods in which they exhibit wide swings for an extended period 

followed by a period of comparative tranquility” (Gujarati & Porter, 2008).  

Since close-in-time returns tend to show similar levels of variability, shocks occurring at 

time t will influence the volatility during n periods ahead, explaining the persistence in 

volatility. On the other hand, in the long run, assuming that the unconditional variance 

is finite, periods of high volatility tend to be followed by periods of less volatility, and 

vice versa. This characteristic of volatility is known as mean reversion (Mandelbrot, 

1963). 

For example, elections tend to generate momentary instabilities, which are reflected in 

more unstable/volatile indicators at specific instants in the analyzed time series. This 

 
7 Initial Public Offering (IPO): process of transition from a private company to a public company becoming 

listed on the Stock Exchange by offering shares in a new issuance. It allows a company to raise capital 
while open new investment opportunities and attract new investors to the market. 
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leads to thinking about a model whose variance strongly depends on its previous values 

and the values of recent returns (Leblang & Mukherjee, 2004). These models are 

referred to in the literature as conditional heteroscedasticity models. In these models, 

the unconditional variance remains constant, what changes is the conditional variance 

of the series. 
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5. Stylized Facts of the Financial Series 

Stylized facts are “statistical properties that appear to be present in many empirical 

asset returns. It is important to be aware of them because when building models that 

are supposed to represent asset price dynamics, the models must be able to 

capture/replicate these properties” (Lewinson, 2020).  

When looking at a projected graph of series of financial returns (arithmetic or 

geometric), it is possible to observe that they vary around a breakeven point, the series' 

unconditional mean. In addition, the returns tend to demonstrate an excess of kurtosis 

(leptokurtic curve); negative asymmetry (mean < median < mode) with large negative 

returns occurring more frequently than large positive ones; shows a small degree of 

similarity between observations at successive time intervals; and last, but not least, the 

series tends to present the volatility clustering effect. 

Financial series have specific behaviors, prices are usually non-stationary, non-normality 

distributed, and have a well-defined relationship between current and past values, while 

returns are typically stationary, also non-normality distributed, and do not tend to 

depend on past values. 

Before moving forward, it is crucial to present two concepts that are also important to 

better understand the stylized facts of financial series: stochastic process and white 

noise.  

“The word ‘stochastic’ comes from the Greek word ‘stokhos’ meaning “a bull’s eye.” The 

outcome of throwing darts on a dart board is a stochastic process, that is, a process 

fraught with misses” (Gujarati & Porter, 2008). In a more formal context, a stochastic 

process can be defined as a collection of random variables ordered in time {𝑌𝑡, 𝑡 ∈ 𝑇}, 

where 𝑇 is an ordered set of indices.  

The white noise is a stochastic process where random variables have a mean equal to 

zero, constant variance, and the covariances are null. In a more formal context, let a 

sequence {𝑌𝑡}𝑡=+∞
−∞ , if 𝐸(𝑌𝑡) = 0, ∀ 𝑡; 𝑉𝑎𝑟(𝑌𝑡) = 𝜎𝑌

2, ∀ 𝑡; 𝐸(𝑌𝑡𝑌𝑡−𝑗) = 0, for 𝑗 ≠ 0, the 
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process 𝑌𝑡 is said to be white noise. When white noise presents normal distribution, 

𝑌𝑡 ~ 𝑁(0, 𝜎𝑌
2), then it is called a Gaussian white noise. 

 

5.1. Stationarity 

 “A time series is stationary if its mean and variance do not vary systematically over 

time” (Gujarati & Porter, 2008). A time series 𝑌𝑡, with 𝐸(𝑌𝑡
2) < ∞, is weakly stationary 

if 𝐸(𝑌𝑡) is independent of 𝑡 and 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−ℎ) = 𝐸[(𝑌𝑡 − 𝐸(𝑌𝑡))(𝑌𝑡−ℎ − 𝐸(𝑌𝑡−ℎ))] is 

independent of 𝑡 for each ℎ (Brockwell & Davis, 2016). 

Regression models that involve non-stationary time series can generate inconsistent 

results. If the stationarity condition is not satisfied (e.g., the process presents trend or 

seasonality), the raw data can be transformed using, for example, differencing, Box-Cox, 

or other transformation techniques. The present work will utilize the first one. 

Differencing transformation: If 𝑌𝑡 denotes a time series that is non-stationary regarding 

the mean, then the differenced series can be written as ∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−𝑘, where 𝑘 =

1, 2, 3, … represents the number of lags used to transform a non-stationary process into 

a stationary process. For example, if 𝑌 become stationary using 𝑘 = 1, it can be said that 

the first difference series ∆1𝑌𝑡, or simply ∆𝑌𝑡, is a stationary process, wherein ∆ is known 

as the difference operator.  

The difference operator (∆) is linked to the lag operator (𝐿). Since 𝐿1𝑌𝑡 = 𝑌𝑡−1, 𝐿2𝑌𝑡 =

𝑌𝑡−2, …, 𝐿𝑘𝑌𝑡 = 𝑌𝑡−𝑘, the difference ∆𝑌𝑡 can be written as ∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−𝑘 = 𝑌𝑡 −

𝐿𝑘𝑌𝑡 = (1 − 𝐿𝑘)𝑌𝑡. The lag operator will be useful to explain the stationary and 

invertibility conditions (Chapter 6.1). 

Examining Stationarity 

To investigate stationarity, it is possible to utilize graphs, such as a simple plot of the 

series to verify the presence of a trend and/or seasonal component, as well as Hodrick-
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Prescott filter; and tests such as Augmented Dickey-Fuller, Phillips-Perron, and KPSS. 

The Hodrick-Prescott filter is a tool named after Robert Hodrick and Edward Prescott 

that additionally decomposed an original time series (𝑌𝑡) into a non-stationary long-

trend (growth) component (𝐺𝑡) and a stationary short-term cyclical component (𝐶𝑡). The 

HP filter equation can be expressed as 𝑌𝑡 = 𝐺𝑡 + 𝐶𝑡, 𝑡 = 1, 2, 3, … (Hodrick & Prescott, 

1997). The authors isolated 𝐺𝑡 from 𝑌𝑡 employing a minimization problem: 

𝑚𝑖𝑛 [{𝐺𝑡}𝑡=−1
𝑇 ] {∑(𝑌𝑡 − 𝐺𝑡)

2 + 𝜆∑(𝐺𝑡 − 𝐺𝑡−1) − (𝐺𝑡−1 − 𝐺𝑡−2)
2

𝑇

𝑡=1

𝑇

𝑡=1

} 

where 𝜆 is a smooth parameter.  

Although being very popular and widely employed, there are some drawbacks of the 

above-mentioned filter (Hamilton, 2018). In this context, the presence/absence of 

stationarity must be analyzed in conjunction with specific tests, such as ADF, PP, and 

KPSS. 

The Augmented Dickey-Fuller (ADF) test was created by David Dickey and Wayne Fuller 

and is used to analyze if the series has a unit root8 (i.e., the series is not stationary). It 

consists of estimating the following regression (Gujarati & Porter, 2008) [apud (Fuller, 

1999)]: 

∆𝑌𝑡 = 𝛽0 + 𝛽1𝑡 + 𝛿𝑌𝑡−1 + ∑𝛼𝑖

𝑚

𝑖=1

∆𝑌𝑡−𝑖 + 𝜀𝑡 

where: 

∙ 𝑌𝑡 is the value of the time series at time 𝑡 and ∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1, ∆𝑌𝑡−1 = 𝑌𝑡−1 − 𝑌𝑡−2, 

∆𝑌𝑡−2 = 𝑌𝑡−2 − 𝑌𝑡−3, and so on;  

∙ 𝛽0 is the intercept, also called the series drift;  

 
8 The terms nonstationary, random walk, and unit root can be treated as synonymous (Gujarati & Porter, 

2008). 
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∙ 𝛽1 is the trend coefficient;  

∙ 𝛿 is the unit root presence coefficient;  

 ∙ 𝑡 is the time or trend variable; 

∙ 𝑚 is the number of lags taken in the series; and 

∙ 𝜀𝑡 is a pure white noise error term. 

The null hypothesis is given by 𝐻0: 𝛿 = 0 (the series has a unit root and, therefore, is 

not stationary) and the test statistic is given by:  

𝐷𝐹 =
𝛿

𝑠(𝛿̂)
 

where 𝑠(𝛿) is the standard error of 𝛿. The DF statistic has a specific distribution known 

as the Dickey-Fuller table. 

The Phillips-Perron (PP) test was created by Peter Phillips and Pierre Perron and is a 

generalization of the Dickey-Fuller test, with the same null hypothesis, for the cases in 

which the errors 𝜀𝑡 are correlated and, possibly, heteroscedastic. The PP test is more 

robust than the ADF test and “use nonparametric statistical methods to take care of the 

serial correlation in the error terms without adding lagged difference terms” (Gujarati & 

Porter, 2008). The PP test (considering the same regression of the ADF test) utilizes the 

following test statistic (Phillips & Perron, 1988):  

𝑍 = 𝑛𝛿𝑛 −
𝑛𝜎̂2

2𝑠𝑛
2
(𝜆̂𝑛

2 − 𝛾0,𝑛) 

in which: 

𝛾𝑗,𝑛 =
1

𝑛
∑ 𝑟𝑖

𝑚

𝑖=1+𝑗

𝑟𝑖−𝑗 ; 𝜆̂𝑛
2 = 𝛾0,𝑛 + 2∑(1 −

𝑗

𝑞 + 1
)

𝑞

𝑗=1

𝛾𝑗,𝑛 ; 𝑠𝑛
2 =

1

𝑛 − 𝑘
∑𝑟𝑖

2

𝑛

𝑖=1

 

where: 
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∙ 𝑟𝑖 is the residual in 𝑦𝑡 using least-squares estimators; 

∙ 𝑘 is the number of covariates in the regression; and 

∙ 𝑞 is the number of lags used to calculate 𝜆̂𝑛
2 .  

If the process is not correlated, we have null covariance and, in this case, 𝜆̂𝑛
2 = 𝛾0,𝑛. If 

the process is not heteroscedastic, we have that 𝛿 = 1/𝑛 and then 𝑍 is given by 𝑍 =

𝛿
𝑠(𝛿̂)

⁄ .  

The KPSS test was created by Denis Kwiatkowski, Peter Phillips, Peter Schmidt, and 

Yongcheol Shin, and the acronym KPSS test is due to their names. The null hypothesis of 

this test is the same as the alternative hypotheses of the Dickey-Fuller and Phillips-

Perron tests, i.e., 𝐻0: the series has no unit root and, therefore, is stationary.  

The test decomposes the time series (𝑌𝑡) into three parts: a random walk (𝑅𝑡), a 

deterministic trend (𝛽𝑡), and a stationary error (𝜀𝑡) with the additional regression 

equation: 𝑌𝑡 = 𝑅𝑡 + 𝛽𝑡𝑡 + 𝜀𝑡. Considering an addition regression wherein 𝜀𝑡 is modeled 

with the three above-mentioned components as regressors plus an intercept, the test 

statistic for the KPSS test is given by Kwiatkowski, Phillips, Schmidt, & Shin (1992):  

𝐾𝑃𝑆𝑆 =  (𝑛−2 ∑ 𝑆𝑡
2

𝑛

𝑡=1

) / 𝜎̂𝜀
2 

where:  

∙ 𝑆𝑡 is the sum of residuals of the addition regression; 

∙ 𝑛 is the number of observations of the addition regression; 

∙ 𝜎̂𝜀
2 is an estimative for the variance of errors of the addition regression. 

In summary, the three tests (Augmented Dickey-Fuller, Phillips-Perron, and KPSS) can be 

used in conjunction to investigate the absence/presence of unit root. 
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5.2. Autocorrelation 

Autocorrelation (or serial correlation) can be understood as the degree of association 

between 𝑌 at instant 𝑡 (𝑌𝑡) and its past values (𝑌𝑡−𝑘), and its future (𝑌𝑡+𝑘) values, 

separated by the same interval 𝑘, measuring the dependency relationship among 

observations. It can be studied through the ordering of values in time (time series) or 

space (spatial data). The autocorrelation coefficient at lag 𝑘 for a stationary time series 

is (Montgomery, Jennings, & Kulahci, 2015):  

𝜌𝑘 = 𝐶𝑜𝑟(𝑌𝑡, 𝑌𝑡−𝑘) =
𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑘)

√𝑉𝑎𝑟(𝑌𝑡) × √𝑉𝑎𝑟(𝑌𝑡−𝑘)
=

𝛾𝑘

𝛾0
 

where: 

∙ 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑘) = 𝐸[(𝑌𝑡 − 𝜇𝑌)(𝑌𝑡−𝑘 − 𝜇𝑌)] = 𝛾𝑘 is the autocovariance at lag 𝑘; 

∙ 𝑘 = 0, 1, 2, …; 

∙ 𝜌0 = 1; 

∙ −1 ≤ 𝜌𝑘 ≤ 1; and 𝜌𝑘 = 𝜌−𝑘; 

∙ The plot of 𝜌𝑘 over 𝑘 = 0, 1, 2, … is called the correlogram. 

Since autocovariance and autocorrelation are measures of linear dependence between 

𝑌𝑡 and 𝑌𝑡−𝑘 and taking into account that 𝑉𝑎𝑟(𝑌𝑡) and 𝑉𝑎𝑟(𝑌𝑡−𝑘) are positive, 

𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑘) and 𝐶𝑜𝑟(𝑌𝑡, 𝑌𝑡−𝑘) always have the same sign. In this context, if 

𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑘) > 0 ⟹ 𝐶𝑜𝑟(𝑌𝑡, 𝑌𝑡−𝑘) > 0, then 𝑌𝑡 and 𝑌𝑡−𝑘 move in the same direction 

and are positively correlated. On the other hand, if 𝐶𝑜𝑣(𝑌𝑡, 𝑌𝑡−𝑘) < 0 ⟺

𝐶𝑜𝑟(𝑌𝑡, 𝑌𝑡−𝑘) < 0, then 𝑌𝑡 and 𝑌𝑡−𝑘 move in the opposite direction and are negatively 

correlated.  

If 𝑌𝑡 ⊥ 𝑌𝑡−𝑘  ⟹ 𝐶𝑜𝑟(𝑌𝑡, 𝑌𝑡−𝑘) = 0, but zero correlation does not imply independence. If 

𝐶𝑜𝑟(𝑌𝑡, 𝑌𝑡−𝑘) ≠ 0, then there is a linear relationship between 𝑌𝑡 and 𝑌𝑡−𝑘 and we can 

say that 𝑌𝑡 and 𝑌𝑡−𝑘 are autocorrelated.  
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Autocorrelation Function (ACF) 

The collection of the values of 𝜌𝑘 (𝑘 =  0, 1, 2, …) is called the autocorrelation function 

(ACF). The analysis of the autocorrelation function is a standard procedure for 

investigating the dependence implied by a time series model since it measures the 

length and memory of a process, that is, the extent to which the value at time 𝑡 depends 

on that at time 𝑡 − 𝑘. 

