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RESUMO 

A descrição mais detalhada do primeiro material de fitossauro encontrado em Jameson Land, 

Fleming Fjord Group (Leste da Gronelândia). O material desagregado de restos de jovens, 

subadultos e adultos de vários espécimes, e a falta de grande parte dos ossos do crânio, 

permitiram fazer uma análise filogenética inicial. 

As primeiras análises filogenéticas feitas aqui mostram que é do género Mystriosuchus, com 

potencial para ser uma nova espécie. Mystriosuchus é um género exclusivamente europeu, 

que sustenta a influência da fauna europeia da Leste da Gronelândia no Triásico. Este género 

também pode ser usado como um indicador de intervalo de tempo para as unidades em 

Malmros Klint Fm., já que Mystriosuchus viveu entre os Noriano Médio e Superior. 

Esses restos de fitossauros, são importantes devido à posição central na Laurásia durante o 

Período Triássico, quando o Atlântico Norte começou a abrir, na altura em que a Gronelândia 

e a Europa ainda muito próximas. 

 

Palavras-chave: Mystrisosuchus, filogenia, Malmros Klint, Norian, paleogeografia.   
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ABSTRACT 

More detailed description of the first phytosaur material collected on Jameson Land, Fleming 

Fjord Group (East Greenland). The disaggregated material of young, sub-adult and adult 

remains of various specimens, and the lack of most of the skull bones, allowed doing only a 

preliminary phylogenetic analysis.  

The first phylogenetic analyses made here show it is from the Mystriosuchus genus, with the 

potential to be a new species. Mystriosuchus is an exclusive European genus, which supports 

the European fauna influence of East Greenland in the Triassic. It also can be used as a time 

range indicator for those units in Malmros Klint Fm., as Mystriosuchus lived between the on 

Middle and Late Norian.  

These phytosaur remains, are important due to the central Laurasia position during Triassic 

period, when the North Atlantic started to open, at the time Greenland and Europe were still 

connected.  

 

Key-words: Mystriosuchus, phylogeny, Norian, Malmros Klint, paleogeography.   
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INTRODUCTION 
 
A climatic instability at the end of the Permian and the Permian-Triassic Extinction Event (251 
Million years ago) caused the extinction of 90% of marine and 70% of continental vertebrate 
families (Erwin, 1994; Tong et al., 2007). These events created a big gap in several ecological 
niches with the extinction of the dominant groups from the Permian. Then, the remaining 
opportunistic survivors were able to spread and conquer those empty ecological niches in the 
Early Triassic (Erwin, 1998).  
Due to the environmental oscillations that the planet suffered at the beginning of the Triassic 
(Tong et al., 2007), the diversification was slowly recovering in most marine (Schubert & 
Bottjer, 1995; Tong et al., 2007) and land biotas (Sahney & Benton, 2008). In the case of land 
animals, Archosauriformes diversified faster than other groups after the Permian-Triassic 
Extinction, and started to become larger and gained importance in the Late Triassic 
ecosystems, represented by crocodylomorphs, pterosaurs and early dinosaurs (Sahney & 
Benton, 2008; Nesbitt et al., 2009; Turner & Nesbitt, 2013). 
 
 

 Phytosaurs 
In Late Triassic, freshwater environments were mainly ruled by archosauriforms, in particular 
the phytosaurs, crocodile-like animals. Phytosaria was described by Jaeger (1828) as 
herbivorous reptiles, but then von Meyer & Plieninger (1844) accurately described them as 
semi-aquatic carnivorous animals, similar in life to actual crocodiles. Phytosaurs are 
characterized by two main traits that can be found in their skulls: (1) a strongly 
dorsoventrally compressed skull with mainly dorsally antorbital fenestrae and orbits; and (2) 
external nostrils displaced dorsally and posteriorly, reaching the anterior border part of the 
orbits (Ezcurra, 2016). The position of the nares and the modification in the skull caused by 
their migration can be used as a specific discriminator between phytosaurs (Datta et al., 
2019b).  
Their temporal range extends from the Late Middle Triassic (Ladinian, Diandongosuchus 
fuyuanenis Stocker et al., 2017) to the latest Triassic (Late Norian? - Rhaetian, Redondasaurus 
gregorii Hunt & Lucas, 1993). Older species (Mesorhinosuchus fraasi, Jaekel, 1910b, Early 
Triassic of Germany) and younger (Early Jurassic; Maisch & Kapitzke, 2010) have been found 
that could be enclosed as phytosaurs; however, as described in Stocker & Butler (2013), 
M.fraasi holotype was destroyed in WWII, and the Early Jurassic phytosaur remains need 
further studies. 
 
Dentition in phytosaurs has been used as a feature to differentiate basal from more derived 
forms in the same family, based on character descriptions as “homodont” or “weakly-strong 
heterodonty” (Long & Murray, 1995), but the difference between that “weakly” to “strong 
heterodonty” feature was not clearly explained. Hungerbühler (2000) properly described the 
dentition in phytosaur and has been used to help determine species since then (Spielmann & 
Lucas, 2012; Datta et al., 2019a). As described by Hungerbühler (2000), phytosaur dentition 
can be homodont or heterodont. The different level of heterodonty can discriminate 
phytosaurs between “tripartite dentition” (tip of the snout, premaxilla and maxilla), or 
“bipartite dentition” (tip and post-tip of the snout). Mandible teeth share the structure of 
their upper-jaw relatives, but they are smaller and their morphology and transition between 
sets is less marked than the upper-jaw counterpart. 
 
The relationships of the phytosaurs with crocodilians and, in further extant, with other 
archosaurs, have been part of a phylogenetic controversy since their discovery. They were 
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first enclosed as Thecodontia (Owen, 1859), a now obsolete clade supported until the late XX 
century, which related them with modern crocodiles (Colbert, 1947; Buffetaut & Ingavat, 
1982). However, McGregor soon differentiated the phytosaurs from the crocodilian lineage 
and suggested similar morphology features in both groups were homoplastic (McGregor, 
1906).  
Modern phylogenies do not closely relate phytosaurs with crocodilians, ending the 
controversy (Sereno, 1991), but are now focused into the relationship between phytosaurs 
and other archosaurians: some describe them as the sister-taxa of Archosauria (Nesbitt, 
2011; Fig.1A) while others introduce them within Archosauria, as the most basal clade of 
Pseudosuchia (Ezcurra, 2016; Fig.1B). 
 

 
 
Figure 1. Archosauromorph phylogeny most parsimonious trees, modified from A. Nesbitt (2011), and B. Ezcurra 
(2016), with the Phytosauria clade marked in red.  

 
The relationships among phytosaur remain under study. However, improvements related to 
detailed phylogenetic work to identify new and refine old characters, build larger datasets, 
and redescriptions of historically significant taxa, such as the ones from Stocker et al (2017) 
and Jones & Butler (2018), will result in better phytosaur phylogenies.  
 
 

 History of discoveries 
Phytosaur record is common from Laurasia with occurrences in Europe (Austria, Butler et al., 
2019; Germany, Kimmig & Arp, 2010; Italy, Gozzi & Renesto, 2003, Renesto, 2008; Lithuania, 
Brusatte et al., 2013; Luxembourg, Godefroit et al., 1998; Poland, Dzik, 2001; United 
Kingdom, Huene, 1908; Switzerland, von Huene, 1922; and recently Portugal, Mateus et al., 
2014a); in North America (United States, Stocker, 2010); and in Asia (Thailand, Buffetaut & 
Ingavat, 1982; Turkey, Buffetaut et al., 1988; and China, Li et al., 2012). 
Remains have been also recovered from Gondwana with occurrences in North Africa 
(Morocco, Lagnaoui et al., 2016) and South Africa (Zimbabwe, Barrett et al., 2020; 
Madagascar, Burmeister et al., 2006); South America (Brazil, Kischlat & Lucas, 2003); and 
India (Datta et al, 2019a-b). 
 
In 2012 and 2016, the US-Danish expedition recovered the first material related with 
phytosaurs from the Triassic lake deposits of East Greenland (Mateus et al., 2014b; Marzola 
et al., 2017a). Even so there are possible phytosaur remains described by Jenkins et al. 
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(1994), the ones from the US-Danish expeditions are the first detailed phytosaur material. 
East Greenland lake deposits are well known since the 1970s, with many vertebrate fossils 
from the main groups of the Mesozoic recovered (Clemmensen et al. 1998, 2015, 2020; 
Nøttved et al., 2008; Mateus et al., 2014a-b; Marzola et al., 2017a-b). Marzola PhD thesis 
(2019) described most of the material from the expeditions of 2012 and 2016, including 
sarcoterygians, temnospondyls, aetosaurians, testudines and dinosaurs, and an early 
description and comparison of the phytosaur material. 
 
 

 Late Triassic Continental environments 
The break of Pangea into the supercontinents Laurasia (northern) and Gondwana (southern), 
in addition to the Great Extinction event at the end of the Permian, provoked global 
environmental changes (Erwin, 1994; Tong et al., 2007). 
The continental deposits from the Triassic are characterized by an arid or semi-arid global 
paleoclimate with short humid seasons, even more “climate-sensitive” in some parts of 
Laurasia (Clemmensen et al., 1998). However, as the Triassic progressed, the paleoclimate 
evolved into a more humid one (Manspeizer, 1988; Zerfass et al., 2003).  
 
The same rifting that started separated Pangea, caused the break of North Laurasia and the 
opening of North Atlantic (Golonka, 2007), starting with the separation of Greenland from 
North Europe during the Late Triassic (Nøttved et al., 2008; Clemmensen et al., 2015) and 
continuing until its complete separation in the Middle Jurassic (Golonka, 2007).  
 
The rifting caused a paleoclimate change for most of the regions to an arid or semi-arid 
climate with short seasonal precipitations (Zerfass et al., 2003), and a cyclicity between 
desert to steppe and back in these regions (Clemmensen et al., 1998).  
 
During the Late Triassic, East Greenland was located in the central part of Laurasia, with a 
paleolatitude between 35-40º N (Clemmensen et al., 1998). However, it has been migrating 
towards northern regions since the Early Triassic (Clemmensen et al., 1998; Guarnieri et al., 
2017), where seasonal changes had a stronger influence on its climate and environment than 
in equatorial regions (Clemmensen et al., 1998), combined with cycling periods of 
transgressions and regressions due to its proximity with the Northern seas (Clemmensen et 
al., 1998; Ziegler, 1988).  
Jameson Land Basin, in the East Greenland coast, was part of a marine bay of the Boreal Sea 
in the earliest Triassic, but northern drift of the basin and regression processes at the end of 
Early Triassic transformed it into emerged lands (Clemmensen et al., 2015). The basin is 
divided into four groups (Clemmensen et al., 2020), from Lower Triassic to Lower Jurassic 
deposits (Pingo Dal, Gipsdalen, Fleming Fjord, and Kap Stewart), where the environments 
ranged from freshwater (alluvial fan to lake deposits) to shallow marine and brackish waters, 
with more moisture, less dry and warmer climate than other laurasian regions (Clemmensen 
et al., 1998; Nøttved et al., 2008; Clemmensen et al., 2020).  
 
Fleming Fjord Group is predominantly made by cyclically lacustrine deposits of continental 
origin of Norian-Rhaetian (Sulej et al., 2014; Clemmensen et al., 2015). It is divided in three 
formations: the lowermost Edderfugledal Formation (lacustrine dolomitic mudstone), the 
middle Malmros Klint Formation (fresh water deposits of lowermost sandstone-siltstones 
rich and uppermost claystone rich), and the uppermost Ørsted Dal Formation (complex 
internal stratigraphy due to the proximity of Carlsberg Fjord and Tait Bjerg Members; 
Clemmensen et al., 1998; Sulej et al., 2014; Guarnieri et al., 2017). 
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Figure 2. A. Malmros Klint Formation stratigraphy section; B. Cross-section of the lithostratigraphical units in 
Fleming Fjord Group; C. Map of “Mateus Quarry” at Lepidopteris elv, Malmros Klint; D. Phytosaur Site, digital field 
map. The red star marks where the phytosaur remains were found in A and B. Figures A-B modified from 
Clemmensen et al. (2020), and C from Marzola et al. (2017a) 
 
 
Fleming Fjord Group is rich in vertebrate fossils, such as testudinates, amphibians, lung fish, 
stem-mammals, pterosaurs and dinosaurs, and other archosaurs (Clemmensen et al., 2015). 
This fauna shows an European biogeographic affinity (Clemmensen et al., 1998; Sulej et al., 
2014; Clemmensen et al., 2015; Marzola et al., 2017b), with the first phytosaur remains 
found in Malmros Klint Formation in 2012 and 2016 (Clemmensen et al., 2015; Marzola et al., 
2017a). 
Malmros Klint is a formation of high cliffs of monotonous brownish to red-bed units of 
mudstones and fine-grained sandstones (Clemmensen et al., 2020). The Formation is 
comprised of a sedimentary cyclicity, and divided into a lower sandstone-siltstone rich unit, 
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an upper claystone-rich unit, and topped by a dolomitic paleosol (Clemmensen et al., 1998; 
Clemmensen et al., 2015).  
 
The Malmros Klint Formation paleoenvironment at the end of the Triassic (Late Norian-Early 
Rhaetian; Clemmensen et al., 2015) was interpreted as a shallow fresh-water playa-lake with 
low energy movement as the ripples and horizontal lamination are the most common 
structure found (Clemmensen, 1979; Clemmensen et al., 1998, Clemmensen et al., 2015). 
The appearance of mud-cracks suggests the lake would have suffered aerial exposure and, 
intense desiccation even in humid climatic phases (Clemmensen, 1979; Clemmensen et al., 
1998). 
This interpretation matches with the Jameson Land Basin one, which was more influenced by 
seasonal changes and where the lake could have been entirely dry in arid seasons 
(Clemmensen et al., 1998). 
The “Phytosaur Bone Bed” (Fig.2), from where the phytosaur remains were collected, is 
located in Mateus Quarry, at Lepidopteris Elv locality, in the middle of Malmros Klint 
Formation (Late Norian, ≃211-210 Ma; Mateus et al., 2014b; Clemmensen et al., 2015).  
 
 

OBJECTIVES 
 
The objectives of this Master Thesis were focused on describing the taxonomy of the 
Greenland phytosaur specimens and exploring its implications.  
 
 

MATERIAL AND METHODS 
 
This Master Thesis is focused into the material collected during the expeditions to Malmros 
Klint Formation from 2012 and 2016 (Table 1). The material collected is related to, at least, 
four individuals of different ontogenetic stages with no major intraspecific variation to 
referred them as different species of phytosaurs. All material is part of the Natural History 
Museum of Denmark (NHMD) collections. During the study, part of the material was hosted 
by the Museu da Lourinhã (Portugal) and the other part by the GeoCenter MønsKlint 
(Denmark). Most of the material in Portugal was prepared during Marzola PhD thesis (2019), 
but some material required more preparation to allow more detailed description.  
Some material was prepared in Museu da Lourinhã by me (specimen NHMD-NOID, a partial 
radius), and the volunteers (specimens NHMD-6E13-92, possible lacrimal; and NHMD-6E14, 
sacral vertebrae). To remove the sediment, we used the air scribes HW10 and HW322, and 
50% Paraloid B72 in acetone to glue the broken parts. For the specimens NHMD-6E13-92 and 
NHMD-NOID, when half the preparation was done, they were covered in polyethylene glycol 
(4000 molecular weight) to protect that part while preparing the other half. The polyethylene 
glycol coverage was easily removed with hot water and brushes once the preparation was 
done.  
Photographs were taken using a Canon EOS 350 DIGITAL DS126071, and a DinoLite AM411T 
for the serration counting in the teeth.  
 
For the phylogeny, TnT version 1.5 (Goloboff & Catalano, 2016) was used. Following the data 
matrix from Jones & Butler (2018), in which they work with operational taxonomic units 
(OTUs) to facilitate the comparisons between known species and specimens of undetermined 
taxa.  
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Here, I used those 43 OTUs plus the Greenland’s phytosaur, and the 94 characters related to 
the cranial region, plus an additional character (character 95) about the degree of 
heterodonty, obtained from Hungerbühler (2002; character 5: 0 – homodont, 1 – bipartite 
upper dentition, 2 – tripartite upper dentition).  
The “degree of heterodonty” was added into the matrix of Jones & Butler (2018) because of 
the good number of teeth found. Only eleven species (Euparkeria capensis Broom, 1913; 
Ebrachosuchus neukami Kuhn, 1936; Nicrosaurus kapffi Fraas, 1866; N. meyeri Hungerbühler 
& Hunt, 2000; Machaeroprosopus pristinus Mehl & Branson, 1928; M. buceros Cope, 1881; 
M. mccauleyi Ballew, 1989; Redondasaurus gregorii Hunt & Lucas, 1993; R. bermani Hunt & 
Lucas, 1993; Mystriosuchus planirostris von Meyer, 1863; and M. westpali Hungerbühler & 
Hunt, 2000) appeared in Hungerbühler (2002) which are shared with Jones & Butler (2018), 
so another six species (Angistorhinus grandis Mehl, 1913; A. talainti Dutuit, 1977; 
Leptosuchus crosbiensis Case, 1922; Parasuchus hislopi Lydekker, 1885; Paleorhinus parvus 
Mehl, 1928; Rutiodon carolinensis Emmons, 1856) with the “degree of heterodonty” were 
collected from Hungerbühler (2000) to better complete the matrix.  
 
