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Abstract 

Background:  Natural and artificial directional selection in cosmopolitan and autochthonous pig breeds and wild 
boars have shaped their genomes and resulted in a reservoir of animal genetic diversity. Signatures of selection are 
the result of these selection events that have contributed to the adaptation of breeds to different environments and 
production systems. In this study, we analysed the genome variability of 19 European autochthonous pig breeds 
(Alentejana, Bísara, Majorcan Black, Basque, Gascon, Apulo-Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero 
Siciliano, Sarda, Krškopolje pig, Black Slavonian, Turopolje, Moravka, Swallow-Bellied Mangalitsa, Schwäbisch-Hällisches 
Schwein, Lithuanian indigenous wattle and Lithuanian White old type) from nine countries, three European com‑
mercial breeds (Italian Large White, Italian Landrace and Italian Duroc), and European wild boars, by mining whole-
genome sequencing data obtained by using a DNA-pool sequencing approach. Signatures of selection were identi‑
fied by using a single-breed approach with two statistics [within-breed pooled heterozygosity (HP) and fixation index 
(FST)] and group-based FST approaches, which compare groups of breeds defined according to external traits and use/
specialization/type.

Results:  We detected more than 22 million single nucleotide polymorphisms (SNPs) across the 23 compared popula‑
tions and identified 359 chromosome regions showing signatures of selection. These regions harbour genes that 
are already known or new genes that are under selection and relevant for the domestication process in this species, 
and that affect several morphological and physiological traits (e.g. coat colours and patterns, body size, number of 
vertebrae and teats, ear size and conformation, reproductive traits, growth and fat deposition traits). Wild boar related 
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Background
Natural and artificial directional selection have shaped 
livestock genomes and led to many breeds and popu-
lations, which are considered the main reservoir of 
genetic diversity in farmed animals [1–3]. Under posi-
tive selection pressure, the frequency of favourable 
alleles increases rapidly in a population and generates a 
high level of population differentiation, with impacts on 
haplotype structures and extended linkage disequilib-
rium between the mutated sites and neighbouring loci 
[4]. Signatures of selection that remain in the livestock 
genomes are the result of combined human-driven and 
natural selection events, which have contributed to the 
adaptation of genetic resources to different environ-
ments and production systems.

Livestock genomes can be analysed by applying dif-
ferent genomic and statistical measures and approaches 
[e.g. Wright’s fixation index (FST) within or between 
populations and pooled heterozygosity (HP), among 
other statistics] to reveal regions under selection. 
These regions can provide insights into the biological 
mechanisms that explain domestication and lead to 
morphological differentiation, specialized production 
performances and, in some cases, disease resistance 
and resilience (e.g. [5–10]).

Since the first domestication events, pig has been 
subject to artificial directional selection that has pro-
foundly differentiated domestic genetic pools from 
the original European and Asian wild boar popula-
tions [11–14]. Although today the pig industry uses a 
few cosmopolitan highly selected breeds and lines in 
intensive production systems, a large number of local 
breeds still exist in many regions around the world. 
These autochthonous genetic resources are less per-
forming than commercial populations and, mainly in 
Europe, they are associated with local and traditional 
niche markets [15]. Other common characteristics of 
these breeds are good adaptation to their local agro-
climatic and environmental conditions, high rustic-
ity, slower growth rate, high adipogenic potential and, 
for some of them, superior meat quality traits. They 
are usually raised under extensive or semi-extensive 
production systems and in marginal areas [15]. They 
are also characterized by a variety of coat colour phe-
notypes and specific morphological traits, which can 
have interesting scientific values [11, 16, 17]. In order 

to design sustainable conservation programs for these 
genetic resources, most of which are still unexplored, 
the first step is to characterize genetically their popula-
tions [18].

To date, a few whole-genome investigations have been 
performed, which are mainly based on single nucleo-
tide polymorphism (SNP) arrays and include only a few 
European local pig breeds [19–21]. Most of these stud-
ies are based on small numbers of animals and provide 
preliminary information on their population structure. 
In the case of the Iberian and Casertana breeds, quanti-
tative trait loci (QTL) and genome scans have identified 
genomic regions and mutations associated with morpho-
logical, production, meat and carcass traits [9, 10, 16, 17, 
22–24]. Other studies have compared SNP datasets from 
Italian autochthonous and commercial breeds to iden-
tify population-informative markers and analyse their 
inbreeding levels [25, 26]. Muñoz et  al. [27] and Ribani 
et al. [28] analysed candidate markers in major genes in 
20 European local pig breeds and wild boar populations, 
which provided information on the segregation of rel-
evant polymorphisms for breeding or traceability pur-
poses [29]. A follow-up study on these breeds included 
the analysis of linkage disequilibrium, FST and effective 
population size using a medium-density SNP array [30].

Other studies that involved a few Asian and European 
pig breeds investigated signatures of selection in the por-
cine genome using SNP chip or partial/reduced or whole-
genome re-sequencing datasets and highlighted loci of 
economic importance [7, 31–42].

Thus, it is important to take further the analyses of the 
genome of autochthonous and cosmopolitan pig genetic 
resources, including unexplored and poorly investigated 
breeds, which were developed under different human-
driven evolutionary conditions (i.e. selection programs) 
and production systems.

In this study, we analysed the genome of 19 European 
autochthonous pig breeds from nine countries, three 
commercial Italian breeds and wild boars to identify sig-
natures of selection by mining whole-genome sequenc-
ing data obtained by using a DNA-pool sequencing 
approach. SNPs were called and allele frequencies were 
estimated. Signatures of selection were identified by 
computing both within-breed HP and FST statistics and 
comparing different groups according to domestication/
selection levels (i.e. autochthonous vs. commercial vs. 

signatures of selection were detected across all the genome of several autochthonous breeds, which suggests that 
crossbreeding (accidental or deliberate) occurred with wild boars.

Conclusions:  Our findings provide a catalogue of genetic variants of many European pig populations and identify 
genome regions that can explain, at least in part, the phenotypic diversity of these genetic resources.
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wild boars) and morphological (coat colours and pat-
terns and body size) criteria. These breeds, some of them 
still unexplored, were from various production systems 
and breeding programmes in Europe. The results should 
help elucidate the adaptation of pig genetic resources of 
the European continent to natural and artificial selection 
pressures.

Methods
Animals
Blood samples were collected from 30 to 35 animals 
from each of the 22 pig breeds included in the study 

and distributed across nine European countries (from 
West to East and then North; Fig.  1): two from Portu-
gal (Alentejana and Bísara); one from Spain (Major-
can Black); two from France (Basque and Gascon); six 
autochthonous (Apulo-Calabrese, Casertana, Cinta Sen-
ese, Mora Romagnola, Nero Siciliano and Sarda), and 
three commercial breeds (Italian Large White, Italian 
Landrace and Italian Duroc) from Italy; one from Slove-
nia (Krškopolje pig, thereafter referred to as Krškopolje); 
two from Croatia (Black Slavonian and Turopolje); two 
from Serbia (Moravka and Swallow-Bellied Mangalitsa); 
one from Germany (Schwäbisch-Hällisches Schwein); 

Fig. 1  Phenotype and geographical origin of the 22 analysed pig breeds and wild boar populations
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two from Lithuania (Lithuanian indigenous wattle and 
Lithuanian White old type). Selection of the individu-
als for sampling was performed such that highly related 
animals were avoided (no full- or half-sibs), when pos-
sible by balancing between sexes and prioritizing adult 
individuals or, at least, animals with the morphology of 
an adult. All sampled animals were registered in their 
respective Herd Books and had standard breed charac-
teristics. In addition, 35 tissue samples from Italian wild 
boars, which had previously been tested for the absence 
of introgressed domestic alleles [28], were used in this 
study. In Additional file 1: Table S1, more details on the 
analysed animals and investigated breeds, including geo-
graphical distribution and phenotypic description, are 
provided [15, 28].

