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a b s t r a c t

The design of a sustainable building should include a reduction of its energy consumption, by considering
the embodied energy and CO2 emissions generated during material manufacturing, transport and con-
struction processes. A Heating, Ventilation and Air Conditioning (HVAC) facility in buildings consumes
large amounts of energy. The aim of this work is to quantify the embodied carbon and energy of HVAC
systems installed in healthcare centers. For this purpose, 6 healthcare centers in the region of Extrem-
adura (Spain) -projected between 2006 and 2009 and built between 2007 and 2010- were analyzed. The
results show that the embodied carbon -considering HVAC installations lifetime estimated at 15 years-is
equivalent to the CO2 emitted for 2.3 years in the operation phase, and that the embodied energy is
approximately 2.65 times the amount used in one year during that phase. Particularly, the average
embodied carbon and energy is 48.95 kg of CO2 and 587.32 MJ per m2, respectively, discarding the
environmental impact of refrigerant gases. Additionally, different reference indicators are proposed to
calculate both parameters according to different structural variables of a given healthcare center,
including number of users, number of staff, HVAC installation costs, electrical power and average annual
energy consumption.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Embodied energy, also known as grey energy, is the total energy
required for the construction of a building, including the energy
used for materials manufacturing, transport and machinery during
the working process (Monahan and Powell, 2011). A low energy
building does not qualify as sustainable, since we would only be
considering its use phase and not its entire life cycle (Gao et al.,
2018). High performance buildings, such as hospitals and health-
care centers, consume a significant proportion of the world’s re-
sources (García-Sanz-Calcedo et al., 2019). According to Eurostat,
the building sector alone is responsible for 40% of CO2 emissions,
60% of raw material consumption, 50% of water consumption and
35% of waste generation (European Commission, 2019).

Building energy consumption and carbon dioxide emissions are
expected to double, or even triple, by themiddle of the 21st century
(Lucon et al., 2014). However, efforts are currently focused on
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reducing the operational energy usage in buildings, while the car-
bon and energy incorporated during their construction is expected
to increase in the future (Yeo et al., 2016). This is explained by the
fact that reduction of operational energy often implies an increase
in emissions from the incorporation of high embodied energy in
materials during manufacturing processes (Ramesh et al., 2010).
Moreover, Ibn-Mohammed et al. (2013) demonstrate that the
increasing proportion of embodied emissions of buildings is a
consequence of the efforts to reduce operational emissions. Addi-
tionally, in a sample of 238 buildings, R€ock et al., 2020 showed a
clear reduction of greenhouse gas emissions due to improved en-
ergy efficiency, although there is an increase in embodied emis-
sions from the manufacturing of building materials.

Healthcare centers are buildings designed to perform Primary
Healthcare functions, including illness prevention, health promo-
tion and treatment of patients. These buildings differ fromhospitals
since they are not designed to assist either hospitalization of pa-
tients or surgery interventions (Garcia-Sanz-Calcedo et al., 2018).
On the other hand, this type of building typology is not well known.
Due to the intensive use of their installations, they generate a high
energy consumption and CO2 emissions (Salman Ali Salman, 2017).
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Table 1
Functional characteristics of the healthcare centers.

Center Built surface area (m2) Users Staff Construction year Stories

1 1515 13 359 22 2009 1
2 1328 4700 16 2007 2
3 2824 17 844 40 2009 2
4 3192 14 951 34 2008 2
5 2367 16 500 22 2009 1
6 1877 6984 19 2008 1
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Heating, Ventilation and Air Conditioning (HVAC) installations
affect air treatment in terms of cooling, heating, dehumidification,
quality, and movement (Cohen et al., 2017). An HVAC system pro-
vides adequate airflow, heating and cooling to each area, main-
taining the required values of temperature, humidity and air quality
(Carretero-Ayuso et al., 2020).

Al-Waked et al. (2017) demonstrated the importance of using
low energy HVAC systems and insulation strategies to contribute to
high energy rating buildings. Gaglia et al. (2007) evaluated different
energy conservation scenarios and their impact on the reduction of
CO2 emissions of non-residential building stock. They observed that
the most effective energy conservation measures including:
installation of thermal insulation in exposed external walls, pri-
marily in hotels and hospitals; provision of energy efficient lamps;
solar collectors facility for domestic hot water production, pri-
marily in hotels and healthcare centers; installation of building
management systems in office, commercial and hotel buildings;
replacement of old inefficient boilers; and regular maintenance of
central heating boilers.