 
Table 1. List of bone and teeth of Mystriosuchus from Greenland. All field numbers are under NHMD (Natural 
History Museum of Denmark).  
Field 
number 

Bone 

Gb8 Left premaxilla 

126a Right 
premaxilla+maxilla 

Kc121 Right jugal 

Hc87 Left jugal 

Jc72 Left postorbital 

Hc47b Right quadrate 

6E12-84 Left 
ectopterygoid? 

6,00E+14 Right 
quadratojugal? 

6C4-36 ? 

6F12 ? 

6E13-92 Left lacrimal? 

6D2/3 - FCT-
UNL 

Mandible  

Hc1 Mandible 
(dentary) 

Hc1 Mandible 
(posterior) 

Gb95c Angular 

Jd53 Angular 

6G12 Premaxilla (snout) 

6F12 Premaxilla (snout) 

A011 Premaxilla (snout) 

NO ID  Premaxilla 
(anterior) 

6E12-59 Premaxilla 
(anterior) 

6E12. Premaxilla 
(anterior) 

6C14 Premaxilla 
(anterior) 

6E11. Premaxilla 
(anterior) 

A000 Premaxilla 
(anterior)? 

A001 Premaxilla 
(anterior)? 

A002 Premaxilla 
(anterior)? 

A004 Premaxilla 
(anterior) 

A009 Premaxilla 
(anterior) 

A010 Premaxilla 
(anterior) 

Gb93a Premaxilla 
(anterior) 

Hc2 Premaxilla 
(anterior) 

Hc49 Premaxilla 
(anterior) 

Hc78 Premaxilla 
(anterior) 

Jd55 Premaxilla 
(anterior)? 

6E12-74  Premaxilla 
(medium) 

6F13-104 Premaxilla 
(posterior) 

6F13-107 Premaxilla 
(posterior) 

6E13. Premaxilla 
(posterior) 

6F12 Premaxilla 
(posterior) 

Hc111 Premaxilla 
(posterior) 

6E14. Maxilla (anterior) 

6E14. Maxilla (anterior) 

6F12 Maxilla (anterior) 

6E13. Maxilla (anterior) 

A003 Maxilla (anterior) 

A005 Maxilla (anterior) 

A006 Maxilla (anterior) 

A008 Maxilla (anterior) 

NO ID Maxilla (anterior) 

6G12 Maxilla (posterior) 

6E12. Maxilla (posterior) 

6E9-3  Maxilla (posterior) 

NO ID Maxilla (posterior) 

Fb88c Maxilla (posterior) 

Gb16 Maxilla (posterior) 

Hb3a Maxilla (posterior) 

Hc3 Maxilla (posterior) 

Jd38 Maxilla (posterior) 

Jd54 Maxilla (posterior) 

A012 - 

Hb3 - 

Hc1 3rd 
tooth 

Mandible 

Hc1 4th 
tooth 

Mandible 

Hc1 11th 
tooth 

Mandible 

Hc1 36th 
tooth 

Mandible 

Hc112 8th cervical 

Da10 Dorsal vertebra 

6E+F12 Dorsal vertebra 

Eb9a Dorsal spine 

Eb9b Dorsal centrum 

6E14. Sacral 

Gc51 3rd caudal 

Fa42 4th caudal 
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130 6th caudal 

131 7th caudal 

132 8th caudal 

6E11-44 10th caudal 

Hb4 Posterior caudal 

NOID Posterior-last 
caudal 

Kb123 Cervical rib 

Fa98 Cervical rib 

Kd106 Dorsal rib 

129 Dorsal rib 

Kb125 Dorsal rib 

Ea83 Dorsal rib 

Fb29a Dorsal rib 

Gb95a Dorsal rib 

Ea79 Dorsal rib 

Ea84 Dorsal rib 

Eb66 Dorsal rib 

Hc75b Dorsal rib 

Ea96 Dorsal rib 

Hb115 Gastralia 

Gb30 Gastralia 

127 Gastralia 

Kc122d Gastralia 

Gb7 Gastralia 

Fb32 Gastralia 

Da68 Gastralia 

Gc35 Gastralia 

Kb129 Gastralia 

Ea61 Gastralia 

141 Partial  

Hc75d Partial  

142 Partial  

Ja117 Partial  

Gc34 Partial  

Ea67 Partial  

58 Partial  

Gb95a Partial  

128 Partial  

Hc75c Partial  

Ea65 Partial  

138 Partial  

Jd65 Partial  

140 Partial  

137 Partial  

126 Partial  

Kc122e Partial  

NOID Interclavicle 

Fa82 Interclavicle 

Fb31 Interclavicle 

Gb21 Clavicle? 

Hc75a Right coracoid 

136 Left coracoid 

Gb39 “Baby” scapula 

Fa85 Left humerus 

Ga116 Left humerus 

Gc6 Right humerus 

6E13-54 Right ulna 

Jd57 Right ulna 

113 Right radius 

134 Left femur 

Hc74a Left tibia 

6E12-54 Left fibula 

Gc36 Phalanx 

Fb33 Phalanx 

6E13-54 Phalanx 

6F13 Phalanx 

Fa59 Phalanx 

Fa40 Phalanx 

135 Phalanx 

Ca13 Phalanx 

Kc108 Morphotype 1 

Gb95e Morphotype 1 

6E12. Morphotype 1 

NOID Morphotype 1 

Fa26 Morphotype 1 

Fa24 Morphotype 1 

Jc74 Morphotype 1 

Fa81 Morphotype 1 

Gb71 Morphotype 1 

Jd56 Morphotype 2 

Fb45 Morphotype 2 

Hb103 Morphotype 2 

Jc70 Morphotype 2 

Da90 Morphotype 3 

Eb73 Morphotype 3 

Ha118 Morphotype 3 

NOID Morphotype 4 

6E12-81 Morphotype 4 

6E13-70 Morphotype 4 

 
 

 
 
 

SYSTEMATICS PALEONTOLOGY 
 
PHYTOSAURIA Jaeger, 1828 

Definition: Rutiodon carolinensis and all taxa more closely related to it than 
Aetosaurus ferratus, Rauisuchus tiradentes, Prestosuchus chiniquensis, Ornithosuchus 
woodwardi or Crocodylus niloticus (Jones & Butler, 2018) 
Diagnosis (list of synapomorphies based on Ezcurra, 2016: p.300): Strongly 
dorsoventrally compressed skull with mainly dorsally facing antorbital fenestrae and 
orbits; dorsal orbital margin of the frontal elevated above skull table; external naris 
non-terminal, considerably posteriorly displaced, but  posterior rim of the naris well 
anterior to the anterior border of the orbit; external naris dorsally directed; orbit 
without or with incipient elevated rim; antorbital length versus total length of the 
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skull = 0.70–0.76; snout transversely broader than or as broad as dorsoventrally tall 
at the level of the anterior border of the orbit; 10 or more tooth positions in the 
premaxilla; maxilla extends anterior to the nasal; alveolar margin of the maxilla 
sigmoid, anteriorly concave and posteriorly convex, in lateral view; posterior 
extension of the maxilla level with or anterior to anterior orbital border in mature 
individuals; number of maxillary tooth positions 15–22; lower temporal bar with a 
concave ventral margin in lateral view, though nowhere dorsal to tooth row; length 
of the posterior process of the jugal versus the height of its base = 4.07–5.37; 
posterior process of the jugal lies ventral to the anterior process of the 
quadratojugal; ventral process of the postorbital ends close to or at the ventral 
border of the orbit; neomorphic bone as a separate ossification anterior to nasals 
and surrounded by the premaxilla on the dorsal surface of the snout; dorsal head of 
the quadrate has a sutural contact with the paroccipital process of the opisthotic; 
palatine with a single anterior process forming the posterior border of the choana; 
foramina for the entrance of the cerebral branches of the internal carotid artery 
leading to the pituitary fossa posterolaterally placed on the parabasisphenoid; 
mandibular symphysis present along one-third of the lower jaw; tooth-bearing 
portion of the dentary mostly straight; dorsal margin of the anterior portion of the 
dentary dorsally expanded compared to the dorsal margin of the posterior portion; 
posteriormost dentary teeth placed on the posterior half of lower jaw; distal edge of 
the posterior maxillary tooth crowns with a distinct different morphology from those 
of the anterior tooth crowns, with the posterior edge usually convex in labial view; 
scapula with an acromion process in about the same plane as the ventral edge of the 
scapula; coracoid with a distinctly hooked anterior border in lateral view; coracoid 
without or small biceps process on the lateral surface; humerus with a strongly 
developed entepicondyle in mature individuals; pubic shaft rod-like and straight in 
lateral view; and osteoderms with sculpture on their external surface. 

 
PARASUCHIDAE Lydekker, 1885 

Definition: Wannia scurriensis, Parasuchus hislopi, Mystriosuchus planirostris and all 
descendants of their most recent common ancestor. (Kammerer et al, 2015) 
Diagnosis (list of synapomorphies based on Jones & Butler, 2018: supplementary 
material, node 2, p.85): Narial openings B directed dorsally; antorbital fossa present 
but reduced lacrimal, jugal and maxillary fossae in contact dorsally but not ventrally. 
 

MYSTRIOSUCHINAE von Huene, 1915 
Definition: Mystriosuchus planirostris, Angistorhinus grandis and all descendants of 
their most recent common ancestor. (Kammerer et al, 2015) 
Diagnosis (list of synapomorphies based on Jones & Butler, 2018: supplementary 
material, node 7, p.86): Suture between maxilla, premaxilla and nasal dorsally convex 
lobe; position of nares non-terminal, posterior rim of nares behind anterior rim of 
antorbital fenestra; posterior border of the nares and anterior border of orbits dip 
down into a concavity in interorbital nasal area lateral view; small elongate 
depression posterior rim of postorbital may create a small flange behind orbit; lateral 
ridge from postorbital/squamosal bar absent; length of posterior process of 
squamosal in relation to postorbital length 3.60 to 4.99; anterior border of 
parabasisphenoid contribution to basitubera, basitubera connected tubera form a 
sharp ridge along their anterior border; length of interpterygoid vacuity tiny oval 
indentation at posterior rim of conjoined pterygoids; anterior extent of the palatine, 
tip extends forward beyond the anterior rim of choana; septomaxillae separate 
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distinctly anterior of the anterior narial border; shape of antorbital fenestra 
approximately triangular.  
 

LEPTOSUCHOMORPHA Stocker, 2010 
Definition: Leptosuchus studeri, Machaeroprosopus pristinus and all descendants of 
their most recent common ancestor (Jones & Butler, 2018).  
Diagnosis (list of synapomorphies based on Jones & Butler, 2018: supplementary 
material, node 13, p.87): Transverse width of the rostrum between the antorbital 
fenestrae in dorsal view greater than or equal to 1.60; narial outlets absent; length of 
antorbital fenestra greater than or equal to 1.9 times naris length; dorsal edge of 
squamosal expanded medially; medial extent of squamosal enters base of 
supraoccipital shelf wedged between parietal and supraoccipital; orientation of 
supratemporal fenestra partially depressed parietal process of squamosal below level 
of skull roof; visibility of supratemporal fenestrae in dorsal view, mostly visible, 
posterolateral portions of supratemporal fenestrae covered in dorsal view; dorsal 
edge of parietal/squamosal bar gently sloping; proximal section of postorbital 
descending process where posterior border of orbit meets skull roof, posterior 
border of orbit remains thin until it reaches skull roof. 
 

MYSTRIOSUCHINI von Huene, 1915 
Definition: Mystriosuchus planirostris, Machaeroprosopus jablonskiae, 
Machaeroprosopus buceros and all descendants of their most recent common 
ancestor (Jones & Butler, 2018) 
Diagnosis (list of synapomorphies based on Jones & Butler, 2018: supplementary 
material, node 24, p.89): preinfratemporal shelf present; length of free 
postorbital/squamosal bar less than 2.90; width of squamosal lessor equal to 3.80; 
palatal ridge prominent, sharp ventrally to ventromedially directed crest; relative 
robusticity of the jugal 7.30-8.40, or greater than 8.40.  
 

Mystriosuchus Fraas, 1896. 
Diagnosis (list of synapomorphies based on Jones & Butler, 2018: supplementary 
material, node 26, p.89): interpremaxillary fossa present, narrow slit; interorbital 
nasal area cross section dorsally curved in cross section.  
 

Mystriosuchus sp. 
Autapomorphic characters: shape of retroarticular process in lateral view distally 
rounded or blunt; degree of heterodonty tripartite upper dentition.  
Main material: NHMD-Hc1 (nearly complete left mandible) in display at GeoCenter 
Monsklint, Denmark. 
Referred material: teeth, cranial and post-cranial bones from at least four individuals 
of different ontogenetical ages, all from the same site. See complete list in “material 
and methods” section.  
 

 Horizon, locality and age 
In Mateus Quarry (N 71º 15.584’ W 22º 31.798’, 171m asl ±3m), at Lepidopteris Elv locality, 
Jameson Land Basin, East Greenland. In the middle of Malmros Klint Formation, Fleming 
Fjord Group (82m, Clemmensen et al., 2020). Late Norian (~211-210 Ma), Late Triassic. 
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DESCRIPTION 
 

1. Skull and mandible 
 
A total of 14 bones referred to the skull and mandible (Fig.3) have been collected. All the 
measurements in Table 2 are taken in millimeters.   
 
 

 
Figure 3. Relative position of the best preserved bones over the reconstruction of A. the skull, and B, the mandible 
of Mystriosuchus sp. from Greenland (modified from the skull of M.planirostris of Hungerbühler, 2002). A. I. 
Postorbital NHMD-Jc72 (mirror image); II. Lacrimal NHMD-6E13-92 (mirror image); III. Quadrate NHMD-Hc47b; IV. 
Quadratojugal NHMD-6E14; V. Jugal NHMD-Hc87; VI. Jugal NHMD-Kc121 (mirror image); VII. Partial rostrum 
NHMD-126a; VIII. Premaxilla NHMD-Gb8 (mirror image); B. I. Almost complete mandible NHMD-Hc1 (mirror 
image); II. Angular NHMD-Gb95c (mirror image); III. Angular NHMD-Jd53 (mirror image). Scales = 4cm. The 
schematic skull and mandible are not at scale.  

 
Table 2. Measurements of Mystriosuchus sp., skull bones. 

Field number Bone Length 
(mm) 

Anterior 
Width (mm) 

Posterior 
Width (mm) 

Anterior 
Height (mm) 

Posterior 
Height (mm) 

NHMD-Gb8 Left premaxilla 67.1 8.3 7.6 12.6 15.4 
NHMD-126a Right premaxilla 

+maxilla 
275 9.1 16.5 13 30.9 

NHMD-Kc121 Right jugal 98.7 - - 20.7 43.2 
NHMD-Hc87 Left jugal 95.8 9.6 3 26.8 46.6 
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NHMD-6E12-84 Left 
ectopterygoid 

100.2 25.4 48 - - 

NHMD-6E13-92 Left lacrimal 84.5 - - 11.4 52.3 
NHMD-Jc72 Left postorbital 176.3 20 25.3 19.8 64.4 
NHMD-6E14 Right 

quadratojugal 
56.5 13.7 27.2 26.8 93.1 

NHMD-Hc47b Right quadrate 123.8 34 52 - - 
NHMD-6D2/3 - 
FCT-UNL 

Mandible  287.4 - - 10.1 38.4 

NHMD-Hc1 Mandible 
(dentary) 

397.6 24.6 18.6 35.5 31 

NHMD-Hc1 Mandible 
(posterior) 

250.6 21.8 54.2 65.8 105.6 

NHMD-Gb95c Angular 90 17.7 15.4 14.5 18.2 
NHMD-Jd53 Angular 214.5 13.3 14.4 24.6 43.6 

 
 
NHMD-Gb8 anterior part of the left premaxilla (Fig.4A) has been preserved as a slender bone. 
There are eight alveoli, that vary from subcircular to elliptic from most anterior to posterior 
ones. Three of them can be seen in the terminal rosette region that in ventral and lateral 
views. The ventrolateral edges appear scalloped in lateral view. In ventral and dorsal view, 
the fossil has a rectangular shape, constricted at the end of the terminal rosette. In the 
anterior part, the terminal rosette is bowed ventrally, allowing to clearly distinguish the limit 
with the rest of the rostrum.  
 
