
PHYSICAL REVIEW E 102, 063307 (2020)

Force methods for the two-relaxation-times lattice Boltzmann
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The two-relaxation-times collision benefits the steady lattice Boltzmann method by yielding viscosity-
independent numerical errors. We present in an intuitive way how to incorporate popular force methods into
the two-relaxation-times collision. We subsequently rewrite force methods into a generic equation to reveal
commonalities and differences. We prove that force methods with a second-order velocity moment of the force
break the viscosity independence. A force method with only a first-order velocity moment of the force averts this
breakage. We validate our proof numerically.
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I. VISCOSITY DEPENDENCE OF THE LATTICE
BOLTZMANN METHOD

Consider two steady incompressible fluid flows that are
physically similar by having a similar Reynolds number. In
addition, the first flow has its Reynolds number composed
with kinematic viscosity ν1, the second flow has its Reynolds
number composed with kinematic viscosity ν2 �= ν1. Simu-
late these two flows numerically with the lattice Boltzmann
method [1,2] using the common single-relaxation-time (SRT)
collision [3,4]. The simulations will yield two different nu-
merical errors, despite their flows being physically similar.
Why? Because with SRT, kinematic viscosity ν scales the
spatial discretization error [5,6]. That ν scales the spatial dis-
cretization error, and not merely scales the strain rate, results
in unphysical behavior. Consequently, either a small or a large
ν can result in large numerical errors.

The spatial discretization error can be rendered viscosity-
independent with the two-relaxation-times (TRT) collision
[5,6]. With TRT, user-specified constant � scales the spa-
tial discretization error. TRT’s viscosity independence can
break if you incorporate additional functionality into TRT,
e.g., many boundary conditions break TRT’s viscosity inde-
pendence [6–8]. Incorporating force methods into TRT has
largely been neglected, in contrast to SRT [9–15]. In this
paper, first we demonstrate how to incorporate popular force
methods into TRT. Second, we prove and numerically validate
which force methods break TRT’s viscosity independence.
Thereby this paper rigorously evaluates force methods for
TRT.

II. NOMENCLATURE

Before we commence we introduce the nomenclature of
this paper, which is a nomenclature common in the TRT
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literature [5,6]. Here units are specified in lattice units. The
lattice Boltzmann equation is formulated as

fq(�x + �cq, t + 1) = fq(�x, t ) + �q(�x, t ),

with lattice quantities subscripted with a q: �cq being the qth
velocity link, fq is the distribution function, and �q is the
collision operator. The SRT collision is formulated as

�SRT
q = − 1

τ
( fq(�x, t ) − {eq[ρ(�x, t ), �u(�x, t )] + Sq(�x, t )}),

eq(ρ, �u) = tq

(
P + ρ̂uq + 3

2
ρ̂u2

q − 1

2
ρ̂�u2

)
,

with eq being the equilibrium distribution function, tq is
the weight, Sq is an external source with a force density
�F , and uq = �cq · �u. The relaxation time is τ = 3ν + 1

2 . The
macroscopic quantities are as follows: mass density ρ =∑

fq, pressure P = ρc2
s with sound speed cs = √

1/3, ve-
locity �u = (

∑ �cq fq + �F/2)/ρ̂, ρ̂ = ρ for the conventional
compressible model, and ρ̂ = ρ0 for He and Luo’s incom-
pressible model with constant ρ0 [16].

The TRT collision is formulated as

�TRT
q = �+

q (�x, t ) + �−
q (�x, t ),

�+
q = − 1

τ+ ( f +
q (�x, t ) − {e+

q [ρ(�x, t ), �u(�x, t )]+S+
q (�x, t )}),

�−
q = − 1

τ− ( f −
q (�x, t ) − {e−

q [ρ(�x, t ), �u(�x, t )]+S−
q (�x, t )}),

e+
q (ρ, �u) = 1

2
(eq + eq̄) = tq

(
P + 3

2
ρ̂u2

q − 1

2
ρ̂�u2

)
,

e−
q (ρ, �u) = 1

2
(eq − eq̄) = tqρ̂uq,

f +
q = 1

2
( fq + fq̄) and S+

q = 1

2
(Sq + Sq̄),

f −
q = 1

2
( fq − fq̄) and S−

q = 1

2
(Sq − Sq̄).
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TABLE I. External source term Sq of four force methods for SRT.

