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Abstract: Salinization and sodification are important processes of soil degradation affecting irrigated
lands. A large proportion of the global irrigated area is affected by some degree of soil salinity
or sodicity caused by the intensification of irrigation. The increase of the frequency of adverse
climatic conditions, like high temperatures and variations in precipitation patterns caused by climate
change, will potentially amplify these processes in arid, semi-arid, and Mediterranean areas. The use
of integrated approaches for the spatial and temporal prediction of the risk of salinization and
sodification in irrigated areas is of great value, helping in the decision-making regarding land uses and
choice of more suitable agricultural practices. In this study, based on key criteria for the assessment
of irrigation-related salinization processes (e.g., climate, topography, soil drainage, water quality for
irrigation, and crop irrigation method), we developed a methodology for the prediction of soil salinity
and sodicity risk in irrigated lands, using two composite indices, the Salinization Risk (RSA) index and
the Sodification Risk (RSO) index. The application of these indices to a real scenario (a Mediterranean
area in Southern Portugal) showed that 67% of the potentially irrigated area presented a low risk of
salinity development, 68% had a moderate risk of sodification, and 16% was of high risk of sodicity
development. Areas under moderate risk of salinization (26%) were mostly characterized by low
slopes and fine-textured soils, like Luvisols and Vertisols, with limited drainage conditions. Areas with
high risk of soil sodification presented a large incidence of low slope terrain, moderate-to-restricted
soil drainage, in high clay content Luvisols, Vertisols and Cambisols, and land use dominated by
annual crops irrigated with surface or sprinkler systems. These risk prediction tools have the potential
to be used for resource use planning by policymakers and on-farm management decision by farmers,
contributing to the sustainability of irrigated agriculture in Mediterranean regions.

Keywords: soil salinity; soil sodicity; water quality for irrigation; risk evaluation; Mediterranean
regions

1. Introduction

Salinization and sodification are major processes of soil degradation threatening land productivity
and global food security [1]. Salt-induced land degradation is common in arid and semi-arid regions,
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where rainfall is insufficient to maintain percolation of rainwater through the soil and irrigation is
practiced without adequate drainage [2]. The growing development of irrigated agriculture in arid
and semi-arid lands has been essential for the food supply demanded by a growing world population.
Over the last 50 years, the world’s net cultivated area has grown 12%, and in the same period, the global
irrigated area has doubled [3]. At present, about 20% of the world agricultural land is irrigated and
this land produces 40% of the world food supply [4]. Although the undisputable contribution of
irrigation for the increase in food production, in areas where precipitation is scarce or irregular, irrigated
agriculture can cause a disharmony with the nature of dry regions’ ecology, negatively affecting the
quality of soils and water [3,5–7]. At present, it is estimated that more than 20% of the global irrigated
area is affected by salinization caused by irrigation; in some countries, salt-affected soils occur in more
than half of the irrigated land [2]. In the Mediterranean area, 25% of irrigated cropland is affected
by moderate-to-high salinization, leading to moderate soil degradation [8], and adverse climatic
conditions, like temperature increase and changes in the regional precipitation patterns, are likely to
enhance the problem of salinization [9–12].

According to Rengasamy [13], there are three types of salinity, based on the processes of salt
accumulation: (i) groundwater-associated salinity, occurring in discharge areas of the landscape,
where water tables are close to the surface and evaporation leads to the upward movement of water
and salts; (ii) non-groundwater-associated salinity, that occurs in landscapes with deep water table and
poor drainage, when salts introduced by rain, weathering, and aeolian deposits are stored within the
soil solum; and (iii) irrigation-associated salinity, when salts are introduced by irrigation water and
accumulate within the root zone due to insufficient leaching. Certain factors lead to the acceleration of
irrigation-induced salinity, like the poor-quality irrigation water, low hydraulic conductivity of soil
layers, as found in heavy clay soils, and sodic soils, under high evaporative conditions.

Whether it is of natural genesis or induced by human activities, the progressive nature of
salt-affected soils is a constraint for its early detection, and, although there are several reclamation
techniques, the prevention of salt accumulation is more advisable than soil desalinization [14,15].
According to Eckelmann et al. [16], the risk of salinization is defined as a measure of the probability and
severity of the salinization/sodification due to human activities which adversely affects one or more soil
functions. In agricultural regions, soil salinization varies widely, vertically, horizontally, and temporally,
depending on conditions, such as the variation in soil texture, plant growth, irrigation water quality,
hydraulic conductivity, and the irrigation system. In this sense, any risk assessment methodology
must be based in meaningful indicators of soil and water quality, in order to assess whether or not a
soil is potentially salt-affected [17].

Risk assessment methodologies can be performed at different levels of scale and related levels of
information detail, in each case using different types of approaches, namely, a qualitative, quantitative,
or model approach [17,18]. Simulation models that deal with the dynamic and transient condition
of soil salinity [19,20] can predict the effect of multiple scenarios (e.g., climatic variables, quality and
quantity of irrigation water, fertilization rates, soil properties) on soil salinization, computing water
and salt balances in the soil and leaching requirements, supporting the optimization of agricultural
practices and land management [19–21]. The complexity of some of these models, and the usual lack
of input data, is a constraint to its application on large areas, and simple approaches are welcome to be
used at national or regional scales [18,22]. Monitoring and assessment of soil salinity is decisive for
effective adaptation and mitigation through land reclamation measures. At field level and at larger
scales, mapping of salinity is required to establish the most appropriate irrigation and soil management
practices, to delineate crop management zones, and for regional land management [23].