NHMD-126a (Fig.4B) is the anterior half of the rostrum, displayed by the right premaxilla and 
partial right maxilla. Both bones are fused and the limits between them are difficult to 
distinguish. 
NHMD-126a is a long slender bone, thicker posteriorly than anteriorly, with a total of 36 
teeth alveoli. The terminal rosette of the premaxilla is constricted between the fourth and 
fifth teeth, and with the anteriormost part ventrally turned. The partial maxilla is thicker 
ventrally than dorsally. There is a semi-circular shape at middle shaft of its dorsal surface that 
would form part of the anteroventral border of the antorbital fenestra. Posteriorly, the 
maxilla has a triangular shape that would continue and contact the jugal. 
The labial surface of the maxilla is slightly hollowed, in contrast with the smooth and straight 
labial surface of the premaxilla. Lingually, the interpremaxillary fossa is preserved as a 
smoother and concave region that extends from the fifth tooth until the posterior and dorsal 
borders of the maxilla.  
 
From the two jugals NHMD-Hc87 and NHMD-Kc121 (right and left respectively; Figs.5A-B) the 
main body is preserved, with both anterior and posterior processes partly broken. They have 
a rectangular shape with a weak concave curvature in their ventral edge (less marked in 
NHMD-Kc121, due to that part is broken). Part of the anterior ascending process is also 
preserved, which would contact dorsally with the ventral border of the lacrimal and 
anteriorly with the posterior maxilla. The contact with the maxilla can be found in NHMD-
Hc87 as a scar in its anteroventral region in the labial surface. Its posterior and dorsal edges 
make a concave curve, being part of the anteroventral region of the laterotemporal fenestra.  
In NHMD-Hc87, the anterior edge has a smooth anterior concave surface similar to the 
posterodorsal edges. 
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Figure 4. Rostrum material of Mystriosuchus sp. from Greenland. A. Left premaxilla NHMD-Gb8; B. Right partial 
rostrum NHMD-126. Scales = 4 cm. From top to bottom the views are medial, ventral, lateral, and dorsal. 
Abbreviations: al – alveolus, aof – anterior orbital fenestra, ipmf. – interpremaxillay fossa, m? – maxilla?, pm – 
premaxilla, tr – terminal rosette.  
 
 

 
Figure 5. Jugals of Mystriosuchus sp. from Greenland. A. Right jugal NHMD-Hc87 (top views: dorsal, ventral; 
bottom views: labial, lingual, posterior); B. Left jugal NHMD-Kc121 (top view: labial; bottom view: lingual). Scales = 
4 cm. Abbreviations: aof – anterior orbital fenestra, ltf – laterotemporal fenestra.  
 
 
NHMD-6E12-84 (Fig.6A) is a flat broken bone. Its posterior region is wider than the anterior.  
Its medial edge is slightly medially bowed. Ventrally, the surface is rugose, flat and with no 
ornamentation. Dorsally, the lateral edge has a convex surface that turns into a flatter 
surface. In the medial dorsal surface, there is a slight depression, posteromedially expanded, 
giving a triangular shape in the posterior end.  
This bone is here identified as a partial posterior left ectopterygoid. The medial surface 
depression is identified as a contact surface with other bone, in this case with the pterygoid. 
In this case then, the lateral edge would be the posterolateral edge of the left choana.    
 
NHMD-6E13-92 (Fig.6B) pitting ornamentation in its central dorsal area, in contrast with the 
ventral area, suggests it is a broken bone from the dorsal region of the skull. The bone has a 
sub-triangular shape, with three processes. It exhibits a long thin rectangular bone attached 
in its medial edge, but it is a different bone, as it overlaps the main bone and does not 
connect with it.  
The anterior process, the longest and thinnest, has a concave lateral surface in its ventral 
region. The posterior process is thicker in its medial surface and its ventral region displays 
also a concave lateral surface. The middle process, shorter, has soft concave surfaces in both 



A new phytosaur from the Late Triassic of Jameson Land, Greenland. 

  

 
13 

 

anterior and posterior edges. The continuity between the lateral surfaces of anterior and 
posterior processes indicates that they are the edges of two different fenestrae.  
This bone is here classified as a partial left lacrimal. The fenestra between the anterior lateral 
edge and the anterior middle processes is the posterior region of the antorbital fenestra, 
while the posterior fenestra is the anterior region of the orbit.  
 
The left postorbital NHMD-Jc72 (Fig.6C) preserves the descending process that contacts with 
the lacrimal dorsally. It forms part of the posterior border of the orbit, and the anterior 
border of the laterotemporal fenestra. The descending process is slender and expands 
anteroventrally, with a weak sigmoid curvature. The dorsal surface is ornamented with 
pitting structures, while the ventral surface is smooth.  
 

 
Figure 6. Bones of the palate and skull roof region of Mystriosuchus sp. from Greenland. A. Left ectopterygoid 
NHMD-6E12-84; B. Left lacrimal NHMD-6E13-92; C. Left postorbital NHMD-Jc72. Scales = 4cm. Abbreviations: aof 
– anterior orbital fenestra, o – orbit, stf – laterotemporal fenestra.  
 
 
NHMD-6E14 (Fig.7A) is a broken skull bone. The bone is mediolaterally compressed, 
posteriorly thickened, and anteriorly bowed. The dorsal lateral edge displays a rough surface, 
interpreted as an articular facet. The anterior surface is faintly anteriorly bent, resembling to 
a fenestra edge. The anteroventral process is short and broken.  The posterior surface is 
concave and soft laterally, while is medially rough and with a broken posteroventral process 
beginning. Although the dorsal region is broken, its medial surface has a concave region, 
maybe for the insertion of a bone.  
This partial bone is identified as the anterior region of the right quadratojugal. The slight 
curve in its anterior margin can be referred as the posteroventral border of the subtemporal 
fenestra, making a smooth edge (as seen in Ezcurra et al., 2016). The dorsal margin would 
connect with the ventral squamosal, following the subtemporal fenestra border. The dorsal 
region would connect with the quadrate. 
 
The partial left quadrate NHMD-Hc47b (Fig.7B) is preserved most of the medial portion. The 
ventral surface is softer in anterior that posterior view. In posterior view, the ventral surface 
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has an articular facet with other bone (the articular). The lateral condyle expanded more 
laterally, giving a triangular shape, than the medial condyle, more rounded.  
The medial surface of the quadrate has a middle bulge dividing the dorsal region, that would 
contact the pterygoid, from the ventral region, opened to the interior of the mouth region 
without contacting any bone.  
 

 
Figure 7. Posterior skull bones of Mystriosuchus sp. from Greenland. A. Right quadratojugal NHMD-6E14; B. Left 
quadrate NHMD-Hc47b. Scales = 4cm.  
 
 
NHMD-Hc1 (Fig.8) is an almost entire left mandible. It is broken in the posterior dentary, 
dividing it into the almost entire dentary with a total of 42 alveoli (Fig.8A; and four teeth still 
attached, see Teeth section), and the posterior body (Fig.8B). However, it lacks the splenial, 
the ventral region between the 21st tooth and the anterior angular. The dentary is a long, 
straight and robust bone, that displays a faintly sigmoideal shape in dorsal view. The dentary 
is straight until the 22nd alveoli tooth, where it becomes thicker posterolingually. It has a 
terminal rosette with four teeth, and a constriction between the fourth and fifth teeth (as in 
the premaxilla NHMD-126a and NHMD-Gb8). The terminal rosette also displays a pitting 
pattern in its surface. The lingual surface is smoother than the labial.  
The posterior mandible (Fig.7B) is displayed by an incomplete dentary, the surangular, the 
articular and a partial angular. The dentary preserved the last three alveoli of the tooth row, 
contacts posterolaterally with the anterior surangular, which makes an anterodorsal concave 
curve transition. The surangular is a short, rectangular bone that contributes to the 
posterodorsal border of the external mandibular fenestra. It exhibits two dorsal “condyle-
like” expansion: anteriorly near the contact with the dentary, and another posteriorly.  The 
articular expands medially, and remains below the surangular dorsal edge level. The dorsal 
angular surface forms part of the posteroventral border of the external mandibular fenestra. 
Medially, the angular has a lined-up circular pitting that starts near the posterior border of 
the fenestra, which extends posteriorly without reaching the articular. The retroarticular 
process in the posteroventral edge of the angular has a round shape. 
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Figure 8. Mandible of Mystriosuchus sp. from Greenland.  A. Dentary of the mandible NHMD-Hc1 (from top to 
bottom, the views are dorsal, medial, ventral, and lateral); B. Posterior body of the mandible NHMD-Hc1 (from 
top to bottom, the views are medial, dorsal, and lateral); C. Closer look to the third and fourth mandibular teeth; 
D. Closer look to the 36th mandibular teeth. Scales A-B = 4 cm, C-D = 1 cm. Abbreviatures: al – alveolus, an – 
angular, apsa – anterior projection of the surangular, ar – articular, d – dentary, emf – external mandibular 
fenestra, ppsa. – posterior projection of the surangular, rar – retroarticular, sa – surangular, tr – terminal rosette, 
4t – forth dentary tooth, 36t – 36th dentary tooth.  
 
 
The partial preserved posterior mandible NHMD-6D2/3 (Fig.9A) is conserved as a thin portion 
of the posterior dentary, with its last tooth, and the surangular. The posterior surangular 
edge is eroded, and part of the posterior edge has been removed, only the limits imprint 
remains. 
 
The angulars NHMD-Jd53 and NHMD-Gb95c (Fig.9B-C) are both broken posterior regions, 
with the body medially concave. NHMD-Jd53 has the ventral surface also broken, which gives 
it a convex ventral shape, in contrast with NHMD-Gb95c, that has a straight rectangular 
shape. The anterior edge has an anteriorly concave surface that forms part of the posterior 
mandibular fenestra.  
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Figure 9. Partial mandible remains of Mystriosuchus sp. from Greenland. A. Partial posterior mandible NHMD-
6D2/3 in labial view; B. Angular NHMD-Jd53 (from top to bottom, the views are lingual, ventral, labial, and dorsal); 
C. Angular NHMD-Gb95c (in labial and lingual views). Scales = 4 cm. Abbreviatures: an? – angular?, apsa – anterior 
projection of the surangular, ar? – articular?, d – dentary, emf – external mandibular fenestra, ppsa – posterior 
projection of the surangular, sa – surangular, t – teeth.  

 
 

2. Teeth 
 
A total of 62 isolated teeth were recovered, of which only 50 of them could have been 
accurately described (Figs.11-13). The measurements (Table 3; Fig.10) were taken following 
Hungerbühler (2000).  
 
Table 3. Measurements of Mystriosuchus sp. teeth. Abbreviations: AL – Apical length, CBL – Length of crown-base, 
CBW – Width of crown-base, TCH –Tooth crown height, SD – Serration density (number of denticles per 
millimeter).  

Field number  Position TCH AL CBL CBW Root SD 

NHMD-6G12  Premaxilla (snout) 27 26 8 - - HIDDEN IN MATRIX 

NHMD-6F12  Premaxilla (snout) 22 22 7 5 - 0 

NHMD-A011  Premaxilla (snout) 30,4 30,2 10,9 8,5 - ? 

NHMD-NO ID   Premaxilla (anterior) 24 25 7 - - 0 

NHMD-6E12-59  Premaxilla (anterior) 10 11 4 - - 0 

NHMD-6E12  Premaxilla (anterior) 11 11 5 - - 0 

NHMD-6C14  Premaxilla (anterior) 8 9 5 - - 0 

NHMD-6E11  Premaxilla (anterior) 10 11 4 - 16 0 

NHMD-A000  Premaxilla (anterior)? 31,08 30,75 8,6 - - 0 

NHMD-A001  Premaxilla (anterior)? 23,18 22,95 9,58 - - 0 

NHMD-A002  Premaxilla (anterior) 9,5 9,38 4,65 3,5 - ? 

NHMD-A004  Premaxilla (anterior) - - 6,4 7 - 0 

NHMD-A009  Premaxilla (anterior) 6,5 7,5 3,5 3,2 - 0 
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NHMD-A010  Premaxilla (anterior) 9,5 9,1 4,6 4,4 - 0 

NHMD-Gb93a  Premaxilla (anterior) 38 38,5 11 9,1 - 0 

NHMD-Hc2  Premaxilla (anterior) 46,2 45,5 13,4 13,9 - 0 

NHMD-Hc49  Premaxilla (anterior) 12,55 12,1 7,05 6,8 - 5 

NHMD-Hc78  Premaxilla (anterior) 11,4 12,8 4,47 5 - 0 

NHMD-Jd55  Premaxilla (anterior)? 20,3 21,45 7,3 7,7 - ? 

NHMD-6E12-74   Premaxilla (media) 29 30 8 - - 5 

NHMD-6F13-104  Premaxilla (posterior) 31 32 9 - - 3 

NHMD-6F13-107  Premaxilla (posterior) 33 34 10 9 - 3,- 

NHMD-6E13  Premaxilla (posterior) 21 21 9 6 - 5 

NHMD-6F12  Premaxilla (posterior) 24 23 10 - - 3,5 

NHMD-Hc111  Premaxilla (posterior) 27 26,6 10,3 8,5 - 5 

NHMD-6E14  Maxilla (anterior) 15 15 8 - - 4,--5 

NHMD-6E14  Maxilla (anterior) 35 36 10 7 - 3-3,5 

NHMD-6F12  Maxilla (anterior) 14 14 7 - - 5 

NHMD-6E13  Maxilla (anterior) - - - - - 2,5-3 

NHMD-A003  Maxilla (anterior) 6 6 6,7 4,8 - 4 

NHMD-A005  Maxilla (anterior) 10,9 9,6 6,9 6,8 - 4,5 

NHMD-A006  Maxilla (anterior) 15,3 15,4 6,1 4,9 - 4 

NHMD-A008  Maxilla (anterior) 13,2 13,7 5,7 3,2 - ? 

NHMD-NO ID  Maxilla (anterior) 17 19 10 - - 4,- 

NHMD-6G12  Maxilla (posterior) 19 18 15 - - 3,5 

NHMD-6E12  Maxilla (posterior) 19 20 16 6 - 3? 

NHMD-6E9-3   Maxilla (posterior) 11 12 5 - - 4 

NHMD-NO ID  Maxilla (posterior) 12 12 9 - - 3,2-3,8 

NHMD-Fb88c  Maxilla (posterior) 12,2 12,1 7,9 5,1 - 4 

NHMD-Gb16  Maxilla (posterior) 9,3 10,1 7 5,5 - ? 

NHMD-Hb3a  Maxilla (posterior) 15,23 14,76 11,88 7,2 - ? 

NHMD-Hc3  Maxilla (posterior) 17,5 15,2 11,2 8,3 25,45 3,5 

NHMD-Jd38  Maxilla (posterior) 12,8 11,5 10,8 6,7 - ? 

NHMD-Jd54  Maxilla (posterior) 14,6 13 9,9 8,4 - 4 

NHMD-A012  - - - 9 8,5 - ? 

NHMD-Hb3  - 14,4 13,83 7,5 - - ? 

NHMD-Hc1 3rd tooth  Mandible 4,8 4,3 3,4 4 - - 

NHMD-Hc1 4th tooth  Mandible 10,6 10,2 3,8 4,3 - - 

NHMD-Hc1 11th tooth  Mandible - - - - - - 

NHMD-Hc1 36th tooth  Mandible 19 18,2 9,8 7,6 - 5 
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Figure 10. Measurements made on the teeth of Mystriosuchus sp. from Greenland. A. Tooth NHMD-Hc3; B. 
Outline from NHMD-Hc3 to show the measurements; C. Zoom into the serrated area of the tooth. Abbreviations: 
AL – Apical length, CBL – Length of crown-base, CBW – Width of crown-base, TCH –Tooth crown height. Scale in A 
= 2 cm.  
 
 

Tip of the snout set. Teeth NHMD-A011, NHMD-6F12, and NHMD-6G12 (Fig.11A-C 
respectively) preserved only the crown region, with a conical shape, straight and almost 
circular in cross-section. There is no serration in NHMD-6F12, while the serration 
measurements could not be taken in NHMD-A011 and NHMD-6G12. In NHMD-A011 the 
anterior and posterior borders are partly preserved; and in the case of NHMD-6G12, its 
posterior surface is still covered by the matrix. 
 