Partial Autocorrelation Function (PACF) 

The partial autocorrelation measures the correlation between time series observations 

that are separated by 𝑘 lags, after adjusting for correlations at intermediate lags (i.e., 

lag less than 𝑘). In other words, “partial autocorrelation is the correlation between 𝑌𝑡 

and 𝑌𝑡−𝑘 after removing the effect of the intermediate Y’s” (Gujarati & Porter, 2008). 

Examining Autocorrelation 

ACF and PACF plots (correlograms) are useful tools when identifying the number of 

parameters of autoregressive (AR) and moving average (MA) models (Chapter 6.1). If 

the ACF decays exponentially (with or without signal alternation) and the PACF presents 

an abrupt cut after lag 𝑝, then a process 𝑌𝑡 is an AR(𝑝). On the other hand, if the ACF has 

an abrupt cut after lag 𝑞 while the PACF shows a gradually decaying (with or without 

signal alternation), then 𝑌𝑡 is an MA(𝑞). Least but not last, if the ACF and PACF decay 

exponentially (with or without signal alternation) after lag 𝑝 and 𝑞 (respectively), then 

the process is an ARMA (𝑝, 𝑞). 

In addition, the autocorrelation function and the partial autocorrelation function 

support the evaluation regarding the presence/absence of autocorrelation involving the 

residual of an estimated model (Chapter 8). 

The presence of autocorrelations of estimated residuals must be examined since an 

adequate model should present residuals that are approximately white noise. To check 

the overall acceptability of the residual autocorrelations, the present work utilizes the 
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Breusch-Godfrey (BG) test, named for Trevor Breusch and Leslie Godfrey.  

According to the literature, the BG test is more powerful when compared to traditional 

tests such as Durbin-Watson and Ljung-Box (Maddala & Lahiri, 2009). In summary, the 

BG test is indicated for endogenous and exogenous variables (Verbeek, 2017) and 

“allows for: (1) non-stochastic regressors, such as the lagged values of the dependent 

variable; (2) higher-order autoregressive schemes; and (3) simple or higher-order 

moving averages of white noise error terms” (Gujarati & Porter, 2008). 

In this context, the BG Test can detect autocorrelation up to any predesignated order 𝑚 

lag (Gujarati & Porter, 2008). With the null hypothesis that 𝐻0: 𝜌1 = 𝜌2 = ⋯ = 𝜌𝑘 = 0, 

it is (essentially) a test of lack of fit: if the autocorrelations of the residuals are very small, 

the model does not show ‘significant lack of fit’. The test is carried out as follows 

(Verbeek, 2017): 

1 - Run an OLS regression 𝑌𝑡 = 𝛽0 + 𝛽1𝑋𝑡1 + ⋯+ 𝛽𝑘𝑋𝑡𝑘 + 𝑢𝑡 and collect its residuals 

(𝑢̂𝑡); 

2 - Use 𝑢̂𝑡 from step 1 as a dependent variable, and run an auxiliary regression 𝑢̂𝑡 =

𝛼0 + 𝛼1𝑋1 + 𝛼2𝑋2 + ⋯+ 𝛼𝑘𝑋𝑘 + 𝜌̂1𝑢̂𝑡−1 + 𝜌̂2𝑢̂𝑡−2 + ⋯+ 𝜌̂𝑘𝑢̂𝑡−𝑘 + 𝜀𝑡. 

3 - Based on the 𝑅2 of the regression of step 2, calculate the LM (Lagrange Multiplier) 

statistic: 

𝐵𝐺𝐿𝑀 = (𝑛 − 𝑘)𝑅2 ~ 𝜒𝑘
2 

where 𝑛 is the original sample size and 𝑘 is the number of lags.  

If the null hypothesis is rejected, there is at least one 𝜌𝑖  significantly different from zero 

and the autocorrelation phenomenon is present. 
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5.3. Causality 

Confusion between the terms “correlation” and “causality” underlies many 

misunderstandings since correlation does not necessarily imply causality. While the 

correlation measures and quantify the degree of association between variables, it is 

harder to determine whether one variable causes another variable. In other words, “the 

existence of a relationship between variables does not prove causality or the direction 

of influence” (Gujarati & Porter, 2008). 

Examining Causality  

Clive Granger developed the Granger’s Causality test on time series data that provides 

evidence if variable 𝑋 causes 𝑌, i.e., 𝑋 contains useful information for predicting 𝑌. The 

test is based on the following OLS regression models (Gujarati & Porter, 2008): 

𝑌𝑡 = 𝛼0 + ∑𝛼𝑗𝑌𝑡−𝑗

𝑛

𝑗=1

+ ∑𝛽𝑖𝑋𝑡−𝑖

𝑛

𝑖=1

+ 𝜀1𝑡 

𝑋𝑡 = 𝜆0 + ∑𝜆𝑖𝑋𝑡−𝑖

𝑛

𝑖=1

+ ∑𝛿𝑗𝑌𝑡−𝑗

𝑛

𝑗=1

+ 𝜀2𝑡 

The null hypothesis is that the 𝑋 does not ‘Granger-cause’ 𝑌 in the first regression 

(𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑖 = 0) and that 𝑌 does not ‘Granger-cause’ 𝑋 in the second 

regression (𝐻0 = 𝛿1 = 𝛿2 = ⋯ = 𝛿𝑖1 = 0). 

It should be highlighted that Granger’s Causality test assumes that and that 𝜀1𝑡 and 𝜀2𝑡 

are uncorrelated. The test also assumes that both the 𝑋 and 𝑌 time series are stationary. 

If this is not the case, an appropriate transformation, such as differencing, must first be 

employed before using Granger’s Causality test. The steps involved in the Granger 

causality test are as follows (Gujarati & Porter, 2008): 

1. Regress current 𝑌 on all lagged 𝑌 terms and other variables, if any, but do not include 

the lagged 𝑋 variables in this regression. Collect the restricted residual sum of squares 
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(𝑅𝑆𝑆1) from this regression. 

2. Run the regression including the lagged 𝑋 terms. Collect the unrestricted residual sum 

of squares (𝑅𝑆𝑆2) from this regression. 

3. To test the null hypothesis that 𝐻0: 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑖 = 0 (lagged 𝑋 terms do not 

belong in the regression) apply the 𝐹 test given by: 

𝐹 =

(𝑅𝑆𝑆1 − 𝑅𝑆𝑆2)
𝑚⁄

𝑅𝑆𝑆2
(𝑛 − 𝑘)⁄

 ~  𝐹𝑚,𝑛−𝑘 

where 𝑚 is the to the number of lagged 𝑋 terms, and 𝑘 is the number of parameters 

estimated in the unrestricted regression. 

4. If 𝐹𝑜𝑏𝑠 > 𝐹𝑚,𝑛−𝑘,1−𝛼, where 𝐹𝑚,𝑛−𝑘,1−𝛼 is the quantile of probability 1 − 𝛼 of the 

𝐹𝑚,𝑛−𝑘 distribution, the null hypothesis is rejected. Meaning that the lagged 𝑋 can be 

used to explain 𝑌. This is another way of saying that 𝑋 Granger-causes 𝑌. 

5. Steps 1 to 5 can be repeated to test whether 𝑌 Granger-causes 𝑋. 

The causality analysis will be employed in the present work to better understand the 

relationship between the variables under consideration (IBOV, Brent, EMBI, and 

BRL_USD). 

 

5.4. Cointegration 

Since many time series datasets move together fluctuating around a long-run 

equilibrium, the concept of cointegration is widely used in econometrics in order to 

compare financial series and investigate whether there is any kind of long-term 

relationship between them, making it possible to improve the investments decision-

making, optimizing the results and minimizing losses (Maia, 2011). 



35 
 

Integration is intrinsically linked to stationarity. If we have a non-stationary process 𝑌𝑡 

that must be differenced 𝑘 times to achieve stationarity, then 𝑌𝑡 is designated as an 

integrated process of order 𝑘, or simply 𝐼(𝑘). In this context, if 𝑌𝑡 is stationary, then it is 

called integrated of order 0, or simply 𝐼(0). 

The concept of cointegration “applies when two series are 𝐼(1), but a linear combination 

of them is 𝐼(0); in this case, the regression of one on the other is not spurious, but 

instead tells us something about the long-run relationship between them” (Wooldridge, 

2015). In other words, considering two series, integrated of order one, 𝑌𝑡 and 𝑋𝑡, and a 

supposed linear relationship between them is reflected in the proposition that there 

exist some value 𝛽 such that 𝑌𝑡 − 𝛽𝑋𝑡 is 𝐼(0), although 𝑌𝑡 and 𝑋𝑡 are both 𝐼(1). In this 

circumstance, it is said that 𝑌𝑡 and 𝑋𝑡 are cointegrated, and that they share a common 

trend (Verbeek, 2017).  

Examining Cointegration  

To determine whether two or more time series are cointegrated, the following 

hypotheses must be verified: (i) The two series are stationary of order 𝐼(0); (ii) There is 

at least one linear combination of time series to which the residual of the regression 

between them is stationary (Banerjee, Dolado, Galbraith, & Hendry, 1993).  

With these hypotheses satisfied, it can be said that there is a cointegration relationship 

between the time series studied. The present work will use Johansen’s Cointegration 

test9 and Bounds test. 

The first test, named after Søren Johansen, is an asymptotic approach that analyzes the 

cointegrating relationships between numerous non-stationary time series. By checking 

the presence of cointegration of various time series it is possible to avoid issues 

generated when errors are carried forward to the next steps of the investigation. There 

are two types of Johansen’s test: Trace (𝜆𝑡𝑟𝑎𝑐𝑒 statistic); and Maximum Eigenvalue (𝜆𝑚𝑎𝑥 

 
9 “The details of the Johansen procedure are very complex. Further details can be found in (Johansen & 
Juselius, 1990); (Johansen, 1991); (Banerjee, Dolado, Galbraith, & Hendry, 1993); (Hamilton, 1994); 
(Johansen, 1995); (Stewart & Gill, 1998); and (Verbeek, 2017). 
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statistic) (Johansen & Juselius, 1990). 

The general null hypothesis for both tests is elaborated in order to check the existing 

number of cointegrated vectors (𝑘) over the maximum number of cointegrated vectors 

(𝑛). In summary, the null hypothesis is 𝐻0: 𝑘 ≤ 𝑛, where 𝑛 = 0, 1, … , 𝑝 − 1; and 𝑝 

denotes the number of variables used. The difference between Trace and Maximum 

Eigenvalue lies in the alternative hypothesis (Verbeek, 2017): 

Trace Test 𝐻0: 𝑘 ≤ 𝑛 𝐻1: 𝑘 > 𝑛 

Maximum Eigenvalue Test 𝐻0: 𝑘 ≤ 𝑛 𝐻1: 𝑘 = 𝑛 + 1 

 

Although being possible to verify the number of cointegration vectors, the main goal of 

the tests is to check the presence/absence of cointegration, such information can be 

extracted by using 𝑛 = 0 in the null hypothesis. If 𝐻0: 𝑘 ≤ 0 is rejected, there is a 

cointegration relationship in the estimated model. 

✓ Trace’s alternative hypothesis is that the number of cointegrating relationships 

is at least one. The 𝜆𝑡𝑟𝑎𝑐𝑒 statistic can be calculated as: 

𝜆𝑡𝑟𝑎𝑐𝑒 = −𝑇 ∑ 𝑙𝑛(1 − 𝜆̂𝑖)

𝑟

𝑖=𝑛+1

 

where 𝑇 is the number of observations; 𝜆̂𝑖 is the 𝑖-th largest estimated eigenvalue 

(matrix of stationary variables of the estimated model); and the eigenvalues are in 

decreasing order. 

✓ The Maximum Eigenvalue’s alternative hypothesis uses 𝑛 + 1. Rejecting the null 

hypothesis means that there is only one combination of the non-stationary variables 

that give a stationary process. The 𝜆𝑚𝑎𝑥 statistic can be calculated as: 

𝜆𝑚𝑎𝑥 = −𝑇 𝑙𝑛(1 − 𝜆̂𝑛+1) 
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Trace and Maximum Eigenvalue tests are likelihood ratio tests that do not present the 

typical Chi-square distributions. The appropriate distributions for both tests are 

multivariate extensions of the Dickey-Fuller distributions (Verbeek, 2017). 

The Bounds test, introduced by Pesaran, Shin, & Smith (2001), is an important 

instrument for exploring cointegration. This test is intrinsically connected to the 

Autoregressive Distributed Lag Model (ARDL) models (Chapter 6.4), whose specification 

can estimate long-term and short-term cointegration relationships at the same 

equation. 

This test analyzes the joint significance of the regressors linked to the long-run terms, 

wherein the hull hypothesis (H0: there is no cointegration equation) is rejected when 

the calculated 𝐹-statistic value of the test is greater than the upper critical bound value 

(𝐼(1) bound), meaning that there is a long-run relationship between the variables. On 

the other hand, if the calculated 𝐹-statistic is inferior to the lower critical bound value 

(𝐼(0) bound), there is no long-run relationship between the variables. If the calculated 

value of the test statistic falls between the lower bound value and the upper bound 

value, the test is considered inconclusive.  

For a full understanding of the mathematical framework of this test, check (Pesaran, 

Shin, & Smith, 2001), (Wooldridge, 2015), and (Wong & Hook, 2018). 

The presence/absence of cointegration is linked to the “usability” of Vector 

Autoregressive (VAR) models (Chapter 6.2), Vector Error Correction (VEC) models 

(Chapter 6.3), and ARDL models. In summary, if the variables are cointegrated, we can 

construct short-run (VAR) and long-run (VEC) models. On the other hand, if variables are 

not cointegrated, we can construct only the short-run (VAR) models. (Wooldridge, 

2015). 
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6. Statistical Methodology 

Econometrics means ‘economic measure’, and economic models “should be explicitly 

designed to incorporate randomness; stochastic errors should not be simply added to 

deterministic models to make them random. Once we acknowledge that an economic 

model is a probability model, it follows naturally that an appropriate tool way to 

quantify, estimate, and conduct inferences about the economy is through the powerful 

theory of mathematical statistics.” (Hansen, 2015). 

The review, understanding, and analysis of the empirical characteristics of the financial 

series are of dominant importance since the models that try to reproduce the behavior 

of the time series must be constructed considering these characteristics. 

Once the generic model has been identified, the maximum likelihood (efficient) 

estimates are obtained for the parameters. Then, the model is diagnosed, the series are 

analyzed regarding the residuals. Once the proposed model is ‘accepted’, it proceeds to 

the forecasting phase, otherwise, the analysis of the residuals helps to indicate the new 

current model (new approach). Figure 2 below presents a schematic for the data 

modeling steps.  

