Topology in Condensed Matter

his text serves as a pedagogical introduction to the theoretical concepts on application of topology in condensed matter systems. It covers an introduction to basic concepts of topology, emphasizes the relation of geometric concepts such as the Berry phase to topology, having in mind applications in condensed matter. In addition to describing two basic systems such as topological insulators and topological superconductors, it also reviews topological spin systems and photonic systems. It also describes the use of quantum information concepts in the context of topological phases and phase transitions, and the effect of non-equilibrium perturbations on topological systems.

This book provides a comprehensive introduction to topological insulators, topological superconductors and topological semimetals. It includes all the mathematical background required for the subject. There are very few books with such a coverage in the market.

Topology in Condensed Matter

An Introduction

Topology in Condensed Matter

An Introduction

Miguel Araújo · Pedro Sacramento

Sacramento

World Scientific www.worldscientific.com 12286 hc

Preface to the Portuguese Edition

The introduction of the first theoretical model of a topological superconductor by Kitaev in 2001, and the invention of the topological insulator by Kane and Mele in 2005 have led to a renewed interest in condensed matter topological systems. This followed earlier studies of magnetic moments in low dimensional systems, such as in the context of the Kosterlitz-Thouless transition and spin chains, and also in the context of the quantum Hall effect. Indeed, we have witnessed a great proliferation of scientific papers in the last 10 years on the subject, which has been one of the main research areas in the theoretical group of the Center for Physics and Engineering of Advanced Materials at Instituto Superior Técnico (IST) in Lisbon.

Over the years, we increasingly felt the need to provide graduate students at IST with a text allowing them to quickly learn recently developed concepts that are still very disperse in the literature.

Chapters 1 and 2 present the basic concepts relevant to the classification of topological properties. While the first chapter may be omitted on a first reading, we consider chapter 2 indispensible for the understanding of the remainder of the book. The remaining chapters do not need to be read sequentially, so the reader may directly choose to read those which most interest him or her. The first five chapters contain exercises that will help consolidate the understanding of the concepts and techniques. The remaining chapters contain applications of the basic concepts.

Chapters 3, 4, and 5 are devoted to the three classes of fermionic topological systems this book is mostly concerned with, namely, the topological insulators, superconductors and semimetals.

Spin and photonic systems are discussed in chapters 6 and 7, respectively. Under certain conditions, these systems also have topological properties. In chapter 8 we discuss the application of quantum information methods as an alternative way to understand the properties of topological systems. Finally, the robustness of out-of-equilibrium systems' topological properties is studied in chapter 9. The book includes two appendices discussing some complementary aspects to the presented subjects.

Interacting systems have purposedly been left out of this introductory text, owing both to their complexity and to the fact that they are a still developing subject.

This text serves as a pedagogical introduction to the theoretical concepts on the subject, allowing the advanced student or researcher to acquire the basic knowledge necessary to access the specialized literature. It does

not attempt to provide a general review of this extensive field. Instead, we refer the interested reader to the review articles which include recent experimental and theoretical developments.

The bibliography at the end of each chapter does not aim to be, and could not be, comprehensive. It includes those papers which most influenced the authors in the writing process, or which were found to best serve as complementary reading.

There are several books and review articles which cover topological systems and can be used as complementary reading to this introductory text. We suggest, for instance,

- D.J. Thouless, Topological quantum numbers in nonrelativistic physics, World Scientific, (1998).
- B.A. Bernevig, T.L. Hughes, Topological insulators and topological superconductors, Princeton University Press (2013).
- S.-Q. Shen, Topological Insulators (Springer, Berlin, 2012).
- J. K. Asbóth, L. Oroszlány, and A. P. Pályi, A Short Course on Topological Insulators, (Springer, 2016).
- M. Z. Hasan, and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010)
- X.-L. Qi, and S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).

Finally, we would like to thank the colleagues and researchers with whom we have discussed and worked, over the years, on the field of topological condensed matter: Vítor R. Vieira, Eduardo Castro, Nikola Paunković, Pedro Ribeiro, Bruno Mera, Tilen Cadez, Linhu Li, Zlatko Tesanovic, José Lages, Henrik Johannesson, Rubem Mondaini, Marco Cardoso, Pedro Bicudo, Antonio Garcia-Garcia, Maxim Dzero, Stellan Ostlund, Masaki Tezuka, Norio Kawakami.