The appropriate assessment methods are directly related to the spatial scale of interest [22,23].
In a continental scale, Tóth et al. [24] generated a map of saline and sodic soils from the European Soil
Database [25], for the delineation of areas in the European Union that are threatened by salinization or
sodification. For large spatial scales, the use of remote sensing (RS) or geographic information systems
(GIS) techniques has been reported in several studies, frequently in combination with physically based
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models, aiming to extend their prediction capabilities (for e.g., [15,26–28]). According to Zhou et al. [29],
the use of risk indices or frameworks for soil salinity assessment may facilitate communication among
scientists, policymakers, and practitioners by providing a basis for evaluating the environmental
impact of agricultural practices and also government programs and policies. Frequently, these risk
indices are GIS-based in order to ascertain priority areas, predict where it may occur in the future,
and determine appropriate management options to mitigate salinity risk [30]. One of the earliest indices
for the assessment of soil salinity risk was the Salinity Risk Index (SRI), proposed by Eilers et al. [31],
later updated by Wiebe et al. [32] to evaluate the salinization risk trends on the Canadian Prairies.
The SRI was composed of five risk factors: the current presence and extent of salinity, topography,
soil drainage, aridity, and land use [31,32]. A four-component risk assessment framework for salinity
prevention was proposed by Grundy et al. [33] for Queensland, Australia, where the components
(current salinity stage, current land management, value of the assets under threat, and biophysical risk
factors) interacted to give an overall salinity risk index. From this framework, Biggs et al. [30] developed
a GIS-based system to assess the risk of salinity in the Condamine basin, Australia. Zhou et al. [29]
presented a soil salinity risk assessment methodology by selecting a set of risk factors based on the
conceptual Pressure–State–Response (PSR) sustainability framework of the Organisation for Economic
Co-operation and Development (OECD) [34], where a set of fourteen risk factors were selected to
develop a composite risk index for soil salinity in the Yinchuan Plain, China. Masoudi et al. [35]
proposed a model for risk analysis of soil salinization for the Payab Basin, Iran, using GIS with the
overlay of hazard maps of nine indicators as the causes of soil salinity (depth of water table, soil texture,
slope, irrigation water quality, groundwater quality, efficacy of surface geology, climate, aridity index,
status of soil salinity) to obtain a final risk map. Specifically for irrigated lands, similar salinization
risk assessment methodologies were developed, using GIS, and considering irrigation water quality,
soil properties, and climate indicators [15,24]. These methodologies have a dominant focus on the
prediction of the development of saline soils, and the assessment of the risk of soil sodicity alone has
generally received less attention [36]. Regardless of the modeling perspective or the soil deterioration
problem to be predicted, the use of these integrated approaches evidenced its value for helping in
decisionmaking regarding land resource management, allowing for the adoption of reclamation actions
and the prediction of the spatial variation of irrigation-induced soil salinity and sodicity.

In this study, we aimed to: (i) present an overview of major criteria and respective indicators
related with soil salinity and sodicity induced by irrigation; (ii) propose two composite risk indices,
for soil salinization and soil sodification assessment in large areas, based on climate, irrigation water
quality, soil information, and land-use data; (iii) present the risk indices when applied in a real scenario
in a Mediterranean area in Southern Portugal.

2. Criteria and Indicators of Soil Salinization and Sodification

Indicators to predict soil salinization problems can be grouped following the common criteria for
risk area identification according to soil threats [16] (Table 1), that considers a two-tiered approach,
from a lower spatial resolution, less detailed and supported in available information, to a higher spatial
resolution, requiring more detailed data and in situ measurements.

Table 1. Common criteria for risk area identification according to soil threats considering a two-tiered
approach (Tier 1 for National/Continental level; Tier 2 for regional level) (adapted from [16]).

Criteria Indicator
Data Source/Type of Information

Tier 1 Tier 2

Soil typological unit European or
National databases Europe, National Regional

Soil texture Texture class; sand, silt and
clay content Texture class Particle size

distribution; Porosity
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Table 1. Cont.

Criteria Indicator
Data Source/Type of Information

Tier 1 Tier 2

Soil chemical properties

Salt content, expressed in Total
Dissolved Salts (TDS) or

electrical conductivity (EC),
and profile distribution; ion

composition; pH; Cation
exchange capacity (CEC);

Exchangeable sodium
percentage (ESP)

Not required
National soil profile

database; Soil
inventory/mapping

Soil hydraulic properties
Infiltration rate; Hydraulic

conductivity; Water retention
curves; Drainage

Not required
National soil profile

database; Soil
inventory/mapping

Irrigation areas and
chemical properties of

irrigation water

Irrigated area; Irrigation
intensity; Salt content, pH and

Sodium Adsorption Ratio
(SAR) of irrigation water

National registries Regional registries

Groundwater
information

Depth; Salt content, pH and
SAR

European/National
groundwater database Regional database

Climate/Aridity Annual rainfall; Annual
potential evapotranspiration

National weather
stations

Regional weather
stations

The most common soil salinity indicator is the electrical conductivity, usually measured in a
saturation paste extract (ECe; dS m−1). Yield reduction of many crops can occur for ECe > 4 dS
m−1, a condition that defines a saline soil [37]. In saline soils, the large osmotic potential values
on soil solution hinder plant transpiration, diminishing water availability to plants, which results
in physiological deteriorations. Crop salt tolerance is the ability of plants to survive and produce
profitable yields under the adverse conditions caused by soil salinity [38]. Data of tolerance to salinity
were first reported by Maas and Hoffman [39] for numerous crops, by quantifying salt tolerance using
the threshold (or breakpoint) model, that can be presented in terms of percentage of the maximum
yield, known as the relative production function Equation (1):

Yr =


100, i f ECe ≤ a

100 + b·(ECe − a), i f a < ECe < c
0, i f ECe ≥ c

, (1)

where Yr is the relative crop yield, with 100 being the maximum yield, a is the threshold (breakpoint)
salinity (dS m−1), beyond which yield reduction will occur, ECe is the salinity of saturated soil extract,
b is the slope, that represents the percentage of yield expected to be reduced for each unit of added
salinity above the threshold salinity, and c is the level of soil salinity (dS m−1), above which the yield
is zero. Values of a and b, and relative tolerance ratings for several crops, can be found in Maas and
Grattan [40], indicating, e.g., that while wheat (Triticum aestivum L.) or olive (Olea europaea L.) are
classified as moderately tolerant, grapevine (Vitis vinifera L.), almond (Prunus dulcis (Mill.) D.A. Webb)
and a majority of vegetable crops are moderately sensitive to salinity, which increases the restrictions
for their cultivation [41] and the need for appropriate irrigation management measures for these
crops [42].

