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A B S T R A C T

Natural preservatives are used in food packages to improve the shelf life of perishable products. Carvacrol and
thymol, the main components of oregano essential oil (OEO), are used in active packaging due to their anti-
microbial and antioxidant properties. Here, the effect of a bioactive polylactic acid (PLA)/polybutylene succinate
(PBS) package in the conservation of lettuce compounds with dietetic value is studied. Analytical pyrolysis (Py-
GC/MS) was used to detect changes in dietary components such are phytosterols (PHSTs) and polyunsaturated
fatty acids (PUFAs) after 1, 4 and 8 days of packaged in PLA/PBS (95:5%) films containing different OEO
concentrations (2–10%). Lettuce PUFAs and PHSTs content decreased when packed in films without OEO.
However, when packed in films containing 5 and 10% OEO, these bioactive components were preserved during
the estimated lettuce shelf life, for up to 8 days of storage.

1. Introduction

The market of ready-to-eat leaf vegetables is rapidly growing at a
global scale providing consumers with appealing products, rich in
healthy and beneficial bioactive compounds. Among the most relevant
nutritious components in leafy vegetables are phytosterols (Kim et al.,
2015) and unsaturated/polyunsaturated fatty acids (Saini, Shang, Choi,
Kim, & Keum, 2016). Lettuce is known to contain high quantities of
dietary phytosterols (PHSTs) (Kaliora, Batzaki, Christe, &
Kalogeropoulos, 2015) and of polyunsaturated fatty acids (PUFAs)
(Saini, Shetty, & Giridhar, 2014).

Both, PHSTs and PUFAs are relevant bioactive components of ve-
getables known to have positive effects on health when included in the
diets. Plant sterols exhibit cholesterol-lowering properties and are able
to protect against cardiovascular diseases (Moreau, Whitaker, & Hicks,
2002; Weststrate & Meijer, 1998). Dietary PUFAs like α-linolenic acid
(ALA) have also many beneficial effects in the control of chronic dis-
eases i.e. inhibition of synthesis of vasoaggressive low-density lipo-
protein (LDL) and acceleration of its elimination, reduction of blood
pressure, prevention of cardiovascular disease and cancer (Abedi &
Sahari, 2014). This has led to the development of functional foods en-
riched in such bioactive components like plant sterols and PUFAs

(Lagarda, García-Llantas, & Farré, 2006; Volker, Weng, & Quaggiotto,
2005).

There is also interest in providing the industry with effective means
for food preservation and of its nutritious beneficial properties. New
trends are focusing in the development of active packaging, which can
interact with the product or its environment and then improve food
preservation. In general, active packaging containing essential oils
(EOs) are developed to improve the shelf life of food and to avoid the
undesirable flavours caused by direct addition of these substances
(Gutiérrez, Sánchez, Battle, & Nerín, 2009). In this sense, oregano es-
sential oil (OEO) is being included in these new food packaging mate-
rials due to its bioactive properties (Jouki, Mortazavi, Yazdi, &
Koocheki, 2014; Wu et al., 2014) that are related to its content in
bioactive monoterpenes, sesquiterpenes and phenolic compounds
(Ortega-Nieblas et al., 2011) and because of their safety (Llana-Ruiz-
Cabello, Pichardo et al., 2015; Llana-Ruiz-Cabello et al., 2017).

Therefore, different films containing OEO has been found useful in
reducing the microbial counts of several microorganisms in food stuffs
i.e. cooked salmon (Tammineni, Ünlü, & Min, 2013), cheese (Otero
et al., 2014), chicken breast (Fernández-Pan, Carrión-Granda, & Maté,
2014), rainbow trout (Jouki, Yazdi, Mortazavi, Koocheki, & Khazaei,
2014) and also in lettuce (Llana-Ruiz-Cabello, Pichardo, Bermúdez
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et al., 2016). Moreover, OEO and films incorporated with this EO have
shown different antioxidant activities related with the retardation of
lipid peroxidation through their potent radical scavenging activity de-
rived from their composition in carvacrol and thymol (Maisanaba et al.,
2017). In fact, in a previous work we found that carvacrol, thymol, and
their mixture (10:1) at low concentrations exert protective role against
induced oxidative stress on Caco-2 cell lines system model (Llana-Ruiz-
Cabello, Gutiérrez-Praena et al., 2015).

