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A B S T R A C T

A detailed and global quantitative assessment of the distribution of pyrogenic carbon (PyC) in soils remains
unaccounted due to the current lack of unbiased methods for its routine quantification in environmental sam-
ples. Conventional oxidation with potassium dichromate has been reported as a useful approach for the de-
termination of recalcitrant C in soils. However, its inaccuracy due to the presence of residual non-polar but still
non-PyC requires additional analysis by 13C solid-state nuclear magnetic resonance (NMR) spectroscopy, which
is expensive and time consuming. The goal of this work is to examine the possibility of applying infrared (IR)
spectroscopy as a potential alternative. Different soil type samples (paddy soil, Histic Humaquept, Leptosol and
Cambisol) have been used. The soils were digested with potassium dichromate to determine the PyC content in
environmental samples. Partial Least Squares (PLS) regression was used to build calibration models to predict
PyC from IR spectra. A set of artificially produced samples rich in PyC was used as reference to observe in detail
the IR bands derived from aromatic structures resistant to dichromate oxidation, representing black carbon. The
results showed successful PLS forecasting of PyC in the different samples by using spectra in the 1800–400 cm−1

range. This lead to significant (P < 0.05) cross-validation coefficients for PyC, determined as the aryl C content
of the oxidized residue. The Variable Importance for Projection (VIP) traces for the corresponding PLS regression
models plotted in the whole IR range indicates the extent to which each IR band contributes to explain the aryl C
and PyC contents. In fact, forecasting PyC in soils requires information from several IR regions. In addition to the
expected IR bands corresponding to aryl C, other bands are informing about the patterns of oxygen-containing
functional groups and the mineralogical composition characteristic of the soils with greater black carbon storage
capacity. The VIP traces of the charred biomass samples confirm that aromatic bands (1620 and 1510 cm−1) are
the most important in the prediction model for PyC-rich samples. These facts suggest that the mid-IR spectro-
scopy could be a potential tool to estimate the black carbon.

1. Introduction

Up to three different pools of soil organic matter (SOM) are typically
distinguished in terms of its stability in environmental conditions, viz,
labile, mid and strongly refractory (De la Rosa et al., 2008a; Poirier
et al., 2000). The least labile fraction is abundant in pyrogenic C (PyC;
also called charcoal or black carbon), which has been thermally altered
and is expected to be highly resistant against chemical and biological
degradation (Masiello and Druffel, 1998; Schmidt and Noack, 2000).
Therefore, the PyC-containing soils are expected to represent an

important sink within the global C-cycle (De la Rosa et al., 2008b;
Lasslop et al., 2019; Jones et al., 2019; Santin et al., 2016) and would
therefore play a relevant role in the recent “4 per mil” initiative
(https://www.4p1000.org), which recognizes the pivotal role of soil in
carbon sequestration. In order to properly elucidate the impact of PyC
in soil biogeochemical cycle, its accurate detection and quantification is
essential. However, both local and global spatial distribution patterns of
PyC in soils is still missing due to the current lack of reliable methods
for its routine quantification in environmental samples. This problem is
related to the fact that PyC represents a wide continuum and modern
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approaches are often restricted to the detection of compounds in a
certain window of molecular range. A further problem is related to
difficulties to distinguish at a molecular level between residues derived
from unburnt sources (natural organic matter NOM) and PyC compo-
nents. In fact, degradative techniques are often applied for their se-
paration but most of them show limited selectivity. The alternative use
of non-degradative methods, such as solid-state nuclear magnetic re-
sonance (NMR) spectroscopy, results in spectra in which the signals of
PyC and NOM are difficult to be distinguished in bulk samples. For this
reason, current contents on PyC in soil may have been underestimated
to a large extent in classical studies (De la Rosa et al., 2011). In fact,
accurate quantification of PyC would provide data required for con-
sistent modelling of soil C turnover as well as to properly assess the soil
potential for C sequestration. Preliminary intercomparative studies re-
ported that a combination of several complementary analytical tools is
essential to detect the whole continuum of combustion products (De la
Rosa et al., 2011; Hammes et al., 2007; Leng et al., 2019).