Dixit et al. (2010) identified parameters as a database to evaluate
the energy incorporated in a building. Shahrestani et al. (2018)
observed in the U.K. that different climate scenarios, electricity
decarbonisation plans and building location are influential pa-
rameters to select HVAC systems. Dixit et al. (2012) concluded that
it would be sensible to develop guidelines that could pave the way
for an embodied energy protocol.

Using inventory of carbon and energy database, Hammond and
Jones (2008) conducted 14 case studies of newly constructed
housing, and notes that there was similar embodied energy and
carbon between houses and apartments. An increasing difference
was observed when external works were taken into account (en-
ergy inputs for roads, connecting pathways, among others).
Rossell�o Batle (2019) obtained quantified values of embodied en-
ergy and carbon in a building 1775.75 kWh/m2 and 695.30 kg CO2/
m2 respectively. García-Sanz-Calcedo et al. (2020) calculated the
emissions associated with the construction of healthcare centers in
Spain, determining that the average amount of embodied,CO2e per
built surface area was of 1122.30 kg/m2 and 1.24 kg per euro
invested in the building construction. However, neither the
embodied energy nor the energy consumption of the building was
taken into account during the operation phase.

Dokka et al. (2013) analyzed a typical medium-size office in a
four-story heated floor building in Norway, and found that the total
in-built emissions from the HVAC installation was of 24 kg CO2eq/
m2 by using SimaPro software. Ylm�en et al. (2019) determined that,
in an office building in Sweden, the total carbon emissions from
HVAC systems was of 38 kg CO2e/m2 in the production phase, and
100 kg CO2e/m2 in the operation phase. Kiamili et al. (2020) eval-
uated the life cycle of HVAC systems in a newly constructed office
building modeled at Building Information Modeling (BIM) in
Switzerland, and found that the built-in impact of HVAC systems
was of 183 kg CO2e/m2. Shuo (2011) analyzed the environmental
impact of three different HVAC installations, including a variable air
volume (VAV) system, a chilled beam system and an underfloor air
distribution (UAD) in an office building study. The total embodied
carbon emission was of 21.01 kg CO2/m2, 42.70 kg CO2/m2 and
9.2 kg CO2/m2, respectively. However, none of the above authors
took into account variables related to number of users, investment
costs or energy demand, among others.

Quantifying the energy and emissions incorporated into the
construction process of a building is a complex matter since not all
the emissions incorporated into the manufacturing process of
materials are available in databases (Zhang andWang, 2017), so this
information has to be directly requested from the manufacturer.
Consequently, this procedure consumes more resources than when
2

the operation energy is quantified (Dixit, 2017a,b). In term of
design, construction and operation, healthcare buildings differ
substantially from office buildings. Although there are previous
studies focused on office buildings, most Life Cycle Analyses
address edifications designed and constructed as low energy
buildings (Cabeza et al., 2014).

As a novelty in this field, this research study aims to quantify the
embodied carbon and energy of HVAC systems in standard
healthcare buildings run under normal operating and climatic
conditions. Additionally, it seeks to develop benchmarks indicator
in the design and developments of technical projects. This will
facilitate the decision-making process during the design phase by
carefully choosing environmentally friendly HVAC equipment and
materials.
2. Methodology

2.1. Characterization of the sample

A healthcare center represents a continuous operation building.
In the Autonomous Community of Extremadura (Spain), 6 health-
care centers belonging to the Regional Healthcare Service were
analyzed. The buildings were under construction project between
2006 and 2009 and were built between 2007 and 2010. The
healthcare centers were similar in terms of construction materials
and procedure/design, location and type of building. They all had
similar HVAC facilities, built surface area (1325e3200 m2), number
of users (4700e18,000) and thermo-hygrometric conditions in
their location. These buildings followed the same maintenance
strategy, although possible thermal bridges were not taken into
account. The characteristics and numerical data of these healthcare
centers are shown in Table 1.

The main differences among the buildings are location, size and
number of users. The last one includes patients treated at the fa-
cility and other visitors for medical prescriptions, sick leaves, di-
agnose tests and check-ups, among others reasons. The staff
members are full-time workers in the building.