Therefore, different films containing OEO has been found useful in
reducing the microbial counts of several microorganisms in food stuffs
i.e. cooked salmon (Tammineni et al., 2013), cheese (Otero et al.,
2014), chicken breast (Fernández-Pan et al., 2014), rainbow trout
(Jouki, Yazdi et al., 2014) and also in lettuce (Llana-Ruiz-Cabello,
Pichardo, Bermúdez et al., 2016). Moreover, OEO and films in-
corporated with this EO have shown different antioxidant activities
related with the retardation of lipid peroxidation through their potent
radical scavenging activity derived from their composition in carvacrol
and thymol (Maisanaba et al., 2017). In fact, in a previous work we
found that carvacrol, thymol, and their mixture (10:1) at low con-
centrations exert protective role against induced oxidative stress on
Caco-2 cell lines system model (Llana-Ruiz-Cabello, Gutiérrez-Praena
et al., 2015).

Such antimicrobial and antioxidant properties of additives in bio-
plastics improve food preservation and consumer acceptance and this,
desirably should include the preservation of the nutritional profile of
the packed food. As far as we know there is no information available
regarding the benefits of food packaged in active films in relation with
the conservation of specific compounds with dietetic value i.e. PHSTs
and PUFAs.

Such antimicrobial and antioxidant properties of additives in bio-
plastics improve food preservation and consumer acceptance and this,
desirably should include the preservation of the nutritional profile of
the packed food. As far as we know there is no information available
regarding the benefits of food packaged in active films in relation with
the conservation of specific compounds with dietetic value i.e. PHSTs
and PUFAs.

Analytical pyrolysis is a tool providing a direct fingerprinting and
precise information about composition, quality and additives in foods
and packages. The products of pyrolysis are amenable to chromato-
graphic separation and when combined with a mass spectrometry de-
tector (Py-GC–MS), yields molecular information about the structure of
complex mixtures of natural and synthetic macromolecular substances
(González-Pérez et al., 2007; González-Pérez, Jiménez-Morillo, de la
Rosa, Almendros, & González-Vila, 2015). Other well-known ad-
vantages of the technique are the requirement of small sample sizes and
little or no sample preparation. This technique has been used with
success to detect EOs added to synthetic and bio-based polymers (Llana-
Ruiz-Cabello, Pichardo, Jiménez-Morillo et al., 2016). Major plant lipid
components such are sterols and fatty acids are also easily detected by
direct analytical pyrolysis (Py-GC/MS) of biomass (González-Vila,
Tinoco, Almendros, & Martín, 2001, 2009; Schnitzer, McArthur,
Schulten, Kozak, & Huang, 2006).

Analytical pyrolysis is a tool providing a direct fingerprinting and
precise information about composition, quality and additives in foods
and packages. The products of pyrolysis are amenable to chromato-
graphic separation and when combined with a mass spectrometry de-
tector (Py-GC–MS), yields molecular information about the structure of
complex mixtures of natural and synthetic macromolecular substances
(González-Pérez et al., 2007, 2015). Other well-known advantages of
the technique are the requirement of small sample sizes and little or no
sample preparation. This technique has been used with success to detect
EOs added to synthetic and bio-based polymers (Llana-Ruiz-Cabello,
Pichardo, Jiménez-Morillo et al., 2016). Major plant lipid components
such are sterols and fatty acids are also easily detected by direct ana-
lytical pyrolysis (Py-GC/MS) of biomass (González-Vila et al., 2001,
2009; Schnitzer et al., 2006).

In previous works, a polylactic acid (PLA) & polybutylene succinate
(PBS) (95:5) film containing OEO was developed (Llana-Ruiz-Cabello,
Pichardo, Bermúdez et al., 2016), its antioxidant properties evaluated
(Llana-Ruiz-Cabello, Gutiérrez-Praena et al., 2015) and the ability of
this material to reduce microbial counts of yeasts and molds in ready-
to-eat salad was confirmed (Llana-Ruiz-Cabello, Pichardo, Bermúdez
et al., 2016).