DNA samples and sequencing
Genomic DNA was extracted from 8 to 15  mL of 
peripheral blood for each pig [collected in Vacutainer 
tubes containing 10% 0.5  M EDTA (ethylenediamine-
tetraacetic acid, disodium dihydrate salt) at pH 8.0] or 
from muscle tissues (for wild boars, provided by forest 
policemen; [43]). DNA extraction was performed using 
either a standardized phenol–chloroform protocol  [44] 
or the NucleoSpin®Tissue commercial kit (Macherey–
Nagel, Düren, Germany). Twenty-three DNA pools were 
obtained by pooling 30 (or 35) individual DNA samples 
at equimolar concentrations for each pool (see Addi-
tional file 1: Table S1).

The wild boars included in the “wild boar” pool were 
first genotyped for MC1R and NR6A1 mutations [28] and 
only the animals that were homozygous for the wild type 
alleles were used. For each of the 22 DNA pools repre-
senting domestic pig breeds, a sequencing library was 
generated using the Truseq Nano DNA HT Sample prep-
aration Kit (Illumina, USA) following the manufacturer’s 
recommendations. Then, DNA was sheared randomly 
to obtain 350-bp fragments, which were end-polished, 
A-tailed, and ligated with the full-length adapter for 
Illumina sequencing and subjected to PCR amplifica-
tion. PCR products were purified (AMPure XP system) 
and libraries were analysed for size distribution by Agi-
lent2100 Bioanalyzer and quantified using real-time PCR. 
The qualified libraries were fed into an Illumina HiSeq X 
Ten sequencer for paired-end sequencing, which resulted 
in 150-bp long reads. The wild boar DNA pool was 
sequenced from 250-bp fragment libraries, with 100-bp 
long paired-end reads, on the BGISeq 500 platform, fol-
lowing the provider’s procedures.

Quality controls and sequence alignment
The obtained reads underwent several cleaning and fil-
tering steps: removal of (i) adapters, (ii) reads containing 

more than 10% unknown bases (N), and (iii) reads con-
taining low-quality bases (Q ≤ 5). FASTQ files were the 
inspected with the FASTQC v.0.11.7 software (https​://
www.bioin​forma​tics.babra​ham.ac.uk/proje​cts/fastq​c/) 
that highlighted very high-quality reads. No other filter-
ing procedures were carried out.

Reads were mapped to the latest version of the Sus 
scrofa reference genome (Sscrofa11.1) with the BWA tool 
0.7.17 [45] using the MEM function and the parameters 
for paired-end data. Picard v.2.1.1 (https​://broad​insti​tute.
githu​b.io/picar​d/) was used to remove duplicated reads. 
Whole-genome sequencing data statistics are in Addi-
tional file 1: Table S2.

Detection of variants from sequencing data
The detection of SNPs was carried out with the CRISP 
v.122713 software [46]. CRISP parameters were tuned to 
maximize the discovery of variants (-ctpval − 0.6 -minc 1 
-EM 0). A three-step filtering procedure was adopted to 
retain high-quality variants:

•	 Step (1): (i) retention of bi-allelic variants only, (ii) 
with a minimum read depth (RDmin) in each pool 
equal to 10, (iii) a minimum number of alterna-
tive reads, across the DNA pools, equal to 3, (iv) 
a maximum read depth (Rdmax), in each pool, 
equal to 68 (computed as proposed by Li [47]; 
RDmax = RDmean + 4√RDmean, where RDmean = 42), 
and (v) removal of variants that mapped to low-qual-
ity regions or suffered from strand-bias.

•	 Step (2): implementation of the quality filter proce-
dures described in [48]. In spite of the low rate of false 
positives with CRISP [46], these procedures allow to 
filter out other possible false variants. In this step, 
we used the dbSNP v.150 database ([49]; accessed on 
February 27 2018; number of variants = 64,535,988). 
Briefly, variants were initially annotated as reported 
in dbSNP (“in.dbSNP” class) or not (“novel” class). 
Then, these two classes were subdivided in “rare” and 
“common” variants. Rare variants were defined as 
variants that present a minor allele frequency (MAF) 
lower than 0.0143. This value represents the “ideal” 
lower limit of detection (i.e. 1/70), since, in general, 
pools were composed of 35 diploid individuals (see 
Additional file 1: Table S1). This is an approximated 
estimation that did not take the average sequencing 
depth into account. Then, for the “rare” class of vari-
ants, we used the Kolmogorov–Smirnov (KS) test to 
compare the distributions of the quality score of the 
variants in the “in.dbSNP” and “novel” sub-classes. 
The KS test measures the similarity of the two dis-
tributions in a quantitative way via the D-statistics (a 
metric ranging from 0 to 1). Lower values of D indi-

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://broadinstitute.github.io/picard/
https://broadinstitute.github.io/picard/
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cate more similar distributions. Different cut-off val-
ues ranging from 0 to 50 with steps of 1, were tested. 
The CRISP quality score (QCRISP) that minimizes the 
D value was selected as the best score (QCRISP = 21; 
(see Additional file 2: Figure S1).

•	 Step (3): to evaluate globally the quality of our data-
set, we used the transition-to-transversion ratio (Ts/
Tv) as quality indicator [50].

Variants on the mitochondrial genome (that can also 
be confused with differences in nuclear DNA sequences 
of mitochondrial origin or NUMTS; [51]) and variants on 
the sex chromosomes were discarded. Variant detection 
in the wild boar DNA pool was carried out with Samtools 
v.1.7 [52] by retaining the variants that were detected in 
the 22 pig DNA pools and considering an RDmin of 3. 
Variants were annotated using the Variant Effect Predic-
tor (VEP) v.95.0 [53], by predicting their impact on the 
protein function with SIFT v.5.2.2 [54]. Statistics about 
detected and annotated variants are Additional file  1: 
Tables S3 and S4, respectively. Pipelines were developed 
either in Python v.2.7.12 or in R v.3.4.4 ([55]; the Kolmog-
orov–Smirnov test was carried out with the function “ks.
test”).

SNP allele frequencies (AF) were estimated by counting 
the number of reads that include the SNP position. To 
evaluate the reliability of the estimation of AF obtained 
by DNA-pool sequencing, we used SNP chip data from 
Muñoz et  al. [30], since the pigs of the autochthonous 
breeds included in the DNA pools were also genotyped 
with the GeneSeek® GGP Porcine HD Genomic Pro-
filer v1 (Illumina Inc, USA) panel (including 68,516 
SNPs). Pearson’s correlation coefficient (r) was computed 
between sequencing and chip genotyping derived fre-
quencies, excluding transversions GC ↔ CG i.e. 167) and 
AT ↔ TA (i.e. 147) and also SNPs that presented more 
than 10% of missing genotypes within each breed [56].