Anterior premaxilla set. Teeth NHMD-6E12-59, NHMD-6E12, NHMD-6C14, NHMD-
6E11, NHMD-A002, NHMD-A009, NHMD-Gb93a, NHMD-Hc2, NHMD-Hc49, NHMD-Hc78 
(Fig.11D-M respectively), NHMD-A000, NHMD-A001, NHMD-A004, NHMD-A010, NHMD-
Jd55, and NHMD-NOID (Fig.13A-F respectively) preserved mostly the crown, while NHMD-
6E11 preserved the root as well, and NHMD-Gb93a and NHMD-Hc49 partly preserved the 
root. These teeth have circular basal cross-section, which become more oval toward the apex 
(except in NHMD-NOID, for half of the apical crown is broken). The teeth are strongly curved 
lingually, except NHMD-A000, NHMD-A001, NHMD-A002, NHMD-Jd55, which are straight. 
However, these teeth are broken, and are considered as part of the anterior premaxilla due 
to the lack of serration.  
A carina is present only in NHMD-6C14 NOID, which suggests that NHMD-6E12-59, NHMD-
6E12b and NHMD-6E11 are more anteriorly located in the tooth row.  
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Posterior premaxilla set. Teeth NHMD-A007, NHMD-Hc111, NHMD-6F13-107, NHMD-
6E13, NHMD-6F12 (Fig.11N-R respectively), NHMD-6E12-74 and NHMD-6F13-104 (Fig.13G-H 
respectively) are complete crowns. They have a circular cross section, which starts to flatten 
lingually near the base, becoming asymmetrical with a D-shape, in contrast to the anterior 
premaxilla teeth. The teeth change from lingually curved (NHMD-6E12-74, NHMD-6F13-104, 
NHMD-6F12) to straight in both lingual and labial faces (NHMD-6F13-107, NHMD-6E13).  
Mesial and distal carinae are present and fully serrated on the entire height of the crown. 
Although some of the carinae are partly broken (NHMD-6E12-74, NHMD-6F13-104, NHMD-
6F13-107, NHMD-A007, NHMD-Hc111), it can be assessed they are fully serrated. The 
serration starts to appear in the tooth row from the apex and goes to base, so if these teeth 
have both mesial and distal basal carinae serrated, the crowns should be as well. The SD of 
the portions that were visible was between 3-5 denticles per millimeter. 
 

Anterior maxilla set. Teeth NHMD-A008, NHMD-A003, NHMD-6E14, NHMD-A005, 
NHMD-6E14, NHMD-NOID (Fig.12A-F respectively), NHMD-6F12, NHMD-6E13, and NHMD-
A006 (Fig.13I-K respectively) are broken crowns.  

Most of them, in exception of NHMD-A006 and NHMD-A005, have D-shape cross 
section, flattened and faintly curved lingually. Although the apex is broken in some, all of 
them have the entire crown carinae fully serrated mesially and distally, with a SD between 3-
5 denticles per millimeter. These features are characteristics for anterior maxillary teeth 
posteriorly located in the tooth row. 
In NHMD-A005, NHMD-A006 and NHMD-A008 cases, because of the flanges are broken, only 
partial marks of denticles remain. Therefore, their position is difficult to enclose in the set.  
 

Posterior maxilla set. Teeth NHMD-Jd54, NHMD-Fb88c, NHMD-Jd38, NHMD-Hc3, 
NHMD-6G12, NHMD-6E9-3 (Fig.12G-L respectively), NHMD-6E12, NHMD-NOID, NHMD-Gb16, 
NHMD-Hb3a (Fig.13L-P respectively) preserved the crown, while NHMD-Hc3 preserved the 
root as well. They are labiolingually flattened, with a D-shape (NHMD-NOID, NHMD-Gb16, 
NHMD-Hc3, NHMD-Jd38, NHMD-Jd54) or oval-flattened cross-section (NHMD-6G12, NHMD-
6E9-3, NHMD-6E12, NHMD-Fb88, NHMD-Hb3a).  
The crowns distal and mesial carinae are fully serrated, with a SD between 3-4 denticles per 
millimeter. The oval-flattened cross-section and the mesial and distal expanded carinae give 
the appearance of a flat tooth in the case of NHMD-6E9-3, less pronounced in NHMD-6G12 
and NHMD-6E12. 
The tooth NHMD-NOID has a morphology that resembles more the anterior position in 
comparison with the other three. However, it is more flattened that anterior maxillary teeth.  
NHMD-Gb16, NHMD-Hb3a, and NHMD-Jd38 have their flanges broken and badly preserved, 
so the SD could not be measured.  
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Figure 11. Premaxillary teeth of Mystriosuchus sp. from Greenland. A-C. Tip of the snout set teeth. D-M. Anterior 
premaxillary teeth. N-R. Posterior premaxilla teeth. A. NHMD-A011; B. NHMD-6F12; C. NHMD-6G12; D. NHMD-
6E12-59; E. NHMD-6E12; F. NHMD-6C14; G. NHMD-6E11; H. NHMD-A002; I. NHMD-A009; J. NHMD-Gb93a; K. 
NHMD-Hc2; L. NHMD-Hc49; M. NHMD-Hc78; N. NHMD-A007; O. NHMD-Hc111; P. NHMD-6F13-107: Q. NHMD-
6E13; R. NHMD-6F12; S. Relative position of the teeth set in the skull of Angistorhinus (modified from Datta et al., 
2019b). Scales D-G, I = 1cm; A-C, H, J-R = 2 cm. 
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Mandibular set. The four mandible teeth found in NHMD-Hc1 (Fig.8A) can be related 
to their counterparts of the premaxilla and maxilla.  

The third and fourth teeth are conical and faintly lingually curved, have rounded 
cross-section, and the carinae are not serrated. However, the third tooth is smaller than the 
alveolus, which could mean it is a new tooth to replace the older one. These teeth are the 
counterparts of the “Tip of the snout” set. 

The eleventh tooth has its apex broken. It is, like the third tooth, smaller than the 
alveolus, which could mean it is a new one. However, it slightly curves lingually, and it is the 
counterpart of the “anterior premaxilla” set. 

The 36th tooth is more robust than the previous. It has a D-shape cross-section, and 
both carinae are fully serrated, with a SD of 5 denticles per millimeter. This tooth would be 
the counterpart of the posterior “anterior maxilla” set.  
 

 
Figure 12. Maxillary teeth of Mystriosuchus sp. from Greenland. A-F. Anterior maxillary teeth, G-L. Posterior 
maxillary teeth. A. NHMD-A008; B. NHMD-A003; C. NHMD-6E14; D. NHMD-A005; E. NHMD-6E14; F. NHMD-NOID; 
G. NHMD-Jd54; H. NHMD-Fb88c; I. NHMD-Hc3; J. NHMD- Jd38; K. NHMD-6G12; L. NHMD-6E9-3; M. Relative 
position of the teeth set in the skull of Angistorhinus (modified from Datta et al., 2019b). Scales A-D, F-H, J-L = 
1cm; E, I = 2cm.  
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Figure 13. Premaxillary and maxillary teeth of Mystriosuchus sp. from Greenland. A-F. Anterior premaxillary teeth, 
G-H. Posterior premaxillary teeth, I-K. Anterior maxillary teeth, L-P. Posterior maxillary teeth. A. Anterior 
premaxillary tooth NHMD-A004; B. Anterior premaxillary tooth NHMD-A010; C. Anterior premaxillary tooth 
NHMD-Jd55; D. Anterior premaxillary tooth NHMD-A001; E. Anterior premaxillary tooth NHMD-A000; F. Anterior 
premaxillary tooth NHMD-NOID;  G. Posterior premaxillary tooth NHMD-6E12-74; H. Posterior premaxillary tooth 
NHMD-6F13-104; I. Anterior maxillary tooth NHMD-A006; J. Anterior maxillary tooth NHMD-6F12;  K. Anterior 
maxillary tooth NHMD-6E13; L. Posterior maxillary tooth NHMD-6E12; M. Posterior maxillary tooth NHMD-Gb16; 
N. Posterior maxillary tooth NHMD-NOID; P. Posterior maxillary tooth NHMD-Hb3a; Q. Relative position of the 
teeth set in the skull of Angistorhinus (modified from Datta et al., 2019b). Scales A, C-I = 2 cm: B, J-P = 1 cm. 
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3. Vertebrae  
 
A total of 14 vertebrae from the cervical, dorsal and caudal region have been collected. All 
the measurements are in millimeters in the Table 4. All the bones parts are referred in Fig.14. 
 
Table 4. Measurements of Mystriosuchus sp. vertebrae.  

Field  
number 

Bone Length Total 
height 

Heigth 
(Neural 

arch) 

Heigth 
(centru

m) 

Width 
(Neural 

arch) 

Width 
(centrum) 

Length 
(diapophysis) 

NHMD-
Hc112 

8th cervical 84.7 101.6 101.6 - 46.8 - 37.9 

NHMD-
Da10 

Dorsal 
vertebra 

53.1 69 69 - 35.9 - 28.3 

NHMD-
6E+F12 

Dorsal 
vertebra 

41.5 63.8 63.8 - - - - 

NHMD-
Eb9a 

Dorsal 
spine 

32.5 71.2 71.2 - 35.1 - - 

NHMD-
Eb9b 

Dorsal 
centrum 

34.3 - - 28.3 - 24.4 - 

NHMD-
6E14 

Sacral 43 38.9 38.9 - - - - 

NHMD-
Gc51 

3rd caudal 60.8 129.5 129.5 - 22.3 - - 

NHMD-
Fa42 

4th caudal 73.7 177.3 131.1 49.6 38.8 51.1 - 

NHMD-130 6th caudal 59.8 - ~114.1 42.9 41.7 49.3 40.2 
NHMD-131 7th caudal 75.2 177.9 133.4 44.5 33.6 43.4 33.9 
NHMD-132 8th caudal 58.8 157.2 112.5 42.1 35.2 40.9 34 

NHMD-
6E11-44 

10th caudal 44.8 155.6 118.4 36.3 25.9 26.9 - 

NHMD-Hb4 Posterior 
caudal 

37.3 46.5 24 24.5 21.8 ~19.6 - 

NHMD-
NOID 

Posterior-
last caudal 

16.5 15.2 - 15.2 - 12.2 - 

 

 
Figure 14. Mystriosuchus sp. anterior caudal vertebrae outline with referred morphological characters. 
Abbreviations: apn – anterior projection of the neural spine, n – neural spine, nc – neural canal, ppn – posterior 
projection of the neural spine, poz – postzygapophysis, pr – proximal portion of the rib, prez – prezygapophysis.  
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 Cervical 
The cervical vertebra NHMD-Hc112 (Fig.15) is an almost complete neural arch, missing the 
ventral region of the neural canal. The neural spine is 66.2 mm, vertically oriented, 
transversally compressed. The anterior border of the neural spine is almost vertical, while the 
posterior border is expanded posteriorly and fused to the postzygapophysis, giving a 
triangular shape to the neural spine. The prezygapophyses are anteriorly expanded, with the 
facets dorsally oriented, making an open V outline. The postzygapophyses are oriented 
ventrally and laterally. The diapohyses appear ventrally to the prezygapophyses, 
perpendicular to the neural arch, and oriented posteroventrally, getting wider distally. The 
neural canal has a round shape.  
 

 
Figure 15. Cervical vertebra NHMD-Hc112 of Mystriosuchus sp. from Greenland. Scale = 5cm. Views are dorsal, 
left, frontal, right, and ventral, respectively.  
 
 

Dorsal 
The dorsal vertebra NHMD-Da10 (Fig.16A) is an almost complete neural arch, except for the 
ventral region of the neural canal. The neural spine is 30 mm, vertically directed, slightly 
tilted posteriorly, transversally compressed, with the anterior and posterior edges sub-
parallels. The apex of the neural spine is transversally expanded. The base of the neural spine 
has an anterior bump anteriorly directed. The neural spine suffered a taphonomical 
alteration, as suggested by the tilt. The prezygapophyses are anteriorly expanded, dorsally 
oriented making an almost horizontal facet. The postzygapophyses are ventrally oriented, 
with the facets making a widely open V. The neural canal remains almost complete, missing 
the ventral region; it is deep with a round-shape. The diapophyses are perpendicular to the 
neural arch. The parapophyses are in the anterior region of the neural arch, between the 
diapophyses and the prezygapophyses, ventrally to both.  
 
The dorsal vertebra NHMD-6F+F12 (Fig.16B) is an almost complete neural arch, like NHMD-
Da10. However, it is still in the matrix and only the lateral view is visible, and the lateral 
portion of the neural canal is broken. The neural spine is 47.2 mm, slightly tilted posteriorly, 
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with the anterior and posterior margins sub-parallels, transversally compressed. The apex of 
the neural spine is round and is not transversally expanded. The prezygapophyses is 
damaged, but its facet is almost horizontal and dorsally oriented. The postzygapophyses is 
more damaged and difficult to see its facet.  
 
The dorsal vertebra NHMD-Eb9a and NHMD-Eb9b (Fig.16C-D) are the centrum and neural 
arch isolated from the same vertebra, respectively. Both vertebra parts were found near one 
to the other, and the suture limit can be seen in both. The neural spine NHMD-Eb9b is 48.4 
mm, vertically directed, elliptical-shaped, transversally compressed. The apex of the neural 
spine is convex, transversally expanded, making a rectangular outline in anterior view. The 
prezygapophyses are anteriorly projected, with the facets dorsally oriented making an open 
U (it is more open, with the central meeting point between the zygapophyses more curved 
than the open V found in other vertebrae, like in the cervical vertebra NHMD-Da10 or the 
caudal vertebra NHMD-131). The postzygapophyses are complete, shorter than the 
prezygapophyses and ventrally oriented. The neural canal is round and deep. The rib facet 
appears in the base of the neural arch, ventrally to the neural canal.  
The centrum NHMD-Eb9a is slightly amphicoelous, with a rectangular-shape in lateral view, 
and sub-elliptical in anterior and posterior views. The dorsal surface is broken with contact 
facet scars remains. The ventral surface is slightly concave.  
 

 

Figure 16. Dorsal vertebrae of Mystriosuchus sp. from Greenland. A. Dorsal vertebra NHMD-Da10 (dorsal, 

posterior, left, anterior, right, ventral views, respectively); B. Dorsal vertebra NHMD-6F+12 (left view); C. Dorsal 

vertebra NHMD-Eb9a (dorsal, left, anterior and right views, respectively); Dorsal vertebra NHMD-Eb9b (dorsal, 

posterior, right, anterior, ventral views, respectively). Scales = 5 cm.  
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 Sacral 
The two sacral vertebrae NHMD-6E14 (Fig.17) are partially preserved and still in the matrix. 
Their centrums are fused, as well as their proximal diapophyses. The pre-zygapophyses and 
post- zygapophyses are difficult to delimit because of the conservation.  
The neural spines are separated and tilted posteriorly. 
 

 
Figure 17. Sacral vertebrae of Mystriosuchus sp. from Greenland. NHMD-6E14 in left view. Scale = 1 cm.  
 
 

Caudal 
The caudal vertebrae from Mystriosuchus sp. from Greenland are the most complete 
vertebrae found.  
 
The caudal vertebra NHMD-Gc51 (Fig.18A) is a nearly complete neural arch, except for the 
left anterior neural canal portion and left prezygapophyses. The neural spine is 109.7 mm 
tall, with a vertically directed blade shape, transversally compressed, and anterior and 
posterior margins sub-parallels. The apex of the neural spine is sub-horizontal, slightly tilted 
anteriorly, with no transversal expansion. The anterior edge of the neural spine base has a 
slight bump anteriorly projected. The prezygapophyses are projected anteriorly, making a 
deep curve with the neural spine. The postzygapophyses are almost complete, with a 
triangular shape and their facet facing almost horizontally ventral.  
 
The caudal vertebra NHMD-130 (Fig.18B) is complete centrum and partial neural arch, 
preserving only the neural canal, postzygapophyses and upper-most of the neural spine. The 
partial neural spine has a blade-like shape transversally compressed, with the anterior and 
posterior margins sub-parallel. Its apex is sub-horizontal, slightly tilted anteriorly, with no 
transversal expansion. The postzygapophyses are robust and facing ventrally, however, their 
position is taphonomical altered into a more lateral right position. The neural canal is round 
and deep. The centrum is amphicoelous and bigger posteriorly. The ribs are fused ventrally to 
the suture of the centrum and the neural arch. The ribs are almost perpendicular to the 
centrum, slightly ventrally oriented.  
 
The caudal vertebra NHMD-6E11-44 (Fig.18C) is nearly complete, except for postero-lateral 
left part of the centrum and postzygapophyses. The entire vertebra is 155.6 mm tall, from 
which 102.4 mm composes the neural spine. The neural spine is directed vertically, blade-
like, transversally compressed, and anterior and posterior margins are sub-parallels. The apex 
of the neural spine is sub-horizontal giving a rectangular outline in lateral view, not expanded 
transversally. The anterior rim at the base of the neural spine forms a round bump that 
projects anteriorly. The prezygapophyses are simple and their facets made an open V. The 
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inter prezygapophysal vacuity is deep. The prezygapophyses only projects slightly anterior to 
the anterior rim of the centrum. The neural canal is round and three times the width of the 
pedicels. In the middle of the base of the neural spine, there is a discrete lateral vertical 
crest.  The centrum is procealous. The rib is broken, so only the base is preserved.  
The broken condition of the centrum allows to pick the interior structure of it in this 
phytosaur. The bone is mainly spongy with no visible pleurocoel.  
The fused neural central suture is located anteriorly to the rib, being unclear if it runs 
ventrally or through the rib facet. In Renesto (2008) MCSNB 10.087 specimen, the neural 
central suture is dorsally to the rib facet.  
 