In previous works, a polylactic acid (PLA) & polybutylene succinate
(PBS) (95:5) film containing OEO was developed (Llana-Ruiz-Cabello,
Pichardo, Bermúdez et al., 2016), its antioxidant properties evaluated
(Llana-Ruiz-Cabello, Gutiérrez-Praena et al., 2015) and the ability of
this material to reduce microbial counts of yeasts and molds in ready-
to-eat salad was confirmed (Llana-Ruiz-Cabello, Pichardo, Bermúdez
et al., 2016).

In this work we use a detailed Py-GC/MS analysis performed to
detect changes in food composition of the relevant dietetic compounds
mono, di and polyunsaturated fatty acids (PUFAs) and PHSTs, in ice-
berg lettuce (Lactuca sativa) after 1, 4 and 8 days packaged in PLA/PBS
(95:5) films containing different quantities of OEO (0, 2, 5 and 10%).
The concentrations of OEO were selected according to Llana-Ruiz-
Cabello, Pichardo, Bermúdez et al. (2016).

In this work we use a detailed Py-GC/MS analysis performed to
detect changes in food composition of the relevant dietetic compounds
mono, di and polyunsaturated fatty acids (PUFAs) and PHSTs, in ice-
berg lettuce (Lactuca sativa) after 1, 4 and 8 days packaged in PLA/PBS
(95:5) films containing different quantities of OEO (0, 2, 5 and 10%).
The concentrations of OEO were selected according to Llana-Ruiz-
Cabello, Pichardo, Bermúdez et al. (2016).

2. Materials and methods

2.1. Bio-polymer and additives

Plastic films were made of a mixture of polylactic acid (PLA) with
polybutylene succinate (PBS) (950 g kg−1:50 g kg−1) and extruded
with variable quantities of oregano essential oil (EO). The EO was ob-
tained from El Jarpil® (Almería, Spain), PLA (2003D extr. grade) was
purchased from Nature Works LLC (Minnetonka, MN, USA) and PBS
(GS PlaTM FD92WD) from Mitshubishi Chemical Corporation (Tokyo,
Japan). Chemicals for the different assays were purchased from Sigma-
Aldrich (Spain) and VWR International Eurolab (Spain).

Plastic films were made of a mixture of polylactic acid (PLA) with
polybutylene succinate (PBS) (950 g kg−1:50 g kg−1) and extruded
with variable quantities of oregano essential oil (EO). The EO was ob-
tained from El Jarpil® (Almería, Spain), PLA (2003D extr. grade) was
purchased from Nature Works LLC (Minnetonka, MN, USA) and PBS
(GS PlaTM FD92WD) from Mitshubishi Chemical Corporation (Tokyo,
Japan). Chemicals for the different assays were purchased from Sigma-
Aldrich (Spain) and VWR International Eurolab (Spain).

The active PLA films were obtained by melt blending in a twin-
screw extruder (DSE 20-40D; Brabender, Duisburg, Germany). Different
concentrations (0, 2, 5 and 10% w/w) of OEO and were fed into the
barrel at L/D 10. Barrel temperatures were set at 200–205 °C working at
a screw speed of 70 min−1. Final average thickness of the final films
was 80 μm (315 Gauge).

The active PLA films were obtained by melt blending in a twin-
screw extruder (DSE 20-40D; Brabender, Duisburg, Germany). Different
concentrations (0, 2, 5 and 10% w/w) of OEO and were fed into the
barrel at L/D 10. Barrel temperatures were set at 200–205 °C working at
a screw speed of 70 min−1. Final average thickness of the final films
was 80 μm (315 Gauge).

2.2. Packaging and storage

Developed lettuce packages containing 5 g of iceberg salad packed
in PLA films (0, 2, 5 and 10% w/w OEO) as explained in Section 2.1.
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were produced. Then, PLA bags were heat sealed with an initial mod-
ified atmosphere composed by 10% O2, 10% CO2 and 80% N2. Sample
bags of iceberg salad were stored at 4ºC for 8 days, simulating com-
mercial conditions of production, transport and commercialisation.