Buick and Greated [12]: Sq = (
τ − 1

2

)
tqFq

Guo et al. [13]: Sq = (
τ − 1

2

)
tq(Fq︸ ︷︷ ︸

Buick

+3uqFq − �u · �F )

Kupershtokh [14]: Sq = (
τ − 1

2

)
tq(Fq + 3uqFq − �u · �F )︸ ︷︷ ︸

Guo

+ tq
8ρ̂

(3F 2
q − �F 2)

Shan and Chen [15]: Sq = (
τ − 1

2

)
tq(Fq + 3uqFq − �u · �F ) + (

1
4︸ ︷︷ ︸

Kupershtokh

−τ + τ 2
) tq

2ρ̂
(3F 2

q − �F 2)

TRT decomposes an arbitrary lattice quantity ψ into a sym-
metric part ψ+ = 1

2 (ψq + ψq̄) and an antisymmetric part
ψ− = 1

2 (ψq − ψq̄). Here q̄ denotes the opposite link of q,
consequently �cq̄ = −�cq. Relaxation time τ+ relaxes f +

q to
e+

q , relaxation time τ− relaxes f −
q to e−

q . The user-specified
constant that scales the spatial discretization error is defined
as � = �+�− = (τ+ − 1

2 )(τ− − 1
2 ), where τ+ = 3ν + 1

2 and
consequently τ− = �

3ν
+ 1

2 . Finally, three convenience vari-
ables are uq̄ = �cq̄ · �u, Fq = �cq · �F , and Fq̄ = �cq̄ · �F .

III. INCORPORATING FORCE METHODS

We incorporate four popular force methods [12–15] into
TRT. These force methods also form a good test set, because
they significantly differ among each other, either in form or
in viscosity dependence, as shown later. All four methods
discretize the force up to second order in space and time to
avoid discrete lattice artifacts. Force methods with first-order
space-time discretizations are inferior [1,9,13], and therefore
disregarded.

To compare the force methods on an equal footing, we
rewrite Kupershtokh’s [14] and Shan and Chen’s [15] SRT
formulation (Table I). These two force methods use in our
paper �u = (

∑ �cq fq + �F/2)/ρ̂ instead of the original �u =
(
∑ �cq fq)/ρ̂. Shan and Chen’s [15] force method is fur-

ther rewritten to a form using an external source term Sq

(Appendix A). From our SRT formulations we can intuitively
map to TRT formulations (Table II). And from our TRT for-
mulations we can easily deduce a generic TRT force equation
for the remainder of our paper,

S+
q = Btq(3uqFq − �u · �F ) + C

tq
2ρ̂

(
3F 2

q − �F 2),
(1)

S−
q = �−tqFq.

With

B C

Buick and Greated [12]: 0 0

Guo et al. [13]: �+ 0

Kupershtokh [14]: �+ 1
4

Shan and Chen [15]: �+ �+2
,

where �+ = 3ν. A generic force equation for SRT would
consist of Sq = S+

q + S−
q and �− = �+.