The caudal vertebra NHMD-131 (Fig.18D) is completely preserved, with the suture line 
between neural arch and centrum. The entire vertebra is 177.9 mm, from which 111 mm 
composes the neural spine. The neural spine is directed postero-vertically, with a blade-like 
shape, transversally compressed, and anterior and posterior margins are sub-parallels. The 
half-anterior margin of the apex of the neural spine is tilted, while the half-posterior margin 
is horizontal. The apex of the neural spine is not expanded transversally. The base of the 
neural spine has anteriorly and posteriorly directed bumps, dorsally to the zygapophyseis. 
The prezygapophyses have their facets dorsally oriented, making an open V, while the 
postzygapophyses have their facets ventrally oriented. The inter prezygapophysal and inter 
postzygapophysal vacuity are deep. The neural canal is round-shape and deep. The centrum 
is amphicoelous, with a deep concave ventral surface. The ribs are fused between the suture 
of the centrum and neural arch. The right rib is ventrally oriented, while the left rib is dorsally 
oriented due to taphonomic alterations. Both ribs are fused ventrally to the neural arch and 
centrum suture  
 
The caudal vertebra NHMD-Fa42 (Fig.18E) is completely preserved, except for the partially 
broken postzygapophyses and posterior centrum base. The entire vertebra is 177.3 mm, from 
which 102.1 mm composes the neural spine. The neural spine is directed vertically, slightly 
bowed, blade-like shape, transversally compressed, with anterior and posterior margins sub-
parallels. The neural spine apex is not expanded transversally, with a sub-horizontal margin. 
The prezygapophyses are robust and facing dorsally, making an open V shape. The 
prezygapophyses are anteriorly expanded, surpassing the centrum anterior margin, making a 
smooth 90º angle with the neural spine. The left postzygapophyses is nearly complete, facing 
ventrally. The postzygapophyses are broken are not surpass the posterior margin of the 
centrum. The neural canal has a round shape anteriorly, and elliptical posteriorly. The 
centrum is amphicoelous, with a ventral concavity. The ribs are broken, only the base is 
preserved. The rib base is between the suture of the neural arch and the centrum.  
 
The caudal vertebra NHMD-132 (Fig.18F) is a complete preserved vertebra, except for the 
apex of the neural spine. The entire vertebra is 157.2 mm, from which 100.3 mm composes 
the neural spine. The neural spine is directed vertically, with the anterior and posterior 
margins sub-parallels, transversally compressed. The neural spine apex is broken, however, 
there are no signs of a transversal expansion. The base of the neural spine has an anteriorly 
and posteriorly directed bump expansions. The anterior bump is more expanded anteriorly 
than the posterior bump posteriorly. The prezygapophyses are robust and make an open V 
facet dorsally oriented, while the postzygapophyses are facing almost horizontally ventral. 
The inter prezygapophysal and inter postzygapophysal vacuity are deep. The neural canal is 
deep, and round-shaped anteriorly, while more elliptical-shaped posteriorly. The centrum is 
amphicoelous and has a concavity in its ventral surface. The ribs are fused, short, and 
perpendicular to the centrum. The ribs are fused ventrally to the neural arch and centrum 
suture.  
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The distal caudal vertebra NHMD-Hb4 (Fig.18G) is a broken vertebra, with the neural spine 
preserved and the left half posterior centrum. The neural spine is short, posteriorly located 
and posteriorly tilted, compressed transversally. The postzygapophyses are short and facing 
ventrally. The neural canal is round shape and deep. The centrum is broken, at least 
procealous. The left rib is short and perpendicular to the centrum, fused ventrally to the 
neural arch and centrum suture. 
 
The vertebra NHMD-NOID (Fig.18H) is a small centrum preserved. The centrum is procealous, 
with the ventral surface concave. It still has the contact surfaces in both anterior and 
posterior ventral margins for the chevrons. 
 

 
Figure 18. Caudal vertebrae of Mystriosuchus sp. from Greenland. A. Caudal vertebra NHMD-Gc51; B. Caudal 
vertebra NHMD-130; C. Caudal vertebra NHMD-6E11-44; D. Caudal vertebra NHMD-131; E. Caudal vertebra 
NHMD-Fa42; F. Caudal vertebra NHMD-132; G. Caudal vertebra NHMD-Hb4; H. Caudal vertebra NHMD-NOID. 
Views in A, C, D-G: left, anterior, right, posterior; in B: anterior, left, posterior; in H: left, ventral, right, dorsal, 
anterior, posterior. Scales A-G = 5cm, H = 1cm.  
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4. Ribs 
 
A total of 40 ribs (Figs.19-21) were collected and can be divided into three morphotypes. 
Only the most complete, 23 of them, were measured and appear in Table 5 are in 
millimeters.  
 
Table 5. Measurements of Mystriosuchus sp. ribs 

Field number Bone Length Width (head) Width (posterior) 

NHMD-Kb123 Cervical rib 54.6 14.3 5.5 

NHMD-Fa98 Cervical rib 66.7 22.4 3 

NHMD-Kd106 Dorsal rib 181.7 23.9 5 

NHMD-129 Dorsal rib 103 20.3 3.1 

NHMD-Kb125 Dorsal rib 246.4 67 7.9 

NHMD-Ea83 Dorsal rib 167.5 52.9 7.9 

NHMD-Fb29a Dorsal rib 239.2 11 9.1 

NHMD-Gb95a Dorsal rib 218.9 9,5 8.8 

NHMD-Ea79 Dorsal rib 301 26.2 13.1 

NHMD-Ea84 Dorsal rib 338.5 58.8 10.3 

NHMD-Eb66 Dorsal rib 272.8 35.7 10.7 

NHMD-Hc75b Dorsal rib 328.4 58.8 14.1 

NHMD-Ea96 Dorsal rib 256.5 36 26.3 

NHMD-Hb115 Gastralia 193.5 11.8 7.2 

NHMD-Gb30 Gastralia 132 5.5 4.7 

NHMD-127 Gastralia 145.1 8.4 7.3 

NHMD-Kc122d Gastralia 260 5.6 5 

NHMD-Gb7 Gastralia 206 12.2 8.6 

NHMD-Fb32 Gastralia 150.7 51.3 2.7 

NHMD-Da68 Gastralia 176.6 13.7 5 

NHMD-Gc35 Gastralia 218.5 5.3 5.1 

NHMD-Kb129 Gastralia 186. 6 5.2 

NHMD-Ea61 Gastralia 160.7 8.3 5.3 

 
 
The cervical ribs NHMD-Kb123 (Fig.20A) and NHMD-Fa98 (Fig.20B) are small and short, with 
double headed proximal end dorsoventrally flattened. However, the proximal surface is 
shallow concave, in contrast with the dorsal.  
 
The dorsal ribs NHMD-Kd106, NHMD-129, NHMD-Kb125, NHMD-Ea83, NHMD-Fb29a, NHMD-
Gb95a, NHMD-Ea79, NHMD-Ea84, NHMD-Eb66, NHMD-Hc75b, and NHMD-Ea96 (Fig.19A-K. 
respectively) share a long, slender, straight to bowed shape. The proximal end is double 
headed (partly broken in NHMD-Kd106, NHMD-Fb29a and NHMD-Gb95a), with the proximal 
condyle larger than the distal. The proximal end is dorsoventrally flattened, with a deep 
concave surface. The rib gets thicker distally, changing from a flat to a circular cross-section 
that extends until the distal end. In the case of NHMD-Fb29a and NHMD-Eb66, the head had 
smaller condyles, almost similar in size. In NHMD-Gb95a, the head is broken and lack one of 
the condyles, indicated by the scar. In NHMD-Kd106, NHMD-Kb125 and NHMD-Ea83, the 
head and the body are straighter.  
 
The gastralia ribs NHMD-Hb115, NHMD-Gb30, NHMD-127, NHMD-Kc122d, NHMD-Gb7, 
NHMD-Fb32, NHMD-Da68, NHMD-Gc35, NHMD-Kb129, NHMD-Ea61 (Fig.20C-L, respectively) 
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have a long and slender body shape, strongly curved with a prominent vertex in the middle of 
the body (in the case of NHMD-6E13-6G, only this vertex remains). The ends are broken and 
sharp in all of them, in exception of NHMD-Gb7. 
 
There are also partial remains of broken distal ends (NHMD-141, NHMD-Hc75, NHMD-142, 
NHMD-Ja117, NHMD-Gc34, NHMD-Ea67, NHMD-58, NHMD-Gb95; Fig.20A-H) and middle 
bowed parts (NHMD-128, NHMD-Hc75c, NHMD-Ea65, NHMD-138, NHMD-Jd65, NHMD-140, 
NHMD-137, NHMD-126, and NHMD-Kc122e; Fig20I-Q) that cannot be enclosed into any of 
the previous morphotype.  
 

 
 
Figure 19. Dorsal ribs of Mystriosuchus sp. from Greenland. A. NHMD-Kd106; B. NHMD-129; C. NHMD-Kb125; D. 
NHMD-Ea83; E. NHMD-Fb29a; F. NHMD-Gb95a; G. NHMD-Ea79; H. NHMD-Ea84; I. NHMD-Eb66; J. NHMD-Hc75b; 
K. NHMD-Ea96. Scales = 5 cm.   
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Figure 20. Cervical ribs (A-B) and gastralia (C-L) of Mystriosuchus sp. from Greenland. A. NHMD-Kb123; B. NHMD-
Fa98; C. NHMD-Hb115; D. NHMD-Gb30; E. NHMD-127; F. NHMD-Kc122d; G. NHMD-Gb7; H. NHMD-Fb32; I. 
NHMD-Da68; J. NHMD-Gc35; K. NHMD-Kb129; L. NHMD-Ea61. Scales A-B = 4 cm; C-L = 5 cm.  
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Figure 21. Partial ribs of Mystriosuchus sp. from Greenland. A. NHMD-141; B. NHMD-Hc75d; c. NHMD-142; D. 
NHMD-Ja117; E. NHMD-Gc34; F. NHMD-Ea67; G. NHMD-58; H. NHMD-Gb95; I. NHMD-128; J. NHMD-Hc75c; K. 
NHMD-Ea65; L. NHMD-138; M. NHMD-Jd65; N. NHMD-140; O. NHMD-137; P. NHMD-126; 1. NHMD-Kc122e. Scale 
= 4 cm.  

 
 

5. Pectoral girdle 
 
A total of six disarticulated bones referred to the pectoral girdle were recovered. The 
measurements in Table 6 are in millimeters.  
 
Table 6. Measurements of Mystriosuchus sp. pectoral girdle bones.  

Label Bone Length Width 
(anterior) 

Width 
(posterior) 

NHMD-NOID Interclavicle 91.3 48.6 24.7 

NHMD-Fa82 Interclavicle 99.6 ~55.5 ~24.5 

NHMD-Fb31 Interclavicle 225.5 38.1 48 

NHMD-Gb21 Clavicle? 83 23.5 14 

NHMD-Hc75a Right coracoid 170 52.2 16.5 

NHMD-136 Left coracoid - - - 

NHMD-Hd48 Left ischium 174 41.3 18.2 

NHMD-Gb39 “Baby” scapula 33.8 13.9 11.2 
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The interclavicle NHMD-NOID (Fig.22A) anterior body is thin with the dorsal anteriormost 
portion region still covered in matrix. The anteriormost region has a rhomboid shape with 
short lateral processes, that is gradually reduced and reaches the connection with the 
interclavicle body. The interclavicle body has two middle ventral ridges near the connection 
with the interclavicle head.  
The interclavicle NHMD-Fa82 (Fig.22B) preserved only the half anteriormost body. The 
remaining lateral process expands laterally, displaying a triangular shape. The posterior 
region is thinner and smoother than the anterior. There is a convex ridge in the middle shaft, 
between the lateral processes.  
The partial body of the interclavicle NHMD-Fb31 (Fig.22C) is a thin sub-elliptical bone. In the 
anterior region, the contact with the interclavicle head is broken. There are two central 
ridges that run through the middle body. These ridges start sub-parallels and separate 
distally.  
 
 The partial scapula NHMD-Gb39 (Fig.22D) has a sub-rectangular shape, posteriorly bowed, 

with the distal end more posteriorly projected than the proximal end. The distal end ventral 

surface has a triangular shape, which would contact the coracoid. 

The right coracoid NHMD-Hc75a (Fig.22D) has a convex blade-like shape in its medial surface 
which broadens anteriorly. The glenoid process is laterally oriented, perpendicular to the 
blade, with a thick neck connection, and a sub-elliptic surface.  
From the left coracoid NHMD-136 (Fig.22E) only the anterior portion of the blade region and 
the posterior portion of the glenoid process is preserved. The anterior portion of the blade-
like region is thin, with a sharp anterior edge. The glenoid process has a concavity that would 
contact the scapula. 
 
The clavicle (NHMD-Gb21; Fig.22G) is a short, anteriorly bowed, broken bone, medially 
concave. Its dorsal surface is concave, while the ventral is straight and smooth. It gets wider 
medially, and the anterior edge expands more than the posterior. The antero and postero 
medial surfaces make a square-shape that would surround the interclavicle left lateral 
process.  
 
 

6. Forelimbs 
 
A total of seven forelimb bones were collected. All the measurements in Table 7 are in 
millimeters. 
 
Table 7. Measurements of Mystriosuchus sp. forelimb bones.  

Field number Bone Length Width 
(anterior) 

Width 
(posterior) 

NHMD-Fa85 Left humerus 259.3 94.2 86.2 

NHMD-Ga116 Left humerus 261 89.3 79.9 

NHMD-Gc6 Right humerus 275.7 99.5 90.1 

NHMD-6E13-54 Right ulna 143.2 39.6 45.4 

NHMD-Jd57 Right ulna 216.4 55.8 36 

NHMD-113 Right radius 172.4 26.3 27.8 
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Figure 22. Pectoral and pelvic girdle bones of Mystriosuchus sp. from Greenland.A. Interclavicle NHMD-NOID (left, 
ventral, right, dorsal views, respectively); B. Partial interclavicle NHMD-Fa82 (dorsal, ventral views, respectively); 
C. Partial interclavicle NHMD-Fb31 (ventral, dorsal views, respectively); D. “Baby” scapula NHMD-Gb39; E. Left 
coracoid NHMD-136 (left, right views, respectively); F. Right coracoid NHMD-Hc75a (left, anterior, right, dorsal, 
ventral views, respectively); G. Left ischium NHMD-Hd48 (right, posterior, left, anterior views, respectively); H. 
Left clavicle NHMD-Gb21 (ventral, dorsal views, respectively). Scales A-C, E-H = 4cm, B = 2cm.  
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Complete left (NHMD-Fa85 and NHMD-Ga116; Fig.23A-B) and right humerus (NHMD-Gc6; 
Fig.23C) display a robust, ventrally bowed body shape.  
In NHMD-Gc6, NHMD-Fa85, and NHMD-Ga116, the proximal end is dorsoventrally flattened, 
with a rugose convex surface. The condyles are flat, the medial condyle being more 
expanded medially than proximally. The deltoic crest appears along the lateral margin of the 
ventral surface (105 mm in NHMD-Fa85, 114 mm in NHMD-Ga116, and 126 mm in NHMD-
Gc6), almost reaching the middle part of the body. The distal end is dorsoventrally flattened, 
with broad condyle expansions. In contrast with the proximal surface, the distal surface is 
gently concave and soft. The radio-condylar groove is located above the laterodistal condyle, 
lateroventrally expanded, extending the laterodistal condyle edge.  
 
The partial right ulna NHMD-6E13-86 (Fig.23E) has a subrectangular, medially bowed, 
dorsoventrally flattened, faintly ventrally concave body shape. The proximal end becomes 
medially broad, while the distal end is broader laterally than medially, with a smooth surface. 
In the dorsal surface there is a dorsally expanded sigmoideal relief running along the 
diaphysis midshaft.  
 
The partial right ulna NHMD-Jd57 (Fig.23F) is a long dorsoventrally flattened bone bowed 
medially and ventrally, faintly ventrally concave, and distally thinner. The proximal end is 
proximally wide, with a circular shape. It has a ventral expansion of the medial border, over 
the radius. On the medial side, the olecranon has a soft concave surface. Although the distal 
end is broken, the remaining portion has a concave ventral surface, surrounding the radius 
dorsal surface.  
 