 

Figure 2 - Modeling Diagram 
- adapted from (Lustosa, Mesquita, Quelhas, & Oliveira, 2008) - 
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6.1. Autoregressive and Moving Average Processes 

In order to better clarify the ideas behind conditional heteroscedasticity and understand 

the VAR, VEC, ARDL, and ARCH/GARCH (Chapter 6.2 to Chapter 6.5) models used herein, 

it is important to introduce autoregressive (AR) process, moving average (MA) process, 

autoregressive and moving average (ARMA) process and Box–Jenkins Methodology. 

 

6.1.1. Autoregressive (AR) Process 

If 𝑌𝑡 represents a process wherein the value of 𝑌 at time 𝑡 depends on its value in the 

previous period plus a random term, 𝑌𝑡 can be modeled as (Gujarati & Porter, 2008): 

𝑌𝑡 = 𝛼 + 𝜙1𝑌𝑡−1 + 𝜀𝑡 

where 𝛼 is a constant; 𝜙1 ≠ 0 is a parameter; and 𝜀𝑡 is an uncorrelated random error 

term with zero mean and constant variance (i.e., white noise). It can be said that 𝑌𝑡 

follows a first-order autoregressive, AR(1), process. 

Still according to Gujarati & Porter (2008), this model says that the “value of 𝑌 at time 𝑡 

is simply some proportion (= 𝜙1) of its value at time (𝑡 − 1) plus a random shock or 

disturbance at time 𝑡”. In addition, if the value of 𝑌 at time 𝑡 depends on its value in the 

previous two time periods, then, 𝑌𝑡 follows a second-order autoregressive, AR(2), 

process, and can be written as:  

𝑌𝑡 = 𝛼 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + 𝜀𝑡 

where 𝜙2 ≠ 0. 

In general, a 𝑝𝑡ℎ-order autoregressive, AR(𝑝), process can be expressed as: 

AR(𝑝):     𝑌𝑡 = 𝛼 + 𝜙1𝑌𝑡−1 + ⋯+ 𝜙𝑝𝑌𝑡−𝑝 + 𝜀𝑡    or     𝑌𝑡 = 𝛼 + ∑𝜙𝑖𝑌𝑡−𝑖 + 𝜀𝑡

𝑝

𝑖=1
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where 𝜙𝑝 ≠ 0. 

Stationarity Conditions 

An AR(1) process is said to be stationary if |𝜙1| < 1. An AR(2) process is said to be 

stationary if |𝜙2| < 1; 𝜙2 + 𝜙1 < 1; and 𝜙2 − 𝜙1 < 1. Taking into account the lag 

operator (𝐿) mentioned in Chapter 5.1, the AR(𝑝) equation can be rewritten as 

𝜙𝑝(𝐿)𝑌𝑡 = 𝛼 + 𝜀𝑡, where 𝜙𝑝(𝐿) = 1 − 𝜙1𝐿 − ⋯− 𝜙𝑝𝐿
𝑝 is the 𝑝-degree polynomial. In 

this context, an AR(𝑝) process is said to be stationary if all the roots (solutions) of the 

characteristic equation 𝜙𝑝(𝐿) = 0 lie outside the unit circle (all exceed 1 in absolute 

value). The stationary conditions ensure that the mean and variance of the process 𝑌𝑡 

do not change over time (Brockwell & Davis, 2016).  

An AR(𝑝) process is always invertible, i.e., 𝑌𝑡 can be explained by its past 𝑌𝑡−𝑘 values 

(Brockwell & Davis, 2016). 

 

6.1.2. Moving Average (MA) Process 

If 𝑌𝑡 represents a process wherein the value of 𝑌 at time 𝑡 is equal to a constant plus a 

moving average of the current and past error terms, 𝑌𝑡 can be modeled as (Montgomery, 

Jennings, & Kulahci, 2015): 

𝑌𝑡 = 𝛼 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 

where 𝛼 is a constant; 𝜃1 ≠ 0 is a parameter; and 𝜀𝑡 is a white noise. Then, it can be said 

that 𝑌𝑡 follows a first-order moving average, MA(1), process. Similarly, a second-order 

moving average, MA(2), process can be written as: 

𝑌𝑡 = 𝛼 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 

where 𝜃2 ≠ 0. 
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More generally, a 𝑞𝑡ℎ-order moving average, MA(𝑞), process can be expressed as: 

MA(𝑞):     𝑌𝑡 = 𝛼 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 + ⋯+ 𝜃𝑞𝜀𝑡−𝑞    or     𝑌𝑡 = 𝛼 + 𝜀𝑡 + ∑𝜃𝑗𝜀𝑡−𝑗

𝑞

𝑗=1

 

where 𝜃𝑞 ≠ 0. 

Invertibility Conditions 

If the MA equation can be rewritten in AR form of infinite order, it is possible to say that 

the process 𝑌𝑡 is invertible, that is, we can use an AR(𝑝) to explain an MA(𝑞) 

(Montgomery, Jennings, & Kulahci, 2015). An MA(1) process is said to be invertible if 

|𝜃1| < 1. An MA(2) process is said to be invertible if |𝜃2| < 1; 𝜃2 + 𝜃1 < 1; and 𝜃2 −

𝜃1 < 1. Taking into account the lag operator (𝐿), the MA(𝑞) equation can be rewritten 

as 𝑌𝑡 = 𝛼 + 𝜃𝑞(𝐿)𝜀𝑡, where 𝜃𝑞(𝐿) = 1 − 𝜃1𝐿 − ⋯− 𝜃𝑞𝐿
𝑞  is the 𝑞-degree polynomial. 

In this context, an MA(𝑞) process is said to be invertibility if all the roots of the 

characteristic equation 𝜃(𝐿) = 0 lie outside the unit circle. 

An MA(𝑞) process is always stationary since its mean and variance are finite and 

constant, and the autocorrelation function is finite and does not depend on 𝑡. 

 

6.1.3. Autoregressive and Moving Average (ARMA) Process 

In the case of 𝑌𝑡 combines AR and MA characteristics, it can be designated as an ARMA 

process. For example, if 𝑌𝑡 presents one autoregressive and one moving average term, 

it follows an ARMA(1,1) process and can be written as (Montgomery, Jennings, & 

Kulahci, 2015): 

𝑌𝑡 = 𝛼 + 𝜙1𝑌𝑡−1 + 𝜀𝑡 + 𝜃1𝜀𝑡−1 

where 𝛼 is a constant; 𝜙1 ≠ 0 and 𝜃1 ≠ 0 are parameters; and 𝜀𝑡 is a white noise. 
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Likewise, in an ARMA(𝑝, 𝑞), there will be 𝑝 autoregressive and 𝑞 moving average terms, 

and can be expressed as: 

ARMA(𝑝, 𝑞):   𝑌𝑡 = 𝛼 + ∑𝜙𝑖𝑌𝑡−𝑖 + 𝜀𝑡 +

𝑝

𝑖=1

∑𝜃𝑗𝜀𝑡−𝑗

𝑞

𝑗=1

 

where 𝜙𝑝 ≠ 0 and 𝜃𝑞 ≠ 0. 

The stationarity and invertibility conditions discussed above are also valid for 

ARMA(𝑝, 𝑞) processes. Again, taking into account the lag operator (𝐿), the ARMA(𝑝, 𝑞) 

equation can be rewritten as 𝜙𝑝(𝐿)𝑌𝑡 = 𝛼 + 𝜃𝑞(𝐿)𝜀𝑡, where 𝜙𝑝(𝐿) = 1 − 𝜙1𝐿 − ⋯−

𝜙𝑝𝐿
𝑝 and 𝜃𝑞(𝐿) = 1 − 𝜃1𝐿 − ⋯− 𝜃𝑞𝐿

𝑞. An ARMA(𝑝, 𝑞) process will be stationary if all 

the roots of 𝜙𝑝(𝐿) = 0 lie outside the unit circle (AR(𝑝) component) and will be 

invertible if all the roots of 𝜃𝑞(𝐿) = 0 lie outside the unit circle (MA(𝑞) component). 

An especial variation of the above-mentioned process is the Autoregressive Integrated 

Moving Average (ARIMA) model, which is used on time series that present trends, also 

known as integrated series. In summary, if the process 𝑌𝑡 (with trend) is integrated of 

order 𝑑 [i.e., it is 𝐼(𝑑)], we can differentiate it 𝑑 times, obtaining a process without the 

trend component [i.e., it is 𝐼(0)]. The ARIMA(𝑝, 𝑑, 𝑞) model incorporates the 

autoregressive term (𝑝), the moving average term (𝑞), and the number of times (𝑑) that 

the original series 𝐼(𝑑) must be differenced before it presents no trend 𝐼(0). Intuitively, 

if 𝑑 = 0, ARIMA(𝑝, 𝑑, 𝑞) = ARMA(𝑝, 𝑞). 

 

6.1.4. Box–Jenkins (BJ) Methodology 

This iterative approach created by George Box and Gwilym Jenkins arrived in order to 

identify if a time series follows an AR(𝑝), MA(𝑞), ARMA(𝑝, 𝑞) or ARIMA(𝑝, 𝑑, 𝑞), as well 

as what is the value of 𝑝, 𝑞, and 𝑑. The methodology consists of 4 steps: 

Step 1: Identification of the parameter 𝑑 (if necessary, transform a non-stationary time 



43 
 

series into a stationary time series) and the appropriate values of 𝑝, 𝑞, since it derives 

from the behavior of the ACF and PACF. In the AR(𝑝) process, the ACF decays 

exponentially (or has a damped sine wave pattern), while the PACF presents an abrupt 

cut after lag 𝑝. Regarding the MA(𝑞) process, the ACF presents an abrupt cut after lag 𝑞 

while the PACF decays exponentially (or has a damped sine wave pattern). In the 

ARMA(𝑝, 𝑞) process, the ACF decays exponentially after lag 𝑞 and the PACF decays 

exponentially after lag 𝑝 (Gujarati & Porter, 2008). 

For a better understanding, Figure 3 shows examples of ACF and PACF of AR(1), MA(1), 

and ARMA(1,1) models. 

AR(1) MA(1) ARMA(1,1) 

 
Figure 3 - Examples of AR(1), MA(1), and ARMA(1,1) 

- adapted from (Gujarati & Porter, 2008) - 

Step 2: Estimation of the parameters 𝑝 and 𝑞 included in the model. The estimation 

method used can be, for example, the maximum likelihood. 

Step 3: Diagnostics of the chosen model in order to check if it properly fits the data. 

Verify the statistical significance of the parameters estimated, as well as the stationary 

and invertibility conditions. In addition, check if the residuals are white noise and the 

presence of outliers. 

Step 4: Forecasting using the BJ methodology usually presents accurate forecasts that 

“are more reliable than those obtained from traditional econometric modeling, 

particularly for short-term forecasts” (Gujarati & Porter, 2008). Figure 4 represents the 
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BJ methodology.  

 
Figure 4 - Box-Jenkins Methodology 
- source: (Gujarati & Porter, 2008) - 

 

6.2. Vector Autoregressive Model (VAR) 

The autoregressive moving average (ARMA) models can be extended to the multivariate 

case, wherein two or more time series are individually modeled “as a linear function of 

past values of all variables, plus disturbances that have zero means given all past values 

of the observed variables” (Wooldridge, 2015). This approach is known as Vector 

Autoregressive (VAR) model. 

A VAR model “describes the dynamic evolution of a number of variables from their 

common history. If we consider two variables, 𝑌𝑡 and 𝑋𝑡, the VAR consists of two 

equations” (Verbeek, 2017). Considering that all variables in the VAR system are 

endogenous (there are no exogenous variables), the first-order VAR with two variables 

would be defined as: 

𝑌𝑡 = 𝛿1 + 𝜃11𝑌𝑡−1 + 𝜃12𝑋𝑡−1 + 𝜀1𝑡 

𝑋𝑡 = 𝛿2 + 𝜃21𝑌𝑡−1 + 𝜃22𝑋𝑡−1 + 𝜀2𝑡 

Identification of the model
(Choosing tentative p, d, q)

Step 1

Parameter estimation 
of the chosen model

Step 2

Diagnostic checking Step 3

Forecasting Return to Step 1Step 4

Yes No
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where 𝜀1𝑡 and 𝜀2𝑡 are white noise processes that may be correlated. For example, if the 

parameter 𝜃12 is not equal to zero, we can say that the past values of 𝑋 help to explain 

𝑌. The two equations above can be written as a system: 

(
𝑌𝑡

𝑋𝑡
) = (

𝛿1

𝛿2
) + (

𝜃11 𝜃12

𝜃21 𝜃22
) (

𝑌𝑡−1

𝑋𝑡−1
) + (

𝜀1𝑡

𝜀2𝑡
) 

If we denote 𝑌⃗ 𝑡 = (
𝑌𝑡

𝑋𝑡
) as a vector of two variables, 𝛿 = (

𝛿1

𝛿2
) as a vector of two 

intercepts, Θ1 = (
𝜃11 𝜃12

𝜃21 𝜃22
) is a 2 × 2 matrix of coefficients, and 𝜀 = (

𝜀1𝑡

𝜀2𝑡
) as a vector 

of white noise terms, the system can be written as: 

𝑌⃗ 𝑡 = 𝛿 + Θ1𝑌⃗ 𝑡−1 + 𝜀 𝑡 

which can be understood as a dimensional case of a first-order autoregressive process. 

In this context, a VAR(𝑝) model for 𝑘-dimensional vector 𝑌⃗ 𝑡 can be written as: 

𝑌⃗ 𝑡 = 𝛿 + Θ1𝑌⃗ 𝑡−1 + ⋯+ Θ𝑝𝑌⃗ 𝑡−𝑝 + 𝜀 𝑡        or         𝑌⃗ 𝑡 = 𝛿 + ∑Θ𝑖𝑌⃗ 𝑡−𝑖

𝑝

𝑖=1

+ 𝜀 𝑡 

where:  

∙ 𝛿  is a vector of intercepts; 

∙ 𝑝 is the optimal lag length; 

∙ Θ𝑖  is a 𝑘 × 𝑘 matrix of short-run coefficients; and 

∙ 𝜀 𝑡 is a 𝑘-dimensional vector of white noise terms. 

The VAR models make it possible to analyze the effect of variation over time for a given 

variable on the others. In addition, there is no need to impose any initial restriction of 

causality between the variables, which can be tested by the Granger’s Causality test, 

neither it is necessary to assume any long-term relationship between the variables, 

which can be examined by Johansen’s Cointegration test (Maia, 2011). 
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It should be emphasized that VAR models are constructed only if the variables are 

integrated of order one, 𝐼(1), that is, stationary after the first difference. In addition, 

VAR variables have the same lag length in all equations. Selecting the lag length in a 

VAR(𝑝) model is not always easy, and univariate ACF and PACF will not help. For a VAR(𝑝) 

the ACF matrix will exhibit a mixture of exponential decay and a damped sine wave 

pattern (Montgomery, Jennings, & Kulahci, 2015). Verbeek (2017) suggests the use of 

information criteria, like Akaike Information Criterion (AIC) and/or Bayesian information 

criterion (BIC), to select the lag length of a VAR model. Both criteria will be detailed in 

Chapter 7. 