Genetic diversity analyses
The genetic distance between pairs of populations was 
estimated by computing FST values for each SNP as 

described by Karlsson et  al. [57]. In total, 253 =

(

23

2

)

 

comparisons were carried out. Then, for each compari-
son, FST values were averaged over the number of SNPs 
analysed. We obtained an FST matrix of size 23 × 23 that 
was graphically represented via a heatmap and used to 
build a Neighbour-Joining (NJ) tree. Genetic distances 
between local pig breeds were compared with geographi-
cal distances via the Mantel test.

Pipelines were developed either in Python or in R 
(“corrplot”, “nj” and “mantel” functions of the “corrplot”, 
“ape” [58] and “vegan” libraries, respectively).

Detection of signatures of selection
Pooled heterozygosity and fixation index statistics were 
used to identify potential signatures of selection in the 
analysed populations. Signatures of selection were com-
puted in 100-kb sliding genome windows, with a step size 
of 100  kb. In total, 23,666 genome windows were com-
puted. Similarly to the procedure described by Rubin 
et  al. [6], each 100-kb window was selected after test-
ing windows of variable sizes (from 50 to 300  kb) for 
the number of windows with less than 10 SNPs: win-
dow counts decreased asymptotically after this thresh-
old (see Additional file 1: Table S5 and Additional file 2: 
Figure S2). Windows included in the analyses contained 
on average 1148 ± 551 SNPs. Windows with less than 20 
SNPs and for which either the FST or the HP index was 
mathematically impossible to compute were discarded 
(i.e. 399).

The HP index was computed for each window by using 
the formula described by Rubin et  al. [6, 7] and log2 
transformed as proposed by Sun et al. [59]. The final HP 
value, related to each breed, was estimated as the overall 
mean of HP values.

For each window, the FST index was estimated accord-
ing to the formula introduced by Karlsson et al. [57]. FST 
was calculated for each breed or for groups of breeds in 
different comparisons.

For a given breed, the FST value of each genome win-
dow was computed as the average across the N − 1 
comparisons (N = 22; wild boar data were analysed sepa-
rately) and then the final FST value, related to the breed, 
was estimated as the overall mean of FST values [60]. 
Analysis of the wild boar population followed the same 
approach by considering N = 23.

FST was calculated for the following groups of breeds 
and comparisons: (i) comparisons based on coat col-
our phenotypes, by grouping together red, white, black, 
belted and spotted breeds, (ii) comparisons based on 
the body size of the breeds (small, medium and large), 
(iii) comparison between autochthonous and commer-
cial breeds, and (iv) comparison between wild boars 
and domestic breeds. The classification of the breeds 
was based on the morphological descriptions reported 
in [15]. Detailed information on the different groups of 
breeds/populations and comparisons is summarized in 
Additional file 1: Table S6.

As defined by Rubin et  al. [6], putative signatures of 
selection were identified from genome windows at the 
extreme lower end of the distributions (see Additional 
file  1: Tables S7, S8). We considered, as outliers, the 
genome windows presenting either a HP or an FST value 
above the 99.95th percentile of the related distribution. 
This led to the identification of 12 genome windows for 
each pool.
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Data were graphically represented via Manhattan plots. 
Pipelines were developed either in Python or in R (“man-
hattan” function of the “qqman” library [61]). Genomic 
windows were computed with Bedtools v.2.17.0 [62].

Annotation of genome windows
Each 100-kb window that displayed signatures of selec-
tion was annotated with the Bedtool v.2.17.0 program 
by retrieving annotated protein coding genes from the 
Sscrofa11.1 NCBI’s GFF file. Moreover, we extended the 
annotation by including the genes that were located in 
the ± 200-kb flanking regions of each window. Allele fre-
quencies of SNPs within each extended genome window 
were plotted in R using the libraries “gplots” (function: 
heatmap.2) and “Sushi” [63].

The functional relevance of the genes annotated in 
regions of signatures of selection was evaluated based on 
a detailed analysis of the scientific literature and Gene 
Cards information [64]. Moreover, gene enrichment 
analysis over sets of human traits was carried out with 
Enrichr [65] via Fisher’s exact test. Analyses run over the 
GWAS catalogue 2019 [66], a curated collection of rela-
tionships between human phenotypes and genes, which 
annotate 19,378 genes in 1737 phenotypic gene sets. We 
ran breed-specific over-representation analyses by using 
as input into Enrichr the set of genes that were mapped 
within the genome windows concurrently identified via 
the HP and FST analyses. We considered as statistically 
enriched terms those presenting: (i) at least four genes 
of the input set related to two or more genome windows 
and (ii) an adjusted p-value lower than 0.05.

Putative deleterious SNPs were identified based on 
their impact on the protein function, considering as 
harmful stop gain (SG) mutations, stop lost (SL) muta-
tions and non-synonymous SNPs (nsSNPs) predicted 
as deleterious by SIFT. Moreover, allele frequency val-
ues were evaluated with respect to the wild boar popu-
lation and the overlap with regions under selection was 
evaluated.

Results
Overview of sequencing data and detected variants
Sequencing of the 22 domestic pig DNA pools pro-
duced ~ 18.4 billion of reads, with an average number of 
sequenced read pairs per pool equal to ~ 418.9 million. 
Non-duplicated reads covered on average 98.45% of the S. 
scrofa genome with a mean mapped read depth (RDmean) 
of ~ 42×. The wild boar DNA pool genome accounted for 
~ 164.2 million of reads, 96.6% of which were non-dupli-
cated and covered 98.2% of the genome with an RDmean 
of ~ 12×. Summary statistics of the sequencing data are 
in Additional file 1: Table S2.

A bioinformatic pipeline based on the CRISP tool 
[46] and the Kolmogorov–Smirnov statistical test [48] 
was implemented to detect high-quality variants. We 
detected 36,085,090 variants of which 5,018,696 were 
removed in the first step and 151,105 were removed in 
the second step. In total, 26,732,468 high-quality SNPs 
(autosomes and scaffolds) were used in further analyses. 
Summary statistics for these variants are in Additional 
file 1: Table S3. A Ts/Tv ratio of 2.40 was found for the 
sequence dataset.

VEP annotation of the detected SNPs is summarized 
in Additional file  1: Table  S4. In total, 44,784,029 SNP-
annotation pairs (several annotations per SNPs were pos-
sible) were retrieved, covering 22,165 genes out of the 
22,452 annotated genes on the Sscrofa11.1 genome ver-
sion. As expected, the largest number of SNPs was found 
in introns (~ 62%) and in intergenic regions (~ 35%). SNPs 
that impacted the gene at the protein level (i.e. start/stop 
gained/lost and missense SNPs) accounted for only 0.34% 
of all point mutations.

Allele frequencies estimated from DNA pool sequenc-
ing and SNP chip genotyping presented an average Pear-
son’s correlation coefficient r = 0.95, ranging from 0.91 to 
0.98 (see Additional file 1: Table S9).