IV. DERIVING FORCE ERRORS

Next we derive the force errors that TRT with Eq. (1)
appends to the well-known Navier-Stokes fluid flow equa-
tions. Our derivation assumes a flow is steady and in-
compressible, which is customary in the TRT literature.
Steady, because time-discretization errors cannot be rendered
viscosity-independent with TRT. Incompressible, because
ρ̂ = ρ0 reduces compressibility errors with steady flows
[17,18] and simplifies the mathematics. Our derivation em-
ploys the steady-state ansatz derived by Ginzburg [19].
Ginzburg’s ansatz, compared to the traditional Chapman-
Enskog expansion [20], relies on less assumptions and
shortens the derivation. The ansatz states

�+
q = ∂q(e−

q + S−
q ) − �−∂2

q (e+
q + S+

q ) + O(ε3), (2a)

�−
q = ∂q(e+

q + S+
q ) − �+∂2

q (e−
q + S−

q ) + O(ε3), (2b)

where ∂q = cqα∂α (Greek indices denote Einstein’s summation
convention), ∂2

q = cqαcqβ∂αβ , and ε is a small perturbation pa-
rameter. To recover the steady incompressible Navier-Stokes
mass equation, take the zeroth-order velocity moment of

TABLE II. External source terms S+
q and S−

q of four force methods for TRT.

Buick and Greated [12]: S+
q = 1

2 [Sq(τ+) + Sq̄(τ+)] S−
q = 1

2 [Sq(τ−) − Sq̄(τ−)]

= �+(
1
2 tqFq + 1

2 tq̄Fq̄

) = �−(
1
2 tqFq − 1

2 tq̄Fq̄

)
= 0 = �−tqFq

Guo et al. [13]: S+
q = �+tq(3uqFq − �u · �F ) S−

q = �−tqFq

Kupershtokh [14]: S+
q = �+tq(3uqFq − �u · �F ) + tq

8ρ̂
(3F 2

q − �F 2) S−
q = �−tqFq

Shan and Chen [15]: S+
q = �+tq(3uqFq − �u · �F ) + �+2 tq

2ρ̂
(3F 2

q − �F 2) S−
q = �−tqFq
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Eq. (2a),∑
�+

q =
∑

cqα∂α (e−
q + S−

q ) − �− ∑
cqαcqβ∂αβ (e+

q + S+
q )

0 =
∑

tqcqαcqβ∂α (ρ0uβ + �−Fβ )

−�−∑
tqcqαcqβ∂αβ

(
P

+ cqγ cqδ

3

2
ρ0uγ uδ−1

2
ρ0uγ uγ

+ cqγ cqδB3uγ Fδ − Buγ Fγ

+ cqγ cqδC
3

2ρ0
Fγ Fδ − C

1

2ρ0
Fγ Fγ

)
.

The zero on the left-hand side indicates no mass source
is present. Substitute lattice symmetries

∑
tqcqαcqβ = δαβ

and
∑

tqcqαcqβcqγ cqδ = 1
3 (δαβδγ δ + δαγ δβδ + δαδδβγ ) into

the equation, and work out to recover

ρ0 ∂αuα︸︷︷︸
solenoidal
velocity

+ �

3ν
[∂αFα − ∂ααP − ρ0∂αβ (uαuβ )]︸ ︷︷ ︸

pressure Poisson

(3)
= B

�

3ν
2∂αβ (uαFβ ) + C

�

3ν

1

ρ0
∂αβ (FαFβ ).

To recover the steady incompressible Navier-Stokes momen-
tum equation, take the first-order velocity moment of Eq. (2b),∑

cqα�−
q =

∑
cqαcqβ∂β (e+

q + S+
q )

−�+ ∑
cqαcqβcqγ ∂βγ (e−

q + S−
q )

Fα =
∑

tqcqαcqβ∂β

(
P

+ cqγ cqδ

3

2
ρ0uγ uδ − 1

2
ρ0uγ uγ

+ cqγ cqδB3uγ Fδ − Buγ Fγ

+ cqγ cqδC
3

2ρ0
Fγ Fδ − C

1

2ρ0
Fγ Fγ

− cqγ cqδ∂γ �+ρ0uδ − cqγ cqδ∂γ �Fδ

)
.