Developed lettuce packages containing 5 g of iceberg salad packed
in PLA films (0, 2, 5 and 10% w/w OEO) as explained in Section 2.1.
were produced. Then, PLA bags were heat sealed with an initial mod-
ified atmosphere composed by 10% O2, 10% CO2 and 80% N2. Sample
bags of iceberg salad were stored at 4ºC for 8 days, simulating com-
mercial conditions of production, transport and commercialisation.

2.3. Analytical pyrolysis (Py-GC/MS)

Direct pyrolysis-gas chromatography–mass spectrometry (Py-GC/
MS) of samples was performed using a double-shot pyrolyzer (Frontier
Laboratories, model 2020i, Fukushima, Japan) attached to a GC system
(Agilent Technologies, Palo Alto, CA. USA, model 6890N), 1, 4 and 8
days after packaged. Samples (0.3-0.4 mg dry lettuce biomass) were

placed in crucible deactivated steel pyrolysis capsules and introduced
into a preheated micro-furnace at (500 °C) for 1 min. The volatile
pyrolysates were then directly injected into the GC/MS for analysis. The
gas chromatograph was equipped with a low polar-fused silica (5%-
phenyl-methylpolysiloxane) capillary column (Agilent J&W HP-5ms
Ultra Inert, of 30 m × 250 μm × 0.25 μm film thickness. The oven
temperature was held at 50 °C for 1 min and then increased to 100 °C at
30 °C min−1, from 100 °C to 300 °C at 10 °C min-1, and stabilized at 300
°C for 10 min with a total analysis time of 32 min. The carrier gas was
He at a controlled flow of 1 mL min−1. The detector consisted of a mass
selective detector (Agilent 5973 Technologies, Palo Alto, CA. USA,
model 5973N) and mass spectra were acquired at 70 eV ionizing en-
ergy. Compound assignment was achieved by single-ion monitoring
(SIM) for the major homologous series and by comparison with pub-
lished data reported in the literature or stored in digital NIST 14
(Maryland, USA) and Wiley 7 (Weinheim, Germany) libraries.

Direct pyrolysis-gas chromatography–mass spectrometry (Py-GC/
MS) of samples was performed using a double-shot pyrolyzer (Frontier

Fig. 1. Fresh lettuce fingerprinting (Py-GC/MS at 500 °C), with an indication of the relative contribution of the main compound families. Numbers on peaks
corresponds to the major compounds identified and listed in Table 1. The insert units are in % of total chromatographic area.

Table 1
Lettuce Py-GC/MS (500 °C) fingerprinting. Major compounds identified with indication of the retention time (RT: retention time in minutes), relative abundance (RA:
% total chromatographic area), abundance (Ab μg/mg lettuce biomass dry weight pyrolyzed) and type (probable biogenic origin).