In order to circumvent this problem, a simple wet chemical oxida-
tion method with 0.1M potassium dichromate has been suggested for
isolating PyC in soils (Knicker et al., 2007). Nevertheless, due to the fact
that non-polar compounds such as lipids derived from NOM are not
completely degraded by the chemical oxidation and thus remain in the
nonhydrolyzable residue, the accurate quantification of PyC requires
further application of solid-state 13C nuclear magnetic resonance
(NMR) spectroscopy to the oxidation residue. With this approach, the
abundance of PyC is calculated from the relative signal area of the 13C
NMR aromatic C region of oxidation residue spectrum, which is referred
to the total C in the untreated soil after the application of a correction
factor. This experimental approach takes into account that polar groups
(phenols or carboxylic aromatic residues) are attacked by the acid
(Knicker et al., 2007). Nonetheless, considering the low availability of
solid-state NMR spectrometer time which is also expensive alternatives
are needed. Therefore, the present study is an attempt to routinely
apply Fourier transform (FT) infrared (IR) spectroscopy to natural
samples after chemical oxidation to assess the proportion of PyC.

Infrared spectroscopy is a non-destructive technique widely used for
the structural characterization of SOM (Jiménez-González et al., 2019;
Parolo et al., 2017; Terra et al., 2019). For general purposes, the re-
lative intensity of IR spectral bands may be successfully used in che-
mometric studies based on semi-quantitative data (Fernández-Getino
et al., 2010; Sisouane et al., 2017). In fact, such data are valid to
compare the intensity of the same band in different spectra, although
not to compare proportions of different functional groups based on
different bands in the same spectrum. A realistic alternative for the
quantitative analysis of SOM components based in processing IR spectra
is using suitable multivariate chemometric approaches (Russell et al.,
2019). The partial least squares (PLS) regression, using the whole
spectral data points as descriptors, is a more accurate method of ex-
tracting underlying chemometric information from IR spectra, than
simply digitizing large number of individual bands. Up to now, several
attempts have been developed in bulk soil samples with contrasting
outcomes. Zimmermann et al. (2007) demonstrated that the amount of
chemically recalcitrant SOM after NaOCl oxidation could be predicted
from IR spectroscopic data processed by multivariate data analyses such
as PLS regression. Similar results were obtained by Leifeld (2006), who
successfully predicted the alkyl and carboxyl C NMR intensities in SOM
whereas the prediction of aromatic signals failed. At this point, the
application of derivative spectroscopy may represent some improve-
ment in avoiding subjective judgements in baseline tracing, required to
obtain comparable data for peak intensities in series of spectra
(Michaell, 1988; Hernández and Almendros, 2012). In addition, as we
are particularly interested in the sources of information suitable to
identify and quantify the resistant fraction of soil C, the IR spectra of
the material resistant to oxidation are also analysed in terms of the
Variable Importance for Projection (VIP) values of each spectral data
point, calculated during the PLS modelling. This index informs on the

extent to which individual IR bands contribute to the PLS model, then
illustrating soil components the concentration of which parallel that of
the predicted dependant variable. Our hypothesis was that this ap-
proach could be used as a rapid, non-expensive and unsupervised al-
ternative to NMR spectroscopy to evaluate PyC contents in soils after
wet chemical oxidation.

The main goal in this work is to quantitatively assess PyC content in
soils and to examine the extent to which specific IR bands reflect the
abundance of PyC. This method would be of importance to assess the
potential of the soils to store black carbon. For this reason, spectral data
points of IR spectra of 41 samples from 3 widely different soil types
treated with potassium dichromate (independent variables) are pro-
cessed in addition to dependent variables corresponding to i) carbon
content, ii) 13C NMR spectroscopy and iii) PyC abundance calculated
according to Knicker et al. (2007). In addition, and in order to validate
the prediction model of PyC in soils and to discern the origin of the
bands corresponding to PyC, a supplementary set of seven PyC-rich
samples produced by charring lignocellulosic plant materials under
controlled conditions were incorporated to the study.