 

6.3. Vector Error Correction Model (VEC) 

If the analyzed processes are non-stationary, for example, 𝐼(1), the VAR model must be 

estimated in first differences. However, the result obtained through first differences is 

not always reasonable (Maia, 2011) [apud (Harvey, 1989)], “leading to spurious 

regression, in which estimators and test statistics are misleading” (Verbeek, 2017).  

In order to overcome the above-mentioned drawbacks, the Vector Error Correction 

(VEC) model uses cointegration analysis to estimate models when variables do not show 

stationarity. In summary, if a cointegration relationship between variables is detected, 

the VEC model can be considered as a VAR model with cointegration restrictions (Zou, 

2018). 

The existence of cointegration (presence of a long-run relationship between variables) 

also has implications for the short-run behavior of the 𝐼(1) variables “because there has 

to be some mechanism that drives the variables to their long-run equilibrium 

relationship. This mechanism is modeled by an error-correction mechanism, in which 

the ‘equilibrium error’ also drives the short-run dynamics of the series” (Verbeek, 2017). 

If the first difference operator (∆𝑌⃗ 𝑡 = 𝑌⃗ 𝑡 − 𝑌⃗ 𝑡−1) is applied to the VAR(𝑝) model 

expressed above, and a cointegration term is added to the equation (also known as 
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error-correction term), the resulting model is a VEC model that can be written as: 

∆𝑌⃗ 𝑡 = 𝛿 + ∑ Θ𝑖∆𝑌⃗ 𝑡−𝑖

𝑝−1

𝑖=1

+ 𝜆𝑖𝐸𝐶𝑇𝑡−1 + 𝜀 𝑡 

where:  

∙ ∆𝑌⃗ 𝑡 is a vector with 𝑘 variables;  

∙ 𝛿  is a vector of intercepts; 

∙ 𝑝 − 1 is the optimal lag length (remembering that 𝑌⃗ 𝑡 was differentiated); 

∙ Θ𝑖  is a 𝑘 × 𝑘 matrix of short-run coefficients; 

∙ 𝜆𝑖 is the speed of adjustment parameter with a negative sign; 

∙ 𝐸𝐶𝑇𝑡−1 is the error correction term. For further details how 𝐸𝐶𝑇𝑡−1 is calculated and 

incorporated into the VEC model, check (Verbeek, 2017); and 

∙ 𝜀 𝑡 is a 𝑘-dimensional vector of white noise terms. 

It should be highlighted that like the VAR model, the VEC approach assumes that all 

variables are endogenous (there are no exogenous variables) and the lag length is 

selected using information criteria. In addition, if there is a possibility that the 

multivariate time series are cointegrated, the literature suggests that the VEC should be 

used instead of the VAR.  

 

6.4. Autoregressive Distributed Lag Model (ARDL) 

While VAR models are strictly for endogenous variables, the Autoregressive Distributed 

Lag Model employs a combination of endogenous and exogenous variables. In this 

approach, the dependent variable is expressed by its own lagged values plus the current 

and lagged values of auxiliary variables. In addition, the ARDL model can be specified if 

variables are integrated in a different order, that is, a model with original variables, 𝐼(0), 
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and variables in first difference, 𝐼(1) (Pesaran, Shin, & Smith, 2001). 

The ARDL model presents others benefits. First, this approach is relatively more efficient 

regardless of the sample size (can be estimated with small and finite sample data sizes). 

Second, it generates unbiased long-run estimates for the analysis. Third, the ARDL model 

can, simultaneously, estimate long-term and short-term cointegration relationships 

(Pesaran, Shin, & Smith, 2001).  

Starting from a model with one lag on both dependents and auxiliary variables, the 

ARDL(1,1) can be expressed as: 

𝑌𝑡 = 𝛿 + α1𝑌𝑡−1+𝛽0𝑋𝑡 + 𝛽1𝑋𝑡−1 + 𝜀𝑡 

In this context, an ARDL(𝑝, 𝑞1, … , 𝑞𝑘) model can be expressed as: 

𝑌𝑡  = 𝛿 + ∑α𝑖𝑌𝑡−𝑖

𝑝

𝑖=1

+ ∑∑𝛽𝑙,𝑖𝑋𝑙,𝑡−𝑖 + 𝜀𝑡

𝑞𝑙

𝑖=0

𝑘

𝑙=1

 

where: 

∙ 𝛿 is the intercept; 

∙ 𝑝 ≥ 1 is the number of used lags of 𝑌𝑡; 

∙ 𝑘 is the number of auxiliary variables; 

∙ 𝑞𝑙 is the number of used lags for the auxiliary variables 𝑋𝑙,𝑡; 

∙ 𝛼𝑖 is the coefficient associated with the 𝑖 lags of 𝑌𝑡; 

∙ 𝛽𝑙,𝑖 are the coefficients associated with the 𝑖 lags of regressors 𝑋𝑙,𝑡; and 

∙ 𝜀𝑖𝑡 is a white noise.  

For this model to be reasonable, the lag coefficients, 𝛽𝑙,𝑖, must tend to zero as 𝑖 → ∞. 

This does not mean that, for example, 𝛽𝑙,2 has reduced magnitude when compared to 

𝛽𝑙,1; it only means that the impact of 𝑋𝑙,𝑡−𝑖 on 𝑌𝑡 must eventually become small as 𝑖 gets 

large. “In most applications, this makes economic sense as well: the distant past of 𝑋 
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should be less important for explaining 𝑌 than the recent past of 𝑋” (Wooldridge, 2015). 

Like in VAR and VECM models, the lag length selection employs information criteria.  

For additional details regarding the ARDL models, check (Kripfganz & Schneider, 2018),  

(Pesaran, Shin, & Smith, 2001), and (Wooldridge, 2015). 

 

6.5. ARCH/GARCH Models 

Several practical cases in financial time series (such as stock prices, inflation rates, and 

foreign exchange rates) infringe the assumption of constant variance due to the 

presence of volatility. Linear trend models, exponential smoothers, or even ARIMA 

models would fail to fit well, as all assume homoscedasticity of the error (Verbeek, 

2017). 

The potential existence of autocorrelation in the variance 𝜎2 at time 𝑡 with its values 

lagged one or more periods was the motivation behind the Autoregressive Conditional 

Heteroscedasticity (ARCH) model, in which the error variance is related to the squared 

error term in the previous term, as well as the Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) model, in which the error variance is related to squared 

error terms several periods in the past (Gujarati & Porter, 2008). 

Remembering that the autoregressive describes the feedback mechanism that allows 

the incorporation of past observations into the model. While conditional implies that 

the current observations depend on the immediately previous observations, and 

heteroscedasticity means fluctuation of the variance over time. 

Before describing the ARCH, GARCH, IGARCH, and EGARCH models, it is important to 

determine if this approach can be employed. In other words, verify if the data can be 

modeled through ARCH/GARCH models.  

Examining Heteroscedasticity 
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The present work employed the ARCH LM test which is similar to the Breusch-Godfrey 

(BG) test for autocorrelation. The null hypothesis (H0: there is no ARCH factor when 

considering the residuals up to order 𝑘) must be rejected before modeling through 

ARCH/GARCH since ignoring ARCH effects may result in loss of efficiency. Steps of the 

ARCH LM test: 

1 - Run the regression of the model using OLS and collect the residuals 𝜀. 

2 - Square the residuals 𝜀 and run the following secondary regression: 𝜀𝑡
2 = 𝛽0 +

𝛽1𝜀𝑡−1
2 + ⋯+ 𝛽𝑘𝑋𝑡−𝑘 + 𝑢𝑡, where 𝑘 is the number of lags included in this secondary 

regression. The appropriate number of lags can either be determined by the span of the 

data (i.e., four if we have quarterly data) or by Information Criteria; 

3 - Based on the 𝑅2 of the regression of step 2, compute the 𝑇 × 𝑅2 statistic, where 𝑇 is 

the number of observations. This test statistic follows, asymptotically, a Chi-squared 

distribution with 𝑘 degrees of freedom. 

If the null hypothesis is rejected (i.e., 𝜒𝑜𝑏𝑠
2 > 𝜒𝑘,1−𝛼

2 ), ARCH/GARCH approach can be 

used. 

 

6.5.1. ARCH Model 

In 1982, Robert Engle, winner of the 2003 Nobel Memorial Prize in Economic Sciences, 

considered that it was possible to build a parametric model in which the variance would 

be conditioned by an algebraic equation, modeling not only the average but also the 

conditioned variance (Engle, 1982). In summary, “while conventional time series and 

econometric models operate under an assumption of constant variance, the ARCH 

process allows the conditional variance to change over time as a function of past errors 

leaving the unconditional variance constant” (Bollerslev, 1986). 

The estimation of ARCH models cannot be done through OLS, as this method minimizes 
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the sum of squares of the residuals, which depends only on the parameters of the mean 

equation and not on the conditional variance. In this context, the estimation of ARCH 

models is made through maximum likelihood, under the hypothesis that the errors are 

conditionally distributed (based on past errors). 

Starting from a simple time series regression model for a process 𝑌𝑡 expressed by its past 

values (𝑌𝑡−1) plus a white noise error term (𝜀𝑡). The model could be expressed as: 

𝑌𝑡 = 𝛽𝑌𝑡−1 + 𝜀𝑡 

in which 𝜀𝑡 is independent and identically distributed with zero mean and variance 𝜎𝑡
2 

(𝜀𝑡 ~
𝑖𝑖𝑑

 𝑁(0, 𝜎𝑡
2)). If exogenous variables (𝑋𝑡) are used to explain 𝑌𝑡, the equation can be 

redrafted as 𝑌𝑡 = 𝛽𝑋𝑡 + 𝜀𝑡. 

If we let the distribution of the error term be conditionally normal, such as 

𝜀𝑡|𝐼𝑡−1~𝑁(0, 𝜎𝑡
2), in which 𝐼𝑡−1 represents the information available at time 𝑡 − 1. The 

conditional variance 𝜎𝑡
2 can be described as a function of a constant term (𝑏0) and the 

lagged squared error term (𝜀𝑡−1
2 ) (Verbeek, 2017): 

𝜎𝑡
2 = 𝑏0 + 𝑏1𝜀𝑡−1

2  

where 𝑏0 > 0; 0 ≤ 𝑏1 < 1; and 𝑢𝑡 is the error term. Here, 𝑏0 and 𝑏1 must be positive to 

ensure a positive variance, 𝑏1 < 1 guarantees the stationary condition, otherwise, 𝜎𝑡
2 

continues to increase over time (explosive process). If 𝑏1 = 0, the process does not 

exhibit time-varying volatility. 

This is the representation of the one-lag ARCH process, ARCH(1). Of course, the 

conditional variance can also depend on more than one lag. And the number of lagged 

periods of the squared error indicates the structure of the ARCH model: 

ARCH(1): 𝜎𝑡
2 = 𝑏0 + 𝑏1𝜀𝑡−1

2  
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ARCH(2): 𝜎𝑡
2 = 𝑏0 + 𝑏1𝜀𝑡−1

2 + 𝑏2𝜀𝑡−2
2  

ARCH(𝑞): 𝜎𝑡
2 = 𝑏0 + 𝑏1𝜀𝑡−1

2 + 𝑏2𝜀𝑡−2
2 + ⋯+ 𝑏𝑞𝜀𝑡−𝑞

2  

The conditional variance is a linear function of the past 𝑞 squared innovations (the term 

‘innovation’ is used instead of the ‘residual’ and expresses the unpredictable part of a 

financial series) in the ARCH(𝑞) model (Bollerslev, 1986). 

Again, when exogenous variables (𝑋𝑡) are used to explain 𝑌𝑡, i.e., 𝑌𝑡 = 𝛽𝑋𝑡 + 𝜀𝑡, and an 

ARCH(𝑞) effect is introduced in the model, the mean and the conditional variance of a 

dependent variable are: 

Mean Equation Conditional Variance Equation 

𝑌𝑡 = 𝛽𝑋𝑡 + 𝜀𝑡 𝜎𝑡
2 = 𝑏0 + ∑𝑏𝑖𝜀𝑡−𝑖

2

𝑞

𝑖=1

 

The conditional variance depends on the square errors of the regression in order 𝑞. It is 

possible to prove that, in the ARCH model above, the conditional variance tends to 

converge to a constant. This constant represents the unconditional variance given by: 

𝜎∞
2 =

𝑏0

1 − ∑ 𝑏𝑖
𝑞
𝑖=1

 

The restriction of the sum of the coefficients 𝑏𝑖  to be less than 1 is to ensure that the 

model has stationary covariance. 

This model, however, has some limitations in its assumptions. The main ones are 

highlighted by (Marques, 2017) [apud (Brooks & Lee, 1997)]: 

✓ Absence of a methodology to properly establish the maximum lags to capture the 

volatility of the process. 

✓ Possible non-parsimonious model due to the need for a high number of lags to 

capture all the dependencies of the conditioned variance. 
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✓ The more parameters that are introduced in the model, the greater the probability of 

obtaining estimated negative coefficients (possibility of violating the non-negativity 

restrictions). 

 

6.5.2. GARCH Model 

In order to overcome some of the limitations expressed above, Tim Bollerslev (1986) 

proposed a generalization of the ARCH model that resembles the ARMA approach, 

naming it as Generalized Autoregressive Conditional Heteroscedasticity (GARCH) 

model. Here, the conditional variance depends not only on the squared random shocks 

that occurred in the immediately preceding 𝑖 moments but also on the conditional 

variances of the immediately preceding 𝑡 moments. The mean equation remains 

unchanged and the GARCH(𝑝, 𝑞) regarding the conditional variance is:  

𝜎𝑡
2 = 𝛼0 + ∑𝑏𝑖 𝜀𝑡−𝑖

2 +

𝑞

𝑖=1

∑𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

 

where 𝑞 is the ARCH process degree with 𝑏𝑖 parameters; and 𝑝 is the GARCH process 

degree with 𝛽𝑗 parameters. 

If 𝑝 = 0, then the GARCH(0, 𝑞) model is equivalent to the ARCH(𝑞) model. In addition, 

the following conditions must be met: 

𝛼0 > 0; 𝑏𝑖 ≥ 0 (𝑖 = 1,2, … , 𝑞); 𝛽𝑗 ≥ 0 (𝑗 = 1,2, … , 𝑝); and ∑(𝑏𝑖 + 𝛽𝑗) < 1. 

Although the structure of GARCH models and ARMA models are very similar, there is an 

important distinction between the methods. While the returns are dependent only on 

the returns from previous periods in the ARMA model, ARCH/GARCH models consider 

that the returns also depend on the variance (volatility) observed in the past, as well as 

the errors associated with the previous process (Bollerslev, 1986). 
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In common, the ARMA and GARCH models assume that the markets are efficient, and 

the stock returns follow stochastic processes, and, therefore, are unpredictable in the 

medium- and long-term. In addition, for both, the simple stochastic models assume that 

the returns are not correlated and whose average is zero (Wooldridge, 2015). The 

GARCH model for conditional variance can be considered as an ARMA process in the 

squared innovations, although not in the variations as the equations might seem to 

suggest. 