Ref RT RA AB Compound Type Ref RT RA AB Compound Type

1 2.01 3.29 9.66 2,5-Dimethylfuran PS 23 8.49 1.44 4.24 2-Pentylcyclopentanone LIP
2 2.23 5.35 15.74 Cyclopentene, 1-methyl- PS 24 8.59 0.95 2.78 1H-Indole, 3-methyl- N
3 2.35 7.06 20.78 Toluene ARO 25 8.76 0.74 2.19 Vanillin LIG
4 2.47 2.88 8.48 Cyclopentane-1,2-diol PS 26 9.32 0.45 1.33 Phenol, 2-methoxy-5-(1-propenyl)-, (E)- LIG
5 2.71 7.38 21.71 1H-Pyrrole, 1-methyl- N 27 12.27 0.32 0.93 Cyclohexene, 1,5,5-trimethyl-6-acetylmethyl- LIP
6 3.31 2.82 8.28 2(5 H)-Furanone PS 28 12.41 0.51 1.49 Furfural phenylhydrazone N
7 3.39 3.82 11.22 2-Hydroxy-2-cyclopenten-1-one PS 29 14.81 3.81 11.20 n-Hexadecanoic acid FA
8 3.72 2.59 7.60 5 Methyl furfural PS 30 16.44 1.98 5.81 9,12-Octadecadienoic acid (Z,Z)- FA
9 3.85 4.40 12.94 Phenol ARO 31 16.50 1.79 5.26 9,12,15-Octadecatrienoic acid (Z,Z,Z)- FA
10 4.05 2.77 8.14 Benzofuran PS 32 16.67 0.53 1.56 n-Octedecanoic acid FA
11 4.34 4.98 14.64 2-Cyclopenten-1-one, 2-hydroxy-3-methyl- PS 33 17.85 0.31 0.93 Alk LIP
12 4.58 1.46 4.30 Phenol, 2-methyl- ARO 34 18.04 0.57 1.66 Alk LIP
12 4.80 2.39 7.03 Phenol, 4-methyl- ARO 35 19.42 1.86 5.46 Alk LIP
13 4.99 1.81 5.32 Phenol, 2-methoxy- LIG 36 20.96 1.09 3.21 Alk LIP
14 5.08 1.50 4.42 Ethanol, 2-butoxy- LIP 37 21.20 0.51 1.51 Tetracosanoic acid, methyl ester FAME
15 5.32 2.86 8.41 2-Cyclopenten-1-one, 3-ethyl-2-hydroxy- PS 38 22.38 1.08 3.17 Alk LIP
16 5.55 1.72 5.06 Benzyl nitrile N 39 22.60 0.38 1.13 Hexacosanoic acid, methyl ester FAME
17 6.22 2.40 7.07 5-Hydroxymethyldihydrofuran-2-one PS 40 23.06 0.23 0.66 Sitosterol acetate PHST
18 6.63 4.02 11.83 2-Furancarboxaldehyde, 5-(hydroxymethyl)- PS 41 23.68 1.06 3.11 Stigmasterol acetate PHST
19 6.76 1.07 3.15 Benzenepropanenitrile N 42 24.16 1.34 3.93 Stigmastan-3,5-diene PHST
20 7.46 3.96 11.66 Indole N 43 25.79 2.29 6.73 Stigmasterol PHST
21 7.66 2.03 5.96 2-Methoxy-4-vinylphenol LIG 44 26.46 2.84 8.34 Sitosterol PHST
22 8.18 1.38 4.05 3,5-Dihydroxytoluene ARO

ARO: aromatics unspecific; FA: fatty acid; FAME: fatty acid methyl ester; LIG: methoxyphenol from lignin; LIP: lipid; N: Nitrogen compound; PHST: phytosterol.
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Laboratories, model 2020i, Fukushima, Japan) attached to a GC system
(Agilent Technologies, Palo Alto, CA. USA, model 6890N), 1, 4 and 8
days after packaged. Samples (0.3-0.4 mg dry lettuce biomass) were
placed in crucible deactivated steel pyrolysis capsules and introduced
into a preheated micro-furnace at (500 °C) for 1 min. The volatile
pyrolysates were then directly injected into the GC/MS for analysis. The
gas chromatograph was equipped with a low polar-fused silica (5%-
phenyl-methylpolysiloxane) capillary column (Agilent J&W HP-5ms
Ultra Inert, of 30 m × 250 μm × 0.25 μm film thickness. The oven
temperature was held at 50 °C for 1 min and then increased to 100 °C at
30 °C min−1, from 100 °C to 300 °C at 10 °C min-1, and stabilized at 300
°C for 10 min with a total analysis time of 32 min. The carrier gas was
He at a controlled flow of 1 mL min−1. The detector consisted of a mass
selective detector (Agilent 5973 Technologies, Palo Alto, CA. USA,

model 5973N) and mass spectra were acquired at 70 eV ionizing en-
ergy. Compound assignment was achieved by single-ion monitoring
(SIM) for the major homologous series and by comparison with pub-
lished data reported in the literature or stored in digital NIST 14
(Maryland, USA) and Wiley 7 (Weinheim, Germany) libraries.

3. Results and discussion

3.1. Lettuce Py-GC/MS fingerprint

The analytical pyrolysis of lettuce produced typical biomass chro-
matograms. A detailed pyrolysis fingerprint of lettuce is depicted in
Fig. 1 and the identified compounds in Table 1. A complete list of the
pyrolysis results obtained for all samples can be found in Supl. Table 1.

