This text serves as a pedagogical introduction to the theoretical concepts on application of topology in condensed matter systems. It covers an introduction to basic concepts of topology, emphasizes the relation of geometric concepts such as the Berry phase to topology, having in mind applications in condensed matter. In addition to describing two basic systems such as topological insulators and topological superconductors, it also reviews topological spin systems and photonic systems. It also describes the use of quantum information concepts in the context of topological phases and phase transitions, and the effect of non-equilibrium perturbations on topological systems.

This book provides a comprehensive introduction to topological insulators, topological superconductors and topological semimetals. It includes all the mathematical background required for the subject. There are very few books with such a coverage in the market.
Preface to the Portuguese Edition

The introduction of the first theoretical model of a topological superconductor by Kitaev in 2001, and the invention of the topological insulator by Kane and Mele in 2005 have led to a renewed interest in condensed matter topological systems. This followed earlier studies of magnetic moments in low dimensional systems, such as in the context of the Kosterlitz-Thouless transition and spin chains, and also in the context of the quantum Hall effect. Indeed, we have witnessed a great proliferation of scientific papers in the last 10 years on the subject, which has been one of the main research areas in the theoretical group of the Center for Physics and Engineering of Advanced Materials at Instituto Superior Técnico (IST) in Lisbon.

Over the years, we increasingly felt the need to provide graduate students at IST with a text allowing them to quickly learn recently developed concepts that are still very disperse in the literature.

Chapters 1 and 2 present the basic concepts relevant to the classification of topological properties. While the first chapter may be omitted on a first reading, we consider chapter 2 indispensible for the understanding of the remainder of the book. The remaining chapters do not need to be read sequentially, so the reader may directly choose to read those which most interest him or her. The first five chapters contain exercises that will help consolidate the understanding of the concepts and techniques. The remaining chapters contain applications of the basic concepts.

Chapters 3, 4, and 5 are devoted to the three classes of fermionic topological systems this book is mostly concerned with, namely, the topological insulators, superconductors and semimetals.

Spin and photonic systems are discussed in chapters 6 and 7, respectively. Under certain conditions, these systems also have topological properties. In chapter 8 we discuss the application of quantum information methods as an alternative way to understand the properties of topological systems. Finally, the robustness of out-of-equilibrium systems’ topological properties is studied in chapter 9. The book includes two appendices discussing some complementary aspects to the presented subjects.

Interacting systems have purposely been left out of this introductory text, owing both to their complexity and to the fact that they are a still developing subject.

This text serves as a pedagogical introduction to the theoretical concepts on the subject, allowing the advanced student or researcher to acquire the basic knowledge necessary to access the specialized literature. It does
not attempt to provide a general review of this extensive field. Instead, we refer the interested reader to the review articles which include recent experimental and theoretical developments.

The bibliography at the end of each chapter does not aim to be, and could not be, comprehensive. It includes those papers which most influenced the authors in the writing process, or which were found to best serve as complementary reading.

There are several books and review articles which cover topological systems and can be used as complementary reading to this introductory text. We suggest, for instance,

- M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010)

Finally, we would like to thank the colleagues and researchers with whom we have discussed and worked, over the years, on the field of topological condensed matter: Vítor R. Vieira, Eduardo Castro, Nikola Paunković, Pedro Ribeiro, Bruno Mera, Tilen Cadez, Linhu Li, Zlatko Tesanovic, José Lages, Henrik Johannesson, Rubem Mondaini, Marco Cardoso, Pedro Bicudo, Antonio García-Garcia, Maxim Dzero, Stellan Ostlund, Masaki Tezuka, Norio Kawakami.

Lisbon, February 2019

Miguel A. N. Araújo1,2 and Pedro D. Sacramento1

1CeFEMA, Instituto Superior Técnico, Universidade de Lisboa
2Department of Physics, University of Évora
Contents

1. Basic notions on Topology .. 1
 1.1 Loop at x .. 1
 1.2 Homotopy classes based at x 2
 1.3 The fundamental group π_1 2
 1.4 The second homotopy group π_2 4
 1.5 Examples of domains and groups 6
 1.6 Application to the Hamiltonians of fermionic systems 6