All the technical projects for the above healthcare centers ful-
filled the same legal requirements. Specifically, the Spanish Tech-
nical Building Code (CTE, 2006) and the Regulations on Thermal
Installation in Buildings (RITE, 1998) were obeyed. This building
presented similar thermal demand as well and 15 years of useful
average life were estimated for their HVAC installations (Fuller and
Petersen, 1996).

All the buildings were constructed with a concrete structure and
unidirectional slabs and braced footing. There was an analogy be-
tween the composition of the building envelope’s layers and other
administrative buildings, although the material quality was higher
than the average, with flat roofs to accommodate machinery and
installations, external carpentry with thermal bridge breaks, fa-
cades with low thermal transmittance, low emissivity glass, and
high performance HVAC installations. Specifically, all the HVAC
system in the healthcare centers consisted of air-cooled heat
pumps with axial flow fans, water distribution, rooftop units, heat
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recovery and free-cooling systems, with inverter technology. The
refrigerant gas used in all air-cooled heat pumps was Re407C.
However, the environmental impact of the refrigerant gas was not
included in the calculations in order to be able to apply the results
to future buildings, since current equipment uses different envi-
ronmentally friendly refrigerant gases (Bobbo et al., 2019).
2.2. Calculation process

The following functional variables were analyzed: built surface
area (m2), number of users (no.), number of staff (no.), HVAC
installation costs (V), electrical power (kW) and average annual
energy consumption (kWh). In addition, an on-site visit was per-
formed to each healthcare center in order to verify the accuracy of
the building project execution. The inspection was carried out by a
qualified senior engineer during the research process, who verified
through a check list that all the building installations coincided
with those reflected in the construction project. The analysis of
building materials included greenhouse gas emissions and
embodied energy. It was associated with the extraction, processing
and production of building materials. With respect to transport, the
study included labor and movement of materials. Final testing and
commissioning of facilities were also part of the construction
phase. All these processes taken into consideration in the calcula-
tions of the carbon footprint and embodied energy, considering a
cradle-to-gate scope (Pomponi et al., 2018). The methodology
flowchart is shown in Fig. 1.

Embodied energy and CO2 emissions were obtained from the
BEDEC database (ITEC, 2019). Detailed budgets for each building
project were used to quantify each construction material. Emis-
sions of 0.788 kg of CO2 per m3 of water and 0.38 kg of CO2 per kWh
of electricity used were considered (Ecological Transition Ministry,
2019). The total embodied CO2 emissions of each HVAC healthcare
facility were calculated by adding the embodied carbon of each
material used in the project multiplied by the total amount of
material and adding the emissions from the construction and
transportation processes, according to equation (1).

C¼
Xn

i¼1

ðci � kiÞ þ cf þ ct þ cc (1)

where C is the total amount of embodied carbon in the HVAC
healthcare facility, expressed in kg, ci is the embodied carbon
emissions of each material, ki is the amount of material used, cf the
emissions incorporated into the building during the construction
process, ct is the emissions from transport of materials andmobility
Fig. 1. Methodology flowchart.
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of workers, and cc indicates the emissions incorporated from the
building construction.

The total embodied energy of each HVAC healthcare facility was
calculated by adding the embodied energy of each material used in
the project multiplied by the total amount of material and adding
the energy from the construction and transportation processes,
according to equation (2).

E¼
Xn

i¼1

ðei � jiÞ þ ef þ et þ ec (2)

where E is the total amount of embodied energy in the HVAC
healthcare facility, expressed in MJ, ei is the embodied energy of
each material, ji is the amount of material used, ef is the energy
incorporated into the building during the construction process, et
the energy needed for the transport of materials and mobility of
workers, and ec correspond to the energy incorporated from the
building construction.

To determine the number of workers who participated in the
assembly and commissioning of the HVAC healthcare facility, the
number of hours worked by each professional category was added
from the construction project, considering a working an 8-h
working day, 5 days a week.

In order to obtain those emissions related toworker mobility, an
average occupancy of 4 people per vehicle was estimated. It was
assumed that automotive diesel and 95-octane gasoline vehicles
were used to transport materials and workers, respectively. Table 2
shows the amount of carbon dioxide emitted per kilometer trav-
elled depending on the mode of transportation. These emissions
from transport were estimated on the basis of fuel consumption
only, assuming that the carbon fuel is fully oxidized into CO2
(European Environment Agency, 1997), according to equation (3).