The feedback effect provided by the introduction of lagged conditional variances makes 

the GARCH model more parsimonious (fewer parameters) when compared to the ARMA 

model. The great advantage of this model is that to estimate a certain parameter, it 

considers different weights for each observation in the time series, giving greater weight 

to the most recent ones. 

The GARCH model allows the presence of autoregressive components and moving 

averages in the heteroscedastic variance of financial assets. Although GARCH models 

have a wide range of applications, combining several characteristics observed in time 

series, and produces satisfactory results, there are limitations (Marques, 2017) [apud 

(Brooks & Lee, 1997)]: 

✓ It is required that the series presents a conditional variance that fluctuates over time. 

✓ Those models often fail to capture highly unexpected events that can lead to 

important structural change, as well as irregular phenomena such as successive drops, 

and their implications. 

✓ Asymmetric effects on the volatility, for example, ‘good news’ (tranquility, with 

decreasing volatility) or ‘bad news’ (turbulence, with increasing volatility) cannot be 

modeled by the GARCH approach. 

As the asymmetric effect is one of the limitations of the ARCH and GARCH models, under 

these conditions, it will be better to consider a model in which the volatility presents 

asymmetric reactions for positive or negative values of the residual variance. 
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6.5.3. EGARCH Model 

The Exponential Generalized Autoregressive Conditional Heteroscedastic (EGARCH) 

Model presented by Nelson (1991) is an extension of the GARCH family and considers 

the above-mentioned asymmetry in the variance, which allows capturing the effect of 

more intense innovations in a given period than in the other. 

The EGARCH model is used for the conditional variance of innovations with leverage 

conditions (negative correlation between present returns and future volatility) (Nelson, 

1991). In this model, the leverage effect is exponential, and it is no longer necessary to 

impose non-negativity restrictions on parameters 𝑏𝑖 and 𝛽𝑗 as it was imposed in the 

GARCH approach. The leverage effect can be analyzed by the parameter 𝛾𝑖, which is 

related to the symmetry/asymmetric shock (Pinho, Valente, Madaleno, & Vieira, 2012). 

In order to “relax” the positive coefficients restriction in the GARCH model, Nelson 

(1991) uses 𝑙𝑛(𝜎𝑡
2). Starting from the following equation: 

 𝑙𝑛( 𝜎𝑡
2)  = 𝛼0 + ∑𝛼𝑖𝑔(𝜀𝑡−𝑖) 

𝑞

𝑖=1

 + ∑𝛽𝑗 𝑙𝑛(𝜎𝑡−𝑗
2 )

𝑝

𝑗=1

 

 

with: 𝑔(𝜀𝑡) = {

(𝜃 + 𝛾)𝜀𝑡 − 𝛾𝐸(|𝜀𝑡|) if  0 < 𝜀𝑡 < ∞

(𝜃 − 𝛾)𝜀𝑡 − 𝛾𝐸(|𝜀𝑡|) if  −∞ < 𝜀𝑡 ≤ 0
 

where 𝜎𝑡
2 is the conditional variance; 𝛼0 is the intercept; 𝜃 and 𝛾 are constants related 

to positive (𝜃 + 𝛾) and negative (𝜃 − 𝛾) shocks, 𝜀𝑡 is independent and identically 

distributed with zero mean; 𝜀𝑡−𝑖 is the error observed on instant 𝑡 − 𝑖. 

The function 𝑔(𝜀𝑡) allows the model to respond differently to negative and positive 

variations in 𝑌𝑡, another improvement over the GARCH approach. 

Nelson (1991) used 
𝜀𝑡−𝑖

(𝜎𝑡−𝑖
2 )1/2⁄  and, without going deep on the mathematic approach 

(see (Castaño, 2010)), the equation was redrafted to present an EGARCH(𝑝, 𝑞) model: 
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𝑙𝑛( 𝜎𝑡
2) = 𝛼0 + ∑𝜂𝑖 |

𝜀𝑡−𝑖

(𝜎𝑡−𝑖
2 )1/2

| 

𝑞

𝑖=1

 + ∑𝛾𝑖 |
𝜀𝑡−𝑖

(𝜎𝑡−𝑖
2 )1/2

|

𝑞

𝑖=1

 + ∑𝛽𝑗 𝑙𝑛(𝜎𝑡−𝑗
2 )

𝑝

𝑗=1

 

 

where 𝜂𝑖  is a parameter related to the ARCH effect; 𝛾𝑖 is the parameter of asymmetric 

effect; and 𝛽𝑖 is a parameter related to the GARCH effect. 

✓ if 𝛾𝑖 > 0, a positive shock would decrease the volatility of returns.  

✓ if 𝛾1 = 𝛾2 = ⋯ = 𝛾𝑖 = 0, a positive shock will have a similar effect on the volatility of 

returns as a negative shock of the same magnitude (the model is symmetric: identical to 

a GARCH model). 

✓ if 𝛾𝑖 < 0, a negative shock would increase the volatility of returns. 

Since the EGARCH is presented in logarithms, the variance will always be positive, which 

is an advantageous factor. However, since the expected future variance beyond a period 

cannot be analytically calculated is a disadvantage of this approach (Pinho, Valente, 

Madaleno, & Vieira, 2012). 

 

6.5.4. IGARCH Model 

The Integrated Generalized Autoregressive Conditional Heteroscedasticity (IGARCH) 

model is identical to the GARCH model with the restriction that the sum of the 

coefficients is equal to one. Nelson (1991) provides theoretical foundations for 

estimating IGARCH models for financial data using GARCH specifications: 

𝜎𝑡
2 = 𝛼0 + ∑𝑏𝑖 𝜀𝑡−𝑖

2 +

𝑞

𝑖=1

∑𝛽𝑗𝜎𝑡−𝑗
2

𝑝

𝑗=1

 

with the restriction of:  
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∑𝑏𝑖 + ∑𝛽𝑗 = 1

𝑝

𝑗=1

𝑞

𝑖=1

 

In this model, the conditional variance is then an integrated process, meaning that a 

shock in the time series influences, or remains important, for a long period of forecasts. 

Many financial series have this characteristic.  

Although such a specification seems rather restrictive, several empirical studies indicate 

that the IGARCH(1,1) model has shown great efficiency to model financial data (e.g., 

Caporale, Spagnolo, & Pittis (2003), Gaio, Pesanha, Oliveira, & Ázara (2007); Ali, Ziaei, & 

Anwar (2012); Ali (2013); Marques (2017); Bezerra & Albuquerque (2019); Hernandez & 

Al Janabi (2020). 
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7. Model Selection 

When we talk about returns, the coefficient of determination (𝑅2) of models is very low 

and sometimes negative, taking away some of the intrinsic intuition of the analysis. 

Frequently, the mean is modeled to analyze the conditional variance. Therefore, the 

coefficient 𝑅2 should not be considered to verify the quality of the model since it fits the 

model to the mean.  

Given a set of time series models that present significant parameters and that were 

approved in the evaluation steps related to the quality of the residuals (autocorrelation 

and heteroskedasticity), the information criteria can help to select, among these 

models, the one that simultaneously minimizes the discrepancy (between the models 

and the data) and the complexity of the model (number of parameters).  

To choose the “best” model among those that have been adjusted, the following criteria 

can be used, namely AIC, BIC (or SIC), MAPE, and RMSE. Herein, the AIC e BIC criteria are 

used under the in-sample analyzes, while MAPE and RMSE are utilized on the out-of-

sample evaluation. 

 

Akaike Information Criterion (AIC) 

Named after Hirotugu Akaike, AIC is a tool often used to choose the optimal specification 

of a regression equation for non-nested alternative models. The Akaike Information 

Criterion balances the trade-offs between the goodness of fit of a candidate model and 

its complexity, considering the number of parameters estimated and how well the 

model "fits" the data (Moffatt, 2019). 

Given a set of data, several models can be used, but the “best” is the one with the 

smallest AIC. Its formula can be described as (Wagenmakers & Farrell, 2004) [apud 

(Schwarz, 1978)]: 
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AIC𝑚 = −2 𝑙𝑜𝑔(𝐿𝑚) + 2𝑘 

where:  

∙ 𝐿𝑚 is the maximum log-likelihood for the candidate model 𝑚; and 

∙ 𝑘 is the number of estimated coefficients (including the intercept). 

 

Bayesian information criterion (BIC)  

Also known as Schwarz Information Criterion (SIC) or Schwarz-Bayesian information 

criterion (SBIC), it was developed by Gideon E. Schwarz. This criterion is similar to the 

AIC with the characteristic of imposing a greater penalty for including additional 

coefficients to be estimated. BIC can be calculated as: 

BIC𝑚 = −2 𝑙𝑜𝑔(𝐿𝑚) + 2𝑘 log (𝑛)  

where:  

∙ 𝐿𝑚 is the maximum log-likelihood for the candidate model 𝑚; 

∙ 𝑘 is the number of estimated coefficients (including the intercept); and 

∙ 𝑛 is the number of observations that enter into the likelihood calculation. 

Although the equations of AIC and BIC look very similar, they originate from different 

backgrounds. The first calculate a measure of the distance between the probability 

density generated by the model and data. While the second assumes that the true 

generation model is in the set of candidate models, measuring the degree of belief that 

a certain model is the real data-generating model (Wagenmakers & Farrell, 2004).  

Asymptotically, the AIC tends to over-identify the models while the BIC tends to 

correctly identify the (consistent) model. 
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Mean Absolute Percentage Error (MAPE) 

The MAPE is a statistical measure of how accurate a forecast system is. The predictive 

capacity measures are based on the forecast error: 𝑒𝑡 = 𝑌𝑡 − 𝑌̂𝑡.  

The Mean Absolute Percentage Error indicates the average absolute percent error of the 

predictions over the entire test set. The lower the value of MAPE, the more accurate is 

the forecasting. The formula for calculating the MAPE of an estimator is defined as 

(Bowerman, O’Connell, & Koehler, 2005): 

MAPE =
1

𝑛
∑|

𝑌𝑡 − 𝑌̂𝑡

𝑌𝑡
| ×  100

𝑛

𝑡=1

 

where: 

∙ 𝑌𝑖 is the observed (actual) value; 

∙ 𝑌̂𝑖 is the predicted value;  

∙ 𝑛 is the number of predicted observations. 

 

Root Mean Square Error (RMSE) 

RMSE of an estimator of a population parameter is the square root of the mean square 

error (MSE). Root Mean Square Error can be understood as a performance measure to 

check how well a regression fits the data under consideration. RMSE assigns greater 

weight to errors with larger absolute values when compared to errors with smaller 

absolute values (Chai & Draxler, 2014). The formula for calculating the RMSE is 

(Bowerman, O’Connell, & Koehler, 2005): 

RMSE = [
1

𝑛
∑(𝑌𝑡 − 𝑌̂𝑡)

2

𝑛

𝑡=1

]

1/2

 

where: 



61 
 

∙ 𝑌𝑖 is the observed (actual) value; 

∙ 𝑌̂𝑖 is the predicted value;  

∙ 𝑛 is the number of predicted observations. 

While MAPE and RMSE have both been used to evaluate models’ performance, there is 

no consensus on the most appropriate metric for models’ errors. When the data 

analyzed presents errors that are expected to be Gaussian, the RMSE tends to be more 

appropriate to represent model performance when compared to MAPE (Chai & Draxler, 

2014).  
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8. Results 

In order to predict volatility and adjust a model for the economic situation regarding the 

BOVESPA Index (IBOV) during the COVID’s “first wave”, the present study considered 

the daily IBOV as a dependent variable, and the exchange rate between the US dollar 

and the Brazilian real (BRL_USD), the price of a barrel of Brent oil in US dollars (Brent), 

and the index of difference between the return rate on Brazilian bonds and the rate 

offered by bonds issued by the North American Treasury (EMBI) as auxiliary variables. 

The data was separated into two samples: in-sample (322 registers) and out-of-sample 

(42 registers). 

 

8.1. In-Sample Analysis 

To understand the “behavior” of each time series, the descriptive statistics of the four 

series under consideration must be analyzed. The most prominent attributes of the data 

are summarized in Table 1, wherein it is possible to observe that the IBOV and Brent 

present a heavier left tail distribution (negative skewness), while BRL_USD and EMBI 

have a heavier right tail (positive skewness). Besides, the four series are leptokurtic since 

they are more concentrated around the mean when compared to the normal 

distribution. 

Table 1 - Descriptive Statistics (n = 322) 

Statistic IBOV BRL_USD Brent EMBI 

Minimum 63,569.62 3.651 13.770 189 

First Quartile 95,059.92 3.850 58.802 229.25 

Median 100,052.15 4.033 62.470 243 

Mean 99,639.84 4.129 58.744 257.174 

Third Quartile 106,050.58 4.181 66.432 253.75 

Maximum 119,527.60 5.650 74.940 476 

Std. Error (Mean) 618.2001 0.024 0.787 3.199 

CV 0.1113 0.103 0.238 0.223 

Variance 1.23E+08 0.181 198.243 3,296.150 

Skewness -0.7796 1.776 -1.998 2.389 

Kurtosis 0.86129 2.619 3.060 4.979 
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It should be highlighted that the coefficients of variation (CV) are greater than 0.1, which 

means that the time series present enough variability to be used in tests, models, and 

proposed analyzes. 

The scatterplot matrix (Figure 5) shows the histograms of the four variables in the main 

diagonal of the matrix, corroborating the analysis concerning kurtosis and asymmetry. 

Furthermore, the graphic shows the systematic increment and/or decrement between 

each pair of variables and the trend of their relationship, wherein the BOVESPA Index 

has a negative relationship with BRL_USD and EMBI while showing a positive association 

with Brent.  

 
Figure 5 - Scatterplot Matrix of the Four Series 

The correlation matrix (expressed with Pearson’s correlation coefficient) is exhibited in 

Table 2 below, in which EMBI has a high negative linear correlation (-0.859) with the 

IBOV, indicating that the Stock Exchange reacts negatively to the positive evolution of 

the risk associated with the Brazilian economy. The same reasoning can be applied to 
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the exchange rate between the Brazilian Real and the US Dollar (USD_BRL) due to a 

negative linear correlation (-0.508) with the BOVESPA Index. The only process that 

presents a positive linear correlation with the IBOV is the price of a barrel of Brent oil in 

US$ (0.656). 