2. Concepts .. 11
 2.1 Berry phase ... 11
 2.2 Berry phase effects 13
 2.2.1 Electric polarization of the unit cell 13
 2.2.2 Adiabatic current 14
 2.2.3 Anomalous velocity 16
 2.3 Discrete symmetries 17
 2.4 Topology of one-dimensional systems 23
 2.4.1 Shockley model and winding number 23
 2.4.2 Zak phase 25
 2.4.3 The number of edge states 26
 2.4.4 Higher dimensional Hamiltonian 26
 2.5 The two-level system 27
 2.6 Two-dimensional systems: the Chern number 29
 2.7 Calculating the Chern number from plaquettes 32
 2.8 Berry curvature as a sum over states 33
 2.9 Edge states .. 34
 2.10 Quantum transport by edge states 36
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.10.1</td>
<td>Quantum transport in one dimension</td>
<td>36</td>
</tr>
<tr>
<td>2.10.2</td>
<td>Hall conductance in two-dimensional systems</td>
<td>37</td>
</tr>
<tr>
<td>2.10.3</td>
<td>Quantum Hall effect</td>
<td>39</td>
</tr>
<tr>
<td>2.11</td>
<td>Dimensional reduction</td>
<td>40</td>
</tr>
<tr>
<td>2.12</td>
<td>Edge states in graphene</td>
<td>40</td>
</tr>
<tr>
<td>2.13</td>
<td>The calculation of edge states</td>
<td>43</td>
</tr>
<tr>
<td>3.</td>
<td>Topological insulators</td>
<td>47</td>
</tr>
<tr>
<td>3.1</td>
<td>The construction of the anomalous Hall insulator</td>
<td>47</td>
</tr>
<tr>
<td>3.2</td>
<td>Graphene and Haldane model</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>Edge states in Haldane model</td>
<td>50</td>
</tr>
<tr>
<td>3.4</td>
<td>The Chern insulator in a magnetic field</td>
<td>51</td>
</tr>
<tr>
<td>3.5</td>
<td>Kane-Mele topological insulator</td>
<td>53</td>
</tr>
<tr>
<td>3.6</td>
<td>The topological \mathbb{Z}_2 index</td>
<td>54</td>
</tr>
<tr>
<td>3.7</td>
<td>The three-dimensional topological insulator</td>
<td>57</td>
</tr>
<tr>
<td>3.8</td>
<td>Models for topological insulators</td>
<td>58</td>
</tr>
<tr>
<td>3.9</td>
<td>Higher order topological insulators</td>
<td>61</td>
</tr>
<tr>
<td>3.10</td>
<td>Symmetry classes of gapped Hamiltonians</td>
<td>61</td>
</tr>
<tr>
<td>4.</td>
<td>Topological superconductors</td>
<td>65</td>
</tr>
<tr>
<td>4.1</td>
<td>Bogoliubov-de Gennes equations</td>
<td>65</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Particle-hole symmetry</td>
<td>66</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Superconducting pairing</td>
<td>68</td>
</tr>
<tr>
<td>4.1.3</td>
<td>The BCS wave function</td>
<td>71</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Majorana fermions</td>
<td>71</td>
</tr>
<tr>
<td>4.1.5</td>
<td>The Nambu (or Balian-Werthammer) basis</td>
<td>72</td>
</tr>
<tr>
<td>4.2</td>
<td>One-dimensional Kitaev model</td>
<td>74</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Representation of the Kitaev model by Majorana fermions</td>
<td>75</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Fermionic parity of the groundstate</td>
<td>78</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Extended Kitaev model</td>
<td>80</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Shockley model expressed by Majorana fermions</td>
<td>82</td>
</tr>
<tr>
<td>4.2.5</td>
<td>SSH model with triplet pairing</td>
<td>83</td>
</tr>
<tr>
<td>4.3</td>
<td>Bound states in Josephson junctions</td>
<td>89</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Majorana states in a π junction</td>
<td>89</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Andreev bound states in a ϕ junction</td>
<td>91</td>
</tr>
<tr>
<td>4.4</td>
<td>Two-dimensional superconductors</td>
<td>93</td>
</tr>
<tr>
<td>4.4.1</td>
<td>The spinless $p+ip$ superconductor</td>
<td>93</td>
</tr>
</tbody>
</table>
Contents