Genetic diversity and relationships among the populations 
analyzed
The genetic diversity between pairs of pig popula-
tions was investigated with the FST index (Fig. 2 and see 
Additional file  1: Table  S10). The NJ tree built by using 
FST distances (see Additional file  2: Figure S3) depicted 
clusters that, generally, agreed with the geographical 

Fig. 2  Heatmap plot of FST distances between breeds/populations
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distribution of some of these breeds and their relation-
ships derived from possible introgression and admixture 
events: (i) the two French breeds (Gascon and Basque) 
are clustered together; (ii) the two Central-Southern Ital-
ian breeds (Casertana and Apulo-Calabrese) are on the 
same branch; (iii) the two Lithuanian breeds (Lithuanian 
indigenous wattle and Lithuanian White old type) are 
clustered together with the Italian Large White and Ital-
ian Landrace breeds; Mora Romagnola and Italian Duroc 
are on the same branch; Krškopolje and Schwäbisch-
Hällisches Schwein (two related belted-patterned breeds) 
are in the same cluster; several other breeds (Alentejana, 
Majorcan Black, Swallow-Bellied Mangalitsa, Cinta Sen-
ese and Black Slavonian) are clustered together with the 
wild boars, as previously described by Muñoz et al. [30].

Spatial analysis via the Mantel test (see Additional 
file  2: Figure S4) did not reveal any significant correla-
tion between genetic and geographic distances (r = 0.09, 
p-value = 0.3).

Identification of signatures of selection in 22 domestic pig 
breeds and in wild boars
Two approaches were applied to capture signatures of 
selection in the investigated pig breeds and wild boar 
population: (i) pooled heterozygosity, which identifies 
signatures of selection by analysing the genetic proper-
ties segregating within each breed, and (ii) fixation index, 

which provides information that is summarized for each 
single breed/population compared against all other 
breeds and wild boars.

Pooled heterozygosity
The HP value of single breeds ranged from 0.094 (Tur-
opolje) to 0.21 (Italian Large White). The average HP 
value was 0.169 (s.d. = 0.031). Details are in Additional 
file 1: Table S11. For each population, 12 genome win-
dows (99.95th percentile) were detected as outliers (see 
Additional file  1: Table  S12 and Additional file  2: Fig-
ure S5). Figure  3a summarizes the signatures of selec-
tion that were identified in all the breeds and in wild 
boars using this approach. Signatures of selection were 
detected on 16 chromosomes and five unassembled 
scaffolds. In total, 68 of 276 (25%) genome windows 
were shared between two or more (up to seven) pop-
ulations. Nine genome regions were shared by at least 
four breeds and were located on Sus scrofa (SCC) chro-
mosome SSC1, 4 and 8. The SSC1 region (from 170.3 
to 170.4 Mb) did not harbour any annotated gene. The 
SSC4 window (from 42.9 to 43.0 Mb), which contained 
the TMEM67 and PDP1 genes, was already reported to 
be involved in the domestication process of European 
pig breeds [20]. The large region on SSC4 (from 75.5 
to 75.9 Mb) was detected in seven pig breeds and har-
bours the PLAG1 gene, which was shown to be under 

Fig. 3  Over-imposed Manhattan plots of the analyses of signatures of selection. a HP analysis and b averaged pairwise FST analysis



Page 8 of 19Bovo et al. Genet Sel Evol           (2020) 52:33 

positive selection during pig domestication [7]. The 
SSC8 region (from 12.9 to 13.0 Mb), which was identi-
fied in four breeds, contains the LCORL gene, which has 
been already reported to be included in an important 
signature of selection by Rubin et al. [7] and by Schiavo 
et al. [25]. Two other genome windows on SSC8 (from 
42.6 to 42.7 Mb and from 45.5 to 45.6 Mb), close to the 
KIT gene, harboured two genes, which are reported to 
be under selection (i.e. MAP9 and PDGFC; [67]).

Other interesting HP signals, which potentially affect 
traits that could define breed-specific features or pro-
duction characteristics, included the MC1R and EDAR 
genes (affecting hair-related traits [68–71]), ITFG1 
(associated with average daily gain in cattle [72]), 
NR4A2 (involved in female reproduction [73]), MC4R 
(affecting fat deposition, growth performances and feed 
intake [74]), and NR6A1 (affecting the number of verte-
brae [75]).

A relevant signal was detected in Lithuanian White 
old type, Italian Large White, Italian Landrace and Ital-
ian Duroc pigs on SSC15 (from 87.1 to 87.2 Mb), in the 
region that harbours the CASP10 gene, confirming a 
major signature of selection detected by Rubin et al. [7].

HP analyses also highlighted genome windows, which 
contain several other genes (e.g. FOXA1, INSIG2 and 
VEPH1, and EXOC5) that were previously detected in 
analyses of signatures of selection that compared Euro-
pean domestic pigs against wild boars and Asian pigs 
[20, 76] (Table 1).

FST analysis of single breeds
The FST value of single breeds ranged from 0.088 (Sarda) 
to 0.202 (Turopolje). Details are in Additional file  1: 
Table S11. The average FST value was 0.135 (s.d. = 0.030).

In total, 276 genome windows were considered as out-
liers [99.95th percentile; (see Additional file 1: Table S13 
and Additional file  2: Figure S6). Figure  3b summarizes 
the genome regions that were identified in all the breeds 
and in wild boars using this approach. About 7% of these 
windows (18 windows) were located on five autosomes 
(SSC5, 6, 8, 9, and 15) and were shared by two or more 
(up to four) pig breeds (Table  2). Five windows were 
shared by three or more populations, highlighting three 
genomic regions: (i) SSC5: 29.3–29.6 Mb, which is char-
acterized by the presence of candidate genes (LEMD3, 
WIF1, HMGA2 and MSRB3) for ear size and ear posi-
tion in pigs [77–80], and (ii) SSC5: 30.0–30.1 Mb and (iii) 
SSC8: 46.6–46.7 Mb, for which no annotated genes were 
found.

We also detected other interesting FST signals that are 
linked to pigmentation processes in genome regions 
that include MC1R (in Black Slavonian; confirming the 
result of the HP analysis), KIT (in Krškopolje, Bísara 
and Italian Large White), OCA2 (in Mora Romagnola 
and Italian Duroc) and RB1 (in Cinta Senese), which 
encodes a transcription factor cooperating with MITF 
in melanocytes [81, 82]. Several other genome win-
dows that harbour obesity-related genes were identified 
in Krškopolje (including FANCL), Gascon (including 
DPP10), Swallow-Bellied Mangalitsa (including PLIN1), 

Table 1  Genome windows identified by  the  HP analysis on  different porcine chromosomes (SSC) and  shared by  four 
or more pig breeds

a  Genes affecting or associated to several traits and within the reported windows
b  Genes affecting or associated to several traits
c  Other genes within the reported windows
d  Other listed genes are ± 200 kb upstream or downstream the reported windows

Genome windows (SSC: 
start–end bp)

Number 
of windows

Pig populations Number of SNPs Annotated genes (± 200 kb)

1:170,300,001:170,400,001 1 Apulo-Calabrese, Casertana, Krškopolje, 
Majorcan Black