2. Materials and methods

2.1. Samples

Three sets of soils from different locations in addition to a collection
of 7 samples of artificially charred biomass were selected for this study
(Table 1). The three sets of previously characterized soils consisted of
ancient paddy soils from the Yangtze River Delta (China) (Cao et al.,
2006), Histic Humaquept soil from Doñana National Park (Huelva,
Spain) and Leptosol and Cambisol from Sierra de Aznalcóllar (Seville,
Spain) (World Reference Base for Soil Resources, 2014) (Knicker et al.,
2013).

In addition, samples of casein and organosolv spruce lignin supplied
by a pulp and paper plant in Kelheim (Germany) were charred in
porcelain crucibles in a muffle oven at 350 °C and 450 °C for 4min
under oxic conditions (Knicker, 2010). Finally, two additional char
samples were obtained under the same conditions from Lolium perenne
grass and chips of pine wood heated for 4min (Knicker et al., 2007).
Further details for each sort of samples are shown in Table 1. All
samples were dried (40 °C), homogenised and passed through a 2mm
mesh sieve before demineralization and chemical oxidation.

2.2. Demineralization and chemical oxidation

For demineralization, bulk soil samples were treated with hydro-
fluoric acid (HF) according to Gonçalves et al. (2003). Briefly, 10 g of
sample was shaken with 50 cm3 of 10% (w:w) HF for 12 h in poly-
ethylene bottles. After centrifugation, the supernatants were siphoned
off and discarded. The procedure was repeated five times at room
temperature. The remaining residue was washed with 50 cm3 of deio-
nized water, freeze-dried and weighted.

Oxidation with acid solution of K2Cr2O7 for PyC determination was
based on Knicker et al. (2007). About 300mg HF-treated soils and the
set of artificially charred materials was oxidized with 50 cm3 of 0.1M
K2Cr2O7–2M H2SO4 solution at 60 °C in an ultrasonic bath during 6 h in
duplicate. The final residue was washed with deionized water, freeze-
dried and weighted prior to elemental and spectroscopic analyses.

2.3. Total C analysis

Total C of bulk soil samples and its oxidized residues was measured
in triplicate by dry combustion (975 °C) using an Elementar Vario EL
microanalyzer detecting N as N2 and C as CO2. Detection limits for C
and N were 0.4 and 1 μg, respectively. The maximum standard devia-
tion was 7% for C and 5% for N.
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2.4. Solid-state 13C-NMR spectroscopy

Solid-state 13C cross polarization-magic angle spinning (CP-MAS)
NMR spectra of the samples were recorded with a Bruker Avance III
200MHz instrument (Bruker Instruments, Billerica, Massachusetts,
USA), using ZrO2 rotors of 4mm o.d. Magic angle spinning (MAS) was
applied at 6.8 kHz during cross polarization (CP) for 13C. The 13C
chemical shifts are referenced to tetramethylsilane and adjusted with
glycine. A contact time of 1ms and a pulse delay of 500ms were used.
For each sample between 10,000 and 200,000 FIDs were accumulated
to increase the signal/noise ratio of the NMR spectra. The spectra were
integrated into six chemical shift regions: alkyl C (0–45 ppm); N-alkyl/
methoxyl C (45–60 ppm); O-alkyl C (60–90 ppm); aryl C (90–140 ppm);
O-aryl C (140–160 ppm); carbonyl/amide C (160–250 ppm). The
Bruker WinNMR software was used to measure peak areas.

2.5. Fourier Transform-IR spectroscopy

Fourier transform-infrared spectra were obtained using a JASCO
4100 spectrometer (Jasco Corporation, Tokio, Japan) at a wavelength
range of 4000–400 cm−1 and a resolution of 2 cm−1. Potassium bro-
mide pellets containing 2mg of powdered sample and 200mg of KBr
were scanned. In order to improve the signal to noise ratio, 60 spectra
were co-added and averaged for each recorded spectrum. Spectral data
were background corrected to a reference spectrum prior to every
measurement and some spurious absorptions, such as peaks from at-
mospheric CO2 were removed.

