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Programa de Doutoramento em Informática
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Abstract

Applying parallelism to constraint solving seems a promising approach and it has been done with varying
degrees of success. Early attempts to parallelize constraint propagation, which constitutes the core of
traditional interleaved propagation and search constraint solving, were hindered by its essentially sequential
nature. Recently, parallelization efforts have focussed mainly on the search part of constraint solving. A
particular source of parallelism has become pervasive, in the guise of GPUs, able to run thousands of parallel
threads, and they have naturally drawn the attention of researchers in parallel constraint solving.

This thesis addresses the challenges faced when using multiple devices for constraint solving, especially
GPUs, such as deciding on the appropriate level of parallelism to employ, load balancing and inter-device
communication. To overcome these challenges new techniques were implemented in a new constraint
solver, named Parallel Heterogeneous Architecture Constraint Toolkit (PHACT), which allows to use one
or more CPUs, GPUs, Intel Many Integrated Cores (MIC) and any other device compatible with OpenCL
to solve a constraint problem.

Several tests were made to measure the capabilities of some GPUs to solve constraint problems, and
the conclusions of these tests are described in this thesis. PHACT’s architecture is presented and its
performance was measured in each one of five machines, comprising eleven CPUs, six GPUs and two MICs.
The tests were made using 10 constraint satisfaction problems, consisting in counting all the solutions,
finding one solution or optimizing. Each of the problems has been instantiated with up to three different
dimensions. PHACT’s performance was also compared with the ones of Gecode, Choco and OR-Tools.

In the end, these tests allowed to detect which techniques implemented in PHACT were already achieving
the expected results, and to point changes that may improve PHACT’s performance.

Keywords: Constraint solving, Parallelism, GPU, Intel MIC, Heterogeneous systems
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Sumário

Resolução de Restrições em Sistemas
Massivamente Paralelos

A paralelização na resolução de restrições parece ser uma abordagem promissora e tem sido feita com vários
graus de sucesso. As primeiras tentativas de paralelizar a resolução de restrições, que tradicionalmente é
constituída pela propagação intercalada com pesquisa, foram prejudicadas pela sua natureza essencialmente
sequencial. Recentemente, os esforços de paralelização concentraram-se principalmente na parte de pesquisa
da resolução de restrições e surgiu uma fonte particular de paralelismo — as GPUs, capazes de executar
milhares de threads em paralelo, o que naturalmente chamou a atenção dos investigadores na área da
resolução paralela de restrições.

Esta tese aborda os desafios enfrentados ao usar vários dispositivos para a resolução de restrições, es-
pecialmente GPUs, como decidir o nível apropriado de paralelismo a ser utilizado, o balanceamento de
carga e a comunicação entre dispositivos. Para superar esses desafios, novas técnicas foram implementadas
num novo solucionador de restrições, chamado PHACT (Parallel Heterogeneous Architecture Constraint
Toolkit), que permite usar um ou mais CPUs, GPUs, Intel Many Integrated Cores (MIC) e qualquer outro
dispositivo compatível com OpenCL para resolver um problema de restrições.

Vários testes foram feitos para medir as capacidades de algumas GPUs na resolução de problemas de
restrições, e as conclusões desses testes estão descritas nesta tese. A arquitetura do PHACT é apresentada
e o seu desempenho foi medido em cada uma de cinco máquinas, incluindo onze CPUs, seis GPUs e dois
MICs. Os testes foram feitos utilizando 10 problemas de restrições diferentes, consistindo na contagem
de todas as soluções, encontrar uma solução ou otimização. Cada um dos problemas foi instanciado com
um máximo de até três dimensões distintas. O desempenho do PHACT foi também comparado com o do
Gecode, do Choco e do OR-Tools.

No final, estes testes permitiram detetar quais as técnicas implementadas no PHACT já estão a atingir os
resultados esperados e apontar mudanças que poderão melhorar o desempenho do mesmo.

Keywords: Resolução de restrições, Paralelismo, GPU, Intel MIC, Sistemas heterogéneos
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1
Introduction

Constraint Satisfaction Problems (CSPs) allow modeling problems like the N-queens problem [53] and some
real life problems like planning and scheduling [6], resource allocation [23] and route definition [10].

A CSP can be briefly described as a set of variables with finite domains, and a set of constraints between
the values of those variables. The solution of a CSP is the assignment of one value from the respective
domain to each one of the variables, ensuring that all constraints are met [10].

Definition 1. Formally a CSP is defined as a triple P = ⟨X,D,C⟩, where:

• X = ⟨x1, x2, ..., xn⟩ is an n-tuple of variables;

• D = ⟨D1, D2, ..., Dn⟩ is an n-tuple of finite domains, where Di is the domain of the variable xi;

• C = {C1, C2, ..., Cm} is a set of relations between variables in X, designated as constraints;

• A CSP solution is an n-tuple A = ⟨a1, a2, ..., an⟩ where ai ∈ Di is the value assigned to variable xi
and all the constraints Cj are met.

1
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The N-queens problem consists in placing n queens in a n × n chessboard, such that no queen attacks
another one. It can be modeled as a CSP with n variables, corresponding to the queens and each one is
already mapped to a different matrix column. The domain of these n variables is composed by the integers
that correspond to the matrix rows where each queen may be placed [53]. The constraints are a set of
rules to ensure that no queen will be placed on the same row or diagonal as another one.

The methods for solving CSPs can be categorized as incomplete or complete. Incomplete solvers do not
guarantee that an existing solution will be found, being mostly used for optimization problems and for large
problems that would take too much time to fully explore. On the contrary, complete methods guarantee
that if a solution exists, it will be found.