Use lattice symmetries again, to recover

∂αP + ρ0∂β (uαuβ ) − ρ0ν∂β (∂αuβ + ∂βuα + δαβ∂γ uγ ) − Fα

= �

3
∂β (∂αFβ + ∂βFα + δαβ∂γ Fγ ) (4)

− B∂β (uαFβ + uβFα ) − C
1

ρ0
∂β (FαFβ ).

Left-hand sides of Eqs. (3) and (4) contain the targeted
steady incompressible Navier-Stokes equations, right-hand
sides contain the force errors. The targeted equations are
still expressed in nondimensional lattice units. We rewrite
the targeted equations into nondimensional physical units to
maintain the “similarity principle” of a fluid flow. To that end,

we introduce the nondimensional quantities

u∗ = u

u0
, P∗ = P

ρ0u2
0

, F ∗ = F
l0

ρ0u2
0

,

(5)

∂∗
α = l0∂α, Re = u0 l0

ν
,

where l0 is a characteristic length, or numerically viewed the
spatial resolution, u0 is a characteristic speed, and Re is the
Reynolds number. Equations (3) and (4) then become

∂∗
αu∗

α + 1

l2
0

Re
�

3
[∂∗

αF ∗
α − ∂∗

ααP∗ − ∂∗
αβ (u∗

αu∗
β )]

= B ν
1

l4
0

Re2 �

3
2∂∗

αβ (u∗
αF ∗

β )︸ ︷︷ ︸
ε

(m)
B

+C ν2 1

l6
0

Re3 �

3
∂∗
αβ (F ∗

α F ∗
β )︸ ︷︷ ︸

ε
(m)
C

,

(6)

and

∂∗
αP∗ + ∂∗

β (u∗
αu∗

β ) − 1

Re
∂β (∂∗

αu∗
β + ∂∗

βu∗
α + δαβ∂∗

γ u∗
γ ) − F ∗

α

= 1

l2
0

�

3
∂∗
β (∂∗

αF ∗
β + ∂∗

βF ∗
α + δαβ∂∗

γ F ∗
γ )︸ ︷︷ ︸

ε
( j)
A

− B ν
1

l2
0

Re ∂∗
β (u∗

αF ∗
β + u∗

βF ∗
α )︸ ︷︷ ︸

ε
( j)
B

−C ν2 1

l4
0

Re2∂∗
β (F ∗

α F ∗
β )︸ ︷︷ ︸

ε
( j)
C

.

(7)

A variant of Eq. (7), one without truncation errors, has been
derived by Silva in a succeeding work [21]. His equation is
however limited to Aε

( j)
A and Bε

( j)
B type force errors and steady

channel flows.
Use Eqs. (6) and (7) to assess the force errors produced by

each force method. Buick and Greated’s single force error ε
( j)
A

stems from spatially discretizing the force. This force error
decreases quadratically when spatial resolution l0 increases
and scales linearly with the constant �. Therefore, this force
error preserves TRT’s viscosity independence. As a side re-
mark, Eqs. (6) and (7) also imply Buick and Greated is a
proper choice for steady incompressible SRT, even though
ε

( j)
A then becomes viscosity-dependent, you do dispose of BεB

and CεC , corroborated by Ref. [10]. Guo et al.’s characteristic
force errors 3νε

(m)
B and 3νε

( j)
B scale with 1

l4
0

and 1
l2
0
. Both force

errors scale with ν2. Kupershtokh’s characteristic force errors
1
4ε

(m)
C and 1

4ε
( j)
C scale with 1

l6
0

and 1
l4
0
. So particularly 1

4ε
(m)
C

decreases rapidly when you increase spatial resolution. Both
force errors scale with ν2. Lastly, Shan and Chen’s charac-
teristic force errors 9ν2ε