Table 2 - Pearson’s Correlation Coefficients 

  IBOV BRL_USD Brent EMBI 

IBOV 1.000    

BRL_USD -0.508 1.000   

Brent 0.656 -0.896 1.000  

EMBI -0.859 0.821 -0.868 1.0000 

 

Since the data is not in the same magnitude, the variables were standardized10 in order 

to compare their amplitude (range) and analyze the presence of outliers. After the 

transformation, the box plots of the standardized variables show that the indicators 

have a similar range. In addition, IBOV and Brent present lower influential points 

(outliers) while BRL_USD and EMBI have upper influential points as can be seen in Figure 

6: 

 
Figure 6 - Box plot (Standardized Variables) 

The historical series of the BOVESPA Index, together with its daily returns, is shown in 

Figure 7 below, where it is possible to verify the sharp drop related to the global 

 
10 Standardization is the process of transforming original data (𝑋), wherein the new variable (𝑍) present 

a mean of zero (𝜇 = 0) and a standard deviation of one (𝜎 = 1). The data can be standardized with the 
following formula: 

𝑍𝑖 =
𝑋𝑖 − 𝜇𝑋

𝜎𝑋

 ~ 𝑁(0,1) 
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economic ramifications from Covid-19's escalation. At the end of March 2020, the IBOV 

reached 63 thousand points, a value previously recorded only in July 2017. The series of 

returns shows the presence of high volatility in March 2020, with an emphasis on the 

15.99% retraction observed on day 12 of that month and subsequent recovery of 

13.02%. During this month, the circuit breaker, a mechanism that suspends trading 

when the IBOVESPA registers significant drops from 10%, was triggered six times, 

reflecting concerns about the effects of the COVID-19 pandemic. The graphs of the other 

variables can be found in Appendix 2 - Time Series, Return and Return2 of the Auxiliary 

Variables. 

 

 
Figure 7 - IBOV Time Series and IBOV Returns 
(orange region represents the out-of-sample) 
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Figure 7 can give a false effect that the volatility of the BOVESPA Index is only due to the 

pandemic of COVID-19. In the intention to verify this possibility, Figure 8 below shows 

data of the squared return, excluding information obtained since February 2020. As can 

be observed, the volatility of the time series under analysis is a recurrent phenomenon, 

independent of the advent of the global pandemic. 

 
Figure 8 - Squared Returns of IBOV 

The Kolmogorov-Smirnov and Jarque-Bera Tests (H0: the series follows a normal 

distribution), as expected, reject the null hypothesis of normality for the original series 

under study as can be seen in Table 3 below. 

Table 3 - Normality Tests 

  Kolmogorov-Smirnov Jarque-Bera 
 statistic p-value statistic p-value 

IBOV 0.132 0.000 41.546 0.000 

BRL_USD 0.218 0.000 255.593 0.000 

Brent 0.268 0.000 332.569 0.000 

EMBI 0.311 0.000 623.546 0.000 

 

The unit root tests were used to verify whether the data series have a stationary pattern. 

The tests used were: Augmented Dickey-Fuller (ADF); Phillips-Perron (PP) (both have the 

same null hypothesis, H0: the series has a unit root (not stationary)); and KPSS (H0: the 

series does not have a unit root (it is stationary)). Table 4 and Table 5 presents the results 

of these tests for the original series (in level) and the first differences (differences at lag 
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1, denoted as “d_variable”11). For the KPSS test, instead of the p-value, is presented the 

5% critical value. 

Table 4 - Stationary Tests (original series) 

    ADF   PP     KPSS 
  no trend trend  no trend trend   no trend trend 

IBOV 
statistic -0.977 -0.897  -1.448 -1.341  statistic 0.252 0.237 

p-value 0.762 0.954  0.559 0.876  crit 5% 0.463 0.146 

BRL_USD 
statistic 1.845 -0.274  1.800 -0.242  statistic 1.449 0.321 

p-value 1.000 0.991  1.000 0.992  crit 5% 0.463 0.146 

Brent 
statistic 0.915 -0.903  0.922 -0.874  statistic 0.956 0.288 

p-value 0.996 0.953  0.996 0.956  crit 5% 0.463 0.146 

EMBI 
statistic 0.034 -0.575  -0.639 -1.264  statistic 0.508 0.275 

p-value 0.960 0.979  0.858 0.895  crit 5% 0.463 0.146 

 

Table 5 - Stationary Tests (first difference of the series) 

    ADF   PP     KPSS 
  no trend trend  no trend trend   no trend trend 

D_IBOV 
statistic -21.725 -21.823  -21.328 -21.414  statistic 0.235 0.074 

p-value 0.000 0.000  0.000 0.000  crit 5% 0.463 0.146 

D_BRL_USD 
statistic -18.144 -18.420  -18.146 -18.419  statistic 0.602 0.101 

p-value 0.000 0.000  0.000 0.000  crit 5% 0.463 0.146 

D_Brent 
statistic -16.773 -17.120  -16.755 -17.104  statistic 0.692 0.079 

p-value 0.000 0.000  0.000 0.000  crit 5% 0.463 0.146 

D_EMBI 
statistic -9.218 -9.420  -17.126 -17.313  statistic 0.280 0.050 

p-value 0.000 0.000  0.000 0.000  crit 5% 0.463 0.146 

 

The ADF and PP tests do not reject the null hypothesis of the presence of a unit root for 

the individual series (for all: p-value > 0.5) while rejecting the hypothesis for the first 

differences of the series (for all: p-value < 0.001). In summary, the results point out the 

absence of stationarity for the series in level and presence of stationarity for the first 

differences of the series.  

The KPSS test, on the other hand, when comparing the critical values observed with the 

tabulated statistics (if KPSSobs > KPSStab, H0 is rejected) rejects the null hypothesis of 

 
11 Remembering that difference at lag 1 means ∆𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1. The first difference is expressed as 
“d_variable” herein due to the notation used while constructing the equation when using E-Views. 
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stationarity for the original series (in level) BRL_USD, Brent, and EMBI, but was 

inconclusive for the IBOV series, since the tests (trend and no trend) presented divergent 

results.  

Regarding the series in the first difference, the result was inconclusive for BRL_USD and 

Brent. In order to elucidate the presence/absence of stationarity, the present study 

employed the Hodrick-Prescott Filter for all analyzed series (Appendix 3 - Hodrick-

Prescott Filters), where it was clear that all series in level are non-stationary, and that 

their correspondents in first difference are stationary. 

Intending to better understand the relationship between the variables under 

consideration, Granger’s Causality test was employed, which can be interpreted as a 

way for verifying whether a time series (𝑋) helps to forecast other time series (𝑌), or 

vice versa. If 𝑋 contributes to forecasting 𝑌, then the unrestricted model with the past 

values of 𝑋 will add relevant (significant) information to forecast 𝑌. 

The variables in the first differences were used since the Granger’s Causality test 

requires that the tested indicators be stationary (a fact corroborated by the ADF, PP, 

and KPSS tests). The results suggest that: 

✓ the exchange rate between the US dollar and the Brazilian real (BRL_USD) 

presents a causality effect over the BOVESPA index (p-value = 0.001), and an 

inverse relationship is also significant (p-value = 0.021).  

✓ the price of a barrel of Brent oil in US dollars (Brent) has no causality effect 

over the IBOV (p-value = 0.489), but the opposite relationship is observed (p-

value = 0.053).  

✓ the index regarding the difference between the return rate on Brazilian bonds 

and the rate offered by bonds issued by the North American Treasury (EMBI) 

offers a causality effect over the BOVESPA index (p-value = 0.052), and an 

inverse relationship is not significant (p-value = 0.477). 
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In summary, BRL_USD and EMBI would be relevant in the BOVESPA Index modeling, 

while Brent could be dropped. The tests were performed with other lags and the results 

were different, so the present analysis will not discard the Brent regressor based only 

on the Granger’s Causality test since the intrinsic relationship between Brent and the 

other variables (high correlation) could generate a more adequate model. The outputs 

of the tests with two lags can be seen in Table 6. 

Table 6 - Granger’s Causality Tests 

 

 

 

In order to verify whether the variables have a long-term equilibrium relationship, that 

is, that they will move together in time and that the difference between them will be 

stable (i.e., stationary), the present study utilized the Johansen’s Cointegration test (H0: 

the number of cointegration vectors is ≤ 𝑛, wherein 𝑛 = 0, 1, … , 𝑝 − 1; and 𝑝 denotes 

the number of variables used in the test).  

According to the tests, there is statistical evidence (Trace and Maximum Eigenvalue 
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statistics) for the presence of cointegration equations for the four variables analyzed, 

more details can be extracted from Table 7 below. 

Table 7 - Cointegration Test 

 

 

The results indicated that the null hypothesis of no cointegration equation must be 

rejected (line “None *”: both p-value < 0.001; Table 7). In parallel, the null hypothesis of 

the presence of at most one cointegration equation is not rejected (line “At most 1”: 

both p-value > 0.2). Consequently, it is concluded that there is cointegration between 

the variables under deliberation and that there is some long-term relationship between 

the four variables considered. 

Since the variable to be modeled is the BOVESPA Index, it is necessary to assess whether 

there is cointegration when IBOV is the dependent variable. In short, check if the IBOV 

is cointegrated with the regressors (BRL_USD, Brent, and EMBI) to, in this context, 
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indicate which model should be applied. 

Following the results observed in the Bounds test, if there is cointegration, it is possible 

to specify both short-term (ARDL) or long-term (VEC) models. Otherwise, only the short-

term model (ARDL) should be estimated. Using a significance level of 5%, the Bounds 

test results do not reject the null hypothesis (H0: there is no long-term relationship (lack 

of cointegration)) since the 𝐹-statistic and 𝑇-statistic (absolute values) are lower than 

the critical values of 𝐼(0). In this context, there is no statistical evidence for the presence 

of cointegration when IBOV is the dependent variable as can be observed in Table 8. 

Table 8 - Bounds Test (F-statistic & T-statistic) 

 

In light of the foregoing, it is concluded that the best approach to analyze the BOVESPA 

Index through the selected regressors is the ARDL (short-term model). 

When analyzing the cointegration equation, the signs of the coefficients must be 

interpreted in reverse, i.e., on average (ceteris paribus), the value of the US dollar over 

the Brazilian real (BRL_USD) presents a positive impact on the BOVESPA Index, while the 

oil price in US dollars (Brent) and the return rate on Brazilian bonds (EMBI) have negative 

impacts on the IBOV. Table 9 shows the estimated cointegration equation. 
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Table 9 - Cointegration Equation 

 

Concerning the optimal number of lags to be used for the ARDL models, the selection 

criteria did not converge to a single choice, since each criterion points to the use of 

different lags (asterisks) as can be seen in Table 10. The present study used the BIC (here 

SC) criterion since a smaller number of parameters will generate a more parsimonious 

model. It should be highlighted that Table 10 shows the fours variables as endogenous 

due to the absence of cointegration when IBOV is the dependent variable (Table 8). 

Table 10 - Lags Number Selection 
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In summary, the short-term ARDL model can be estimated by OLS with the differences 

of the original variables containing one lag. As described in Table 11, the estimated 

model will be: 

∆𝐼𝐵𝑂𝑉𝑡 = −77.636 − 0.088 × ∆𝐼𝐵𝑂𝑉𝑡−1 + 7686.559 × ∆𝐵𝑅𝐿𝑈𝑆𝐷𝑡−1

+ 18.254 × ∆𝐵𝑅𝐸𝑁𝑇𝑡−1 + 9.884 × ∆𝐸𝑀𝐵𝐼𝑡−1 

Table 11 - ARDL(1,1,1,1) Model 

Dependent Variable: D(IBOV)   

Method: Least Squares   

Date: 07/26/20   Time: 21:25   
Sample (adjusted): 3 322   

Included observations: 320 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C -77.63603 116.1531 -0.668394 0.5044 

D(IBOV(-1)) -0.088114 0.083969 -1.049367 0.2948 

D(BRL_USD(-1)) 7686.559 3598.999 2.135749 0.0335 
D(BRENT(-1)) 18.25410 76.60447 0.238290 0.8118 

D(EMBI(-1)) 9.884195 16.40551 0.602492 0.5473 
     
     R-squared 0.058683     Mean dependent var -34.55738 

Adjusted R-squared 0.046729     S.D. dependent var 2104.154 

S.E. of regression 2054.403     Akaike info criterion 18.10886 

Sum squared resid 1.33E+09     Schwarz criterion 18.16774 

Log likelihood -2892.418     Hannan-Quinn criter. 18.13237 
F-statistic 4.909354     Durbin-Watson stat 1.918188 

Prob(F-statistic) 0.000748    
     
     

 

Unfortunately, the model under consideration is not satisfactory since the diagnostics 

step pointed out that only one parameter is statistically significant, as can be seen in 

Table 11, in which the first difference of the exchange rate between the US dollar and 

the Brazilian Real presents a p-value lower than 0.05.  

In addition, the Breusch-Godfrey test rejects the null hypothesis of no serial correlation 

of the residuals, as can be observed in  

Table 12. Last but not less important, the results presented in Table 13 corroborate the 

lack of fit of the model estimated since the null hypothesis of homoscedastic residuals 

is rejected. Although the model has some stability (Figure 9). 
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Table 12 - Autocorrelation of the Residuals - ARDL 

Breusch-Godfrey Serial Correlation LM Test:  
     
     F-statistic 9.737712     Prob. F(1,314) 0.0020 

Obs*R-squared 9.625285     Prob. Chi-Square(1) 0.0019 
     
     

 

 

Table 13 - Heteroscedasticity of the Residuals - ARDL 

Heteroskedasticity Test: ARCH   
     
     F-statistic 38.71924     Prob. F(1,317) 0.0000 

Obs*R-squared 34.72243     Prob. Chi-Square(1) 0.0000 
     
     

 

 

 
Figure 9 - Model Stability - ARDL 

Models containing only BRL_USD / EMBI and Brent / EMBI as regressors were equally 

unsatisfactory according to the diagnostic steps. In this context, the ADRL modeling will 

not be appreciated in the forecasts stage and adjustment quality diagnostics. 

Furthermore, the present study performed the ARCH/GARCH modeling with the log-

returns of the variables, represented as R_IBOV, R_USD_BRL, R_Brent, and R_EMBI. 

First, the adequacy of this approach was assessed through linear regression using 

R_IBOV as a dependent variable and R_USD_BRL, R_Brent, and R_EMBI as auxiliary 

variables. Subsequently, the analysis concerning the presence/absence of conditional 
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heteroscedasticity and autocorrelation in the residuals of the generated model was 

conducted. The linear model estimated is shown in Table 14. 

Table 14 - ARCH/GARCH (Pre-diagnoses) 

Dependent Variable: R_IBOV   

Method: Least Squares   

Date: 07/30/20   Time: 00:30   
Sample (adjusted): 2 322   

Included observations: 321 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000807 0.000910 0.886881 0.3758 

R_BRL_USD -0.367560 0.121863 -3.016175 0.0028 

R_BRENT 0.055116 0.020532 2.684349 0.0076 
R_EMBI -0.457956 0.033236 -13.77901 0.0000 

     
     R-squared 0.576808     Mean dependent var -0.000382 

Adjusted R-squared 0.572803     S.D. dependent var 0.024709 
S.E. of regression 0.016150     Akaike info criterion -5.401419 

Sum squared resid 0.082680     Schwarz criterion -5.354423 

Log likelihood 870.9277     Hannan-Quinn criter. -5.382654 

F-statistic 144.0231     Durbin-Watson stat 2.282640 
Prob(F-statistic) 0.000000    

     
     

 

The ARCH LM test indicates that the ARCH approach can be employed for modeling the 

IBOV returns since the LM test rejects the null hypothesis (H0: there is no ARCH factor 

when considering the residuals) at a significance level of 5% as can be seen in the first 

portion of Table 15. 