2.6. Statistical analyses

Partial least squares regression models were carried out by using the
ParLeS software (Viscarra-Rossel, 2008). This program was used to
obtain prediction models for each of the dependent variables (viz, PyC,
aryl C region and alkyl C region of NMR) from the information con-
tained in independent variables consisting of arrays with the spectral
intensities in the range 1800–400 cm−1 (116 data points). Prior to PLS
regression, the spectral pre-processing treatments available in the pro-
gram ParLeS were checked, to finally select: a) light scatter and baseline
correction by Standard Noise Variate (SNV), b) de-noising with a
median filter rank of 2, and c) 2nd derivative transformation. Mean
centering was also selected as further data pretreatment before PLS
analysis. To select the best number of latent variables for each model, in
order to prevent overfitting, the root mean squared error (RMSE) and
the Akaike's information criterion (Akaike, 1974) were used. In addi-
tion, the selected PLS models were validated by a stricter criterion
consisting of comparing the PLS cross-validation tests (observed vs
calculated) with those performed with the same number of latent
variables and the same matrix of independent variables but after
random permutation of the data of the dependent variable (i.e.,
checking that no significant (P < 0.01) cross validation plot is ob-
tained with the randomized values (Supplementary Fig. 1). Finally, for
the significant PLS model selected, the diagnostic spectral regions of the
IR spectra were studied by plotting the VIP values in the
1800–400 cm−1 spectral range studied. These VIP traces are considered
to reflect quantitatively the contribution of each independent variable
to the prediction model, then they can be useful to identify which
spectral peaks may be acting as surrogates of the concentration in the
soil of the dependent variable under study.

3. Results and discussion

3.1. Carbon content and calculation of PyC by 13C NMR spectroscopy

The PyC content was calculated for all samples by multiplying the
relative intensity of the aryl C region of the 13C NMR spectra with the
organic carbon (OC) content after acid oxidation with potassiumTa

bl
e
1

G
en

er
al

ch
ar
ac
te
ri
st
ic
s
of

th
e
sa
m
pl
es

st
ud

ie
d.

La
be

l
Ty

pe
N
um

be
r
of

sa
m
pl
es

Lo
ca
ti
on

D
ep

th
ra
ng

e
O
th
er

re
le
va

nt
in
fo
rm

at
io
n

Pa
dd

y_
S

Pa
dd

y
so
il

14
Y
an

gt
ze

R
iv
er

D
el
ta

(C
hi
na

)
0–

19
0
cm

N
eo

lit
hi
c
so
ils

w
it
h
a
re
co

rd
of

fr
eq

ue
nt

fi
re
s
(C
ao

et
al
.,
20

06
;
K
ni
ck
er
,2

00
7)

D
oñ

an
a_
S

H
is
tic

H
um

aq
ue
pt

13
D
oñ

an
a
N
at
io
na

l
Pa

rk
(S
W
,S

pa
in
)

0–
50

cm
Sa

nd
y
ac
id
s
so
ils

co
ve

re
d
m
ai
nl
y
by

bu
sh
es

ta
ke

n
1-
to
-2
4
ye

ar
s
af
te
r
se
ve

re
w
ild

fi
re
s
an

d
fr
om

un
aff

ec
te
d
si
te
s

A
zn

al
có

lla
r_
S

Le
pt
os
ol
s
an

d
C
am

bi
so
l

14
Si
er
ra

de
A
zn

al
có

lla
r
Pa

rk
(S
,S

pa
in
)