(m)
C and 9ν2ε

( j)
C scale with ν4, which

means these force errors increase rapidly when you increase
viscosity. The force errors added by Guo et al., Kupershtokh,
and Shan and Chen are viscosity-dependent, thereby they
break TRT’s viscosity independence. They stem from S+

q , i.e.,
from the second-order velocity moment of the force. Guo
et al., Kupershtokh, and Shan and Chen deliberately introduce
BεB, because they focus on unsteady flows, in which BεB
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cancels a time-dependent error. In steady flows however, this
time-dependent error is not there to be canceled, causing BεB

to subsist. They disregard εA and εC because generally �F ∝ ε

and ∂α ∝ ε, rendering εA ∝ ε3 and εC ∝ ε3 beyond the studied
second-order perturbation expansion. Still, in certain cases εA

and εC become relevant, as shown in Refs. [19,22] and in our
numerical results.

V. NUMERICAL VALIDATION

A. Setup

To validate Eqs. (6) and (7) numerically, requires a steady
incompressible flow that renders the force errors nonzero, or
at least the viscosity-dependent force errors (BεB and CεC)
nonzero. Preferably the flow also has an analytic solution to
compare with. These requirements are fulfilled by the four-
roll mill and by a variant of the Poiseuille flow (Appendix B)
[23]. The four-roll mill comprises a periodic square domain
with four counter-rotating vortices in the corners. Its analytic
solution in nondimensional physical units comprises

�u∗(x∗, y∗) =
[

sin(2πkxx∗) cos(2πkyy∗)

− cos(2πkxx∗) sin(2πkyy∗)

]
,

�F ∗(x∗, y∗) = 8π2

Re
�u∗(x∗, y∗), (8)

P∗(x∗, y∗) = 1

4
[cos(4πkxx∗) + cos(4πkyy∗)] + P∗

avg,

with x∗ = x
lx

∈ [0, 1) and y∗ = y
ly

∈ [0, 1). Wave numbers
kx = ky = 1 yield one vortex in each corner. Average pressure
P∗

avg is a constant specified by the user, often set to 1.
Poiseuille is a channel flow, our variant features a linear

force and a linear pressure gradient. Its analytic solution in
nondimensional physical units comprises u∗

y = F ∗
y = 0,

u∗
x (y∗) = 4(y∗ − y∗2

), F ∗
x (x∗) = 8

Re
x∗,

(9)

P∗(x∗) = 8

Re

lx
ly

(
1

2
x∗2 − x∗ + 1

3

)
+ P∗

avg.

We employ for the inlet and outlet Kim and Pitsch’s [24]
periodic pressure boundary condition and for the walls the
familiar half-way bounce-back boundary condition. Both

boundary conditions preserve TRT’s viscosity independence
[6,7].

We choose Re = 1 to stay within the laminar regime man-
dated by the analytic solutions. Default � = 1

5 , approximately
halfway the prevalent values for � of { 1

12 , 1
6 , 3

16 , 1
4 , 3

8 }. Default
ν = 1, approximately halfway our test range for ν of [0.01, 2].
Spatial resolution is 16 × 16 for the four-roll mill and 23 × 11
for Poiseuille, deliberately low to better reveal the discrepan-
cies among force methods. We let all force methods output a

force-corrected velocity �u = (
∑ �cq fq + �F/2)/ρ0. When the

simulated flows reach steady state, we measure the well-
known relative �2 norm of pressure errors and velocity errors,

εP = ‖Ps − Pa‖
‖Pa‖ =

√∑
�x
[Ps(�x) − Pa(�x)]2√∑

�x
[Pa(�x)]2

,

ε�u = ‖ux,s − ux,a‖ + ‖uy,s − uy,a‖
‖ux,a‖ + ‖uy,a‖ ,

where s subscripts simulated values and a analytic values.