Qt ¼44:011 � Q
ð12:011þ 1:008 rH=C Þ (3)

being Qt the emissions per 100 km expressed in kg of CO2, Q the
total fuel consumption of fuel per 100 km, expressed in liters, and
rH/C the relationship between the number of hydrogen and carbon
atoms present in the combustion.

The average material transport distance was determined
calculating the mean road distance from the point of manufacture
to the healthcare center construction site, grouped by material
types. Table 3 shows the average distance travelled to carry the
HVAC materials to the site during the assembly process.
2.3. Statistical analysis

A statistical analysis of variance (ANOVA) was performed by
comparing embodied carbon and energy of HVAC installations in
healthcare centers, establishing the following hypotheses:
Table 2
CO2 emissions per kilometer, sorted by means of transport.

Vehicle kg CO2/km

Motorcycles 0.090
Cars 0.151
Vans <7.5 tn 0.317
Trucks 7.5e16 tn 0.487
Trucks 16e32 tn 0.659
Trucks >32 tn 0.788



Table 3
Average distance travelled by HVAC materials.

Materials Distance (km)
(km)

Pipes 300
Machines and pumps 600
Ducts 90
Control systems 400
Waste 80

Fig. 3. Embodied carbon and annual CO2 operational emissions of healthcare center
HVAC system.
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� Null hypothesis (H0): Those variables under analysis are not
related to the embodied carbon and/or energy in the process of
building a healthcare center.

� Alternative hypothesis (H1): The variables under study are
related to the embodied carbon and/or energy in the process.

In order to detect differences statistically significant among the
means of the studied factors and to assess the null hypothesis, the
p-value was compared with the level of significance. In this sense,
5% (95% confidence) was considered. When the p-value was lower
than or equal to 0.05, the null hypothesis was rejected, and
consequently, not all population mean were equal. On the other
hand, if the value of pwas over 0.05, therewas not enough evidence
to discard the null hypothesis. Additionally, the statistical signifi-
cance was obtained through F-Snedecor.

3. Results and discussion

The results obtained in this study are described in several
sections.

3.1. HVAC embodied carbon vs built surface area

Fig. 2 shows the relationship between the embodied energy and
carbon emissions per built surface area unit (m2) of an HVAC facility
and the size of a healthcare center. In particular, the embodied
carbon per square meter is similar in all the buildings under study,
while the embodied energy decreases inversely to the size of the
building.

3.2. HVAC embodied carbon vs annual CO2 emissions

Fig. 3 shows the embodied carbon and annual CO2 operational
emissions in HVAC installations in healthcare facilities. Assuming a
lifetime of 15 years for a healthcare center HVAC installation, the
Fig. 2. Embodied carbon and energy per built surface area of an HVAC installation.

4

average embodied carbon obtained was 2.30 times greater than the
amount used in the operation phase of a healthcare center in one
year.
3.3. Embodied energy vs annual energy consumption

Fig. 4 shows the embodied energy and the annual energy con-
sumption of HVAC installations in a given healthcare center. For a
period of 15 years, the embodied energy of the HVAC facility was
estimated at 2.65 times the amount consumed by the healthcare
center during the operation phase in one year.
3.4. Embodied carbon benchmarks

Table 4 shows the average embodied carbon, standard deviation
and percentiles according to the reference indicators analyzed in
the HVAC facility: unit of built surface area (m2), financial invest-
ment in each facility (V), number of users (no.), number of staff
(no.), average annual energy consumption (kWh) and installed
electrical power (kW) in a healthcare center.

The most adequate reference indicators to quantify embodied
carbon emissions are built surface area and annual energy con-
sumption, since these present the lowest percentage of standard
deviation. Reference indicators based on the number of users show
a high variability. On the other hand, indicators based on installed
electrical power are suitable. All the above indicators were vali-
dated for healthcare centers sized between 1000 and 3500 m2.
Fig. 4. Embodied energy and annual energy consumption of HVAC facilities in a
healthcare center.