Table 15 - ARCH LM Test (Pre-diagnoses) 

Heteroskedasticity Test: ARCH   
     
     F-statistic 40.93996     Prob. F(1,318) 0.0000 

Obs*R-squared 36.49855     Prob. Chi-Square(1) 0.0000 
     
          

Test Equation:    
Dependent Variable: RESID^2   

Method: Least Squares   

Date: 07/30/20   Time: 00:30   

Sample (adjusted): 3 322   
Included observations: 320 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.000171 3.45E-05 4.946845 0.0000 

RESID^2(-1) 0.354848 0.055459 6.398434 0.0000 
     
     R-squared 0.114058     Mean dependent var 0.000258 

Adjusted R-squared 0.111272     S.D. dependent var 0.000601 
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S.E. of regression 0.000566     Akaike info criterion -12.10934 

Sum squared resid 0.000102     Schwarz criterion -12.08579 

Log likelihood 1939.495     Hannan-Quinn criter. -12.09994 
F-statistic 40.93996     Durbin-Watson stat 2.007313 

Prob(F-statistic) 0.000000    
     
     

The second portion of Table 15 shows that the squared residuals at time 𝑡 (here 

RESID^2) can be modeled using the squared residuals at time 𝑡 − 1 (here RESID^2(-1)) 

as a regressor (statistically significant with p-value < 0.001). This indicates the presence 

of autocorrelation regarding the residuals estimated. 

The correlogram of the residuals and squared residuals (Figure 10), which presents the 

autocorrelation (ACF, here represented as “AC”) and partial autocorrelation (PACF, here 

represented as “PAC”), corroborates the presence of autocorrelation involving the 

residuals estimated by the linear model (p-values < 0.05). 

 

Date: 07/25/20   Time: 00:31

Sample: 1 322

Included observations: 321

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.163 -0.163 8.5919 0.003

2 -0.013 -0.040 8.6449 0.013

3 -0.029 -0.039 8.9159 0.030

4 0.085 0.075 11.259 0.024

5 -0.041 -0.016 11.801 0.038

6 -0.114 -0.124 16.072 0.013

7 0.134 0.102 22.011 0.003

8 -0.171 -0.156 31.697 0.000

9 -0.026 -0.076 31.923 0.000

10 0.014 0.016 31.991 0.000

11 -0.054 -0.099 32.958 0.001

12 -0.040 -0.046 33.481 0.001
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Figure 10 - Correlogram (Pre-diagnoses) 

 

As expected, the Jarque-Bera test strongly rejects the null hypothesis of the returns 

being normally distributed (p-value < 0.001) (Table 16).  

Table 16 - Descriptive Statistics of the Returns (n = 321) 

Statistic R_IBOV R_BRL_USD R_Brent R_EMBI 

Minimum -0.15994 -0.03057 -0.25639 -0.14328 

Maximum 0.13023  0.043813  0.301613  0.194935 

Mean -0.00038 0.00106 -0.00341 0.00133 

Std. Error (Mean) 0.0247 0.0089 0.0474 0.0341 

Skewness -1.7030  0.568701 -0.9236  1.362025 

Kurtosis 17.9999 7.0496 17.0659 11.7171 
     

 Jarque-Bera  3164.478  236.6440  2691.880  1115.595 

 Probability  0.000000  0.000000  0.000000  0.000000 

 

Since the log-returns have an ARCH factor, the modeling can be conducted properly. 

Several models were tested with different residual distributions (Normal, Student's 𝑡 

and Generalized (GED)), in which those with significant coefficients, higher log-

likelihood, lower BIC, absence of heteroscedasticity and autocorrelation of the residuals 

using ARCH LM test (with 1 lag and 36 lags12), were selected for the fit quality and 

 
12 The literature indicates that many lags (here 36) also must be used while performing the ARCH LM test 
during ARCH/GARCH modeling when daily data is analyzed. 

Date: 07/25/20   Time: 00:31

Sample: 1 322

Included observations: 321

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.321 0.321 33.433 0.000

2 0.257 0.171 54.827 0.000

3 0.265 0.163 77.801 0.000

4 0.246 0.115 97.601 0.000

5 0.184 0.033 108.67 0.000

6 0.278 0.166 134.13 0.000

7 0.216 0.045 149.47 0.000

8 0.113 -0.060 153.72 0.000

9 0.101 -0.035 157.10 0.000

10 0.295 0.224 186.03 0.000

11 0.240 0.099 205.24 0.000

12 0.121 -0.077 210.14 0.000
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forecast stage.  

The individual diagnoses involving four candidate models using three different residual 

distributions are presented in Table 17. 

Table 17 - Adherent Models - ARCH/GARCH 

 residual distribution type 

GARCH(1,1) Normal Student’s t GED 

Is ARCH coefficient significant? Yes Yes Yes 

Is GARCH coefficient significant? Yes Yes Yes 

Log-likelihood 939.960 944.465 944.053 

BIC -5.731 -5.741 -5.739 

Is there heteroscedasticity? (lag 1) No No No 

Is there heteroscedasticity? (lag 36) No No No 

Are the residues autocorrelated? No No No 

Are the squared residues autocorrelated? No No No 

  
residual distribution type 

GARCH(1,2) Normal Student’s t GED 

Is ARCH coefficient significant? Yes Yes Yes 

Are GARCH coefficients significant? Yes Yes Yes 

Log-likelihood 940.606 944.888 944.691 

BIC -5.717 -5.725 -5.724 

Is there heteroscedasticity? (lag 1) No No No 

Is there heteroscedasticity? (lag 36) No No No 

Are the residues autocorrelated? No No No 

Are the squared residues autocorrelated? No No No 

 

 residual distribution type 

EGARCH(1,1) Normal Student’s t GED 

Is ARCH coefficient significant? Yes Yes Yes 

Is GARCH coefficient significant? Yes Yes Yes 

Log-likelihood 937.513 942.685 942.341 

BIC -5.715 -5.729 -5.727 

Is there heteroscedasticity? (lag 1) No No No 

Is there heteroscedasticity? (lag 36) No No No 

Are the residues autocorrelated? No No No 

Are the squared residues autocorrelated? No No No 

  

 residual distribution type 

IGARCH(1,1) Normal Student’s t GED 

Is ARCH coefficient significant? Yes Yes Yes 

Is GARCH coefficient significant? Yes Yes Yes 

Log-likelihood 930.132 940.454 940.072 

BIC -5.705 -5.752 -5.749 
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Is there heteroscedasticity? (lag 1) No No No 

Is there heteroscedasticity? (lag 36) No No No 

Are the residues autocorrelated? Yes Yes No 

Are the squared residues autocorrelated? - - No 

  

The models containing residuals with Student's 𝑡 distribution showed better results in 

terms of log-likelihood and BIC in the GARCH(1,1), GARCH(1,2) and EGARCH(1,1), while 

IGARCH(1,1) with generalized residuals (GED) was the only one approved in the criteria 

mentioned in Table 17 above. Those models will be evaluated and compared to 

determine the “best” model in the out-of-sample analysis section below. 

 

8.2. Out-of-Sample Analysis (Volatility Forecast) 

In order to assess the in-sample models selected for the R_IBOV modeling, the indexes 

achieved in the MAPE and RMSE were compared for the “best” models using the 

forecast period containing 42 registers (out-of-sample). The results related to the 

selection criteria can be seen in Table 18 below. 

Table 18 - Estimated Models and Selection Criteria 

Model Residual Type MAPE RMSE 

GARCH(1,1) Student's T 116.721 0.0159 

GARCH(1,2) Student's T 116.642 0.0158 

EGARCH(1,1) Student's T 117.449 0.0159 

IGARCH(1,1) GED 114.636 0.0162 

 

As can be seen, the selection criteria did not converge to a single model for the BOVESPA 

Index. The literature, despite classifying this disagreement as a rare event, guides the 

choice for the IGARCH(1,1) model since the MAPE criterion is notoriously most used in 

this type of analysis, in addition to the distribution of the errors not being Gaussian (see 

(Chai & Draxler, 2014)). The model with the best fit is described below and Table 19 

demonstrates that the parameters are statically significant (p-values < 0.05). 
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𝑅_𝐼𝐵𝑂𝑉𝑡 = 0.0007 − 0.3258 × 𝑅_𝐵𝑅𝐿_𝑈𝑆𝐷𝑡 + 0,0767 × 𝑅_𝐵𝑟𝑒𝑛𝑡𝑡

− 0,2337 × 𝑅_𝐸𝑀𝐵𝐼𝑡 

𝜎𝑡
2 = 0.0845 × 𝜀𝑡−1

2 + 0.9154 × 𝜎𝑡−1
2  

Table 19 - Best Model - R_IBOV 

 

It should be highlighted that the sum of the ARCH and GARCH parameters (0.0845 and 

0.9154) is equal to one, which indicates that volatility shocks have a persistent effect on 

the conditional variance. In other words, the conditional variance does not converge on 

a constant unconditional variance in the long run. 

After defining that the IGARCH(1,1) with GED errors is the most appropriate model for 

the volatility of the BOVESPA Index returns according to the in-sample collected – and 

before analyzing its capability to predict the said indicator using the out-of-sample 
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containing 42 registers –, it is important to verify whether the estimated model presents 

stable and non-correlated residuals. 

In this context, the residual diagnostics employing the ARCH LM test using 1 lag (Table 

20) and 36 lags (Table 21) was conducted (remembering that the literature indicates 

that a high length lag structure must also be used when working with daily data).  

The results using 1 lag indicates that the residuals are homoscedasticity since the null 

hypothesis (H0: there is no ARCH factor when considering the residuals) was not rejected 

(p-value > 0.05) as described in the first portion of Table 20. 

The second portion of Table 20 shows that the squared residuals at time 𝑡 cannot be 

modeled using the squared residuals at time 𝑡 − 1 as a regressor (parameter not 

statistically significant with p-value > 0.05). This indicates the absence of autocorrelation 

regarding the residuals estimated by the IGARCH(1,1) model. 

Table 20 - ARCH LM Test with 1 lag (Residuals - IGARCH(1,1)) 

Heteroskedasticity Test: ARCH   
     
     F-statistic 0.101982     Prob. F(1,318) 0.7497 

Obs*R-squared 0.102590     Prob. Chi-Square(1) 0.7487 
     
          

Test Equation:    
Dependent Variable: WGT_RESID^2  

Method: Least Squares   

Date: 07/25/20   Time: 00:30   

Sample (adjusted): 3 322   
Included observations: 320 after adjustments  

     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 1.257368 0.140098 8.974945 0.0000 

WGT_RESID^2(-1) -0.017904 0.056063 -0.319346 0.7497 
     
     R-squared 0.000321     Mean dependent var 1.235380 

Adjusted R-squared -0.002823     S.D. dependent var 2.179518 

S.E. of regression 2.182592     Akaike info criterion 4.405134 

Sum squared resid 1514.859     Schwarz criterion 4.428686 

Log likelihood -702.8214     Hannan-Quinn criter. 4.414538 
F-statistic 0.101982     Durbin-Watson stat 1.995368 

Prob(F-statistic) 0.749674    
     
     

 

The same analysis was conducted using 36 lags and the results held. The ARCH LM test 
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with 36 lags indicates that the residuals are homoscedasticity (p-value > 0.005) as 

described in the first portion of Table 21. The second portion of Table 21 shows that the 

squared residuals at time 𝑡 cannot be modeled using the squared residuals at time 𝑡 − 1 

to 𝑡 − 36 (parameters not statistically significant with p-value > 0.05), which indicates 

the presence of autocorrelation regarding the residuals estimated. 

Table 21 - ARCH LM Test with 36 lags (Residuals - IGARCH(1,1)) 

Heteroskedasticity Test: ARCH   
     
     F-statistic 0.776291     Prob. F(36,248) 0.8179 

Obs*R-squared 28.86338     Prob. Chi-Square(36) 0.7950 
     
          

Test Equation:    

Dependent Variable: WGT_RESID^2  
Method: Least Squares   

Date: 07/25/20   Time: 00:30   

Sample (adjusted): 38 322   

Included observations: 285 after adjustments  
     
     Variable Coefficient Std. Error t-Statistic Prob.   
     
     C 0.974419 0.427378 2.279992 0.0235 

WGT_RESID^2(-1) -0.028928 0.063487 -0.455646 0.6490 

WGT_RESID^2(-2) 0.032745 0.062953 0.520151 0.6034 

WGT_RESID^2(-3) 0.032254 0.062971 0.512196 0.6090 

WGT_RESID^2(-4) 0.022431 0.062979 0.356163 0.7220 
WGT_RESID^2(-5) 0.017675 0.063020 0.280463 0.7794 

WGT_RESID^2(-6) 0.021183 0.063063 0.335902 0.7372 

WGT_RESID^2(-7) -0.012963 0.062922 -0.206020 0.8369 

WGT_RESID^2(-8) 0.099841 0.062732 1.591537 0.1128 
WGT_RESID^2(-9) 0.034144 0.062962 0.542289 0.5881 

WGT_RESID^2(-10) 0.053728 0.062936 0.853699 0.3941 

WGT_RESID^2(-11) 0.115647 0.062990 1.835952 0.0676 

WGT_RESID^2(-12) -0.045786 0.063369 -0.722528 0.4707 
WGT_RESID^2(-13) 0.062010 0.063180 0.981488 0.3273 

WGT_RESID^2(-14) -0.009381 0.061455 -0.152644 0.8788 

WGT_RESID^2(-15) -0.036635 0.061065 -0.599936 0.5491 

WGT_RESID^2(-16) 0.022900 0.060888 0.376100 0.7072 
WGT_RESID^2(-17) -0.010881 0.060991 -0.178397 0.8586 

WGT_RESID^2(-18) -0.060297 0.060953 -0.989238 0.3235 

WGT_RESID^2(-19) -0.002784 0.060846 -0.045749 0.9635 

WGT_RESID^2(-20) 0.001644 0.060818 0.027028 0.9785 
WGT_RESID^2(-21) -0.102286 0.059102 -1.730686 0.0848 

WGT_RESID^2(-22) -0.109686 0.059401 -1.846527 0.0660 

WGT_RESID^2(-23) -0.034090 0.059829 -0.569793 0.5693 

WGT_RESID^2(-24) -0.082993 0.059642 -1.391521 0.1653 
WGT_RESID^2(-25) -0.029470 0.059855 -0.492357 0.6229 

WGT_RESID^2(-26) -0.025816 0.059486 -0.433993 0.6647 

WGT_RESID^2(-27) 0.014883 0.059457 0.250314 0.8026 

WGT_RESID^2(-28) 0.043132 0.059420 0.725885 0.4686 
WGT_RESID^2(-29) 0.031841 0.059230 0.537586 0.5913 

WGT_RESID^2(-30) 0.071589 0.059140 1.210508 0.2272 

WGT_RESID^2(-31) -0.003108 0.059270 -0.052436 0.9582 

WGT_RESID^2(-32) 0.001867 0.059340 0.031459 0.9749 
WGT_RESID^2(-33) -0.009893 0.059808 -0.165417 0.8688 
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WGT_RESID^2(-34) 0.004472 0.061219 0.073052 0.9418 

WGT_RESID^2(-35) 0.135372 0.061740 2.192628 0.0293 

WGT_RESID^2(-36) 0.007483 0.062026 0.120647 0.9041 
     
     R-squared 0.101275     Mean dependent var 1.228990 

Adjusted R-squared -0.029185     S.D. dependent var 2.159129 

S.E. of regression 2.190409     Akaike info criterion 4.526642 
Sum squared resid 1189.877     Schwarz criterion 5.000825 

Log likelihood -608.0465     Hannan-Quinn criter. 4.716731 

F-statistic 0.776291     Durbin-Watson stat 1.998121 

Prob(F-statistic) 0.817866    
     
      

In addition, as can be seen in Figure 11, the correlogram of the residual and squared 

residuals of this model present values with low magnitude (close to zero), which are in 

accordance with the large p-values observed. Thus, the diagnoses obtainable from the 

correlogram below corroborates that the residuals are not autocorrelated. 
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Figure 11 - Correlogram of Residuals - IGARCH(1,1) 

 

Finally, Figure 12 illustrates a visual comparison between the observed returns and the 

returns adjusted by the IGARCH(1,1) model. It should be emphasized that the orange 

area represents the out-of-sample observations.  