B. Results

We start by testing how each force method depends on
viscosity by plotting εP and ε�u vs ν (Fig. 1). When increasing
ν, we proportionally increase u0 to keep the Reynolds number
constant. The straight horizontal lines of Buick and Greated
in all plots imply Buick and Greated does not depend on
viscosity, as predicted by Eqs. (6) and (7). The steep curves of
non-Buick force methods demonstrate viscosity dependence
can result in large errors. Guo et al.’s errors are barely smaller
than Kupershtokh’s errors, which implies Kupershtokh’s ad-
ditional force error 1

4εC is small compared to 3νεB. Fitting
polynomial curves through the errors of Guo et al. and Kuper-
shtokh reveals that a second-order polynomial fits well, which
matches the O(ν2) predicted by Eqs. (6) and (7). Exception
here is ε�u of the four-roll mill, a third-order polynomial then
fits slightly better, probably because the narrow ε�u range hin-
ders a reliable fit. Fitting polynomial curves through Shan
and Chen’s errors reveals a predicted fourth-order polyno-
mial. Numerical experiments did show the O(ν4) scaling only
appears with very large ν, which corroborates εC is small.
Finally, two side remarks, not shown by the plots. A smaller
or larger � does not result in significant different behavior.
Under rare circumstances a non-Buick curve decreases, due
to BεB or CεC fortuitously canceling another error.

FIG. 1. Four force methods affecting the viscosity dependence of the pressure error and velocity error. Re = 1 and � = 1
5 .
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FIG. 2. Four force methods affecting the � dependence of the pressure error and velocity error. Re = 1 and ν = 1.

Next, we look at how non-Buick force methods deviate
from the desired behavior of Buick and Greated in plots of
εP and ε�u vs � (Fig. 2). The TRT literature often shows
this relation, because steady incompressible εP and ε�u solely
depend on user-specifiable � and the spatial discretization
error. In all four plots, non-Buick curves lie relatively close
to each other. This implies εC is small, particularly if you
consider CKupershtokh and CShan differ by as much as factor
of (3 × 1)2/( 1

4 ) = 36. In εP plots, Buick and Greated’s εP

is small, because it contains no first- or second-order force
errors [Eq. (6)]. Non-Buick εP’s by contrast, are large, due
to Bε

(m)
B being large. In ε�u plots, all curves scale similarly,

because Bε
( j)
B and Cε

( j)
C do not depend on � [Eq. (7)]. With

the four-roll mill, all ε�u curves even practically overlap. This
implies the four-roll mill’s Bε

( j)
B and Cε

( j)
C are negligible

compared to other errors, corroborated by the small absolute
differences in the four-roll mill’s ε�u vs ν plot (Fig. 1). As a side
remark, with Buick and Greated we numerically discovered
optimal � = 1

2 for circular-shaped vortices. With Poiseuille,
non-Buick ε�u curves nearly overlap with each other but not
with Buick and Greated’s curve, implying Poiseuille’s Bε

( j)
B is

significant and Cε
( j)
C is not. The optimal � = 3

16 of Buick and
Greated equals the optimal � of force-free pressure-driven

Poiseuille [6]. Indeed, the single force error ε
( j)
A of Buick and

Greated equals 0 for a linearly increasing force. Finally, two
insights, not shown by our plots with ν = 1. The optimal �

of a non-Buick force method is not constant but depends on
ν. The discrepancy between a non-Buick curve and Buick and
Greated’s curve scales with ν.

VI. CONCLUSIONS

From what we presented, it should be clear how to in-
corporate force methods into TRT and how to assess them.
The equations to theoretically assess force methods agree well
with the numerical results. The numerical results demonstrate
force errors can become large if they are viscosity-dependent.
The equations and numerical results dispel the common belief
a force method always benefits from the second-order velocity
moment of the force. Indeed, for steady incompressible fluids,
the force method of Buick and Greated [12] is appropriate,
which only contains a first-order velocity moment of the
force.
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APPENDIX A: REWRITING THE FORCE EQUATIONS OF KUPERSHTOKH AND SHAN AND CHEN

We rewrite the original SRT formulations of Kupershtokh [14] and Shan and Chen [15] to the SRT formulations in Table I.
Let �u = (