Lisbon, February 2019

Miguel A. N. Araújo^{1,2} and Pedro D. Sacramento¹

¹CeFEMA, Instituto Superior Técnico, Universidade de Lisboa

² Department of Physics, University of Évora

Contents

1.	Basic notions on Topology					
	1.1	Loop at x	1			
	1.2	Homotopy classes based at x				
	1.3	The fundamental group $\pi_1 \ldots \ldots \ldots \ldots$				
	1.4	The second homotopy group π_2				
	1.5	Examples of domains and groups	6			
	1.6	Application to the Hamiltonians of fermionic systems				
2.	Conc	eepts	11			
	2.1	Berry phase	11			
	2.2	Berry phase effects	13			
		2.2.1 Electric polarization of the unit cell	13			
		2.2.2 Adiabatic current	14			
		2.2.3 Anomalous velocity	16			
	2.3	Discrete symmetries	17			
	2.4	Topology of one-dimensional systems	23			
		2.4.1 Shockley model and winding number	23			
		2.4.2 Zak phase	25			
		2.4.3 The number of edge states	26			
		2.4.4 Higher dimensional Hamiltonian	26			
	2.5	The two-level system	27			
	2.6	Two-dimensional systems: the Chern number 29				
	2.7	Calculating the Chern number from plaquettes 32				
	2.8	Berry curvature as a sum over states				
	2.9	Edge states				
	2.10	Quantum transport by edge states				

viii

Topology in Condensed Matter: an Introduction

	2.11	2.10.1 Quantum transport in one dimension	36 37 39 40			
	2.12					
	2.13	The calculation of edge states	43			
3.	Topo	Topological insulators 4				
	3.1	The construction of the anomalous Hall insulator $\ \ldots \ \ldots$				
	3.2	Graphene and Haldane model 4				
	3.3	Edge states in Haldane model				
	3.4	The Chern insulator in a magnetic field 5.				
	3.5	Kane-Mele topological insulator				
	3.6	The topological \mathbb{Z}_2 index	54			
	3.7	The three-dimensional topological insulator	57			
	3.8	Models for topological insulators	58			
	3.9	Higher order topological insulators 6				
	3.10	Symmetry classes of gapped Hamiltonians	61			
4.	Topo	Topological superconductors 6.				
	4.1	Bogoliubov-de Gennes equations	65			
		4.1.1 Particle-hole symmetry	66			
		4.1.2 Superconducting pairing	68			
		4.1.3 The BCS wave function	71			
		4.1.4 Majorana fermions	71			
		4.1.5 The Nambu (or Balian-Werthammer) basis	72			
	4.2	One-dimensional Kitaev model	74			
		4.2.1 Representation of the Kitaev model by Majorana fermions	75			
		4.2.2 Fermionic parity of the groundstate	78			
		4.2.3 Extended Kitaev model	80			
		4.2.4 Shockley model expressed by Majorana fermions .	82			
		4.2.5 SSH model with triplet pairing	83			
	4.3	Bound states in Josephson juctions	89			
		4.3.1 Majorana states in a π junction	89			
		4.3.2 Andreev bound states in a ϕ junction	91			
	4.4	Two-dimensional superconductors	93			
	=	4.4.1 The spinless p+ip superconductor	93			