Table 4
Embodied carbon indicators per functional unit of a healthcare center HVAC facility.

ratio average standard
deviation

percentiles

10% 25% 50% 75% 90%

kg CO2/m2 48.95 5.01 42.54 45.45 50.25 53.44 54.06
kg CO2/V 0.48 0.09 0.37 0.41 0.48 0.54 0.58
kg CO2/user 9.47 2.83 6.79 7.71 8.63 10.99 12.99
kg CO2/staff 4284 961 3401 3465 3873 5038 5579
kg CO2/kWh 0.49 0.06 0.41 0.46 0.51 0.52 0.55
kg CO2/kW 210 17 191 202 210 223 229
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By using suitable indicators, engineers and architects will have a
reliable tool to design low environmental impact facilities, which
will serve for future reference. On the one hand, healthcare man-
agers will have the tools to control and benchmark those buildings
they are responsible for. On the other, building maintenance
managers will be able to set strategies to optimize their tasks by
establishing control limits based on the indicators proposed in this
study. Additionally, these indicators are useful to optimize initial
ratios during renovation and refurbishment works.

Variable built surface area (m2) is suitable to compare the
environmental efficiency between different healthcare buildings.
Variables number of users and number of staff monitor the use of
healthcare spaces and the internal management of buildings, which
encourages the construction of higher performance buildings.
Variables electrical power (kW) and average annual energy con-
sumption (kWh) are useful to control the energy used in a health-
care building during its operating phase. Finally, variable HVAC
installation costs (V) allows to compare quality and costs of con-
struction materials.
3.5. Embodied energy benchmarks

Table 5 includes the mean, standard deviation and percentiles of
the indicators analyzed in the study, that is, embodied energy per
unit of surface area (m2), per investment (V), per number of users
(no.), per number of staff (no.), per average annual energy con-
sumption (kWh) and per installed electrical power (kW).

Noticeably, embodied energy per unit of built surface area and
per annual energy consumption are the most appropriate reference
indicators to calculate the average embodied energy of an HVAC
installation in a healthcare center, since these present the lowest
standard deviation. These indicators are appropriate for healthcare
centers between 1000 and 3500 m2. Indicators based on number of
users and number of staff have a high variability and, therefore they
are less suitable as reference.

The above results showed that HVAC facilities in healthcare
centers sized between 1750 m2 and 2250 m2 produce less
embodied energy and carbon per m2 (F ¼ 13.75; p ¼ 0.039). It was
also noticed that healthcare centers with a construction investment
over 1200V/m2 generates fewer emissions per m2 than others with
Table 5
Embodied energy indicators per functional unit of an HVAC facility in a healthcare
center.

ratio average standard
deviation

percentiles

10% 25% 50% 75% 90%

MJ/m2 587 83 506 519 560 635 695
MJ/V 5.87 1.90 4.49 5.05 5.37 5.58 7.77
MJ/user 115 41 78 84 97 142 169
MJ/staff 50 390 6018 43 027 48 123 52 523 54 723 55 620
MJ/kWh 5.92 1.13 4.78 5.05 5.85 6.04 7.12
MJ/kW 2530 384 2168 2219 2379 2793 3042
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an investment of less than 1000 V/m2 (F ¼ 11.69; p ¼ 0.046). No
significant differences between investment per built surface area
and embodied carbon and energy per m2 (F ¼ 0.1596; p ¼ 0.763)
were found.

Pearson’s correlation coefficient between embodied energy and
embodied carbon per built surface area and size of a healthcare
center was of 0.782 (sig ¼ 0.000004) and 0.748 (sig ¼ 0.000002),
respectively, which indicates that there is a significant correlation
between these two variables. The value of Durbin-Watson statistics
was of 1.218 and 1.324, both close to 2, implying there was no
correlation between residues. Additionally, 85% of the points were
within the interval [-2, 2]. Therefore, the homoscedasticity of the
intervening variables is assured. The validity of the proposed
reference indicators was also checked. Fig. 5 plots the recom-
mended reference indicators and variability according to the sta-
tistical analysis.

It has been shown that the embodied energy in a construction
process is very high compared to that consumed during the oper-
ation phase, so it should not be ignored. CO2 emissions generated in
the operation phase could be reduced by using renewable energy
sources, or by purchasing green energy from the providers (Vares
et al., 2019).