The right radius NHMD-113 (Fig.23F) is a straight sub-cylindrical bone, bowed ventrally but 
less than the ulna. The proximal end exhibits a flattened elliptical surface, more expanded 
laterally than medially. The distal end also exhibits a flattened surface, but the shape is more 
circular than the proximal surface.  
 
 

7. Pelvic girdle 
 
Only one ischium was found. The measurements are in Table 4.  
 
The well-preserved left ischium NHMD-Hd48 (Fig.20G) has a blade-like ventral process, 
mediolaterally flattened and posteriorly slimed down, with the posterodorsal region thicker 
than the anteroventral. The dorsal surface is smooth, laterally tilted.  
 
 

8. Hindlimbs 
 
A total of four hindlimb bones were collected. All the measurements are in Table 8 in 
millimeters.  
 
Table 8. Measurements of Mystriosuchus sp. hindlimbs bones.  
Field number Bone Length Width 

(anterior) 
Width 

(posterior) 

NHMD-134 Left femur 301.3 68.5 59.3 

NHMD-Hc74a Left tibia 192.5 67.9 49 

NHMD-6E12-54 Left fibula 100.8 15.8 19.3 
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The left femur NHMD-134 (Fig.24A) displays a long, slender, sigmoideal shape, medially 
bowed. The proximal end is dorsoventrally flattened, anteriorly expanded, with a rugose 
convex surface. The medial and lateral condyles are posteriorly oriented, with the medial 
condyle more expanded medially. The ventral surface is convex and smooth, larger in the 
medial condyle. The intercondylar grooves appear in both anterior and posterior surfaces, 
deeper in the posterior surface.  
 
There left fibula NHMD-6E12-54 (Fig.24B) is a long bone, dorsoventrally flattened, with a 
gentle sigmoid curvature. The proximal end has a smooth surface, and the lateral condyle 
looks swollen over the medial. The diaphysis exhibits an iliofibularis trochanter over the 
middle shaft of the body. The distal end displays an ellipsoid smooth surface, and is 
dorsoventrally flattened, in contrast with the proximal end, with a dorsal groove extending 
toward the middle diaphysis.  
 
The left tibia NHMD-Hc47a (Fig.24C) displays a robust, straight, medially bowed shape, with 
an oval cross-section. The proximal end is anteriorly projected, more medially expanded than 
the distal end, with a smooth convex surface. The distal end is anteromedially expanded, 
which is where the fibula contacts.  
 
 

9. Phalanges 
 
A total of eight phalanges were recovered. All the measurements are in millimeters in Table 
9.  
 
Table 9. Measurements of Mystriosuchus sp. phalanges bones.  
Field number Bone Length Width 

(anterior) 
Width 

(posterior) 

NHMD-Gc36 Phalanx 36.5 23.5 22.8 

NHMD-Fb33 Phalanx 31.8 20.5 20.5 

NHMD-6E13-54 Phalanx 27.3 15.7 14.2 

NHMD-6F13 Phalanx 36.2 22.4 22.3 

NHMD-Fa59 Phalanx 96.4 21.8 12.6 

NHMD-Fa40 Phalanx 42.6 18 7.6 

NHMD-135 Phalanx 43.3 18.4 17.7 

NHMD-Ca13 Phalanx 28.3 16.1 15.5 
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Figure 23. Forelimb bones of Mystriosuchus sp. from Greenland. A. Left humerus NHMD-Fa85 (ventral, medial, 
and dorsal views, respectively); B. Left humerus NHMD-Ga116 (ventral, medial, dorsal, and lateral views, 
respectively); C. Right humerus NHMD-Gc6 (medial, dorsal, lateral, and ventral views, respectively); D. Right ulna 
NHMD-6E13-54 (medial, dorsal, lateral, and ventral views respectively); F. Right ulna NHMD-Jd57 (ventral, medial, 
dorsal, and lateral views, respectively) and right radius NHMD-113 (anterior, lateral, posterior, and medial views, 
respectively). Scales = 10 cm. Abbreviations: dc – deltoic crest, dmc – distal medial condyle, o – olecranon, pmc – 
proximal medial condyle, rcg – radio condylar groove, Ra – radius, Ul – ulna. 
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Figure 24. Hindlimb bones of Mystriosuchus sp. from Greenland. A. Left femur NHMD-134 (medial, dorsal, lateral, 
and ventral views, respectively); B. Left fibula NHMD-6E12-54 (dorsal, medial, ventral, and lateral views, 
respectively); C. Left tibia NHMD-Hc74a (lateral, dorsal, medial, and ventral views, respectively). Scales A = 10cm; 
B-C = 4cm. Abbreviations: c – condyle, fh – femur head, fc – fibula contact, gr – grove, p – process, tr – trochanter.  
 
 
The isolated phalanges NHMD-Gc36, NHMD-Fb33, NHMD-6E13, NHMD-6F13, NHMD-Fa59, 
NHMD-Fa40, NHMD-135 and NHMD-Ca13 (Fig. 25A-H, respectively) are complete. However, 
since they are not associated neither articulated, most of them could not be attributed as 
carpals nor tarsals.  
They have round smooth proximal surfaces (flat in NHMD-6E13 and NHMD-Ca13, dorsally 
concave in the other), while the distal surface is convex and flattened lateromedially, giving a 
square-shape in anterior view.  
The ventral surface is smooth and straight in NHMD-6E13, NHMD-135, NHMD-Ca13, NHMD-
Fa40 and NHMD-Fa59, and anteriorly concave in NHMD-6F13, NHMD-Fb33 and NHMD-Gc36, 
while the dorsal surface is slightly bowed. The anterior region is smaller than the posterior 
one, having a triangle-shape in medial and lateral views. The body of the phalanges is 
constricted in the center. The anterolateral condyle is projected laterally, making the lateral 
surface look more concave than the medial surface in the constricted area.  
However, the phalanges NHMD-135, NHMD-Fa40 and NHMD-Fa59 can be enclosed as the 
first phalanges. These phalanges are longer (see Table 9) and more dorsoventrally flattened 
than the others.  
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10. Dermal armor 
 
A total of 19 osteoderms were collected. All the measurements are in Table 10 in millimeters.  
 
Table 10. Measurements of Mystriosuchus sp. osteoderms.  

Field number Morphotype Length Width 

NHMD-Kc108 Morphotype 1 28.6 33.3 

NHMD-Gb95e Morphotype 1 26.3 27.5 

NHMD-6E12 Morphotype 1 13.9 12.6 

NHMD-NOID Morphotype 1 22.4 19.1 

NHMD-Fa26 Morphotype 1 56.6 45.9 

NHMD-Fa24 Morphotype 1 52.5 29.8 

NHMD-Jc74 Morphotype 1 71.8 50 

NHMD-Fa81 Morphotype 1 50 85.9 

NHMD-Gb71 Morphotype 1 38.7 25.2 

NHMD-Jd56 Morphotype 2 69.6 76.4 

NHMD-Fb45 Morphotype 2 51.8 25.6 

NHMD-Hb103 Morphotype 2 55.7 36.4 

NHMD-Jc70 Morphotype 2 73.3 62.3 

NHMD-Da90 Morphotype 3 36.2 51.6 

NHMD-Eb73 Morphotype 3 34.1 27.6 

NHMD-Ha118 Morphotype 3 33.1 57.5 

NHMD-NOID Morphotype 4 43.5 58.5 

NHMD-6E12-81 Morphotype 4 41.2 46.1 

NHMD-6F13-102 Morphotype 4 41.7 33.8 

 
 
Most of the isolated osteoderms found can be related to the lateral dorsal armor, because of 
the presence of pitting in their surface. However, some have lost their edges and are difficult 
to include in any morphology. 
  
The first osteoderm morphotype (Fig.26A-I) includes NHMD-Kc108; NMHD-Gb95e, NHMD-
6E12, NMHD-NOID, NHMD-Fa26, NHMD-Fa24, NHMD-Jc74, NHMD-Fa81 and NHMD-Gb71. 
These osteoderms have almost a longitudinal bilateral symmetry with a teardrop-shaped 
(except NHMD-Fa81 and NHMD-Hc50) and a mid-dorsal bar. The pitting appears in the dorsal 
region, in a rough convex surface, while the ventral region is smooth.  
 
The second osteoderm morphotype (Fig.26J-M) includes NHMD-Jd56, NHMD-Fb45, NHMD-
Hb103 and NHMD-Jc70. They present a sub-rectangular shape, with a dorsal bar near the 
anterior edge. The dorsal pitting and smooth ventral surface are similar to the previous 
morphotype. 
 
A third morphotype (Fig.26N-P) NHMD-Da90, NHMD-Eb73 and NHMD-Ha118 exhibits a sub-
circular shape with small spines in the edges 
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Figure 25. Phalanges of Mystriosuchus sp. from Greenland. A. NHMD-Gc36 (medial, dorsal, lateral, and ventral 
views, respectively); B. NHMD-Fb33 (medial, dorsal, lateral, and ventral views, respectively); C. NHMD-6E13 
(ventral, lateral, dorsal, and medial views, respectively); D. NHMD-6F13 (lateral, dorsal, medial, and ventral views, 
respectively); E. NHMD-Fa59 (lateral, and medial views, respectively); F. NHMD-Fa40 (lateral, dorsal, medial, and 
ventral views, respectively); G. NHMD-135 (lateral, dorsal, and medial views, respectively); H. NHMD-Ca13 (dorsal, 
medial, ventral, and lateral views, respectively). Scales A-B, E-G = 3cm; C-D = 2cm; H = 1cm.  
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Other morphotype of osteoderms found (Fig.26Q-S), such as NHMD-NOID, NHMD-6E12-81 
and NHMD-6F13-102, in contrast with the previous ones, are ornamented with small ridges 
interconnected, similar to Ginkgo biloba leaves. These osteoderms are still in the matrix, so 
only one of the surfaces can be seen. 

  
Figure 26. Osteoderms of Mystriosuchus sp. from Greenland. A NHMD-Kc108; B. NHMD-Gb95e; C. NHMD-6E12; D. 
NHMD-NOID; E. NHMD-Fa26; F. NHMD-Fa24; G. NHMD-Jc74; H. NHMD-Fa81; I. NHMD-Gb71; J. NHMD-Jd56; K. 
NHMD-Fb45; L. NHMD-Hb103; M. NHMD-Jc70; N. NHMD-Da90; O. NHMD-Eb73; P. NHMD-Ha118; Q. NHMD-
NOID; R. NHMD-6E12-81; S. NHMD-6F13-102; T. NHMD-6F11-16*. A-I. First osteoderms morphotype; J-M. Second 
osteoderm morphotype; N-P. Third osteoderm morphotype; Q-S. “Ginkgo-like” morphotype. Scales A-B, D, I, K, O, 
S = 2cm; C = 1cm; E, G-H, L, N, P-R = 3cm; F, J, M = 5cm.  
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11.  Bones with problematic identification 
 
Here there is an approach of some fossil descriptions that, due to their preservation and 
partial conservation, were not able be accurately described without doubts. These bones will 
need further study and a comparison with complete phytosaur remains. Their measurements 
are in the Table 11 in millimeters. 
 
Table 11. Measurements of Mystriosuchus sp. problematic bones.  

Field number Bone Length Width 
(anterior) 

Width 
(posterior) 

NHMD-6C4-36 ? 104.3 16.8 29 

NHMD-6F12 ? 38.7 10.7 13 

 
NHMD-6C4-36 and NHMD-6F12 (Fig.27A-B) are two straight, slender broken bones, 
posteriorly wider. These bones have ornamentation typical from dorsal skull bones. In the 
case of NHMD-6C4-36 (Fig.27A), it also has a smooth concave surface in one of its lateral 
edges, which could mean it is part of a fenestra region.  
 
NHMD-2016 NOID is a broken terminal end of a long bone. It has a rectangular shape, 
dorsoventrally flattened, laterally convex, and slightly anteriorly bowed.  
The anterior half edge of the terminal end slightly expands ventrally. The concave surface of 
the end has a sub-elliptical shape. The lateral and medial surfaces have no condyles, and the 
width along the bone is constant.  
It is described here as a partial radius because of its lateral surface curvature, lack of condyles 
and constant width.  
 

 
Figure 27. Problematic bones of Mystriosuchus sp. from Greenland. A. NHMD-6C4-36; B. NHMD-6F12. Scales = 
5cm.  

 
 
 

DISCUSSION AND COMPARISONS 
 
The Greenland phytosaur fossils were in a bonebed with at least 6 individuals, however, most 
bones were nor in anatomical articulation. There are no significant morphological differences 
in the bones that indicate more than one species of phytosaur, even there are at least 
remains of four individuals. There is not much bone duplication (premaxilla, humeri, fibulae), 
and the anatomy remains consistent from one to another. Therefore, in this study, these 
fossils were treated as a single species, but with different individuals. This research makes 
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the first phylogenetic approach of the Greenland phytosaur, preserved mostly in post-cranial 
remains, which makes this approach as important as difficult.  
 
The different degree of heterodonty was previously studied only in Nicrosaurus kapffi by 
Hungerbühler (2000) and an isolated teeth from India (Datta et al., 2019a), so the only 
comparison with a Laurassian phytosaur that can be made is with the N.kapffi. Since then, 
the degree of heterodonty has been poorly studied afterwards in phytosaurs and not used in 
phylogenetic neither morphometric studies, in contrast with dinosaurs (Larson, 2008; 
Hendrickx & Mateus, 2014; Isasmendi et al., 2020).   
The number of denticles is superior in the tip of snout and anterior premaxilla of N.kapffi, 
while it is higher in the posterior premaxilla and the maxilla of the Greenland phytosaur. The 
difference between the SD of the N.kapffi from Hungerbühler (2000) and the Greenland 
phytosaur (here described as a phytosaur with as well tripartite dentition) needs further 
study and comparison with other Laurasian phytosaurs to corroborate that the character 
“Degree of heterodonty” has significant taxonomic value.  
 
In the rostrum NHMD-126a, in comparison with other phytosaurs and other 
archosauriformes, such as Proterochampsa, Proterosuchus and Eurparkeria (Ewer, 1965; 
Rossman et al., 2005; Dilkes & Arcucci, 2012), the premaxilla never reaches the antorbital 
fenestra. The suture between premaxilla and maxilla is almost inexistent. However, between 
teeth number 20-21, there is a faint suture that goes dorsally, and posteriorly while reaching 
the dorsal part, that could be the limit between premaxilla and maxilla. With this idea, the 
tooth row would be divided in almost half of them as premaxillary (20 premaxillary teeth) 
and the other maxillary (at least 16 premaxillary, due to the maxilla is broken posteriorly). 
This almost half premaxillary-half maxillary teeth number can be seen in other phytosaurs 
such as Nicrosaurus kapffi (Hungerbühler, 2000), Parasuchus hislopi (Chaterjee, 1978), or 
Angistorhinus grandis (Mehl, 1915).   
The beginning of the interpremaxillary fossa from the fifth tooth is also found in 
Machaeroprosopus lottorum TTU-P10076 (Hungerbühler et al., 2013). However, the fossa 
from the Greenland Mystriosuchus sp. is not totally bottom-flat posteriorly as it is slightly 
bowed dorsally in the bottom of the maxilla.  
 
In both jugals, the anterior edge has a smooth anterior concave surface similar to the 
posterior and dorsal edges. This smooth concave surface could mean that the anterior region 
of the jugal was part of the anteorbital fenestra, like in Mystriosuchus planirostris and 
M.westphali (Hungerbühler, 2002).  
 
The premaxilla NHMD-Gb8 is similar in morphology and alveoli shape to Protome batalaria 
(Stocker, 2012) and Angistorhinus grandis (Mehl, 1915), with the terminal rosette that in 
medial and lateral views looks downturned.  
 
The surangular has two dorsal projections: one right after the dentary, and another one right 
before the articular. These dorsal projections have a similar position in NHMD-Hc1 and 
NHMD-6D2/3. When compared to other phytosaur species, the position and distance 
between these two dorsal projections differs among them (Fig.28) and could be used as a 
character to differentiate them in future researches. 
 
The prezygapophyses and postzygapophyses in the cervical vertebra NHMD-Hc112 are, as 
seen by Lucas et al. (2002) in Angisthorinus grandis, above the neural canal. While the 
diapophyses of the Greenland specimen are located between the middle and ventral region 
of the neural canal, in contrast with A.grandis. 
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There is no centrum remain in the cervical vertebra; however, taking the zygapophyses as 
limits for the centrum to have an idea of the length, the centrum should be short, in contrast 
with the ones from Rutiodon (Romer, 1956), but more similar to Angistorhinus grandis (Lucas 
et al., 2002). Here, the cervical vertebra is enclosed as the mid-last cervical vertebrae, the 
eighth one. 
 