0–
30

cm
So

ils
un

de
r
Pi
nu

s
an

d
Q
ue
rc
us

bu
rn
ed

in
th
e
la
st

25
ye

ar
s
(K

ni
ck
er

et
al
.,
20

13
;L

óp
ez
-M

ar
tí
n
et

al
.,

20
18

)
Py

_M
Py

ro
ge

ni
c
C
ri
ch

m
at
er
ia
l
ar
ti
fi
ci
al
ly

pr
od

uc
ed

7
C
ha

rr
in
g
pe

rf
or
m
ed

in
a
m
uffl

e
ov

en
at

35
0
an

d
45

0
°C

du
ri
ng

4
or

8
m
in

J.M. De la Rosa, et al. Journal of Environmental Management 251 (2019) 109567

3



dichromate of the samples (Table 2). As expected, both the final weight
of non-degraded residue after dichromate oxidation and the 13C NMR
signal area for aryl C varied widely depending on the origin of the
samples. Residues of the topsoil samples from burned sites reached up
to 65% of aryl C, which accounts for over 20% of PyC. In contrast, the
samples from horizons below 30–40 cm depth of the unburnt sandy
soils resulted in aryl C contents ≤ 20% and extremely low amounts of
PyC (0–4%). Fig. 1 shows 13C NMR spectra of selected samples re-
presentative from each set of samples. Individually, the three sorts of
soils also display a wide range of aromaticity. Another aspect shown by
the 13C NMR spectra is that SOM of alkyl nature is also resistant to the
dichromate oxidation under the conditions used (Knicker et al., 2007),
which confirms the need to discriminate the aromatic fraction in order
to achieve a reliable assessment of PyC in soils. The laboratory-charred
C-rich samples show a high aromaticity (> 50% of total C), as expected
from the origin of the samples, prepared to obtain materials re-
presenting the most common sources of pyrogenic organic matter in
soils.

3.2. IR spectroscopy and PLS analysis

Fig. 2 displays the cross validation plots (linear regression between
predicted and observed values) for the aromaticity and PyC content of
each set of samples. Fig. 2a illustrates the possibility of predicting sig-
nificantly the concentration of aryl C as determined by 13C NMR
spectroscopy, using exclusively the information contained in the
1800–400 cm−1 range of IR spectra from the dichromate-oxidized re-
sidues. The PLS models successfully predicted the percentages of aryl C
in all sets of soils. The less significant prediction was for Histic Hu-
maquept sandy soil (R2=0.67; P < 0.05). This is probably related to
its comparatively low organic C content (< 1%) and the possible in-
terferences due to the heterogeneous mineral fraction. In the same way,
the application of this IR approach also leads to significant prediction of
PyC (Fig. 2b). In an attempt to extend the applicability of the model and
considering the presence of SOM of alkyl nature resistant to degrada-
tion, Fig. 3 shows the correlation between the independent variables
measured by IR and the relative abundance of alkyl C of each sample
measured by 13C NMR spectroscopy. The regression coefficients

Table 2
Analytical characteristics determined in the samples.

Samples Carbon content of bulk
samples (%; Ci)

Yield (material after
oxidation; %)

Carbon content after
oxidation (%)

C yield (% of
Ci)

Aryl C (13C NMR
sp; %)

Alkyl C (13C NMR
sp; %)