During the operation phase of a healthcare center, environ-
mental impacts must be differentiated between operation and
maintenance activities, and further disaggregated by installation:
heating, cooling, ventilation, DHW, lighting, among others (Dixit,
2017a,b). It should be kept in mind that adequate energy use in
the operational phase also reduces the environmental impact of the
building (Madlool, 2018). Therefore, it is advisable to implement an
energy management system through ISO 50001:2018. Further-
more, a correct energy management of the building should be
carried out, including user awareness addressed to energy saving,
and an adequate maintenance strategy (Lin et al., 2018).

On the other hand, the embodied energy and carbon from the
construction phase is stable during the life of a facility (Tang et al.,
2013). Therefore, it is very important to minimize the environ-
mental impact throughout the building construction process (Oh
et al., 2017). To achieve that, is advisable to considerer the energy
consumed in the operation phase, as well as the embodied and
recurrent energies in order to select adequate equipment and
design efficient HVAC systems. Additionally, it is recommendable to
incorporate bioclimatic techniques in the design of the building
(Camara et al., 2017), promote natural ventilation through free-
cooling, use insulating materials with low environmental impact
and avoid thermal bridges in the building envelope.

Paradoxically, energy rate systems in buildings do not usually
consider either embodied carbon or embodied energy. From a
Fig. 5. Indicators of embodied carbon and energy in healthcare centers.



J. García-Sanz-Calcedo, N. de Sousa Neves and J.P. Almeida Fernandes Journal of Cleaner Production 289 (2021) 125151
medium-term perspective, operational energy will progressively
decrease during the useful life of a healthcare center (Koezjakov
et al., 2018) due to low-consumption equipment, advanced insu-
lation materials and greater user awareness. Also, new devices will
include components, such as printed circuit boards and trans-
ducers, designed with low impact materials (Ordo~nez-Dur�an et al.,
2020). Therefore, the relationship between embodied and opera-
tional energies will change proportionally.

It has been observed that healthcare centers generate more
emissions in their construction process than other buildings in the
tertiary sector for several reasons: they include sophisticated in-
stallations, their structure has greater spans, their enclosures are
better thermally insulted and their indoormaterials are prepared to
withstand intensive use. Furthermore, in order to determine the
embodied energy and carbon of the HVAC facilities in healthcare
centers, built surface area (m2) was the most appropriate functional
variable. However, it is also interesting to use other functional
variables, such as number of users, since the intensity of use of the
building could be integrated into the analysis. It should be kept in
mind that, with the same embodied energy in the construction, a
healthcare building serving a larger number of users is more effi-
cient environmentally (To et al., 2018). HVAC installation costs (V) is
a variable that compares the quality of the equipment among
different buildings, and it also controls the embodied emissions in
buildings (Copiello and Bonifaci, 2017).

It was further noted that transport constituted 3% of the total
CO2 emissions in the construction phase. The impact of trans-
porting materials and workers could be reduced by using public
transport and hybrid and/or electric vehicles. Another effective
measure would be to organize purchasing and material collection
policies in order to optimize transport and delivery with larger-
capacity trucks and fewer trips. In other words, there should be
subcontract agreements including the share of trucks and reduc-
tion of trips, implying the gathering of materials on site.

The purpose of a circular economy is to beame an alternative
system that, in turn, can be remanufactured with less energy con-
sumption than the original (Den Hollander et al., 2017). By
considering that concept during the construction of healthcare
centers, the rates of greenhouse gas emissions could be substan-
tially reduced (Pomponi and Moncaster, 2017). By all means, it is
important to focus our efforts on evaluating the emissions gener-
ated in the process of building construction (Fenner et al., 2018), as
a measure to move towards a circular economy (Fang et al., 2017).

The embodied energy of the materials should be contained
during the construction phase by using more insulation materials,
and glazing, and by introducing more advanced systems. During
the design phase, it is important to select facilities based on the
amount of embodied carbon and energy (Dias and Pooliyadda,
2004). On the other hand, equipment over-sizing and redundancy
of installations significantly increase environmental emissions
(Seifert et al., 2019). However, in healthcare centers, redundancy of
critical facilities is necessary to ensure their resilience in case of
emergencies or natural disasters (Zhong et al., 2017).