For sodic conditions, in addition to salinity diagnosis based upon ECe, the Sodium Adsorption
Ratio (SAR) of the soil solution or of the irrigation water Equation (2) can be calculated [38]:

SAR =

[
Na+

]
√
[Ca2+]+[Mg2+]

2

, (2)
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where [Na+], [Ca2+], and [Mg2+] are the concentrations (meq L−1) in the saturated soil paste extract or
in the irrigation water. A sodic soil presents a SAR value of 13 or higher. When ECe > 4 dS m−1 and
SAR > 13, the soil is classified as saline-sodic [37]. In sodic soils, the high exchangeable sodium in the
soil complex causes dispersion of its colloids, structural destruction, and aggregate failure, resulting
in unfavorable physical properties, like low infiltration rate and low hydraulic conductivity [9,13].
When the salinity of the soil water is insufficient to counteract the negative effects of adsorbed Na+ on
soil structure, a “rainfall effect” [43] can occur. More specifically, the leaching of salts by precipitation or
excess irrigation water reduces the salinity of the soil solution, while the reduction in exchangeable Na+

will be far smaller due to a buffer effect, performed by the exchangeable cations adsorbed in the soil
matrix, causing, therefore, a reduction in the stabilizing effects of salinity on aggregate stability [5,22,44].
When dry, sodic soils become denser and structureless since natural aggregation is destroyed. At the
soil surface, dispersed clay particles can act as adhesive, forming relatively dense crusts that impede
seedling rooting and emergence. The degree of crusting depends on soil texture, the mineralogy of
the clay, the exchangeable sodium content, the energy of raindrop impact, and the rate of drying [22].
At lower SAR levels, when chemical bonding is weakened, but no spontaneous dispersion takes place,
inputs of energy are required for actual dispersion. While in drip irrigated fields this is hardly a
problem, given the low flow rates of the drippers, the use of surface or sprinkler irrigation can increase
the probability of soil structure degradation and surface crusting due to the physical disruption caused
by runoff or by the water drops as they impact the soil surface aggregates [45].

In addition to soils that are classified as saline or sodic due to their genesis conditions,
like Solonchaks and Solonetz, there are other soils whose characteristics make them more susceptible
to the development of secondary salinization. This is the case of poorly drained soils (soils with
permanent or temporary water table close to the surface) or soils with unfavorable hydrophysical
properties (low permeability, low porosity, fine-textured layers or horizons). A systematized list of
saline or saline prone soils, according to the World Reference Base of Soil Resources [46], was presented
by Daliakopoulos et al. [22] (Table 2).

Table 2. Saline soils and saline-prone soils, and their main characteristics, according to the World
Reference Base [46] (adapted from [22]).

Saline or
Saline-Prone Type Soil Type Code Main Characteristics

Saline Solonchak SC High concentration of soluble salts

Solonetz SN High content of exchangeable Na

Saline-prone Acrisol AC Low-activity clays and low base saturation

Alisol AL High-activity clays and low base saturation

Calcisol CL Accumulation of secondary
calcium carbonates

Durisols DU Accumulation of, and cementation by,
secondary silica

Fluvisol FL Stratified fluviatile, marine, and
lacustrine sediments

Gleysol GL Groundwater-affected, underwater and in
tidal areas

Gypsisols GY Accumulation of secondary gypsum

Luvisol LV High-activity clays and high base saturation

Vertisol VR Alternating wet–dry conditions,
shrink–swell clays
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Many of the laboratory and field methods used to determine soil hydraulic properties are
time-consuming, laborious, and limited to the sampling quantity and location, which restricts their
use due to soil heterogeneity [47,48]. In fact, texture variability is one of the determining factors
of this heterogeneity, and several methods have been proposed to establish a relation between soil
texture and soil hydraulic properties [47–49]. Following a methodology similar to de Paz et al. [15],
a classification of soil drainage can be made considering its relationship with textural classes (Table 3).
Drainage conditions are also affected by groundwater levels. Areas of low relief and particularly closed
depressions encourage lateral translocation in surface and groundwater and salt accumulation [50].

Table 3. Drainage classes in relation with textural class and saturated hydraulic conductivity
(systematized after [15] and [47–49]).

Textural Class 1) Saturated Hydraulic
Conductivity (mm h−1) 2) Drainage Class 2)

S, LS >50 Good

SL, SCL, L, CL, SiCL, SiL, Si 5–50 Moderate

SC, SiC, C <5 Restricted
1) S—Sand; LS—Loamy Sand; SL—Sandy Loam; SCL—Sandy Clay Loam; L—Loam; CL—Clay Loam; SiCL—Silty Clay
Loam; SiL—Silty Loam; Si—Silt; SC—Sandy Clay; SiC—Silty Clay; C—Clay; 2) Classification after de Paz et al. [15].

For the risk assessment of irrigation-induced salinization and sodification, the evaluation of
irrigation water quality is of primary importance since it often constitutes the main source of salts.
Some of the parameters used to evaluate soil salinization problems are the same that are used to
evaluate the irrigation water quality, namely, electrical conductivity, in this case, Water Electrical
Conductivity (ECW; dS m−1), Total Dissolved Salts (TDS; %), SAR, and the concentration of some
specific ions that might cause toxicity to crops.

Although the suitability of a saline water for irrigation depends on different conditions of use,
like crop, climate, soil, irrigation method, and management practices, only very tolerant crops can have
satisfactory yields if irrigated with waters with EC that exceeds 10 dS m−1. In fact, few normally used
irrigation waters exceed EC of about 2 dS m−1 [51]. It is consensual the use of the Food and Agriculture
Organization of the United Nations (FAO) water quality guidelines for irrigation [52], which considers
three levels of restriction for the use of an irrigation water: none, slight to moderate, and severe.
In these guidelines, salinity is assessed from ECW, and sodicity (more specifically, infiltration rate of
water in the soil) is assessed using ECW and SAR together (Table 4).