Fig. 2. Chemical structure and mass spectra of the main compounds with dietetic value detected by direct analytical pyrolysis of lettuce (Py-GC/MS at 500 °C). The
mass spectra correspond to those obtained in our instrument.
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The first part of the chromatogram (min 2 to 14) is dominated by
pyrolysis products from lignocellulose that represent c. 43% of the total
chromatographic area and included products from the major poly-
saccharide component (38%) i.e. furan [1,6,8,10,17,18] and cyclo-
pentane [2,4,7,11,15] derivatives and methoxyphenols [13,21,25,26]
from the polyphenolic lignin domain (5%). Most long chain lipids,
mainly alkane/alkene doublets [33–36, 38] and fatty acids (FA)
[29–32] are eluted in the central section of the chromatogram (min 14
to 23), with a major prominent peak of palmitic acid [29] (c. min 14.8)
and an oleic complex cluster that include the polyunsaturated (PUFAs)
linoleic [30] and linolenic [31] acids, the monounsaturated oleic [co-
eluted] and saturated FA stearic [32] acids. The last section of the
chromatogram (min 23 to 28) is dominated by triterpenes, plant sterols
known as PHSTs. Other compounds identified in the pyrograms from
iceberg lettuce included: aromatic structures of unknown origin (ARO),
alkyl benzenes [3,22], phenol [9] and methyl phenols [12]; compounds
with nitrogen (N) probably derived from the protein/polypeptide do-
main, nitriles [16, 19], hydrazones [28] and the heterocyclic pyrroles
[5] and indoles [20,24]. Also a small proportion (1%) of methylated
FAs (FAME) were identified [37, 39] probably derived from the pyr-
olysis of epicuticular waxes.

The analytical pyrolysis of lettuce produced typical biomass chro-
matograms. A detailed pyrolysis fingerprint of lettuce is depicted in
Fig. 1 and the identified compounds in Table 1. A complete list of the
pyrolysis results obtained for all samples can be found in Supl. Table 1.
The first part of the chromatogram (min 2 to 14) is dominated by
pyrolysis products from lignocellulose that represent c. 43% of the total
chromatographic area and included products from the major poly-
saccharide component (38%) i.e. furan [1,6,8,10,17,18] and cyclo-
pentane [2,4,7,11,15] derivatives and methoxyphenols [13,21,25,26]
from the polyphenolic lignin domain (5%). Most long chain lipids,
mainly alkane/alkene doublets [33–36, 38] and fatty acids (FA)
[29–32] are eluted in the central section of the chromatogram (min 14
to 23), with a major prominent peak of palmitic acid [29] (c. min 14.8)
and an oleic complex cluster that include the polyunsaturated (PUFAs)
linoleic [30] and linolenic [31] acids, the monounsaturated oleic [co-

eluted] and saturated FA stearic [32] acids. The last section of the
chromatogram (min 23 to 28) is dominated by triterpenes, plant sterols
known as PHSTs. Other compounds identified in the pyrograms from
iceberg lettuce included: aromatic structures of unknown origin (ARO),
alkyl benzenes [3,22], phenol [9] and methyl phenols [12]; compounds
with nitrogen (N) probably derived from the protein/polypeptide do-
main, nitriles [16, 19], hydrazones [28] and the heterocyclic pyrroles
[5] and indoles [20,24]. Also a small proportion (1%) of methylated
FAs (FAME) were identified [37, 39] probably derived from the pyr-
olysis of epicuticular waxes.

Compounds with a particular dietetic interest found in the lettuce
chromatograms were the bioactive PUFAs included in the oleic domain
(c. min 16.5) that represented c. 4% of total chromatographic area and
the PHSTs, eluted at the end of the chromatogram that represents c. 8%
of total chromatographic area. The chemical structures of these com-
pounds as well as their mass spectra are in Fig. 2. The preservation of
these compounds during the shelf life of the packed lettuce was con-
sidered as the main target for this study.

Compounds with a particular dietetic interest found in the lettuce
chromatograms were the bioactive PUFAs included in the oleic domain
(c. min 16.5) that represented c. 4% of total chromatographic area and
the PHSTs, eluted at the end of the chromatogram that represents c. 8%
of total chromatographic area. The chemical structures of these com-
pounds as well as their mass spectra are in Fig. 2. The preservation of
these compounds during the shelf life of the packed lettuce was con-
sidered as the main target for this study.