An adequate selection of HVAC refrigerant gas reduces the
overall carbon footprint of a healthcare center (Devecio�glu and
Oruç, 2015). The use of natural refrigerants such as ammonia, car-
bon dioxide and hydrocarbons in vapour compression refrigeration
systems, will reduce their environmental impact (Bhatkar et al.,
2013). According to the standard (Mota-Babiloni et al., 2017),
today new facilities must incorporate refrigerants with low Global
Warming Potential (GWP). There are also improvements of CO2
systems by installing parallel compressors, ejectors as an expansion
device and usage of evaporative condenser (Abas et al., 2018). The
design of HVAC systems, including components with a long service
life and adaptable for use in different configurations, has proved to
6

be a reliable strategy that decreases embodied energy in the long
term (Malmqvist et al., 2018). Furthermore, an adequate selection
of the equipment is necessary considering that HVAC systems have
a short lifespan compared to buildings. These modules are quite
significant since they will be repeated 4 or 5 times throughout the
building life.

Significantly, from a maintenance point of view, the regular
change oh HVAC filters generates a substantially high environ-
mental impact On the other hand, it is very important to consider
that, at maintenance impact (Kiamili et al., 2020). It is also impor-
tant to avoid refrigerant leaks at all times (Pomponi et al., 2018).
Additionally, it is relevant to review the relationship between the
rates of energy embodied in the materials used for the building and
the amount of energy used in the construction (Kaspersen et al.,
2016). Even when low energy consumption materials are used
many of them could lead to an increase in embodied carbon and
total energy in a facility (DeWolf et al., 2017). Increasing the use of a
healthcare center during unexpected scenarios with higher ser-
vices demand can increase the energy used in the operation phase
and even decrease the lifetime of HVAC facilities if the intense use
persists (Korolija et al., 2011). All healthcare centers analyzed in the
sample were studied under normal operating conditions.

Comparing our findings with other studies, office buildings
present higher amount of embodied carbon per square meter
(48.95 kg/m2) than those reported by other authors such as Dokka
et al. (24 kg/m2), Ylm�en et al. (38 kg/m2), and Shuo (21.01 kg/m2),
for office buildings. Our results are predictable since healthcare
buildings are used more intensively and they also require better air
quality (Fonseca et al., 2019). On the other hand, our results are
similar to commercial buildings. Specifically, Rodriguez (2019)
observed that the embodied carbon of HVAC systems was of 36,
46 and 54 kg/m2 in large, medium and small buildings, respectively.

Although building construction methods are constantly
evolving (Allen and Iano, 2019), the design criteria for HVAC facil-
ities in healthcare centers have remained practically the same in
the last few years due to their operational complexity. An appro-
priate installation requires specific indoor environment air quality,
including: air ducts (Sanchez-Barroso and García-Sanz-Calcedo,
2019); pressure, humidity and temperature controls; and sectored
zones (Moscato et al., 2017), among others. With respect to
embodied energy and carbon, modern technologies intend to
reduce GWP through low impact refrigerant gases (Bobbo et al.,
2019) and electronic control systems (Felgueiras et al., 2016). In
this study, the environmental impact of refrigerant gases used in
the sample buildings was not taken into account, and the HVAC
equipment included advanced control systems. On this basis, the
results in this research study could be used as current and future
reference for the design of HVAC installations.

There are several certifications and standards in order to classify
buildings according to their energy demand (Crawford and
Stephan, 2013). The Passivhaus standard, for example, aims to
reduce energy demand during the use of buildings (Romanska-
Zapala et al., 2018). Additionally, those data available from the
LEED documentation system on HVAC built-in carbon are limited
(Rodriguez et al., 2019). Usually, these certifications do not include
the embodied carbon and energy in the building material
manufacturing (Jang et al., 2019). A full LCA based on ISO 14040-44
standards is advisable since it can provide additional information to
evaluate the results of the building life cycle inventory (LCI) and
help to better understand the overall environmental impact of the
building (Dossche et al., 2017). BIM Technology can easily measure
the embodied carbon and energy, avoiding both further costs and
complex LCA software usage (Santos et al., 2019).