Table 4. Excerpt of the FAO guidelines for interpretation of water quality for irrigation (adapted from
Ayers and Westcot [52]).

Potential Irrigation Problem Units
Degree of Restriction on Use 1)

None Slight to Moderate Severe

Salinity 2)

ECW dS m−1 <0.7 0.7–3.0 >3.0

Infiltration 3)

dS m−1

SAR 0–3 and ECW >0.7 0.7–0.2 <0.2
SAR 3–6 and ECW >1.2 1.2–0.3 <0.3

SAR 6–12 and ECW >1.9 1.9–0.5 <0.5
SAR 12–20 and ECW >2.9 2.9–1.3 <1.3
SAR 20–40 and ECW >5.0 5.0–2.9 <2.9

1) Based on [52]: None—no soil or cropping problems are experienced; Slight to moderate - gradually increasing care
in selection of crop and management alternatives is required if full yield potential is to be achieved; Severe—there
will be soil and cropping problems or reduced yields, but even with cropping management designed especially to
cope with poor quality water, a high level of management skill is essential for acceptable production; 2) Affects crop
water availability; 3) Affects infiltration rate of water into the soil.



Water 2020, 12, 3569 7 of 22

Irrigated agriculture develops primarily in areas where the interannual and seasonal quantity and
distribution of precipitation and evapotranspiration are irregular. This leads to permanent (aridity)
or temporary (drought) imbalances in water availability consisting in low average annual rainfall,
with high spatial and temporal variability resulting in overall low moisture [53]. These features
contribute to unfavorable salt balances, which can be intensified by irrigation with poor-quality
water [54]. Climate plays a key role in the process and, whenever data are available, should be
considered when defining a set of indicators for salinization/sodification risk prediction. A well-known
indicator used as a numerical expression of dryness for climate classification and for the identification
of regional patterns of aridity is the United Nations Environmental Programme (UNEP) Aridity
Index (AI) [55], a mean accumulated annual precipitation/potential evapotranspiration ratio (P/PET).
Considering the AI scale, the classification of climate types is hyper-arid (<0.05), arid (0.05–0.2),
semi-arid (0.2–0.5), dry sub-humid (0.5–0.65), and humid (≥0.65). For dryland climate subtypes,
AI values are below 0.65, and, according to Schofield and Kirkby [50], values between 0.05 and 1
(arid to moist sub-humid) describe climatic conditions suitable for salinization to occur.

3. Materials and Methods

3.1. Study Area

The study region selected for this work, which we will refer to as Inland Alentejo, is part of
a province in Southern Portugal, with a Mediterranean-type climate, named Alentejo (Figure 1).
The region has a total area of 11,260 km2, of which 10,114 km2 are predominantly of agriculture and/or
agroforestry use (excluding urban areas, artificial zones and rocky terrain). Large areas of traditional
rainfed agriculture, conditioned by water availability constraints, have been gradually replaced by
irrigated agriculture [56]. While there are some private irrigation systems, the main source of irrigation
water is public. In this area, small public irrigation schemes with a total area of approximately 30,000 ha
in operation in 2018 [57] were implemented in the last century. However, the largest public scheme,
which started to operate in 2002, is the Alqueva irrigation plan, that presently covers nearly 120,000 ha
and is expected to expand to 170,000 ha by 2022, totaling 15% of the study area. The irrigation plan is a
part of the Alqueva Multi-Purpose Development Project (EFMA—Emprendimento de Fins Múltiplos de
Alqueva). The EFMA is centered in the Alqueva reservoir (Guadiana River Basin), the largest artificial
lake in the Iberian Peninsula, with a total storage capacity of 4150 hm3, providing water for public
supply, irrigation, industry uses, energy production, and tourism. Studies carried out in the water and
sediments of this reservoir have reported ecotoxicological risk to aquatic organisms, induced mostly by
pesticide and metal pollution, an increment over time of organic matter and nutrients in the water body,
and of trace elements in the sediments [58–61]. More recently, a temporal trend of degradation in water
quality for irrigation was reported [11,12], that could be attributed to the expansion of the irrigation
area, with the concomitant intensification of agriculture, and to the increase of drier conditions resulting
from climate change. These studies pointed to a potential increased risk of soil infiltration problems
and of salinity-induced yield reductions in sensitive crops, especially in drought years, and during
periods of high atmosphere evaporative demands.

The climate in the region is classified as temperate with hot and dry summer (Csa in Köppen
Classification), with a small area of mid-latitude steppe (Bsk). The long-term means for the period
1981–2010 of annual precipitation and annual mean temperature are, respectively, 558 mm and 16.9 ◦C,
for Beja, a main town located approximately in the center of the study area [62]. During 2018,
the annual precipitation in Beja was 653 mm, mean temperature was 16.2 ◦C, and reference annual
evapotranspiration totaled 1193 mm [63].

Predominant soils in the study area (approximately 81% of total area) are Luvisols, Leptosols,
Regosols and Vertisols. For the purpose of this study, a map of Reference Soil Groups (RSG) was
built for the study region, based on the World Reference Base for soil resources [46] and on previous
studies [64,65] (Figure S1).
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The chart of Land Use and Occupation (COS—Carta de Uso e Ocupação do Solo) produced in
2018 for Continental Portugal, made available from the Portuguese Directorate General for Territory
(DGT—Direcção-Geral do Território) [66], was used to obtain the land occupation and use map of the
study area (Figure S2). The minimum cartographic unit of COS is of 1 ha, with a minimum distance
between lines of 20 m, and it comprises 83 classes, from which 11 distinguish different agricultural
types. According to COS, the main agricultural land uses in the region in 2018 were temporary rainfed
and irrigated crops, and olive groves, respectively 22% and 15% of the study area. When considering
only the Alqueva irrigation area, the main irrigated crops grown in 2018 were (by descending order of
importance): olive; fruit trees, mainly nuts like almond and walnut (Juglans regia L.), but also pear
(Pyrus communis L.) or peach (Prunus persica (L.) Batsch); grapevine; maize (Zea mays L.); forage crops;
oil crops; horticultural crops; cereals other than maize [67]. The non-irrigated land is occupied mostly
by rainfed crops, pastures and agroforestry systems of holm oak and cork oak.