4.4.2 Dirac cone with s-wave superconductivity 96
4.4.3 The \mathbb{Z}_2 superconductor 98
4.4.4 Inclusion of pseudo-spin 98
4.4.5 Examples of superconductors in a two-dimensional lattice .. 100
4.4.6 Sato and Fujimoto model of a triplet superconductor 103
4.5 Superconductor with impurities 107
4.5.1 Magnetic chain on a singlet superconductor 110
4.5.2 Magnetic chain on a triplet superconductor 112
4.5.3 Chern number in real space 114

5. Topological semimetals 121
5.1 Definition and symmetries 121
5.2 Type I Weyl points .. 122
5.2.1 Sources and drains of Berry curvature 123
5.2.2 Density of states 124
5.3 Surface states with “Fermi arcs” 124
5.4 Chiral anomaly .. 126
5.5 Perturbation of a Dirac point 128
5.6 Type II Weyl points .. 129
5.7 Nodal rings ... 130
5.7.1 Topological invariant for nodal lines 131
5.7.2 Drumhead edge states 133
5.8 \mathbb{Z}_2 nodal rings 134

6. Spin systems with topological properties 139
6.1 Representations of spin systems 139
6.2 Spin chains ... 142
6.2.1 AKLT projection 143
6.2.2 Berry phase ... 146
6.3 Topological defects 149
6.3.1 Hedgehogs and skyrmions 150
6.3.2 Vortices and Kosterlitz-Thouless transition 151
6.4 Duality and topology 156
6.4.1 Inverse Jordan-Wigner transformation 156
6.4.2 Fermionic representations of the one-dimensional Kitaev model ... 157
6.4.3 Berry phase and change of representation 159
6.4.4 Topology of the spin model in the fermionic representation .. 162

7. Photonic systems with topological properties ... 167
 7.1 Topological phases in photonic systems ... 167
 7.2 Edge modes with time reversal symmetry breaking .. 168
 7.2.1 Waveguides ... 168
 7.2.2 Ferrite tubes ... 171
 7.2.3 Waves in a periodic system: photonic crystals .. 174
 7.2.4 TM modes in a periodic lattice .. 176
 7.2.5 Effective model for quadratic bands .. 177
 7.2.6 Experimental implementation ... 180
 7.3 Systems with time reversal symmetry ... 182
 7.3.1 Scattering of a particle by a potential ... 182
 7.3.2 S matrix for the scattering of electromagnetic waves .. 184

8. Quantum information and topological systems ... 189
 8.1 Entanglement ... 189
 8.1.1 von Neumann entropy ... 191
 8.1.2 Relation with correlation functions .. 192
 8.1.3 Impurity in a conventional superconductor .. 194
 8.2 Entanglement spectrum .. 196
 8.2.1 Entanglement in real space .. 196
 8.2.2 Momentum space entanglement .. 198
 8.3 Fidelity ... 200
 8.3.1 Pure states ... 200
 8.3.2 Fidelity between partial states ... 201
 8.3.3 Two-level system .. 202
 8.3.4 States of a superconductor with magnetic impurities 203
 8.3.5 Fidelity spectrum and phase transitions in quantum systems 205
 8.3.6 Fidelity spectrum of a topological superconductor .. 206
 8.3.7 Quantum phase transition in Kitaev model .. 209
 8.3.8 Fidelity susceptibility ... 209
 8.4 Non-abelian permutation of Majorana fermions ... 211
 8.4.1 Products of Majorana fermions .. 212
 8.4.2 Flux quantization and Majoranas permutations ... 213

9. Out of equilibrium topological systems ... 221
Contents

9.1 Sudden quantum transformations 221
 9.1.1 Survival probability and Loschmidt echo 221
 9.1.2 Energy non-conservation 224
 9.1.3 Kitaev model: stability of edge states 227
 9.1.4 Sato and Fujimoto model: stability of edge modes 228
 9.1.5 Evolution of the Chern numbers 229

9.2 Periodic perturbations: Floquet systems 232
 9.2.1 Dirac cone under circularly polarized radiation 235
 9.2.2 Magnus expansion 236
 9.2.3 Invariants: frequency space formulation 237
 9.2.4 Quasi-energy bands and creation of π modes 240
 9.2.5 Invariants: time formulation 242
 9.2.6 Berry-Floquet phase 243

9.3 Instantaneous periodic pulses 244
 9.3.1 Eigenvalues of the Floquet operator 245
 9.3.2 Effective Hamiltonian 245

Appendix A Physical realization of Kitaev model 251

Appendix B Fermi surface topology 255

Index ... 261