3.2. Lettuce decay with time

The evolution of lettuce pyrolysis fingerprint packed in PLA/PBS
bioplastic without OEO is shown in Fig. 3. A conspicuous disappearance
of peaks of particular dietetic interest: oleic and PUFAs complex as well
as of PHSTs, can be observed at a first sight in the chromatogram from
days 4 and 8. This confirms that iceberg lettuce rapidly and progres-
sively lost relevant dietetic compounds during conservation time when
packed in our bioplastic (PLA/PBS) without any OAO additive.

Fig. 3. Evolution of lettuce fingerprinting (Py-GC/MS at 500 °C) with time (1, 4 and 8 days) packed in PLA/PBS bioplastic (95:5) film without OEO. Numbers on
peaks corresponds to the major compounds identified and listed in Table 1.
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The evolution of lettuce pyrolysis fingerprint packed in PLA/PBS
bioplastic without OEO is shown in Fig. 3. A conspicuous disappearance
of peaks of particular dietetic interest: oleic and PUFAs complex as well
as of PHSTs, can be observed at a first sight in the chromatogram from
days 4 and 8. This confirms that iceberg lettuce rapidly and progres-
sively lost relevant dietetic compounds during conservation time when
packed in our bioplastic (PLA/PBS) without any OAO additive.

When analysing the evolution of the lettuce pyrogram fingerprint
with time and packed in the PLA/PBS bioplastic without (OEO 0%) or
with variable concentrations of the OEO additive (2, 5, 10%), the
preservation of the peaks corresponding to compounds of particular
dietetic interest is also evident (Fig. 4). In this regard, even when the
lettuce is packed in bioplastic with the minimum OEO content (OEO
2%) the relative content of PHST is preserved along the storage time
and when packaged in 5 and 10% OEO containing films, both PUFAs
and PHST relative contents are preserved even after 8 days of storage.

Comparing the abundance of the oleic complex (peaks 30–32) and
of the major PHSTs (stigmasterol and sitosterol, peaks 43 and 44 re-
spectively) allow us to compare the evolution of compounds with die-
tetic interest with time and with the different concentrations of OEO
added to the package bioplastic. The evolution of dietetic relevant
compounds is shown in Fig. 5A, B. Also, an attempt was made to detect
possible degradation or cracking of long chain fatty acids with storage
time. For this, we compared the chromatographic areas of the most
abundant long chain FA (palmitic acid) with that of acetic acid. Acetic

acid is found in relative high abundance in biomass pyrolyates and is
usually consider a degradation product of fatty acids (Fig. 5C).

Therefore, lettuce packaged in films with high concentrations of
OEO (5% and 10%) maintained the values of oleic complex nutrients at
levels similar to those observed for the first day of storage (Fig. 5A) that
may be attributed to an effective antioxidant activity exerted by the
additive in the film. In addition, values of PHSTs experimented an in-
creased in lettuce packaged in films containing OEO (Fig. 5B), this may
reflect the occurrence of a selective preservation of PHSTs with time.
Although not conclusive, the results also point to a positive effect of
OEO in films by diminishing long chain palmitic acid degradation to
short chain acids (Fig. 5C).

4. Conclusions

Analytical pyrolysis was found useful in characterizing lettuce
composition and particularly in tracing the evolution with time of
dietetic relevant components like the bioactive PUFAs and PHSTs.
Using this technique, we were able to evaluate the effect of an active
film bio-package (PLA/PBS) containing variable quantities of OEO in
the conservation of these specific dietetic compounds in packed food.
The use of active bio-packages containing OEO, allowed appropriate
preservation of both PHSTs and PUFAs relative contents during the
shelf life (8 days) of the packed food.

Fig. 4. Evolution of lettuce fingerprinting (Py-GC/MS at 500 °C) with time (1, 4 and 8 days) packed in PLA/PBS bioplastic (95:5) film casted with variable con-
centrations of OEO (0, 2, 5, 10% w/w).
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