Given the importance of the EFMA irrigation area in the study region, the water quality data
used for the study were collected in the Alqueva reservoir at four sampling sites in floating platforms,
as shown in Figure 1: Álamos-Captação (Al; 38◦20′30.00′′ N, 7◦34′40.00′′ W), Alqueva-Montante (Mn;
38◦12′55′′ N, 7◦29′28′′ W), Alqueva-Mourão (Mr; 38◦23′60.00′′ N, 7◦23′25.80′′ W), and Lucefécit (Lf;
38◦33′6.32′′ N, 7◦17′52.86′′ W). The Al site was chosen because it was near the Álamos pumping
station, an inlet where water is elevated to part of the EFMA conveyance network. The Mn site was
selected to ensure representativeness of the reservoir area. Mr and Lf sites were chosen considering
previous results for the reservoir water quality assessment [12,58].

3.2. Data Collection and Mapping Methodology

In order to compute a spatial distribution of the Aridity Index, ERA5 dataset of monthly mean
averages values was used. ERA5 [68] is the fifth-generation reanalysis product provided by the
European Centre for Medium-Range Weather Forecasts (ECMWF). Reanalysis combines observations
and a numerical weather prediction model to produce complete atmospheric fields over a regular
3D atmospheric grid. In the present study, the monthly mean values of total precipitation, 2 m air
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temperature (T2m; ◦C), and 2 m dew-point temperature (d2m; ◦C) for the 30 year period 1990–2019
were downloaded from the ERA5-Land monthly averaged dataset with a horizontal resolution of 0.1◦

(~10 km) [69]. The monthly accumulated PET values were computed using Equation (3), the practical
and well-known formulation of Romanenko [70]:

PET = 0.0018(25 + Ta)
2(100 + RH), (3)

where Ta (◦C) is the monthly mean air temperature and RH (%) is the monthly mean relative humidity
calculated from the ERA-5 T2m and d2m values. Finally, the 30 years (1990–2019) mean annual PET and
P were computed for the study area to access the AI as defined by the UNEP [55].

The map with the Reference Soil Groups (RSG) in the study area is presented in Figure S1.
Slope classes were obtained based on the slope of the predominant soil units [71].

From the textural classes of the surface horizons/layers of the predominant soil units [72], a map
with drainage classes was built after the classification presented in Table 3, with the addition of a
restricted drainage classification whenever soil use capacity was severely to very severely limited due
to excess water.

Within the study area, a potentially irrigated area was established for the application of the risk
indices. For this purpose, the following crops/type of crops from the COS classes were considered
as possibly irrigated: a-temporary dry and irrigated crops; b-vineyards; c-orchards; d-olive groves;
e-complex cultivation patterns. A most likely irrigation method was assigned to each crop/group of
crops as follows: I—Drip irrigation, in the case of b, c, and d; II—Surface or Sprinkler irrigation, in the
case of a and e.

The study covered six water sampling campaigns in 2018, performed in January (Jan), March (Mar),
May, July (Jul), September (Sep), and November (Nov). At each sampling location, 2 L of surface
water were collected, at a depth of 50 cm, using a Van Dorn bottle. The water samples were stored in
polyethylene bottles and transported to the laboratory, in a cooler at 4 ◦C, where they were conserved
and stored, following the requisites for water conservation for each parameter [73]. The concentrations
of Ca2+, Mg2+, and Na+, were determined by ionic chromatography methodology adapted from
APHA [73]. Water ECW was measured in situ on the same dates (except November due to a temporary
equipment failure) at a 50 cm depth using a multiparametric probe YSI 6820 MPS probe®. Values of
SAR were calculated using Equation (2). For the purpose of this work, ECW and SAR were evaluated
after the FAO guidelines presented in Table 4.

3.3. Risk Indices

To obtain the composite risk indices of salinization and sodification, two sets of indicators
were adopted, based on a tier 2 approach [16], previously presented in Table 1, and based on
Masoudi et al. [35]. The Salinization Risk (RSA) index includes a set of four criteria and respective
indicators, represented in classes (I to V or I to III, depending on the range of values or the classes
considered), to which a rating score (1 to 5) was assigned (Table 5):

(i) Climate, quantified with the AI scale from [55];
(ii) Topography, represented by slope intervals obtained from the Portuguese soil and land-use

capacity map [71];
(iii) Soil drainage, characterized by drainage classes according to Table 3;
(iv) Irrigation water quality, from in situ measurements, classified according to the degrees of

restriction to its use with respect to salinity, as presented in Table 4.
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Table 5. Criteria, indicators, class limits, and their rating score to evaluate the risk of soil salinization in
irrigation areas in the Salinization Risk index (RSA).

Criteria Indicator
Class and Respective Interval of Values

I II III IV V

Climate (1) AI ≥0.65
(Humid)

0.50–0.65
(Dry sub-humid)

0.20–0.50
(Semi-arid)

0.05–0.20
(Arid)

<0.05
(Hyper-arid)

Rating score 1 2 3 4 5

Topography 1) (2) Slope (%) >9 3–8 0–2

Rating score 1 3 5

Soil drainage 2) (3) Soil drainage class Good Moderate Restricted

Rating score 1 3 5

Irrigation water
quality (salinity) 3) (4) ECW (dS m−1)

No
restriction

Slight-to-moderate
restriction

Severe
restriction

Rating score 1 3 5

AI—Aridity Index; ECW—Irrigation water electrical conductivity. 1) According to the Portuguese soil and land-use
capacity map [71]. 2) According to Table 3. 3) According to Table 4.