829 –

4:42,900,001:43,000,001 1 Black Slavonian, Nero Siciliano, Krškopolje, 
Gascon

683 TMEM67a, PDP1b, FAM92Ac, RBM12Bc

4:75,500,001:75,900,001 4 Cinta Senese, Apulo Calabrese, Krškopolje, 
Lithuanian White old type, Sarda, Italian 
Large White, Italian Landrace

2356 CHCHD7c, SDR16C5d, MOSc, PENKc, 
TMEM68d, LOC100626876c, TGS1d, LYNc, 
LOC106510084c, PLAG1a, XKR4d

8:12,900,001:13,000001 1 Bísara, Schwäbisch-Hällisches Schwein, 
Italian Large White, Italian Landrace, 
Majorcan Black

1067 NCAPGb, CAF16d, FAM184Bd, LCORLa

8:42,600,001:42,700,001 1 Bísara, Lithuanian White old type, Italian 
Large White, Italian Landrace

683 LOC102162630d, LOC100526059d, MAP9a, 
TLL1d, LOC100620475c

8:45,500,001:45,600,001 1 Bísara, Lithuanian White old type, Italian 
Large White, Italian Landrace

1482 PDGFCa
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Schwäbisch-Hällisches Schwein (including NUDT6, 
SPATA5, and FGF2) and Mora Romagnola (harbouring 
GTF2E1 and RABL3).

The window including the CASP10 gene on SSC15 
(already identified in the HP analyses) was found for 
the Majorcan Black and Casertana breeds. This gene is 
located within a major signature of selection that was 
previously described by Rubin et al. [7] who compared 
domesticated breeds vs. wild boars. In addition to the 
CASP10 gene-containing window, other peaks dif-
ferentiated wild boars from the domesticated breeds. 
For example, signals were detected in the SSC1 region 
that encompasses NR6A1, which was already reported 
in previous studies [7, 28]. Mutations in NR6A1 

affect the number of vertebrae, which is considered a 
domestication-derived trait and differentiates wild pig 
from domestic genetic pools [28, 43, 75]. The FOXA1 
and TCC6 genes, located on SSC7: 62.4–62.5  Mb, 
were detected from the wild boar data, as previously 
described by Rubin et al. [7].

For each pig population, we evaluated the overlap 
between outlier regions in the FST analyses and those 
outliers in the HP analyses. Three signals of signatures 
of selection detected with the two approaches were in 
genomic regions of less than 500 kb and encompassed 
two chromosomes: one was detected in Bísara on SSC8 
(from 42.7 to 42.9 Mb) near the KIT gene and another 
one was detected in Gascon on SSC15 (from 21.8 to 
22.3 Mb) and included the DPP10 gene.

Table 2  Genomic windows identified in the single breed FST analysis on different porcine chromosomes (SSC) and shared 
by two or more pig breeds and wild boars

a  Genes affecting or associated to several traits
b  Genes affecting or associated to several traits and within the reported windows
c  Other listed genes that are within the reported windows
d  Other listed genes are ± 200 kb upstream or downstream the reported windows
e  Region close to the OCA2 gene

Genome windows (SSC: start–end bp) Pig populations Annotated genes (± 200 kb)

5:29,300,001–29,400,001 Bísara, Moravka, Sarda GNSd, RASSF3d, TBC1D30d, WIF1a, LOC106510322b, 
LEMD3a

5:29,400,001–29,500,001 Alentejana, Bísara, Moravka, Sarda TBC1D30d, LOC10651032d, WIF1c, LEMD3a, MSRB3a

5:29,500,001–29,600,001 Bísara, Moravka, Sarda LOC106510322d, WIF1c, LEMD3c, MSRB3a

5:29,700,001–29,800,001 Alentejana, Bísara WIF1a, LEMD3a, MSRB3c

5:30,000,001–30,100,001 Swallow-Bellied Mangalitsa, Moravka, Sarda HMGA2a, MSRB3a

5:30,100,001–30,200,001 Moravka, Sarda HMGA2c

5:30,200,001–30,300,001 Moravka, Sarda LLPHd, TMBIM4d, HMGA2c

5:30,500,001–30,600,001 Swallow-Bellied Mangalits, Moravka HMGA2a, LLPHd, HELBd, GRIP1d, IRAK3b, TMBIM4b

6:53,300,001–53,400,001 Lithuanian White old type, Italian Large White SELENOWd, BSPH1d, EHD2d, BICRA​b, CRXd, MEIS3d, 
NOP53d, C5AR2d, SULT2A1d, C5AR1d, ZNF541b, 
NAPAd, SLC8A2d, DHX34d, ELSPBP1d, KPTNd

8:43,800,001–43,900,001 Turopolje, Black Slavonian MSMO1d, LOC110262006d, CPEd, LOC110261946d, 
TMEM192d, LOC110261945d, KLHL2b, 
LOC102163658d, LOC102163398d

8:46,600,001–46,700,001 Swallow-Bellied Mangalitsa, Turopolje, Schwäbisch-
Hällisches Schwein

–

8:66,300,001–66,400,001 Lithuanian White old type, Lithuanian Indigenous 
Wattle

LOC100515222d, YTHDC1d, LOC100515741d, 
LOC100516628b, LOC100624891d, LOC110262115d, 
LOC110262116d, LOC100623504d, LOC100515394d, 
UGT2B31b

8:66,900,001––67,000,001 Bísara, Sarda LOC110262013d, CABS1d, LOC110262014d, ODAMd, 
LOC100624541d, PRR27d, CSN1S2b, LOC110262119d, 
CSN2b, CSN1S1b, SULT1E1d, CSN3d, STATHb

9:99,500,001–99,600,001 Nero Siciliano, Majorcan Black LOC106504983b, SEMA3Cd, LOC110255497b, CD36d, 
LOC100511343d

9:99,900,001–100,000,001 Nero Siciliano, Majorcan Black GNAT3b, CD36d, GNAI1d

15:57,800,001–57,900,001e Mora Romagnola, Italian Duroc –

15:97,300,001–97,400,001 Schwäbisch-Hällisches Schwein, Wild Boar –

15:105,300,001–105,400,001 Casertana, Majorcan Black TMEM237d, CDK15d, ALS2b, C2CD6d, MPP4b
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Gene enrichment analyses of breed‑derived regions 
of signatures of selection
To obtain a first functional overview of breed-specific 
windows of signatures of selection, over-representation 
analyses were run over the human GWAS catalogue. 
Twelve gene-phenotype associations, related to nine pig 
breeds, were retained as statistically valid (Table 3).

Coat colour emerged as one of the most important dis-
tinctive traits that characterize the Black Slavonian and 
Gascon breeds. Another interesting phenotype high-
lighted in this analysis is related to size/height (Table 3), 
which was over-represented in Krškopolje, Italian Lan-
drace, Italian Large White and Sarda. The 12 genes 
(Table  3) that contribute to this phenotype spanned 
genome windows encompassing SSC1, 4, 8 and 13. 
Genome windows on SSC2, 3 and 9 harboured genes 
associated to blood protein levels (Table  3). This phe-
notype was over-represented in the Cinta Senese and 
Moravka breeds. Another phenotype identified in the 
enrichment analysis was related to “heel bone mineral 
density” that emerged from the gene set defined for the 
Krškopolje breed.