PyC (%) from
total

Doñana_S1 6.4 87.0 1.5 20.5 26.6 46.8 5.5
Doñana_S2 2.7 93.0 0.6 21.7 40.3 35.6 8.7
Doñana_S3 8.0 87.0 2.1 22.7 18.1 65.2 4.1
Doñana_S4 3.3 95.0 0.9 24.2 22.4 56.0 5.4
Doñana_S5 1.8 98.0 0.4 24.1 42.3 36.1 10.2
Doñana_S6 1.0 100.0 0.2 21.6 61.5 16.8 13.3
Doñana_S7 4.3 86.0 0.5 10.2 20.6 45.0 2.1
Doñana_S8 1.5 97.0 0.4 22.2 42.3 30.5 9.4
Doñana_S9 0.4 100.0 0.1 23.8 64.8 18.7 15.4
Doñana_S10 29.3 43.0 9.0 13.2 4.0 80.2 0.5
Doñana_S11 4.1 91.0 0.8 17.6 22.0 57.9 3.9
Doñana_S12 1.8 95.0 0.4 19.1 35.0 38.5 6.7
Doñana_S13 2.1 96.0 0.5 23.1 34.0 44.1 7.8
Paddy_S1 8.7 25.0 6.9 19.9 39.0 30.8 7.8
Paddy_S2 7.1 26.0 7.8 28.6 57.0 14.3 16.3
Paddy_S3 19.7 36.0 16.2 29.6 59.0 21.6 17.4
Paddy_S4 11.9 32.0 10.9 29.5 41.0 38.1 12.1
Paddy_S5 3.7 13.0 5.8 20.4 41.0 38.1 8.3
Paddy_S6 16.7 25.0 18.0 24.0 29.0 14.2 7.0
Paddy_S7 2.7 27.0 5.0 17.0 42.0 10.6 7.1
Paddy_S8 19.7 31.0 20.2 31.9 64.7 9.6 20.6
Paddy_S9 4.1 13.0 6.9 21.8 35.8 34.5 7.8
Paddy_S10 13.8 25.0 10.8 19.6 47.2 25.3 9.2
Paddy_S11 7.4 24.0 8.5 27.7 47.2 25.3 13.1
Paddy_S12 6.4 26.0 6.0 24.3 45.8 16.7 11.1
Paddy_S13 5.9 23.0 6.1 23.8 44.2 24.7 10.5
Paddy_S14 13.4 24.0 13.7 24.6 62.8 10.6 15.4
Aznalcóllar_S1 18.0 60.0 27.1 42.4 66.0 10.3 28.0
Aznalcóllar_S2 11.3 56.0 19.7 30.8 59.3 15.3 18.3
Aznalcóllar_S3 12.8 47.2 19.0 34.7 60.3 20.4 20.9
Aznalcóllar_S4 1.4 29.6 15.4 7.2 22.2 54.3 1.6
Aznalcóllar_S5 7.3 31.6 20.4 26.4 35.3 35.0 9.3
Aznalcóllar_S6 8.1 24.0 16.5 24.8 12.3 58.4 3.0
Aznalcóllar_S7 6.7 26.6 21.6 19.4 11.7 65.5 2.3
Aznalcóllar_S8 5.3 32.8 18.5 20.1 46.9 35.1 9.4
Aznalcóllar_S9 7.1 28.6 18.0 24.6 29.7 47.3 7.3
Aznalcóllar_S10 5.3 38.9 17.0 18.6 42.5 37.6 7.9
Aznalcóllar_S11 5.2 8.9 25.8 9.1 5.9 70.2 0.5
Aznalcóllar_S12 7.0 18.7 16.9 17.6 13.3 55.9 2.3
Aznalcóllar_S13 5.9 25.7 15.2 23.1 21.0 49.5 4.9
Aznalcóllar_S14 4.6 29.6 11.5 20.2 22.1 59.2 4.5
Py_M1 65.8 17.4 50.5 13.3 52.6 23.4 7.0
Py_M2 62.9 86.6 59.4 81.7 82.0 9.9 67.0
Py_M3 47.0 24.2 48.4 24.9 73.6 8.4 18.3
Py_M4 30.7 34.0 45.5 50.3 75.4 0.0 37.9
Py_M5 57.2 55.4 60.9 58.9 78.6 3.2 46.3
Py_M6 66.2 55.8 67.1 56.5 65.3 17.1 36.9
Py_M7 64.3 77.0 69.0 82.6 87.0 6.9 71.9

Aryl C: 90–160 ppm; Alkyl C: 0–45 ppm; PyC: pyrogenic C.
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between the observed and predicted values were significant (R2≥ 0.74;
P < 0.05) in all cases except for the paddy soils, this fact could be due
to the low variability of alkyl-C in this soils. Whereas soils from Doñana
and Aznalcóllar showed proportions of alkyl C ranging between 30 to
80% and 20–70%, respectively, the paddy soil showed values between
20 and 40%.