The Sodification Risk (RSO) index comprises a set of five criteria, and respective indicators,
to which a rating score (1 to 5) was assigned (Table 6):

Table 6. Criteria, indicators, class limits and their rating score to evaluate the risk of soil sodification in
irrigation areas in the Sodification Risk index (RSO).

Criteria Indicator
Class and Respective Interval of Values

I II III IV V

Climate (1) AI ≥0.65
(Humid)

0.50–0.65
(Dry sub-humid)

0.20–0.50
(Semi-arid)

0.05–0.20
(Arid)

<0.05
(Hyper-arid)

Rating score 1 2 3 4 5

Topography 1) (2) Slope (%) >9 3–8 0–2

Rating score 1 3 5

Soil drainage 2) (3) Soil drainage class Good Moderate Restricted

Rating score 1 3 5

Crop (4) Irrigation method Drip Surface or
Sprinkler

Rating score 1 5

Irrigation water
quality (infiltration) 3) (5) SAR and ECW (dS m−1)

No
restriction

Slight-to-moderate
restriction

Severe
restriction

Rating score 1 3 5

AI—Aridity Index; ECW—Irrigation water electrical conductivity; SAR—Sodium Adsorption Ratio. 1) According to
the Portuguese soil and land-use capacity map [71]. 2) According to Table 3. 3) According to Table 4.

(i) to (iii) equal to the ones considered in the RSA index;
(iv) crop, represented by a most likely irrigation method, considering two classes (I—drip irrigation

and II—surface or sprinkler irrigation);
(v) Irrigation water quality, from in situ measurements and sample analyses, classified according

to the degrees of restriction to its use with respect to infiltration, as presented in Table 4.
The RSA and RSO indices incorporated the effect of the indicators in each set, obtained by their

score sum, using Equations (4) and (5):

RSA =
∑4

i=1
Si = SAI + SSlope + SSoildrainage + SECw, (4)

RSO =
∑5

i=1
Si = SAI + SSlope + SSoildrainage + SIrrigationmethod + SECw∧SAR, (5)

where Si is the rating score assigned to each of the indicators class.
From the RSA and RSO values, five risk classes were considered (Very Low, Low, Moderate,

High and Very High), each corresponding to a level of management practice recommendation (Table 7),
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an adaptation of the classification described in Wiebe et al. [32]. In the case of RSA, a condition was
added to assign a Very High risk class (RSA > 18) whenever soils were Solonchaks, regardless of the
remaining indicators scores. Likewise, in the case of RSO, a condition was added to assign a Very High
risk class (RSA > 22) whenever soils were Solonetz, regardless of the remaining indicators scores.

Table 7. Risk classes of soil salinization (from RSA values) and soil sodification (from RSO values),
classes description, and assessment of land-use practices (adapted from Wiebe et al. [32]).

RSA Value RSO Value Risk Class Class Description Assessment of
Land-Use Practices

<7 <8 Very Low
Current land management practices

are compatible with
agri-environmental sustainability

Sustainable

7–10 8–12 Low
Management practices

occasionally impact
agri-environmental sustainability

Acceptable

11–14 13–17 Moderate
Management practices leave

land exposed to
agri-environmental degradation

Should be
monitored carefully

15–18 18–22 High Management practices conducive to
agri-environmental degradation

Change should
be considered

>18 >22 Very High
Management practices directly

expose land to
agri-environmental degradation

Changes are required

4. Results and Discussion

4.1. Climate, Topography, Drainage, and Irrigation Method

As observed in Figure 2, there was a clear positive gradient of aridity with continentality and from
higher to lower latitudes, with a relative minimum over the Guadiana valley, where a large proportion
of irrigated land is located. The AI calculated for the study area (period 1990–2019) varied between
0.26 and 0.44; hence, all the region is found within the same climate class, Semi-arid (III, with a rating
score of 3). An Aridity Index of 0.415 was reported by Paulo et al. [74] for the period 1941–2006 in Beja.
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A study by Valverde et al. [75], evaluating climate change potential impacts on irrigated agriculture
in the Guadiana River Basin, projected a general increase in crop irrigation requirements, questioning the
sustainability of irrigation area expansion in the region. Godinho et al. [76] reported the risk of increased
aridity in the area resulting from changes in land surface albedo and land surface temperature caused
by land cover transformations, such as deforestation to promote agricultural lands.

In relation to the topography criterion, more than half of the area (60%) presented slopes < 8%;
thus, was grouped in slope classes II and III (Figure 3). Considering the drainage class, 73% of the area
was in class II and 7% in class III, which related with the prevalence of medium-to-fine textured soils in
the region (Figure 4). According to the assumptions of the model, the potentially irrigated area totaled
401,408 ha, corresponding to about 40% of the agricultural and forestry land. In this area, 43% is most
likely irrigated with drip systems and the remaining with sprinkler or surface systems (Figure 5).
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When considering only the potential irrigated area, some of the percentages previously presented
had some significant variation: (i) the percentage of Leptosols varied from 17% in the total area to 3%
in the potentially irrigated area, indicating a low agricultural, and accordingly, low irrigation aptitude
of this reference soil group; (ii) slopes assigned to class II and III increased, respectively, from 46%
to 49% and from 14% to 17%; (iii) the areas with restricted drainage (class III) increased from 7% to
12%; (iv) temporary crops and olive groves remained the predominant COS classes but with higher
occupation within the potentially irrigated area of 57% and 37%, respectively. However, it may be that
the percentage of temporary crops was overestimated since the COS class includes rainfed and irrigated
crops and, from the information reported in EDIA (Empresa de Desenvolvimento e Insfraestruturas do
Alqueva) [67], olive groves occupy a large proportion of the irrigated lands in the region.