The dorsal vertebrae are similar to the ones from Parasuchus (Chaterjee, 1978) and 
Angistorhinus (Lucas et al., 2002), with the transversa expansion of the neural spine apex, 
and the short square-shaped amphicoelous, not keeled, centrum.  
The sacral vertebrae neural spines are thinner that the ones from Parasuchus (Chaterjee, 
1978) and Angistorhinus (Lucas et al., 2002).  
 
The anterior caudal vertebrae (NHMD-130, NHMD-131, NHMD-132, NHMD-6E11-44, NHMD-
Fa42, NHMD-Gc51) have, as seen in Parasuchus (Chaterjee, 1978) and Rutiodon (Romer, 
1956), their centrum taller than wider in comparison with the dorsal vertebra. All the caudal 
vertebrae from Mystriosuchus sp. share a feature that is not found either in cervical, dorsal 
or sacral vertebrae, and it is the basis neural spine bumps. All of them have anteriorly 
projected anterior bumps at the basis of the neural spine, and some of them (NHMD-131 and 
NHMD-132) also have posterior bumps posteriorly projected. This feature is shared with 
other Mystriosuchus (McGregor, 1906; Gozzi & Renesto, 2003), but it is not found in other 
phytosaur, because of the lack of description on post-cranial material (Gozzi & Renesto, 
2003; Griffin et al., 2017). The positions enclosed here are NHMD-Gc51 as the third (even the 
centrum is missing, the bump is less projected than in other caudal vertebrae and could be 
referred as a more cranial position), NHMD-Fa42 as fourth, NHMD-130 as sixth, NHMD-131 
as seventh, NHMD-132 as eighth, NHMD-6E11-44 maybe the as tenth (due to the centrum 
ventral region for the chevron is missing). 
 
The difference of size and morphology between the distal caudal vertebrae could mean that 
NHMD-NOID is in a more posterior position than NHMD-Hb4, and it should be one of the last 
distal caudal vertebrae (Fig.29).  
 
In the pectoral girdle, the interclavicle NHMD-NOID has no notch in its anterior margin like 
the ones that appear in Parasuchus (Ezcurra, 2016) or Mystriosuchus (Gozzi & Renesto, 
2003), and the lateral process is really short in comparison with Parasuchus (Ezcurra, 2016). 
However, the partial interclavicle NHMD-Fa82 is longer anteriorly, which gives the look of the 
notch that NHMD-NOID lacks. It could be a difference in ontogenic level, as is reposted a 
range of variation in the morphology in Mystriosuchus genus (Kimmig, 2009).  
 
Dermal armour remains found are usually from the dorsal region (Lucas et al., 2002; Gozzi & 
Renesto, 2003; Zeigler et al., 2003). While the ventral armour is not often well preserved 
(McGregor, 1906), the throat osteoderms or “gular shield” is typical from phytosaurs and 
different among archosauriforms (Holloway, 2018; Stocker & Butler, 2013). Here, the isolated 
osteoderms can all be referred as dorsal armor, with the exception of NHMD-6F11-16* with 
the skin pattern, that could be referred as ventral armor. 
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Figure 28. Position of the anterior (blue) and posterior (green) dorsal projections structures in the surangular of 
the mandibles of A. Brachysuchus (modified from Case, 1930); B. Protome (modified from Stocker, 2012); C. 
Machaeroprosopus (modified from Hunt et al., 2006); D. Angistorhinus (modified from Lucas et al., 2002); E. 
Mystriosuchus planirostris SMNS 91574 (photography took by Octavio Mateus); F. Phytosauria indet. from 
Portugal (modified from Mateus et al., 2014a); and G. Mystriosuchus sp. from Greenland (mirror image). 
Specimens are not in scale.  
 

 
 

 
Figure 29. Relative position of the Mystriosuchus sp. caudal vertebrae NHMD-Gc51, NHMD-Fa42, NHMD-130, 
NHMD-131, NHMD-132, NHMD-6E11-44, NHMD-Hc4, and NHMD-NOID, over the reconstruction of Rutiodon 
skeleton (Witzman et al., 2014). Specimens are not in scale. 
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PHYLOGENETIC POSITION  
 
The analysis (Appendix 1) recovered a total of 30 trees, with tree length of 348 steps, and the 
consensus of them with a tree length of 367 steps, with a Consistency Index of 0.391 and 
Retention Index of 0.698.  
The results of the analysis are similar to the ones from Jones & Butler (2018) on “discrete 
character”, with no continuous characters introduced. The continuous characters where not 
introduced because most of them are referred to the narial region, the width of the skull, or 
a relation between two of them and, in most cases, were not found or, in the best case, 
broken (as the premaxilla and maxilla). The main difference are the polytomies in the most 
basal phytosaurs (Diandongosuchus fuyuanensis, Wannia scurriensis, Paleorhinus parvus, P. 
sawini, Parasuchus angustifrons, and Ebracosuchus neukami). However, the Mystriosuchinae 
clade remains almost the same. 
Here, the “Greenland phytosaur” appears within the genus Mystriosuchus (Fig.30) due to the 
possession of an interpremaxillary fossa narrow slit (Ch.2=2), and in a tricomy with M. 
westphali and M. planirostris due to the proximal section of postorbital descending process 
where posterior border of orbit meets skull roof, the posterior border of orbit remains thin 
until it reaches skull roof (Ch.88=1). M. steinbergeri has another state of the previous 
character (Ch.88=0: the postorbital descending process flares anteroposteriorly creating a 
wide triangular connection) and has two autapomorphies (Ch.22=1: antorbital fossa present 
but reduced lacrimal, jugal and maxillary fossae in contact dorsally but not ventrally; 
Ch.73=1: suborbital foramen elongated, slit-like).  
The Mystriosuchus from Greenland has two potential autapomorphies that differentiates it 
from M. planirostris and M. westphali, with which shares a polytomic position (Ch.78=1: 
shape of retroarticular process in lateral view distally rounded or blunt, Fig.31; Ch.95=2: 
degree of heterodonty, tripartite upper dentition).  
In comparison with other bones, such as the premaxilla and maxilla, the shape of the rostrum 
is flatter than in Mystriosuchus westphali, without the bump in the middle dorsal region of 
the premaxilla, more similar to M. planirostris (Fig.32).   
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Figure 30. Strict consensus, showing the Bremer supports, resulting from the 30 phylogenetic trees from the 
analysis of discrete characters scoring, based on Jones & Butler (2018). The Consistency index of the characters is 
equal to 0.391, and the Retention index is 0.698.  

 

 
Figure 31. Lateral view of the posterior mandible in A. Mystriosuchus planirostris (SMNS 91574) and B. 
Mystriosuchus sp. from Greenland. Red squares mark the retroarticular region.  
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Figure 32. Skulls in Mystriosuchus clade. A. Mystriosuchus planirostris (modified from Hungerbühler, 2002); B. 
Mystriosuchus westphali (modified from Hungerbühler, 2002); C. Mystriosuchus steinbergeri (modified from 
Butler et al., 2019); D. Reconstruction of Mystriosuchus sp. from Greenland, modified from M.planirostris skull.  

 
 
The character 95 (Degree of heterodonty) was introduced to better clarify the difference 
between the basal and more derived phytosaurs. As seen in Hungerbühler (2000), the three 
sets dentition of the Greenland phytosaur is shared by Nicrosaurus, Leptosuchus, Smilosuchus 
and Machaeroprosopus, more derived phytosaurs englobed in the clade Leptosuchomorpha 
(Jones & Butler, 2018). However, Mystriosuchus and Redondasaurus exhibits the two sets 
dentition, while being enclosed in Leptosuchomorpha too.  
As Hungerbühler (2000) indicated, isolated teeth cannot be used to indicate a taxon, due to 
the needs for further studies. In the Greenland phytosaur, most of the teeth studied were 
isolated and could not be used following the previous indication. However, in the mandible 
NHMD-Hc1 were still attached teeth. And as explained in Hungerbühler (2000), the 
mandibular teeth follow the same features as their upper jaw counterpart, so we found teeth 
attached in the mandible related with their counterparts (snout, premaxilla and maxilla), and 
these teeth can be used to provide the statement “3 set dentition” to the character 95.  
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The post-cranial material among phytosaurs is poorly studied. In phylogenetic analysis such 
as in Ezcurra (2016) and Nesbitt (2011), the phytosaur are more studied to know their 
relationship with other archosauriformes. However, the diagnosis of phytosaurs has only six 
post-cranial features out of the total 30. It has been discussed that some phytosaurs, like 
Mystriosuchus steinbergeri, could have lived in a marine ecosystem (Butler et al., 2019). The 
adaptations to a more aquatic lifestyle would imply some changes in its body and more 
differential features among phytosaurs, not only in the skull and mandibles, but also in the 
post-cranial bones. Here, a common character among Mystriosuchus caudal vertebrae was 
found (the anterior and posterior projections in the basis of the neural spine, Figs.17-18), 
while not described in other researches, despite its potential diagnostic feature. Because of 
this, further studies need to be made focused into the post-cranial material of phytosaurs to 
better understand the relationship and evolution among them.  
 
 

IMPLICATIONS 
 
The Mystriosuchus sp. found in Greenland gives us a series of implications to understand 
better the Malmros Klint Formation chronology and geography, and the taxonomy and 
ontogeny of the Greenland remains.  
 
Chronologically, Greenland Mystriosuchus sp. is from the Norian. The other species of 
Mystriosuchus clade (M. planirostris, M. westphali, and M. steinbergeri) are restricted to the 
Alaunian and Sevatian (Middle to Late Norian; Hungerbühler, 2002; Butler et al., 2019), while 
the North American phytosaurs, such as Angistorhinus and Machaeroprosopus, are restricted 
to Carnian-Norian (Lucas et al., 2002) and Norian-Rhaetian (Hunt & Lucas, 1993; Parker et al., 
2013), respectively. Even though the three clades appear in the Norian, the short range of 
the Mystriosuchus clade reinforces the range of the Greenland Triassic layers to the Norian 
age.  
 
Geographically, the Greenland phytosaur reinforce the previous concept of the European 
faunal influence between East Greenland and Europe by Late Triassic suggested by 
Clemmensen et al. (1998), and later supported by other researchers (Sulej et al., 2014; 
Marzola et al., 2017b), with common species in stem mammals as Brachyzostrodon (Jenkins 
et al., 1994; ), amphibians as Cyclotosaurus (Sigogneau-Russell, 1983; Jenkins et al., 1994) 
and archosaurs as Plateosaurus (Jaekel, 1910a; Jenkins et al., 1994) or Aetosaurus (Jenkins et 
al., 1994; Schoch, 2007). Moreover, this is the northernmost species of Mystriosuchus species 
ever found. North America and Europe-Greenland was separated by an arid and dry 
environmental belt (Benton, 2016), that can be placed nearly the North Hadley Cell range 
(Fig.33), which can be an explanation of the separation between the North American and 
European-Greenland faunas at the end of the Triassic.  
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Figure 33. Map of the Late Triassic (modified from Scotese, 2018). The stars mark the position where 
Machaeroprosopus (purple) and Mystriosuchus (green) appear.  
 
 
Taxonomically, the phytosaur reported in Greenland has the potential to be a new species of 
the genus Mystriosuchus. However, there is a polytomy with Mystriosuchus planirostris and 
M. westphali due to the lack from cranial material of the Greenland phytosaur.  
 
Ontogenically, even there can be referred at least four individuals, the remains were isolated 
and only a few bones are doubled (humeri, premaxilla, jugals, fibulae), so the ontogenetic 
variation is difficult to determine. Following some ontogenetic studies done in crocodilians 
(Brochu, 1996), there can be more ontogenetical features in the Greenland phytosaur. Such 
as in some vertebrae, where the centrum and neural arch have the suture between them 
(NHMD-131) or are isolated one from the other following the suture (NHMD-Eb9a, NHMD-
Eb9b). The appearance of the suture is a juvenile feature, while the adults have centrum and 
neural arch totally fused, with no suture remain (Brochu, 1996). However, as the researcher 
explains, it can be conditioned also by sexual dimorphism. Another example of ontogenetic 
difference is the juvenile scapula (NHMD-Gb39), which is different in shape and size with the 
adult humerus found.  
 
However, the Greenland Mystriosuchus sp. opens a series of questions. The phylogeny 
suggest it could be a new species, even with low cranial material found. There are characters 
found in the cranial region (projections of the surangular in the mandible) and in the post-
cranial region (the anterior and posterior projections in the base of the neural spine of the 
caudal vertebrae) that require better study to improve a phylogeny based also in post-cranial 
material.  
 
Finding at least four individuals of different ontogeny also opens some questions: if they 
were gregarious or from the same family population, or if the more juveniles were from the 
same family population as the adult.  
 
 
 
 
 

  



A new phytosaur from the Late Triassic of Jameson Land, Greenland. 

  

 
51 

 

CONCLUSIONS 
 

- The Mateus Quarry in Lepidopteris Elv (East Greenland) provided nearly 150 bones of 
phytosaurs, which are the first undisputed phytosaurs reported from Greenland.  

- The bone assemblage is from a bone bed with at least four individuals of three age 
ranges (very juvenile – the “baby” scapula –, juvenile and adult). 

- Based on the anatomy of all the bones, there is no sign of intraspecific variation 
between the phytosaurs in the Quarry, which therefore are identified as one species 
only.  

- The bones are attributed to Mystriosuchus based Jones & Butler (2018)’s on 
character 2 (interpremaxillary fossa, narrow slit) and character 88 (proximal section 
of postorbital descending process where posterior border of orbit meets skull roof, 
posterior border of orbit remains thin until it reaches the skull roof).  

- The Greenland phytosaur represents a species of Mystriosuchus with the unique 
characters 78 (shape of retroarticular process in lateral view distally rounded or 
blunt) and 95 (degree of heterodonty, tripartite upper dentition). Besides that, there 
were found potential Mystriosuchus common features, as the anterior and posterior 
projections of the basis of the neural spine in the caudal vertebrae, plus the potential 
unique feature of the dorsally anterior and posterior projections of the angular. 

- Due to the Middle-Late Norian range of Mystriosuchus clade, it is here used as a 
potential fossil indicator of those periods to narrow the age range of the Greenland 
layers where the Greenland phytosaur was found.  

- Moreover, this is the first Mystriosuchus outside Europe. It reinforces the European 
affinity of Triassic Greenland vertebrate fauna, despite the fact the closer geographic 
proximity to North American mainland. The arid latitudinal band that resulted from 
the north limb of the Hadley shell may have played a role as a geographic barrier that 
prevented crossing by aquatic animals, such as phytosaurs.  
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APPENDIX 1 – TnT MATRIX 
 