Date: 07/25/20   Time: 00:31

Sample: 1 322

Included observations: 321

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob*

1 -0.018 -0.018 0.1037 0.747

2 0.048 0.048 0.8507 0.654

3 0.044 0.046 1.4808 0.687

4 0.002 0.002 1.4827 0.830

5 0.029 0.025 1.7572 0.882

6 0.032 0.031 2.0951 0.911

7 0.044 0.042 2.7269 0.909

8 0.082 0.079 4.9322 0.765

9 0.028 0.025 5.1940 0.817

10 0.017 0.007 5.2908 0.871

11 0.081 0.072 7.5071 0.757

12 -0.060 -0.063 8.7068 0.728

13 0.060 0.044 9.9146 0.701

14 -0.013 -0.020 9.9710 0.764

15 -0.059 -0.070 11.138 0.743

16 0.023 0.006 11.324 0.789

17 -0.028 -0.029 11.586 0.825

18 -0.070 -0.079 13.284 0.774

19 0.011 -0.000 13.325 0.822

20 -0.012 -0.000 13.375 0.861

21 -0.078 -0.080 15.500 0.797

22 -0.093 -0.098 18.526 0.674

23 -0.056 -0.035 19.627 0.664

24 -0.068 -0.067 21.246 0.624

25 -0.047 -0.023 22.016 0.635

26 -0.042 -0.018 22.632 0.654

27 0.021 0.030 22.787 0.696

28 0.015 0.052 22.867 0.740

29 0.000 0.036 22.867 0.783

30 0.057 0.080 24.025 0.771

31 -0.039 0.002 24.562 0.787

32 -0.020 0.003 24.704 0.818

33 -0.020 -0.010 24.855 0.845

34 -0.027 -0.013 25.121 0.865

35 0.108 0.120 29.376 0.736

36 0.006 -0.005 29.389 0.774
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Figure 12 - Observed Return x Adjusted Return - IGARCH(1,1) 

After choosing the model with the best fit, a 95.0% confidence interval for the IBOV 

return was elaborated to verify the coverage of the estimated model over the actual 

observations, that is, observe the number of points that remain within the confidence 

interval for the series in-sample and out-of-sample of the BOVESPA Index returns. Figure 

13 exhibits the confidence interval.  

 
 Figure 13 - 95.0% Confidence Interval - IGARCH(1,1) 

The graphic analysis regarding the 95.0% confidence interval was implemented only 

with the out-of-sample registers to facilitate the assessment of the fit quality and can be 
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seen in Figure 14: 

 
Figure 14 - 95.0% Confidence Interval (out-of-sample) - IGARCH(1,1) 

Despite the increase in volatility observed at the end of February/2020, the IGARCH(1,1) 

model with GED residuals presented sufficient quality to cover more than 82.0% of the 

in-sample observations. The coverage of the out-of-sample was even greater, reaching 

90.0% of the observations contained in this section as shown in Table 22 below. 

Table 22 - Probability Coverage (IGARCH(1,1))  

  In-sample out-of-sample Total 

Covered Points 266 38 304 

Number of Observations 321 42 363 

Coverage Probability 82.87% 90.48% 83.75% 
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9. Conclusions 

The volatility significantly influences stakeholders in making decisions about investing 

and how much to invest. Within this context, it is extremely important to estimate and 

forecast the volatility of financial assets and indices, especially in the composition of 

investment portfolios because investors are not only interested in the average returns 

of stocks but also their risk. When it is possible to measure, with the greatest precision, 

whether the variance of an asset will be greater or lesser in a given period, the risk and 

the exposure to large losses can be better controlled. 

The criteria for estimating and comparing models were based on the significance of the 

parameters, values of AIC/BIC, and the absence of heteroscedasticity and 

autocorrelation of the residuals. Thus, MAPE and RMSE were employed during the 

choice of the best model and consequent extrapolation of the sample in order to verify 

the fit quality during the estimation. 

The results suggested that ceteris paribus the exchange rate between the US dollar and 

the Brazilian real (BRL_USD), as well as the index regarding the difference between the 

return rate on Brazilian bonds and the rate offered by bonds issued by the North 

American Treasury (EMBI), would be relevant in the BOVESPA Index modeling, while the 

price of a barrel of Brent oil in US dollars (Brent) would not be pertinent for such analysis. 

Correspondingly, according to the results, the Autoregressive Distributed Lag Model 

(short-term model) was the most appropriate approach for modeling the BOVESPA 

Index since there is no statistical evidence for the presence of cointegration when IBOV 

is the dependent variable. Unfortunately, the above-mentioned was not satisfactory 

since the diagnostics step highlighted that only one parameter was statistically 

significant (the first difference of the exchange rate between the US dollar and the 

Brazilian real) presenting a p-value lower than 0.05. In addition, the null hypothesis of 

no serial correlation of the residuals was rejected, as well as the null hypothesis of 

homoscedastic, corroborating the lack of fit of the model estimated although it had 

some stability. 
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Regarding the causality, the exchange rate between the US dollar and the Brazilian real 

(BRL_USD) presents a causality effect over the BOVESPA index and an inverse 

relationship is also significant. In addition, the price of a barrel of Brent oil in US dollars 

(Brent) has no causality effect over the IBOV, but the opposite relationship is observed. 

Finally, the index regarding the difference between the return rate on Brazilian bonds 

and the rate offered by bonds issued by the North American Treasury (EMBI) offers a 

causality effect over the BOVESPA index and an inverse relationship is not significant. 

Among the models tested concerning volatility, the IGARCH(1,1) with GED residuals 

showed the best fit quality. This model provided a behavioral analysis of the samples, 

providing satisfactory short-term forecasts with a coverage probability greater than 

82,0% during the sample replicating process (out-of-sample).  

 

9.1. Limitations of the Study 

The sample did not include information before 2019 since there were declaration errors 

on weekends and holidays, such as trade registers on December 25 and December 31.  

The daylight-saving time in Brazil remained unchanged between 1985 and 2019 and no 

system has been prepared for the end of this event. There were a series of errors with 

time zone, opening and closing times of exchanges, and data streaming. It was necessary 

to do a total reset on the Brazilian calendar, the data still presents some problems, and 

the system did not recover all holidays (investing.com support team, 2020).  

Considering the above-mentioned issue, the present analysis was limited to 364 

registers: January 2, 2019, to April 30, 2020, containing 322 registers (in-sample); and 

May 5, 2010, to July 10, 2020, containing 42 registers (out-of-sample). 

 

 

http://www.investing.com/
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9.2. Future Study Recommendations 

Still linked to the sample issue, the study can be replicated using a larger sample to 

corroborate the statistical evidence for the presence of cointegration when IBOV is the 

dependent variable. 

In addition, a larger sample could point out a different range of ARCH/GARCH family 

models to analyze the IBOV volatility with the support of the auxiliary variables (BRENT, 

BRL_USD, and EMBI).  
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Appendix 1 - Composition of the BOVESPA Index  

Table 23 - Current Composition of the IBOVESPA (May to August - 2020) 

Code Stock Type Theoretical quantity Part. (%) 

ABEV3 AMBEV S/A ON 4.354.228.928 3,395 

AZUL4 AZUL PN N2 317.471.474 0,38 

B3SA3 B3 ON NM 2.046.021.644 5,405 

BBAS3 BRASIL ON NM 1.418.466.803 2,78 

BBDC3 BRADESCO ON N1 1.253.093.907 1,513 

BBDC4 BRADESCO PN N1 4.261.649.634 5,612 

BBSE3 BBSEGURIDADE ON NM 671.601.167 1,226 

BEEF3 MINERVA ON NM 259.260.688 0,219 

BPAC11 BTGP BANCO UNT N2 201.102.231 0,585 

BRAP4 BRADESPAR PN N1 222.089.397 0,456 

BRDT3 PETROBRAS BR ON NM 728.125.000 0,978 

BRFS3 BRF SA ON NM 811.416.229 1,082 

BRKM5 BRASKEM PNA N1 264.632.416 0,385 

BRML3 BR MALLS PAR ON NM 843.313.591 0,582 

BTOW3 B2W DIGITAL ON NM 194.807.150 0,981 

CCRO3 CCR SA ON NM 1.115.695.556 0,947 

CIEL3 CIELO ON NM 1.118.386.806 0,312 

CMIG4 CEMIG PN N1 966.005.862 0,632 

COGN3 COGNA ON ON NM 1.829.322.117 0,697 

CPFE3 CPFL ENERGIA ON NM 170.209.781 0,34 

CRFB3 CARREFOUR BR ON NM 384.888.219 0,529 

CSAN3 COSAN ON NM 153.417.832 0,637 

CSNA3 SID NACIONAL ON 642.387.288 0,396 

CVCB3 CVC BRASIL ON NM 145.617.442 0,138 

CYRE3 CYRELA REALT ON NM 281.154.098 0,308 

ECOR3 ECORODOVIAS ON NM 171.079.276 0,123 

EGIE3 ENGIE BRASIL ON NM 254.813.401 0,685 

ELET3 ELETROBRAS ON N1 358.028.908 0,597 

ELET6 ELETROBRAS PNB N1 240.022.548 0,459 

EMBR3 EMBRAER ON NM 736.171.905 0,438 

ENBR3 ENERGIAS BR ON NM 295.402.225 0,345 

ENGI11 ENERGISA UNT N2 250.709.436 0,753 

EQTL3 EQUATORIAL ON NM 1.010.186.085 1,273 

FLRY3 FLEURY ON NM 305.126.422 0,478 

GGBR4 GERDAU PN N1 1.031.246.473 0,833 

GNDI3 INTERMEDICA ON NM 458.380.483 1,728 

GOAU4 GERDAU MET PN N1 662.644.908 0,235 

GOLL4 GOL PN N2 134.613.917 0,115 

HAPV3 HAPVIDA ON ED NM 217.060.254 0,783 

HGTX3 CIA HERING ON NM 126.302.831 0,13 

HYPE3 HYPERA ON NM 407.518.048 0,815 
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IGTA3 IGUATEMI ON NM 86.913.923 0,197 

IRBR3 IRBBRASIL RE ON NM 923.377.994 0,649 

ITSA4 ITAUSA PN N1 4.494.029.326 2,781 

ITUB4 ITAUUNIBANCO PN ED N1 4.738.562.684 7,414 

JBSS3 JBS ON ED NM 1.620.646.499 2,657 

KLBN11 KLABIN S/A UNT N2 637.772.642 0,781 

LAME4 LOJAS AMERIC PN N1 696.190.451 1,191 

LREN3 LOJAS RENNER ON ED NM 785.308.019 2,073 

MGLU3 MAGAZ LUIZA ON NM 661.834.080 2,262 

MRFG3 MARFRIG ON NM 423.143.092 0,374 

MRVE3 MRV ON NM 294.706.737 0,307 

MULT3 MULTIPLAN ON N2 270.279.854 0,388 

NTCO3 GRUPO NATURA ON NM 671.197.455 1,639 

PCAR3 P.ACUCAR-CBD ON ED NM 156.575.731 0,707 

PETR3 PETROBRAS ON N2 2.949.857.480 3,783 

PETR4 PETROBRAS PN N2 4.520.185.835 5,61 

QUAL3 QUALICORP ON ED NM 281.558.308 0,502 

RADL3 RAIADROGASIL ON NM 207.425.426 1,494 

RAIL3 RUMO S.A. ON NM 1.053.753.059 1,434 

RENT3 LOCALIZA ON NM 593.233.155 1,395 

SANB11 SANTANDER BR UNT 362.227.661 0,673 

SBSP3 SABESP ON EJ NM 339.982.576 0,937 

SULA11 SUL AMERICA UNT N2 278.742.752 0,858 

SUZB3 SUZANO S.A. ON NM 725.859.318 1,967 

TAEE11 TAESA UNT N2 218.568.274 0,413 

TIMP3 TIM PART S/A ON NM 807.711.660 0,709 

TOTS3 TOTVS ON EDB NM 403.397.655 0,547 

UGPA3 ULTRAPAR ON NM 1.086.422.872 1,083 

USIM5 USIMINAS PNA ED N1 513.781.576 0,17 

VALE3 VALE ON NM 3.292.010.807 10,155 

VIVT4 TELEF BRASIL PN 415.131.868 1,303 

VVAR3 VIAVAREJO ON NM 1.146.662.628 0,724 

WEGE3 WEG ON NM 689.271.972 1,893 

YDUQ3 YDUQS PART ON ED NM 299.667.897 0,625 

Total Theoretical Quantity 67.959.663.646 100 
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Appendix 2 - Time Series, Return and Return2 of the Auxiliary Variables 

 

 

 
Figure 15 - BRL_USD Daily Time Series 
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Figure 16 - Brent Daily Time Series 
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Figure 17 - EMBI Daily Time Series  
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Appendix 3 - Hodrick-Prescott Filters 

 
 

 

 

Figure 18 - Hodrick-Prescott Filter (IBOV and D_IBOV) 
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Figure 19 - Hodrick-Prescott Filter (BRL_USD and D_BRL_USD) 
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Figure 20 - Hodrick-Prescott Filter (Brent and D_Brent) 
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Figure 21 - Hodrick-Prescott Filter (EMBI and D_EMBI) 
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