4.2. Water Quality for Irrigation

The temporal variation observed for ECW and SAR for the four sampling sites is presented in Figure 6a,b.
In the case of ECW, the highest average values were measured in September (0.56 ± 0.015 dS m−1) and July
(0.49 ± 0.020 dS m−1), during the dry season. As for SAR, the highest values were registered at Álamos in
January (1.64 ± 0.000), which was probably due to the 2017 and early 2018 drought that lead to low water
storage and, possibly, reduced salt dissolution. The lowest SAR value occurred at the same site in July
(1.12 ± 0.010). There were no relevant differences between sites.

According to the methodology of salinization and sodification risk prediction presented,
the irrigation water quality indicators fall in the same classes for every date and site. ECW values
showed no degree of restriction of use, thus were grouped in class I (Table 5). The combined assessment
of ECW and SAR showed a slight-to-moderate degree of restriction of use in all water samples analyzed.
Therefore, these sodification indicators fall within class II for every date and site (Table 6). In this case,
low-salt water may reduce infiltration even for a low SAR, given that the salinity of the applied water
is insufficient to counteract the negative effects of adsorbed sodium on soil structure [51,52,77].
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Figure 6. Spatial and temporal variation of ECW (a) and SAR (b), during 2018, at the Alqueva reservoir.
Dots represent single in situ measurements. Bars represent mean and whiskers represent the standard
deviation for three repetitions Dashed lines correspond to the limit values from FAO water quality
standards, as presented in Table 4 (green dashed line is the limit value for salinity problems and
purple lines are the limit values for infiltration problems). Al—Álamos; Mn—Montante; Mr—Mourão;
Lf—Lucefécit. Jan—January; Mar—March; Jul—July; Sep—September; Nov—November.

4.3. Salinization Risk Areas

The risk map of soil salinization in the potentially irrigated lands of Inland Alentejo shows that
there was a predominance of low (67%) and moderate risk (26%) areas and that there were no areas
within the higher risk classes (Figure 7).
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Moderate risk of salinization was predominantly related to low slope areas (Figure 8a).
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Figure 8. Percentages of Moderate Risk of Salinization areas per slope class (a), drainage class (b),
soil reference group (c) and land cover (d). LP—Leptosols; LV—Luvisols; VR—Vertisols; CL—Calcisols;
RG—Regosols; CM—Cambisols. OL—Olive groves; FT—Fruit trees; VN—Vineyards; TC—Temporary
crops; TP—Temporary crops and/or improved pastures; CP—Complex crop patterns.

Also, moderate and restricted soil drainage, a characteristic of fine-textured soils, like Luvisols
or Vertisols, (Figure 8b,c) lead to the augmentation of soil salinization risk. Similar relationships
between slope and salinization-prone areas were obtained by other authors [78] when mapping the
irrigation salinity risk in an arid region. Seydehmet et al. [78] found high salinization risk associated
with flat and low terrain, high salt content in the subsoil, high salinity of groundwater and small depth
of the water table. The development of soil salinity as a consequence of poor drainage conditions,
fine texture and low saturated soil hydraulic conductivity was reported by de Paz et al. [15] and
Bouksila et al. [79], in their works about salinization risk in semi-arid irrigated land. The influence of
soil water storage capacity was referred to as the most important soil indicator affecting soil salinization
by Kairis et al. [80], indicating that moderately fine and fine-textured soils were more likely to be
affected by salinization.

As expected, the main types of land use where this level of risk appeared were olive groves
and annual crops (Figure 8d), which was mainly a consequence of their extensive distribution in the
area. In the case of irrigated high-density olive groves, largely grown in the region, Ramos et al. [81]
found that the long-term (30 years) impact of current irrigation practices (including deficit irrigation,
i.e., seasonal irrigation volumes corresponding to a fraction of the seasonal crop evapotranspiration)
showed reduced risks of soil salinization, with simulated average root zone salinity values at the end of
the irrigation seasons (normally, late summer or early autumn) remaining below the salinity threshold
limit for olive groves. Additionally, these authors stated that the use of deficit irrigation practices in
olive groves has the potential to improve soil salinity management by a better control of rising water
tables and by a reduction in the import of salts by irrigation water, but it does not provide the same
degree of leaching as full irrigation.

4.4. Sodification Risk Areas

The results obtained for the RSO index showed that most of the potentially irrigated area in
Inland Alentejo is classified as moderate risk (68%), followed by high risk (16%) and low risk (10%)
of sodification (Figure 9). Predictions were decidedly influenced by the indicators slope, drainage,



Water 2020, 12, 3569 16 of 22

water quality, and irrigation method. Moderate risk areas comprised mainly medium slopes (Figure 10a),
moderate drainage soils included in the Luvisols RSG (Figure 10b,c), annual crops irrigated by surface
or sprinkler systems and, to a lesser extent, olive orchards irrigated by drip systems (Figure 10d,e).
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The analysis of the relationships between the RSO index and its indicators in high-risk areas
showed a strong prevalence of flat and low slope terrain (Figure 11a), moderate-to-restricted soil
drainage in Luvisols, Vertisols and Cambisols (Figure 11b,c), and annual crops irrigated with surface
or sprinkler systems (Figure 11d,e). The results were in accordance with Sentís [36], who, in their
study to evaluate the development of secondary sodicity in the surface soil, found that it was strongly
affected by inadequate drainage and inefficient irrigation. This risk prediction could indicate that even
non-sodic soils with ESP (or SAR) < 3 can have a tendency for swelling, aggregate failure, and increase
in dispersion rates, thus behaving like sodic soils at very low electrolyte concentration [82]. As a
consequence, soil infiltration rates decline and surface crust formation problems can occur, conditions
that may worsen due to the physical disruption of soils particles caused by the use of sprinkler
irrigation systems. Although clay soils are more affected by sodicity, it should be considered that
there are some soil properties, other than texture, that are significant in influencing the behavior of
soils under sodification risk, namely, depth and thickness of the sodic horizons and clay mineralogy.
For instance, the presence of high-activity clay minerals, like smectite, is likely to increase the soil
susceptibility to sodification [83].Water 2020, 12, x FOR PEER REVIEW 18 of 23 

 

 

Figure 11. Percentages of High Risk of Sodification areas per slope class (a), drainage class (b), soil 

reference group (c), land occupation (d) and irrigation method (e). LP—Leptosols; LV—Luvisols; 

VR—Vertisols; CL—Calcisols; RG—Regosols; CM—Cambisols. OL—Olive groves; FT—Fruit trees; 

VN—Vineyards; TC—Temporary crops; TP—Temporary crops and/or improved pastures; CP—

Complex crop patterns. 