Comparative analyses of signatures of selection 
between groups of breeds
In order to complement and dissect the results obtained 
in the breed-specific analyses, FST was also used to com-
pare different groups of breeds. Since morphological 
traits are known to represent important features that 
differentiate breeds, we considered groups of breeds 
according to coat colour and size of adult animals. These 
phenotypic descriptors were regarded as representa-
tive and fixed or almost fixed in the breeds analysed 
[15]. Thus, a few breeds that were not characterized by 
uniformity of the considered external features were 

excluded. Detailed information on the classification of 
the breeds investigated is in Additional file 1: Table S1. In 
addition, comparative analyses were run for groups that 
included all domestic breeds or only commercial breeds 
against wild boars, which were also included in pair-
wise comparisons with a few breeds to confirm/evaluate 
further the identified signatures of selection. Detailed 
information on the groups of breeds/populations and 
comparisons performed is summarized in Additional 
file 1: Table S8.

FST analysis of breed groups based on different coat 
colours
Breeds were classified according to the main coat col-
our patterns and features and then compared to identify 
major genomic regions that affect these external traits. 
All the results from the comparative analyses are in Addi-
tional file 1: Table S14 and Figure S7.

The breeds classified as belted (Cinta Senese, 
Krškopolje, Schwäbisch-Hällisches Schwein), even if 
their belt patterns could not be considered homogene-
ous, were compared with (i) all other breeds, (ii) all solid 
coloured breeds, (iii) all solid white coloured breeds 
(Lithuanian White old type, Italian Large White and Ital-
ian Landrace), (iv) all spotted breeds (Basque, Bísara and 
Lithuanian Indigenous Wattle), and (v) all solid black col-
oured breeds (Apulo-Calabrese, Swallow-Bellied Man-
galitsa, Black Slavonian, Nero Siciliano, Majorcan Black, 
Gascon and Moravka). In all these comparisons, major 
FST peaks were observed in the SSC8 regions that contain 
KIT, which is involved in the determination of this coat 
colour pattern [7, 83, 84], or close to it, and include the 
large and complex copy number variation region previ-
ously shown to affect this phenotype [7]. In the compari-
sons of the belted breeds with all the other breeds or with 

Table 3  Breed-specific over-represented human-derived phenotypes as defined in the human GWAS catalogue

Breed Human phenotype Adjusted p-value Overlapping genes

Black Slavonian Red vs brown/black hair colour 3.37 × 10−20 MC1R, TCF25, CHMP1A, FANCA, SPIRE2, CDK10, DPEP1, DEF8, CBFA2T3

Black Slavonian Low tan response 1.06 × 10−11 DBNDD1, MC1R, CHMP1A, FANCA, SPIRE2, DEF8

Black Slavonian Brown vs black hair colour 2.81 × 10−06 MC1R, TCF25, CDK10, DEF8

Black Slavonian Blond vs brown/black hair colour 1.49 × 10−04 DBNDD1, MC1R, TCF25, CDK10, SPATA2L

Cinta Senese Blood protein levels 2.63 × 10−02 EDAR, GZMM, PRSS57, PRTN3, AZU1, ELANE

Gascon Red vs brown/black hair colour 1.83 × 10−09 TCF25, FANCA, SPIRE2, CBFA2T3

Krškopolje Height 8.46 × 10−05 LYN, MOS, MC4R, SDR16C5, PLAG1, PENK, CHCHD7, RPS20

Krškopolje Heel bone mineral density 4.35 × 10−02 MC4R, PLAG1, ACYP2, SPTBN1

Italian Landrace Height 6.91 × 10−05 LYN, MOS, PLAG1, CHCHD7, NCAPG, RPS20, LCORL

Italian Large White Height 3.50 × 10−04 LYN, MOS, SDR16C5, GNPTAB, PLAG1, PENK, CHCHD7, RPS20

Moravka Blood protein levels 1.89 × 10−02 PRTN3, NRTN, AZU1, CD36, ELANE

Sarda Height 2.43 × 10−03 LYN, MOS, PLAG1, CHCHD7, RPS20, SERPINI1
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the spotted breeds, major FST signals were also identified 
a few Mb away from the KIT gene, in a window from 48.5 
to 48.6 Mb, without any annotated gene. This latter com-
parison showed that the most important FST signal on 
SSC8 was located downstream from the previous regions 
(from 66.7 to 66.8  Mb). This window encompasses sev-
eral annotated genes with unknown functions or that 
could not be considered as directly involved in coat col-
our phenotypes, according to current knowledge. This 
region was also identified in the comparison between 
spotted and black breeds, which suggests that this win-
dow might contain genomic features that affect spotted 
phenotypes. The results of the comparisons between the 
two reddish breeds (Italian Duroc and Mora Romagnola) 
against all breeds of other coat colours and colour pat-
terns confirmed that SSC15 contains a major signature of 
selection, as evidenced by several emerging peaks from 
53.8 to 58.3 Mb and including the OCA2 gene (Fig. 4).

FST analysis of breed groups based on adult body size
Signatures of selection that affect body size were evalu-
ated by grouping the pig breeds into three distinct 
classes: (small size, medium size and large size (see Addi-
tional file  1: Tables S1, S8)] and are reported in Addi-
tional file  1: Table  S14 and Additional file  2: Figure S7. 
Signatures of selection between the two extreme groups 
of breeds (small vs. large-sized pigs) were detected on 
SSC8, 10, 13 and 15. The most interesting FST signals 

were on SSC8 (Fig. 5a) and SSC15 (Fig. 5b), in genomic 
regions that are close to or harbour the NCAPG-LCORL 
and CASP10 genes, respectively. These loci are known 
to be involved in the determination of body conforma-
tion, birth weight and height in humans and several other 
domesticated and wild animal species [85–89], includ-
ing wild boars and domestic pigs [7, 25]. The region on 
SSC10 (Fig.  5c) maps near the MPP7 gene, which has 
been linked to number of teats in pigs [90]. On SSC13, 
three genome windows were identified and the most rel-
evant one (Fig. 5d) was close to the EPHA3 gene, which is 
associated with ham weight loss at first salting in Italian 
Large White pigs [91].

The signal on SSC15 was also detected when middle- 
and large-sized pig breeds were compared (see Addi-
tional file  2: Figure S8a) in addition to other genome 
windows on SSC1, 2 and 8. Among the windows on 
SSC1, two (see Additional file  1: Figure S8b, c) harbour 
genes that are related to body size. The first window har-
bours the ARID1B gene, which is associated with both 
syndromic and non-syndromic short stature [92]. The 
second window contains the MAP3K5 gene (and the 
nearby PEX7 gene), which has been suggested as a func-
tional candidate gene for body size in sheep [93]. Another 
signal was observed on SSC2 (see Additional file 1: Fig-
ure S8d), which contains the PIK3C2A gene. Mutations 
in the human PIK3C2A gene cause syndromic short 
stature and skeletal abnormalities [94]. The small vs. 

Fig. 4  Allele frequency values of SNPs in the OCA2 region



Page 12 of 19Bovo et al. Genet Sel Evol           (2020) 52:33 

medium size comparison revealed a window on scaffold 
NW_018084901.1, which contains the SHOX gene (ENS-
SSCG00000031933) that encodes the short stature home-
obox protein.