∑ �cq fq + �F/2)/ρ̂ and eq(ρ, �u) = tq(ρc2
s + ρ̂uq + 3

2 ρ̂u2
q − 1

2 ρ̂�u2). Rewriting Kupershtokh [14] starts by moving the
external source term inside the collision,

fq(�x + �cq, t + 1) = fq − 1

τ

[
fq − eq

(
ρ, �u − �F

2ρ̂

)]
+ eq

(
ρ, �u + �F

2ρ̂

)
− eq

(
ρ, �u − �F

2ρ̂

)
︸ ︷︷ ︸

Soriginal
q

= fq − 1

τ

{
fq −

[
eq

(
ρ, �u − �F

2ρ̂

)
+ τeq

(
ρ, �u + �F

2ρ̂

)
− τeq

(
ρ, �u − �F

2ρ̂

)]}
.

eq

(
ρ, �u − �F

2ρ̂

)
= tq

{
c2

s ρ + ρ̂

(
�cq ·

[
�u − �F

2ρ̂

])
+ 3

2
ρ̂

(
�cq ·

[
�u − �F

2ρ̂

])2

− 1

2
ρ̂

[
�u − �F

2ρ̂

]2}
,
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work out the terms,

ρ̂

(
�cq ·

[
�u − �F

2ρ̂

])
= ρ̂�cq · �u − 1

2
�cq · �F = ρ̂uq − 1

2
Fq,

3

2
ρ̂

(
�cq ·

[
�u − �F

2ρ̂

])2

= 3

2
ρ̂u2

q − 3

2
uqFq + 3

8ρ̂
F 2

q ,

−1

2
ρ̂

[
�u − �F

2ρ̂

]2

= −1

2
ρ̂�u2 + 1

2
�u · �F − 1

8ρ̂
�F 2,

and combine them to

eq

(
ρ, �u − �F

2ρ̂

)
= eq(ρ, �u) − tq

2
(Fq + 3uqFq − �u · �F ) + tq

8ρ̂

(
3F 2

q − �F 2
)
.

Analogously,

eq

(
ρ, �u + �F

2ρ̂

)
= eq(ρ, �u) + tq

2
(Fq + 3uqFq − �u · �F ) + tq

8ρ̂

(
3F 2

q − �F 2
)
.

Substitute the equations of eq
(
ρ, �u − �F

2ρ̂

)
and eq

(
ρ, �u + �F

2ρ̂

)
into fq(�x + �cq, t + 1) and work out to acquire

fq(�x + �cq, t + 1) = fq − 1

τ

(
fq −

[
eq(ρ, �u) +

(
τ − 1

2

)
tq(Fq + 3uqFq − �u · �F ) + tq

8ρ̂

(
3F 2

q − �F 2
)])

.

Next we rewrite Shan and Chen [15], starting again from the original SRT formulation,