Designers are responsible for appropriate maintenance of
buildings and their facilities throughout their useful life, including
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necessary reforms (Kalantari et al., 2017). Owners have to guar-
antee optimal conditions to preserve the initial design character-
istics (Olanipekun et al., 2018). It is also recommended that the
technical construction team to be involved in future evaluations of
the building environmental performance (Passer et al., 2012). On
the other hand, current inventories and methodologies for
embodied energy need improvement due to their inaccuracy and
lack of reliability (Finnegan et al., 2018). This problem derives from
parameter variability and is related to various stages of embodied
energy analysis (Morini et al., 2019).

4. Practical implications of the present study

The indicators here proposed serve as a reference to design
sustainable HVAC systems, since they evaluate their environmental
footprint from an integral perspective. They are helpful in terms of
considering both embodied carbon and energy in the construction
process of healthcare buildings, and of selecting the most appro-
priate materials (Cui et al., 2010). Additionally, they can be used as
consumption and embodied energy references to encourage
building energy saving (Dakwale et al., 2011).

The current legislation should limit the embodied carbon and
energy levels during the construction phase of a given building. In
this sense, the designer would have to choose minimal environ-
mental impact materials. Therefore, our results serve to develop
building energy rating systems that take into account embodied
energy and carbon during construction, and our proposed in-
dicators could be used as future reference (Simonen et al., 2017).
That rating system will encourage material manufacturers to
reduce embodied energy during production (Ortiz et al., 2009). In
addition, Public Administrations should promote sustainable
manufacturing policies that favor energy reduction, making it
mandatory to include embodied emissions from manufacturing
materials and equipment as part of technical data sheets.

Nowadays, the design of nearly zero-energy buildings is
frequently encouraged. Thus, users and politicians expect environ-
mentally friendly buildings (Causone et al., 2019). For this reason, it is
necessary to work on raising society’s awareness about the need to
include embodied energy and emissions in the whole life of a
building (Lotteau et al., 2017). In this sense, the results of this study
could be helpful to benchmark and set improvement targets for
buildings by healthcare managers, as well as to enhance the sus-
tainability of facilities and their maintenance (Lord et al., 2016).

5. Conclusions and future prospects

In this study, we measured the carbon emissions and energy
consumption of several HVAC facilities in their corresponding
healthcare buildings. The results showed that the embodied carbon
and embodied energy of these facilities was, respectively, 2.30 and
2.65 times greater than the amounts used during the operation
phase of a healthcare center in one year.

By proposing different reference indicators about embodied
energy and carbon, it is possible to calculate these parameters
depending on several structural variables of the healthcare center
(built surface area, number of users and staff, economic investment,
electrical power and average annual energy consumption). It was
observed that the average embodied carbon and energy of an HVAC
healthcare facility was 48.95 (std ¼ 5.01) kg and 587.32
(std¼ 82.84) MJ per m2, respectively, discarding the environmental
impact of refrigerant gases. It was also found that the average
embodied carbon and energy consumed was 0.49 (std ¼ 0.06) kg
and 5.92 (std ¼ 1.13) MJ per kWh, respectively. Noticeably, the
embodied energy of an HVAC installation per unit of built surface
area decreased inversely to the size of the healthcare center.
7

For a building to qualify as energy efficient, it is necessary to use
tools that analyze its life cycle, with special emphasis on the
embodied energy of the materials. Proper labelling of those mate-
rials used in the construction process, as well as greenhouse gas
emissions and embodied energy in the building, should therefore
be required. In this manner, it will be possible to consider both
embodied energy and carbon when carrying out energy
qualification.

Conclusively, our results highlight the need to address the life-
cycle-related embodied carbon and energy in healthcare build-
ings, with the possibility of extrapolating them to buildings with
similar facilities and materials and to other countries with similar
regulations and construction techniques.

Future works should focus on evaluating the embodied carbon
and energy of other healthcare building facilities, such as electrical,
water and medical gases installations, among others. It would also
be necessary to introduce the calculation of recurrent embodied
energy in healthcare building, that is, the energy used in the various
processes for their maintenance and refurbishment (including
materials and components) during their useful life. On the other
hand, more case studies would be helpful to obtain a broader
scenario about the embodied environmental impact of HVAC sys-
tems, thus collaborating in the defossilisation of the building sector.
As a final observation, further research to document inventories of
different types of HVAC systems is recommended in order to
establish a useful database with complete and specific contents on
embodied emission and energy in buildings.
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