5. Conclusions 

Negative impacts of soil salinity and sodicity in Mediterranean regions include decreased food 

production, deteriorating water quality in surface streams and groundwater, loss of biodiversity, and 

increased risk of flooding and desertification. The present study aimed to develop two risk indices 

for better prediction of soil salinity and sodicity in large areas, in order to provide farmers, rural 

planners, and resource managers with a tool to help identify susceptible areas, to apply appropriate 

agronomical strategies and management options and to avoid soil degradation in irrigated lands. 

The application of the Salinization Risk (RSA) index to Inland Alentejo indicated that areas 

under moderate risk, where land-use practices should be monitored carefully, showed a prevalence 

of low slopes and fine-textured soils like Luvisols and Vertisols with limited drainage conditions.  

The Sodification Risk (RSO) index calculations estimated a predominance of moderate- and 

high-risk potentially irrigated lands, corresponding to management practices which leave land 

exposed to agri-environmental degradation or are conductive to agri-environmental degradation. 

High-risk areas had a large incidence of low slope terrain, moderate-to-restricted soil drainage in 

high clay content Luvisols, Vertisols and Cambisols, and annual crops irrigated with surface or 

sprinkler systems.  

Figure 11. Cont.



Water 2020, 12, 3569 18 of 22

Water 2020, 12, x FOR PEER REVIEW 18 of 23 

 

 

Figure 11. Percentages of High Risk of Sodification areas per slope class (a), drainage class (b), soil 

reference group (c), land occupation (d) and irrigation method (e). LP—Leptosols; LV—Luvisols; 

VR—Vertisols; CL—Calcisols; RG—Regosols; CM—Cambisols. OL—Olive groves; FT—Fruit trees; 

VN—Vineyards; TC—Temporary crops; TP—Temporary crops and/or improved pastures; CP—

Complex crop patterns. 

5. Conclusions 

Negative impacts of soil salinity and sodicity in Mediterranean regions include decreased food 

production, deteriorating water quality in surface streams and groundwater, loss of biodiversity, and 

increased risk of flooding and desertification. The present study aimed to develop two risk indices 

for better prediction of soil salinity and sodicity in large areas, in order to provide farmers, rural 

planners, and resource managers with a tool to help identify susceptible areas, to apply appropriate 

agronomical strategies and management options and to avoid soil degradation in irrigated lands. 

The application of the Salinization Risk (RSA) index to Inland Alentejo indicated that areas 

under moderate risk, where land-use practices should be monitored carefully, showed a prevalence 

of low slopes and fine-textured soils like Luvisols and Vertisols with limited drainage conditions.  

The Sodification Risk (RSO) index calculations estimated a predominance of moderate- and 

high-risk potentially irrigated lands, corresponding to management practices which leave land 

exposed to agri-environmental degradation or are conductive to agri-environmental degradation. 

High-risk areas had a large incidence of low slope terrain, moderate-to-restricted soil drainage in 

high clay content Luvisols, Vertisols and Cambisols, and annual crops irrigated with surface or 

sprinkler systems.  

Figure 11. Percentages of High Risk of Sodification areas per slope class (a), drainage class (b),
soil reference group (c), land occupation (d) and irrigation method (e). LP—Leptosols; LV—Luvisols;
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5. Conclusions

Negative impacts of soil salinity and sodicity in Mediterranean regions include decreased food
production, deteriorating water quality in surface streams and groundwater, loss of biodiversity,
and increased risk of flooding and desertification. The present study aimed to develop two risk indices
for better prediction of soil salinity and sodicity in large areas, in order to provide farmers, rural planners,
and resource managers with a tool to help identify susceptible areas, to apply appropriate agronomical
strategies and management options and to avoid soil degradation in irrigated lands.

The application of the Salinization Risk (RSA) index to Inland Alentejo indicated that areas under
moderate risk, where land-use practices should be monitored carefully, showed a prevalence of low
slopes and fine-textured soils like Luvisols and Vertisols with limited drainage conditions.

The Sodification Risk (RSO) index calculations estimated a predominance of moderate- and
high-risk potentially irrigated lands, corresponding to management practices which leave land
exposed to agri-environmental degradation or are conductive to agri-environmental degradation.
High-risk areas had a large incidence of low slope terrain, moderate-to-restricted soil drainage in
high clay content Luvisols, Vertisols and Cambisols, and annual crops irrigated with surface or
sprinkler systems.

Although the RSA and RSO indices have been proposed for a risk prediction purpose, and despite
the fact that their validation with soil sampling or with in situ measurements with proximal sensors
was outside the scope of this work, more precise knowledge is very important, especially in areas
identified as of moderate and high risk. In this sense, it is our goal to develop work to validate the
methodology presented in order to identify assumptions that must be adjusted or to integrate indicators
of the current state of soil salinity and sodicity. Further possible developments of this methodology
also include the application of these indices to different climate change scenarios, assessing the impact
of expected increased aridity and decreased irrigation water quality on the risk of development of soil
salinization and sodification processes in irrigated Mediterranean areas.

The proposed risk indices integrated climate, topography, soil, water quality, and crop indicators
that are easily available for large scale assessments and territorial planning but can be applied at the
farm level scale, encouraging farmers to get to know their land better, implement soil monitoring and
adopt agronomic strategies that contribute to the sustainability of irrigated agriculture.
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