3.3. IR spectra and importance for PyC prediction

The considerable differences in the environmental factors involved
in the accumulation of SOM in the studied soils must necessarily result
in wide diversity in the concentration and composition of the re-
calcitrant C forms. In this scenario, it is presumable that specific soil
features are playing a key role in the preservation of the SOM as PyC
intergrades. This could be examined by taking advantage of the VIP
values calculated during the PLS. Fig. 4 shows the VIP traces for the
different dependent variables. Such traces inform on the extent to
which the different IR peaks contributed to the prediction of PyC and
aryl C for each set of samples. This figure shows that the most de-
terminant IR bands for predicting the aromaticity of the residue or its
PyC content vary according to the type of soil, or the origin of the
charred samples. It was also observed that the VIP pattern, calculated
during the prediction of PyC and aryl C are very similar, which could be
due to the close relationship between these two variables. While in the
set of samples of pyrogenic-rich material the most important bands
were found at ca. 1700–1750 cm−1 (acid and ester structures) and
1600–1640 cm−1 (aromatic and amide structures), the lowest im-
portance was found in bands 1420, 1350 and 1230 cm−1 which are
characteristic of the lignin pattern frequently found in the IR spectra of
slightly humified SOM (Fengel and Wegener, 1984; Miralles et al.,
2007).

In the case of the ancient paddy soil from China it seems that the
prediction of the aromaticity of the digested material derives mainly
from the IR bands ca. 1000–1100 cm−1, 440–500 cm−1 and
1620–1690 cm−1, whereas the prediction of the PyC and aryl C values
of the sandy soils from Doñana was essentially described by the broad

band system between 1000 and 1100 cm−1 and to a lesser extent by
440, 650, 750 and 1640 cm−1. A similar outcome was observed for the
spectra from Leptosols/Cambisols of Aznalcóllar, dominated by bands
over 440 and 500 cm−1. These bands are typically attributed to Si-O,
Fe-O and/or Al-O groups in bulk soils, then suggesting a mineralogical
control of PyC stabilization in soils. These results suggest that the dif-
ferent soil nature and mineral composition play an important role in
relation to what SOM fraction is associated with the presence of the
PyC, maybe due to some organo-mineral interactions. For instance, in
paddy soils the most differential predictor peaks (diagnostic region) for
the PyC corresponded to bands attributed to carboxyl groups, aromatic
structures and bands associated to minerals, whereas among Leptosol,
Cambisol and Histic soils, the most differential ones correspond to
minerals bands and to a lesser extent to carboxyl and aromatic bands.
These differences in the association between PyC and SOM can be due
to a contrasting origin of the PyC or different degree of transformation.

4. Conclusions

This study demonstrates that a prediction model based on PLS re-
gression and on the information contained in the IR spectra is able to
forecast the PyC content of contrasting soils and of artificially charred
biomass. This approach showed its best predicting potential for soils
with organic C concentrations greater than 1%. The VIP values of the IR
spectra show that forecasting PyC in soils requires information from
several IR regions in a way that, in general, none of which shows a
primary importance. In general, the most important bands for the
prediction in the spectra from soils correspond to minerals resistant to
demineralizing treatments under the conditions used and to a lesser
extent to carboxyl and aromatic bands. This contrast with the case of
artificially charred biomass which was used as reference for PyC rich
samples where, as expected, aromatic bands centered at 1620 and
1510 cm−1 play a relevant role for the assessment of stable C in soils.

Fig. 1. Solid state 13C NMR spectra of potassium dichromate-treated samples representative for the different sets of soils: Paddy soils (brown), Histic Humaquept
(green), Leptosols and Cambisols (blue) and of the laboratory-produced pyrogenic materials (black). Spinning side bands are indicated with asterisks (*).
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Fig. 2. Cross validation plots between observed and predicted values obtained by partial least squares regression using data from the infrared spectral range
(1800–400 cm−1) to predict a) aryl C content calculated by 13C NMR spectroscopy and b) pyrogenic carbon content of soils (paddy soils, Histic Humaquept, Leptosols
and Cambisols) and of laboratory-charred lignocellulosic biomass (Py_M).
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