Comparative FST analyses between commercial and local 
pig breeds
Commercial pig breeds (Italian Large White, Ital-
ian Duroc and Italian Landrace) that have been under 
intensive selection programmes since the beginning of 
the 1990’ [95–97] were compared with local pig breeds. 
Signals were detected on seven chromosomes: SSC1, 5, 
9, 10, 11, 13 and 15 (see Additional file 1: Table S14 and 
Additional file 2: Figure S7). The two windows on SSC1 
were close to the MC4R gene (~ 160.77  Mb), which is 
known to affect growth performances and carcass traits 
in pigs [73, 74].

The window on SSC5 (29.3–29.4  Mb) contains two 
genes (WIF1 and LEMD3) that are associated with 
ear size [78, 80]. The region on SSC10 (39.9–40.0 Mb) 
maps near MPP7, which is associated with the num-
ber of teats in pigs [90]. The window on SSC13 
(167.4–167.5 Mb) is close to EPHA3 (166.6–166.9 Mb), 
which is associated with ham weight loss at first salt-
ing in Italian Large White pigs [91]. The SSC15 region 
(105.2–105.3  Mb), which contains several functional 
genes (TMEM237, C2CD6 and MPP4), is close to the 
previously mentioned region on this chromosome that 
includes CASP10. This gene was reported to be in a 
signature of selection that was identified by comparing 
wild boars and domestic pigs [7].

Fig. 5  Allele frequency values of SNPs in putative selective sweep regions detected in the FST analysis of small vs large-sized pig breeds. Major 
signals were detected on a SSC8 that carries the NCAPG-LCORL gene, b SSC15, that carries the CASP10 gene, c SSC10, close to the MPP7 gene and d 
SSC13, close to the EPHA3 gene
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Comparative FST analysis between domestic (local) breeds 
and wild boars
Wild boar whole-genome resequencing data were com-
pared first with data from all domestic breeds. Signatures 

of selection were identified on SSC1, 7, 8, 13 and 15 (see 
Additional file 1: Table S14 and Additional file 2: Figure 
S7). The SSC1 regions were close to two major genes, 
already mentioned above (MC4R and NR6A1; Fig.  6a). 

Fig. 6  Allele frequency values of SNPs in putative selective sweep regions detected in the FST analysis of domestic breeds (local) and wild boars. 
Major signals were detected on a SSC1 that carries the NR6A1 gene, b SSC7 that carries the TCC6, FOXA1 and SSTR1 genes, c SSC7 that carries the 
SUPT16H gene, d SSC8, the same region emerging also in the comparisons between spotted breeds, e SSC13 that carries the CEP63 gene and f SSC6 
that encompasses the AGBL4 gene
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Two signatures of selection were located on SSC7 
(Fig. 6b, c): one close to TCC6 and FOXA1, which were 
also identified in the single population analysis, and to 
SSTR1, which is involved in the metabolite levels of the 
5-HIAA/MHPG ratio [98]. The second SSC7 region con-
tains the SUPT16H gene, which encodes a component 
of the chromatin transcription (FACT) complex and has 
been suggested to be involved in transcriptional suppres-
sion during virus infections and thus in the promotion of 
virus latency [99], The SSC8 window (Fig. 6d) is the same 
region that was detected in the comparison between the 
spotted breeds. The window on SSC13 (Fig. 6e) harbours 
the CEP63 gene, which is associated with human height 
[100]. Finally, the three SSC15 windows identified in this 
comparison contain no annotated genes.

Considering that autochthonous breeds may have 
experienced cross-breeding with wild boars (which 
occurs mainly in extensive production systems [28]), we 
also compared wild boar sequence data with data from 
the commercial breeds that are assumed not to have 
been recently affected by wild boar introgression. Our 
results were similar to those described for the compari-
son against all domesticated breeds (i.e. we identified the 
same SSC1, 7 and 15 regions). In addition, in this analy-
sis, a few other regions emerged: a large region on SSC6 
(Fig.  6f ) that encompasses the AGBL4 gene, which is 
involved in obesity and fat deposition traits [101], and a 
few other regions on SSC15, including a region close to 
the previously reported CASP10 gene.

Putative deleterious variants in selection sweep regions
The impact of non-synonymous SNPs (nsSNPs) on pro-
tein function was evaluated with SIFT, which predicts 
whether an amino-acid substitution is functionally neu-
tral or deleterious [102]. In total, 18,532 of 149,180 nsS-
NPs (~ 12.4%) were classified as deleterious to protein 
function (SIFT score < 0.05). Since a SNP can affect mul-
tiple genes and their isoforms, 21,252 deleterious scores 
were obtained, among which 6599 were equal to zero and 
11,396 had a value lower than 0.01. However, interpreta-
tion of these SIFT predicted effects should be done with 
caution, since most of them might be functionally neutral 
[54].

Alongside nsSNPs, stop gain (N = 968) and stop lost 
(N = 148) variants were considered potentially deleteri-
ous, according to their disrupting effect on the protein 
function. Allele frequencies (AF) of these putative delete-
rious variants (N = 19,648; 18,532 nsSNPs + 968 SG + 148 
SL) were evaluated relative to the wild boar population, 
i.e. we considered that the putative ancestral form was 
the allele, which within the wild boar population had a 
frequency higher than 0.5 and we quantified their num-
ber. We identified 19,395 putative deleterious/disrupting 

variants (18,290 nsSNPs, 959 SG and 146 SL) out of the 
19,648 previously detected variants also present in the 
wild boar population. Of these 19,395 variants, 1782 
(1640 nsSNPs, ~ 9%; 109 SG, ~ 11%; 33 SL, ~ 23%) had the 
alternative allele as ancestral form (i.e. not in the refer-
ence genome).

We also analysed the fraction of variants that showed a 
marked difference in allele frequency between pig breeds 
and wild boars (AF > 0.8 in one group, AF < 0.2 in the 
other, and vice versa). Of the 19,395 inspected variants, 
we retrieved 86 variants (see Additional file 1: Table S15): 
81 nsSNPs, 4 SG and 1 SL, and about 92% of these vari-
ants had the alternative allele as the ancestral form. Then, 
we examined the overlap between these variants and the 
regions under selection and identified four variants in the 
following genes: one SNP in L3HYPDH (regions identi-
fied in the HP analysis of Lithuanian indigenous wat-
tle; with the alternative allele as the ancestral form), one 
SNP in OLFML2A (region of NR6A1; with the alternative 
allele as the ancestral form) and two SNPs in RPGRIP1 
(FST analysis of wild boar; both SNPs presented the refer-
ence allele as the ancestral form).

Discussion
At the population level, livestock genetic resources have 
been shaped by a complex interplay between human 
directly driven or derived genetic events (including artifi-
cial selection, introgression, admixture, genetic drift, and 
bottleneck) and adaptation to a variety of environmental 
and production conditions [3]. The resulting signatures of 
selection can be detected at the genome level by analys-
ing and comparing the sequence variation among breeds 
or populations. In this study, we analysed the distribu-
tion of genetic variants in the genome of a European wild 
boar population and 22 European pig breeds, most of 
them being autochthonous and unexplored populations. 
By using whole-genome resequencing of DNA pools, we 
identified signatures of selection that covered 502 unique 
genome windows (that were merged into 359 genome 
regions) and 49.9 Mb (~ 2%) of the Sus scrofa genome.