nstates 8 ;  
xread 'Data saved from TNT'  
95 44  
&[num]  
Angistorhinus_grandis 
11001010??1112?1101101?1000???10?10?????0??0????0???2??10100??0?01?11??????0??
0120?????????1?01  
Angistorhinus_talainti 
?100101000?0121100110101000121100100021?01[12]0110?0111211101000?1?00012011?
201??01200??0010001??1  
Coburgosuchus_goeckeli 
????1?????????????01???????00?1021?0031?1021?100210?1030201000100021??????????
????????00010????  
Ebrachosuchus_neukami 
1??0000200201111010?020?010121100101?0??0020??0?000?20100001001?0?0210101100
??00013??0201??0??1  
Leptosuchus_crosbiensis 
1100[01][01]4?1?[12]012?001[01]10301100[01]1110010002[01]?[01][01][12][01]?101[12]00
?[12]1?0101?[02]01?00?12??11?0010[01]?10[03]??0[012][01]0[01]001?2  
Leptosuchus_studeri 
11001142111012000101?2011000111001000?1?002?110011??2120101????00001????????
??11100??0000?00???  
Machaeroprosopus_andersoni 
111100421?1012?001100??10001?110????????????????20????????2120111??121?12201?
?1120????????00???  
Machaeroprosopus_buceros 
1100[01]0421?1012?0[01]1100201000010[01]02[12]11[01][12]2010[012]1011120[01]110?0
2022201[12]?02121?12211??11[12]000[01]0100100??1  
Machaeroprosopus_jablonskiae 
????????????1?????10?????000??102???0???100????020??00??2?22?0111???21?????????
????????0???????  
Machaeroprosopus_lottorum 
110000111010121111100201000[01]1010[02]211[01]3201001111[01]201[01]00002032201[
12]102120112211??[01]120001?001100???  
Machaeroprosopus_mccauleyi 
1111102[12]1?[12]012?001[01]0030110001010211[01][01][23][12]110[012]1?[01][01]120[0
1]010?020222011[01]02120?1?2011??1[12]0[03][01]1[01][12]00[01]00102  
Machaeroprosopus_pristinus 
[01]10000[01][01]1?2012?[01][01]1[01]00[123]01[01]00[01][01]010211[01][01]12[01]10[01
2]1?1[01]120[01][01]1[01]?0202[12]20[01]11[01][02]12[01]?12211100120001[01]10110010
1  
Mystriosuchus_planirostris 
1?00001[01]0021121[01]00110201[01]00[01]01110110?0??10011?[01]02?11100010301021
02[02]1201122101001200101210?10111  
Mystriosuchus_westphali 
1200[01]202002[01]121[01]00110[23]01[01]0010011211[01]?0??100?1?[01]02?1110001030
[01]1[02]10201?0?1221???01200101210?10??1  
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Nicrosaurus_kapffi 
11[01]01032[01]110121001011[23]0[01]1000011001[01]0021?102[01]010020??0030202100
20012110011210??11100010001100??2  
Nicrosaurus_meyeri 
1100000[12]0[01]10121[01]01011[23]0[01]1000[01]11001[01]0031?100?0100200?003020?
??0[12]0?0212011[12]2[01]01001[01]0001000[01]?00??1  
Paleorhinus_sawini 
110010000?0011?1010?030?10000110?001?0??0120??0?0?1121?10001001?02?1?????????
?0?000??001?000???  
Parasuchus_angustifrons 
0100000[01]010011110[01]0?0[01]1001[01][01][02]110000[12]?0??01[12][01]??0?0?0?[12]
110000100[01]?0001001[01]0100??00011??00[01]0?10???  
Parasuchus_bransoni 
[01]10000000?[01]011?1001?0[12]1?[01]1[02][01][012]110[01]001?0??01[12]0??0?01[01]1
21?00000001?0[01]01100?0100000000[01]??00[01]0000???  
Parasuchus_hislopi 
01?0000000001111000?0110011[01]111000[01]2?0??012?1?0?01??211000000?1??00110?
??????000011??0010010??1  
Phytosaurus_doughtyi 
????????????12??0?10?[012]???0001?100101120?1021?1?1[12]?0?21?0101?001??001????
?????????????000010????  
Pravusuchus_hortus 
110[01]00221?1012?001011?011000001011[01][01]01[012]?10[12]??1[01][01]100?21?0101
0001??00120???2??????[12]00??0100[01]00???  
Protome_batalaria 
1100?01?0??01??0?1???????00?1?101????20?100??100?00?10?01011201?10??21????????
01?????????1?0?1?  
Redondasaurus_bermani 
1101002?1?0012??0?000?01?0011?10?11?131?1001??10201121?030322?011?012?????1?
???1203111200000??2  
Redondasaurus_gregorii 
110[01]002?1??012??0??00301000[01][12]?102111[01]31?1001?11[01]2011[02]0?0303220[
01]1110121????1???0120[03][01]11201000?02  
Rutiodon_carolinensis 
110000101?2012?[01]0[01]11[01]10100[01]1111[01]1100020?000??1??[01]0??21?000[01]0
0?0?00?120??2210?101[02]00??011?0?1??1  
Smilosuchus_adamanensis 
1100100?1??012?001100[23]0?1000[01]?101100030?102??000100?21?01011001?0021[12]
0??1?001001100??000?000?0?  
Smilosuchus_gregorii 
1111102[12]1?1012?0011[01]03011000[01]?[01]01100030?1021?[01]1[01]200?21?0101100
[01]?00212??112001[01]?1[12]0[03]??000000000?  
Smilosuchus_lithodendrorum 
111[01]102?1?1012?001010?01100[01]??1021[01]0?31?10[01]??10[01]??0?21?000?0????0
?012???????10?110[03]?1000010010?  
Wannia_scurriensis 
????0?0?0??011?100??01010?0????0??0000????????0?0??????0?00?001?000?00?00100??
00002????????0???  
MB.R._2747       
110000??????12??0?00??01?00???102?1?????10???????2????1?103?1?0?????20????????0
??0010??????????  
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TMM_31100_1332   
11000010??2112?11011010?00011110?1000?0?012??1??001121?10100?00??10121????00
??0?200??0?1?0?1???  
Mystriosuchus_steinbergeri 
?2000?1?0??112?100010101?00?0?1?2110?0???0????002??????0?0????????2?????1?????
01200???2000?0?0?  
NMMNHS_P31094    
????1??21??012?001000?01000??0102211031?100??010200?00?03?32??011??1?????211?
??1200011201000???  
NMMNHS_P4256     
1111002?1?0012?00110?30100001010?101?31?1001?00120??10?020??2????0?1????????1
0?1203011200000?0?  
PEFO_34852       
111010211?2012?001010?0?1001??102100021?101??101????21??1010??1?00?120???????
?11[12]00??0000100???  
USNM_v_17098     
1111104???1012?001?0020?10001?10?1?0020?100??010[12]???21?????????????120??221
110?1?00??0?0?0?01??  
Euparkeria_capensis 
000000?00?0?00??0?0?000110000100000002??0020??0?00???1?00001000?00000?000000
0???30????010?00??0  
Machaeroprosopus_zunii 
????????????????0?00??0??0000?102110010?10???011?00?2????????????????0?????????
??????0?0?0?????  
NMMNHS_P4781     
??????????????????????0????1?????100??0?00??????0?0????1010?????????????????????
??0??001?00????  
Paleorhinus_parvus 
1??0000?0??011?1????0????????????????????????????????????????????????????????000
???????????0??1  
USNM_v_21376     
1100001?1??112?1101101???001??10??????0????????00???????010????????111????????
01?0????????01???  
Diandongosuchus_fuyuanensis 
0??000010?0001?0010?000000010110?00??0??012?01???01??1010000?0??0???????????0
1??011??001??1????  
Greenland_phytosaur 
120000????????????????01????[01]???????????????????????????????????????????????11
0??00??1?1??????2  
;  
 
Ccode   
   -[/1  0        -[/1  1        -[/1  2        -[/1  3        -[/1  4       
   -[/1  5        -[/1  6        +[/1  7        -[/1  8        -[/1  9       
   +[/1  10       -[/1  11       -[/1  12       +[/1  13       -[/1  14      
   -[/1  15       -[/1  16       -[/1  17       -[/1  18       -[/1  19      
   -[/1  20       +[/1  21       -[/1  22       -[/1  23       +[/1  24      
   -[/1  25       -[/1  26       -[/1  27       -[/1  28       -[/1  29      
   -[/1  30       -[/1  31       -[/1  32       +[/1  33       -[/1  34      
   -[/1  35       -[/1  36       +[/1  37       -[/1  38       -[/1  39      
   -[/1  40       -[/1  41       +[/1  42       -[/1  43       -[/1  44      



A new phytosaur from the Late Triassic of Jameson Land, Greenland. 

  

 
64 

 

   -[/1  45       -[/1  46       -[/1  47       +[/1  48       -[/1  49      
   -[/1  50       -[/1  51       -[/1  52       +[/1  53       -[/1  54      
   -[/1  55       +[/1  56       -[/1  57       +[/1  58       +[/1  59      
   -[/1  60       -[/1  61       -[/1  62       -[/1  63       -[/1  64      
   -[/1  65       -[/1  66       -[/1  67       -[/1  68       -[/1  69      
   -[/1  70       -[/1  71       -[/1  72       -[/1  73       -[/1  74      
   -[/1  75       -[/1  76       -[/1  77       -[/1  78       -[/1  79      
   -[/1  80       -[/1  81       -[/1  82       -[/1  83       -[/1  84      
   -[/1  85       +[/1  86       -[/1  87       +[/1  88       -[/1  89      
   -[/1  90       -[/1  91       -[/1  92       +[/1  93       -[/1  94      
;  
cnames  
{0 Anterior_end_of_premaxillae;  
{1 Interpremaxillary_fossa;  
{2 Alveolar_ridges;  
{3 Ventral_alveolar_bulge_between_premaxilla_and_maxilla;  
{4 Alveolar_rim_of_maxilla;  
{5 Premaxillary_crest;  
{6 Rostral_crest;  
{7 Transverse_width_of_the_rostrum_between_the_antorbital_fenestrae_in_dorsal_view;  
{8 Suture_between_maxilla_and_premaxilla_and_nasal;  
{9 Posterior_portion_of_maxilla_lateral_outline_in_dorsal_view;  
{10 Ratio_of_rostral_to_narial_plus_post_narial_length;  
{11 Narial_openings;  
{12 Narial_openings_b;  
{13 Position_of_nares;  
{14 Anterior_extent_of_septomaxillae;  
{15 Narial_outlets;  
{16 Dorsal_rim_of_nares;  
{17 Narial_wing;  
{18 Interorbital_nasal_area_lateral_view;  
{19 Interorbital_nasal_area_cross_section;  
{20 Infranasal_recess;  
{21 Antorbital_fossa;  
{22 
Discrete_row_of_anteroposteriorly_extending_nodes_on_the_lateral_surface_of_the_jugal;  
{23 Jugal_and_AOF;  
{24 Length_of_antorbital_fenestra;  
{25 Broad_median_depression_on_dorsal_surface_of_frontals_near_border_with_nasals;  
{26 Posterolateral_margins_of_nares;  
{27 Pre_orbital_depression;  
{28 Depression_and_flange_in_postorbital_bar;  
{29 Jugal_and_orbit;  
{30 Medial_margins_of_orbits;  
{31 Deep_sculpture_of_the_skull_roof;  
{32 Sutural_articulation_of_sq_and_po_in_dorsal_view;  
{33 Most_anterior_extent_of_infratemporalfenestra;  
{34 Pre_infratemporal_shelf;  
{35 Lateral_ridge_from_po_sq_bar;  
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{36 
Lateral_ridge_of_postorbital_squamosal_bar_continues_as_ridge_onto_posterior_process_
of_squamosal;  
{37 Length_of_posterior_process_of_squamosal_in_relation_to_postorbital_length;  
{38 Posterior_process_of_squamosal;  
{39 Terminal_knob;  
{40 Dorsal_edge_of_sq;  
{41 Dorsal_edge_of_sq_b;  
{42 Length_of_free_postorbital_squamosal_bar;  
{43 Medial_extent_of_squamosal;  
{44 Cross_section_of_posterior_half_of_postorbito_squamosal_bar;  
{45 Ventral_margin_of_sq;  
{46 Subsidiary_opisthotic_process_of_sq;  
{47 Extent_of_sq_fossa;  
{48 Orientation_of_supratemporal_fenestrae;  
{49 Mediolateral_expansion_of_posterior_process_of_squamosal;  
{50 
Face_of_medial_rim_of_squamosal_along_supratemporal_fenestra_and_posterior_process;  
{51 Extent_of_squaring_of_the_squamosal_rim;  
{52 Ridge_around_anterior_and_or_medial_edge_of_supratemporal_fenestra;  
{53 Width_of_squamosal;  
{54 
Outline_of_medial_rim_of_squamosal_along_supratemporal_fenestra_and_posterior_proce
ss;  
{55 Path_of_parietal_sq_bars;  
{56 Visibility_of_supratemporal_fenestrae_in_dorsal_view;  
{57 Parietal_squamosal_bars;  
{58 Dorsal_edge_of_parieto_squamosal_bar;  
{59 Parietal_ledge_ratio_of_width_to_length;  
{60 Medial_half_of_parieto_squamosal_bar_lateral_wall_of_supraoccipital_shelf_;  
{61 Lobate_extension_on_the_vertical_rim_of_the_squamosal_processes_of_the_parietal;  
{62 Depth_and_shape_of_supraoccipital_shelf;  
{63 Top_of_parieto_supraoccipital_complex_formed_by_squamosal_processes_of_parietals;  
{64 Parietal_prongs;  
{65 Posttemporal_fenestra;  
{66 Lateral_border_of_posttemporal_fenestra;  
{67 Shape_of_quadratojugal;  
{68 Anterior_border_of_parabasisphenoid_contribution_to_basitubera;  
{69 Morphology_of_basioccipital_between_tubera;  
{70 Lateral_extent_of_basitubera_compared_to_basipterygoid_processes_in_ventral_view;  
{71 Length_of_interpterygoid_vacuity;  
{72 Suborbital_foramen;  
{73 Anterior_extent_of_palatine;  
{74 Palatal_ridge;  
{75 Medial_edge_of_palatine_below_posterior_part_of_palatal_vault;  
{76 Dorsal_surface_of_surangular;  
{77 Shape_of_retroarticular_process_in_lateral_view;  
{78 Snout_dorsal_surface_cross_sectional_shape;  
{79 Anterior_separation_of_the_septomaxillae;  
{80 Shape_of_AOF;  
{81 Lateral_surface_of_maxilla_and_jugal_ventral_posteroventral_to_AOF;  
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{82 Lateral_surface_of_main_body_of_jugal;  
{83 Anterior_extension_of_the_sub_temporal_shelf;  
{84 Dorsal_extension_of_sub_temporal_shelf;  
{85 Jugal_foramen_in_anteroventral_corner_of_the_subTF;  
{86 Relative_robusticity_of_the_jugal;  
{87 
Proximal_section_of_postorbital_descending_process_where_posterior_border_of_orbit_m
eets_skull_roof_;  
{88 SubTF_diagonal_aspect_ratio;  
{89 
Additional_ridge_on_lateral_surface_of_posterior_process_of_squamosal_below_ridge_or_r
ugosity_from_po_sq_bar;  
{90 Posterior_border_of_quadrate_in_lateral_view;  
{91 Internarial_septum;  
{92 Triangular_projection_ventral_to_articular_condyle;  
{93 Relative_length_of_mandibular_symphysis;  
{94 Degree_heterodonty;  
;  
;  
Ancstates  
 -0      -1      -2      -3      -4      -5      -6      -7      -8      -9       
 -10     -11     -12     -13     -14     -15     -16     -17     -18     -19      
 -20     -21     -22     -23     -24     -25     -26     -27     -28     -29      
 -30     -31     -32     -33     -34     -35     -36     -37     -38     -39      
 -40     -41     -42     -43     -44     -45     -46     -47     -48     -49      
 -50     -51     -52     -53     -54     -55     -56     -57     -58     -59      
 -60     -61     -62     -63     -64     -65     -66     -67     -68     -69      
 -70     -71     -72     -73     -74     -75     -76     -77     -78     -79      
 -80     -81     -82     -83     -84     -85     -86     -87     -88     -89      
 -90     -91     -92     -93     -94    ;  
  
xgroup  
  
  
  
;  
agroup  
  
  
  
;  
taxcode   
+0      +1      +2      +3      +4      +5      +6      +7        
+8      +9      +10     +11     +12     +13     +14     +15       
+16     +17     +18     +19     +20     +21     +22     +23       
+24     +25     +26     +27     +28     +29     +30     +31       
+32     +33     +34     +35     +36     +37     +38     +39       
+40     +41     +42     +43       
;  
  
blocks 0;  
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tshrink  
;  
tread 
'30 trees' 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))((16 (42 (3 (17 (18 19 )))))(29 40 
))))* 
(37 (40 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 
(36 38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 (42 (3 (17 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(40 (29 (16 (42 (3 (17 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 (40 (42 (3 (17 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 ((42 (3 (17 (18 19 ))))(16 40 
)))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 ((3 (17 (18 19 )))(40 42 
))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 (42 (40 (3 (17 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 (42 (3 (40 (17 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))((16 (42 (17 (3 (18 19 )))))(29 40 
))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))((16 (42 (3 (17 (18 19 )))))(29 40 
))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (40 (16 (42 (3 (17 (18 19 
)))))))))* 
(37 (40 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 
(36 38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 (42 (17 (3 (18 19 
)))))))))* 
(37 (40 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 
(36 38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 (42 (3 (17 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(40 (29 (16 (42 (17 (3 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(40 (29 (16 (42 (3 (17 (18 19 
)))))))))* 
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(37 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 (40 (42 (17 (3 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 (40 (42 (3 (17 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 ((42 (3 (17 (18 19 ))))(16 40 
)))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 ((3 (17 (18 19 )))(40 42 
))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 (42 (40 (3 (17 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 (42 (3 (40 (17 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))((16 (42 (17 (3 (18 19 )))))(29 40 
))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (40 (16 (42 (17 (3 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 ((4 (5 (21 (14 (2 15 )))))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 (42 (17 ((3 40 )(18 19 
))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (40 (16 (42 (3 (17 (18 19 
)))))))))* 
(37 (40 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 
(36 38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 (42 (17 (3 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(40 (29 (16 (42 (17 (3 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 (40 (42 (17 (3 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (40 (16 (42 (17 (3 (18 19 
)))))))))* 
(37 (((25 (39 (1 (31 (0 41 )))))(((20 (((21 (14 (2 15 )))(4 5 ))(28 35 )))(26 27 ))((22 ((7 ((6 (10 (36 
38 )))(34 (8 (23 (24 33 ))))))(9 11 )))(30 (32 (12 (13 43 )))))))(29 (16 (42 (17 ((3 40 )(18 19 )))))))) 
; 
tgroup  
  
  
=0 (random_addseqs)        0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 
26 27 28 29   
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;  
 
proc/; 
 
 
 
 
 