fq(�x + �cq, t + 1) = fq − 1

τ

[
fq − eq

(
ρ, �u − �F

2ρ̂
+ τ �F

ρ̂

)]
,

eq

(
ρ, �u − �F

2ρ̂
+ τ �F

ρ̂

)
= tq

{
c2

s ρ + ρ̂

(
�cq ·

[
�u − �F

2ρ̂
+ τ �F

ρ̂

])
+ 3

2
ρ̂

(
�cq ·

[
u − �F

2ρ̂
+ τ �F

ρ̂

])2

− 1

2
ρ̂

[
u − �F

2ρ̂
+ τ �F

ρ̂

]2}
,

work out the terms,

ρ̂

(
�cq ·

[
�u − �F

2ρ̂
+ τ �F

ρ̂

])
= ρ̂uq − 1

2
Fq + τFq,

3

2
ρ̂

(
�cq ·

[
�u − �F

2ρ̂
+ τ �F

ρ̂

])2

= 3

2
ρ̂u2

q +
(

τ − 1

2

)
3uqFq +

(
1

8ρ̂
− τ

2ρ̂
+ τ 2

2ρ̂

)
3F 2

q ,

−1

2
ρ̂

[
�u − �F

2ρ̂
+ τ �F

ρ̂

]2

= −1

2
ρ̂�u2 −

(
τ − 1

2

)
�u · �F −

(
1

8ρ̂
− τ

2ρ̂
+ τ 2

2ρ̂

)
�F 2,

and combine them to

eq

(
ρ, u − �F

2ρ̂
+ τ �F

ρ̂

)
= eq(ρ, �u) +

(
τ − 1

2

)
tq(Fq + 3uqFq − �u · �F ) +

(
1

4
− τ + τ 2

)
tq
2ρ̂

(3F 2
q − �F 2).

Substitute this equation into fq(�x + �cq, t + 1) to finish with

fq(�x + �cq, t + 1) = fq − 1

τ

(
fq −

[
eq(ρ, �u) +

(
τ − 1

2

)
tq(Fq + 3uqFq − �u · �F ) +

(
1

4
− τ + τ 2

)
tq
2ρ̂

(3F 2
q − �F 2)

])
.

APPENDIX B: DERIVING THE EQUATIONS OF THE
BENCHMARK FLOWS

The four-roll mill is the steady version of the unsteady
Taylor-Green vortex (TGV) [25] at t = 0. The four-roll mill’s
analytic velocity [Fig. 3(a)] is therefore

�u(x, y) = �uTGV(x, y, t = 0) =
[

Q sin(qx) cos(ry)

R cos(qx) sin(ry)

]
D(t = 0)︸ ︷︷ ︸

=1

,

with constants

Q = u0

√
kylx
kxly

, R = −u0

√
kxly
kylx

, q = kx
2π

lx
, r = ky

2π

ly
,

and with x ∈ [0, lx ), y ∈ [0, ly), and D(t ) = e−(q2+r2 )νt . Wave
numbers kx and ky control the number of vortices in the x and
y directions. The velocity magnitude is controlled by u0. To
keep the flow steady, a force density �F counterbalances the
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(a) Four-roll mill (b) Poiseuille

FIG. 3. Velocity streamlines of the benchmark flows.

Taylor-Green vortex’s deceleration,

�F (x, y) = −ρ0∂t �uTGV|t=0 = ρ0(q2 + r2)ν�u(x, y).

To acquire an equation for the pressure P, substitute �u into the
Navier-Stokes momentum equations, combine and rewrite the
results to a Poisson equation for the pressure, finally integrate
the Poisson equation to acquire

P(x, y) = ρ0Q2

4

(
cos(2qx) + q2

r2
cos(2ry)

)
+ Pavg,

with average pressure Pavg. Use the nondimensional quantities
of Eq. (5) to nondimensionalize �u, �F , and P into �u∗, �F ∗, and
P∗ of Eq. (8) with l0 = lx

kx
= ly

ky
(wavelength).

Poiseuille flow [26] has an analytic velocity of

ux(y) = s

2ρ0ν
y(ly − y),

with constant s = Fx − ∂xP. Generally, the channel flow is
driven by either a constant force density Fx or a constant
pressure gradient ∂xP. Occasionally, it is driven by both a
constant Fx and a constant ∂xP. In our Poiseuille variant, Fx

runs linearly from 0 to s and ∂xP runs linearly from −s to 0,
from x = 0 to x = lx [Fig. 3(b)]. Consequently, the equations
for Fx and P become

Fx(x) = s

lx
x,

P(x) =
∫

∂xP dx

=
∫ (

s

lx
x − s

)
dx

= 1

2

s

lx
x2 − sx + Pint.

Integration constant Pint can be determined by specifying an
average pressure,

Pavg = 1

lx

∫ lx

0
P(x)dx = −1

3
slx + Pint.

Again use Eq. (5) to nondimensionalize �u, �F , and P into

�u∗, �F ∗, and P∗ of Eq. (9) with l0 = ly and u0 = ux
( ly

2

)
.
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