Our results were obtained by using a single breed 
approach with two statistics (within-breed pooled het-
erozygosity and fixation index) and a group-based FST 
approach, which compared groups of potentially partial 
homogeneous genomes, as assumed by general pheno-
typic descriptors or level of domestication/breeding of 
the grouped breeds. Signals overlapped partially between 
approaches, methods, breeds and contrasted groups of 
breeds, providing an interesting picture of genomic pat-
terns distributed in European pig breeds.

Summarizing and combining these results, puta-
tively ancestral related signatures of selection (i.e. wild 
boar conditions) were detected across all the genome of 
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several autochthonous breeds (Fig. 6). A possible expla-
nation could be a continuous gene flow that might have 
contributed, at least in part, to the adaptation of these 
pig genetic resources to a variety of environments and 
extensive or semi-extensive production systems. The flow 
might be, in most cases, accidental, derived by the rearing 
systems that cannot prevent admixture with wild boars. 
In other cases (i.e. Mora Romagnola, Swallow Bellied 
Mangalitsa, Basque and Turopolje breeds), this picture 
reflects the deliberate use of wild boars to constitute or 
reconstruct these breeds or the fact that these primitive 
breeds only recently started to differentiate from a wild 
genetic background. These situations could also explain, 
in part, their greater rusticity and their usual lower pro-
duction efficiency compared to commercial breeds.

In spite of this general and potentially recent introgres-
sion of wild boar genetic sequences into the domestic pig 
genome, the comparison with wild boars identified sev-
eral genome regions that are associated to the domesti-
cation state. Rubin et  al. [7] had already reported a few 
of these regions. For example, the region including the 
NR6A1 gene on SSC1 showed genetic patterns that dif-
fered to some extent between wild boars and domestic 
breeds, similarly to what was observed for the CASP10 
gene region on SSC15. In this comparison, we also 
detected a signature of selection in the region around 
the MC4R gene, which, indirectly, confirms the impor-
tant effect of this gene on productive and economi-
cally relevant traits [73] that were selected for during 
domestication and selection processes. The signals in 
this region were detected by comparing wild boars with 
both autochthonous breeds and cosmopolitan breeds, 
which suggests, at this gene, a gradient of allele frequen-
cies that went from wild state to domesticated and then 
to selected state. At the putative causative mutation of 
this gene (c.892G>A; rs81219178), the frequency of allele 
A, which is associated with high growth performances 
[73, 103], was higher in the commercial breeds than its 
average frequency in all autochthonous breeds, as was 
already shown by Muñoz et  al. [27]. Wild boars carried 
only allele G. This signature of selection was also con-
firmed by the increasing trend of the frequency of allele 
A during the decades of intensive selection programmes 
in commercial breeds [95]. Signatures of selections were 
also identified in the same gene regions by applying sin-
gle-breed analyses, which confirmed again the existence 
of quite differentiated patterns of ancestral/primitive 
states across breeds. Similar conclusions were also drawn 
for several other gene regions (including genes not previ-
ously reported or genes already reported by others, e.g. 
LCORL, NR6A1, MAP9 and PLAG1 [7, 75], that emerged 
only in a few breeds or that emerged by applying one or 
another statistical approach.

Recently, we analysed SNP chip data that were pro-
duced for all the autochthonous breeds included in this 
study and used a single-SNP single-breed FST approach to 
detect signatures of selection in the pig genome [30]. The 
comparison of SNP chip data with the whole-genome 
resequencing data obtained in this study clearly showed 
that the two approaches can capture different types of 
information (complementary and only in part overlap-
ping). This could be due to statistical and methodologi-
cal differences between the two studies (we included also 
three commercial pig breeds) and to the different level of 
informativity of SNP chip vs sequencing data. Nineteen 
overlapping (or in proximity; < 500 kb) genome windows 
in 11 pig breeds were identified (see Additional file  1: 
Table S16). The fact that these regions were detected by 
two different methodological approaches and techniques 
strengthens the involvement of genes that potentially 
affect traits with breed-specific features or production 
characteristics. For example, one interesting signature 
of selection that both approaches captured was in the 
Alentejana breed on SSC5, it encompasses the HMGA2/
MSRB3/LEMD3/WIF1 [77–80] gene region that is asso-
ciated with ear conformation. Signatures of selection that 
were detected by both SNP chip and resequencing data 
were also observed in Krškopolje (SSC5) and Lithuanian 
White old type pig breeds (SSC13) and encompass genes 
that affect fatty acids content (PLOD2; [104]) and human 
height (PLOD2 and FOXO3; [70, 105]).

By comparing whole-genome resequencing data from 
different homogeneous groups of breeds, it was possible, 
in most cases, to confirm results that had already been 
obtained with the single-breed approach. When morpho-
logical traits (i.e. coat colours and body size) were used to 
group breeds, emerging FST windows provided informa-
tion on well-known genes that affect these morphological 
characteristics (i.e. KIT, NCAPG-LCORL and CASP10 [7, 
83, 84]) in addition to the emergence of new evidence. 
For example, on SSC8, in addition to the KIT region, we 
detected other genomic regions that are strongly associ-
ated with pigmentation patterns, and on SSC15, there is 
strong evidence that the OCA2 gene region is associated 
with the reddish coat colour of Duroc [106] and Mora 
Romagnola breeds. Moreover, the overlap of some of 
these genome regions with those detected in the single-
breed FST analysis (in relation to the breeds character-
izing the investigated groups) strengthens the possible 
involvement of genome regions that potentially affect 
phenotypic traits.

Whole-genome resequencing data also provided infor-
mation on putatively deleterious/disrupting mutations in 
the genome of the investigated breeds and the wild boar 
population. A limited fraction of these mutations (0.4%) 
was detected as highly frequent (AF > 0.8) in the wild 
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boar population, and only four mutations were included 
in signatures of selection, which suggests that most of the 
variants with putative functional effects may play a regu-
latory role, as reported in other studies (i.e. [7]).

Conclusions
This study mined whole-genome resequencing data 
that were produced for autochthonous and commercial 
domestic pig breeds and wild boar populations to iden-
tify signatures of selection in the Sus scrofa genome that 
might reflect, at least in part, the genetic diversity present 
in this livestock species at the European level. With more 
than 22 million genome variants, we used different sta-
tistics and methodologies that allowed us to detect sig-
natures of selections in more than 500 genome regions. 
These regions harboured genes that can explain part of 
the phenotypic diversity of the investigated pig popula-
tions and their adaptation to different breeding and pro-
duction systems. Wild boar related signatures of selection 
are present in many autochthonous breeds in Europe, 
which suggests that the management of these genetic 
resources should evaluate the contribution of the ances-
tral state in defining breed rusticity. Overall, these results 
will be useful to better decipher the biological mecha-
nisms that underlie the genetic diversity of different pig 
populations and to design appropriate conservation pro-
grammes for maintaining these genetic resources.
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