6.4.3

			Contents	ix		
		4.4.2	Dirac cone with s-wave superconductivity	96		
		4.4.3	The \mathbb{Z}_2 supercondutor	98		
		4.4.4	Inclusion of pseudo-spin	98		
		4.4.5	Examples of superconductors in a two-dimensional			
			lattice	100		
		4.4.6	Sato and Fujimoto model of a triplet superconducto	r103		
	4.5	Superc	conductor with impurities	107		
		4.5.1	Magnetic chain on a singlet superconductor	110		
		4.5.2	Magnetic chain on a triplet superconductor	112		
		4.5.3	Chern number in real space	114		
5.	Topological semimetals					
	5.1	Definit	tion and symmetries	121		
	5.2	Type I	Weyl points	122		
		5.2.1	Sources and drains of Berry curvature	123		
		5.2.2	Density of states	124		
	5.3	Surface states with "Fermi arcs"				
	5.4	Chiral anomaly				
	5.5	Pertur	bation of a Dirac point	128		
	5.6	Type I	II Weyl points	129		
	5.7	Nodal	rings	130		
		5.7.1	Topological invariant for nodal lines	131		
		5.7.2	Drumhead edge states	133		
	5.8	\mathbb{Z}_2 no	dal rings	134		
6.	Spin	systems	s with topological properties	139		
	6.1	Repres	sentations of spin systems	139		
	6.2	Spin cl	hains	142		
		6.2.1	AKLT projection	143		
		6.2.2	Berry phase	146		
	6.3	Topolo	ogical defects	149		
		6.3.1	Hedgehogs and skyrmions	150		
		6.3.2	Vortices and Kosterlitz-Thouless transition $\ . \ . \ .$	151		
	6.4	Dualit	y and topology	156		
		6.4.1	Inverse Jordan-Wigner transformation	156		
		6.4.2	Fermionic representations of the one-dimensional			
			Kitaev model	157		

Berry phase and change of representation 159

Topology in Condensed Matter: an Introduction

		6.4.4	Topology of the spin model in the fermionic representation	162		
7.	Photonic systems with topological properties 1					
	7.1	Topolo	ogical phases in photonic systems	167		
	7.2	Edge 1	modes with time reversal symmetry breaking	168		
		7.2.1	Waveguides	168		
		7.2.2	Ferrite tubes	171		
		7.2.3	Waves in a periodic system: photonic crystals	174		
		7.2.4	TM modes in a periodic lattice	176		
		7.2.5	Effective model for quadratic bands	177		
		7.2.6	Experimental implementation	180		
	7.3	Systen	ns with time reversal symmetry	182		
		7.3.1	Scattering of a particle by a potential	182		
		7.3.2	S matrix for the scattering of electromagnetic wave	s184		
8.	Quantum information and topological systems 18					
	8.1	Entan	glement	189		
		8.1.1	von Neumann entropy	191		
		8.1.2	Relation with correlation functions	192		
		8.1.3	Impurity in a conventional superconductor	194		
	8.2	Entan	glement spectrum	196		
		8.2.1	Entanglement in real space	196		
		8.2.2	Momentum space entanglement	198		
	8.3	Fidelit	ty	200		
		8.3.1	Pure states	200		
		8.3.2	Fidelity between partial states	201		
		8.3.3	Two-level system	202		
		8.3.4	States of a superconductor with magnetic impuritie	s203		
		8.3.5	Fidelity spectrum and phase transitions in quan-			
			tum systems	205		
		8.3.6	Fidelity spectrum of a topological superconductor	206		
		8.3.7	Quantum phase transition in Kitaev model	209		
		8.3.8	Fidelity susceptibility	209		
	8.4	Non-a	belian permutation of Majorana fermions	211		
		8.4.1	Products of Majorana fermions	212		
		8.4.2	Flux quantization and Majoranas permutations $$.	213		
9.	Out of equilibrium topological systems 22					

Index

Contents

xi

261

9.1 221 9.1.1 Survival probability and Loschmidt echo 9.1.2 Energy non-conservation 9.1.3Kitaev model: stability of edge states 227 9.1.4 Sato and Fujimoto model: stability of edge modes 228 9.1.5Evolution of the Chern numbers 229 9.2Periodic perturbations: Floquet systems 232 9.2.1Dirac cone under circularly polarized radiation . . 2359.2.2 236 9.2.3 Invariants: frequency space formulation 9.2.4 Quasi-energy bands and creation of π modes . . . 9.2.5Invariants: time formulation 2429.2.6243 9.3 9.3.1 Eigenvalues of the Floquet operator 245Effective Hamiltonian 9.3.2 245Appendix A Physical realization of Kitaev model 251 Appendix B Fermi surface topology 255