CSPs can then be solved by machines for multiple purposes, like finding a single solution, the best solution,
or counting all the solutions for that problem. The search for solutions for these problems evolved from
being executed sequentially on a single CPU to being executed through distributed solvers using multiple
single-threaded CPUs on networked environments [64]. Currently, several solvers already exist, capable of
using multi-threaded CPUs [16, 18], some of them even in distributed environments [53]. However, only a
few are capable of using multiple devices on the same machine, like a CPU and massively parallel devices
like GPUs to achieve greater performances [4, 15].

GPUs are very fast for mathematical calculations due to their specific hardware components that deal
with this kind of operations [22]. When these calculations are to be made over vectors, the GPUs parallel
capabilities allow to perform hundreds or even thousands of them simultaneously. These GPUs capabilities
make them appealing to be used for other purposes than graphics processing, leading to the creation of
the General Purpose Graphics Processing Units (GPGPUs).

GPGPUs are GPUs compatible with frameworks like the Open Computing Language (OpenCL)1 and the
Nvidia Compute Unified Device Architecture (CUDA) [22], which allow them to be used for other purposes
than graphics processing, like numeric calculations, artificial intelligence, computer vision and constraint
solving. Nowadays most of the GPUs are actually GPGPUs and for simplicity they are normally referred to
as GPUs.

The Parallel Heterogeneous Architecture Constraint Toolkit (PHACT) constraint solver was developed to
take advantage of any CPU, GPU or Intel Many Integrated Cores (Intel MICs) available on a machine
to speed up the solving process of a CSP. The development of this solver, its features, performance and
architecture are the main topic of this thesis.

PHACT provides its own interface for modeling CSPs, or can load them from a MiniZinc or FlatZinc [43]
model. Then, it can use from a single thread on a CPU, GPU or MIC, to thousands of threads spread
among several of those devices to speed up the solving process. For that purpose, the work distribution is
made at two levels. One between devices, and another between the threads inside each device.

To distribute the work, the search space is split into multiple disjoint sub-search spaces that are grouped
in blocks which are sent to the devices. The number of sub-search spaces that compose each block is
dynamically calculated during the solving process, considering the speed of each device when solving the
previous blocks. In the devices, each thread will solve a sub-search space at a time until a solution, the
best solution or all the solutions are found, or the block is fully explored.

The work described in this thesis was partially published in the articles [58, 59, 60].

In this chapter the motivation and objectives of this thesis are described. One of the main focus of this work
is the usage of massively parallel devices for constraint solving, so the influence of the architecture of such

1The OpenCL programming language is addressed in Section 4.1.
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devices in constraint solving is examined in Chapter 2, where multiple charts are presented to exemplify
the parallel capabilities of these devices.

Several works related with constraint solving that use some of the most well known solving techniques for
complete search, local search and Boolean Satisfaction Problems (SAT) on CPUs and GPUs are presented
in Chapter 3.

Chapter 4 describes the architecture and features of PHACT. The results achieved with PHACT when
using from a single CPU thread to multiple threads on CPUs, GPUs and MICs to solve a set of CSPs are
shown and discussed in Chapter 5. In that chapter the performance of PHACT in solving those CSPs is
also compared with the one of Gecode, Choco and OR-Tools. The conclusions and directions for future
work are presented in Chapter 6.

1.1 Motivation

The parallelism of CPUs is already being used with success to speed up the solving processes of harder
CSPs [16, 18, 53, 63, 37]. However, very few constraint solvers contemplate the use of more than one device
on the same machine, or massively parallel devices like GPUs and MICs. In fact, Jenkins et al. recently
concluded that the execution model and the architecture of GPUs are not well suited to computations
displaying irregular data access and code execution patterns such as backtracking search [31].

Mostly due to the increasing performance of the new GPUs and to the evolution of the programming lan-
guages compatible with most known CPUs, GPUs and MICs, this work intended to develop new techniques
capable of using the parallel processing power of CPUs, GPUs and MICs to speed up the solving process
of constraint problems.

1.2 Objectives and contributions

This thesis main focus is on the development of a constraint solver named PHACT that is already capable
of achieving state-of-the-art performances on multi-core CPUs, and can also speed up the solving process
by adding GPUs and processors like MICs to solve the problems.

To our knowledge, PHACT is the only constraint solver capable of using simultaneously CPUs, GPUs, MICs
and any other device compatible with OpenCL to solve CSPs in a faster manner.

Due to the evolution of programming languages like OpenCL, it is now possible to implement algorithms
for GPUs and other massively parallel devices with almost the same difficulty as for CPUs. However, to
make those algorithms capable of utilizing the processing power of these devices is much harder.

When we are dealing with complex hardware architectures as the ones of the GPUs, this complexity must
be considered during the implementation of the algorithms. PHACT starts by analysing the CSP to solve,
the objective of the solving process and the hardware of the devices that will be used, to decide on the
value of several parameters that will control the execution. These parameters will define, for example, the
number of threads to use on each device and the type of memory where each data structure will be stored
at the device. Other more specific control is also used, as for example, which propagators must be compiled
and if the portion of the code responsible for optimization must also be compiled or not, as the code that
will be executed on the devices is always compiled at runtime.

PHACT implements two stages of work distribution, one for partitioning the work among multiple devices
and another one to distribute the work among the threads on each device. New techniques were developed
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to try to achieve a good load-balancing between devices with much different architectures and performances.
Those techniques allow the solver to dynamically adjust the amount of work to send to each device during
the solving process according to its performance up to the moment.



2
Massively parallel devices

Computer processing power began to be augmented by increasing the frequency of the single core processor.
In 2001, the Cell Broadband Engine Architecture (CELL BE) [71] and the POWER4 [69] were presented,
as innovative multicore microprocessors. Nowadays, the hardware industry states that the computers
processing power will keep growing exponentially, but instead of doing so by increasing the processor
frequency, it will do it by increasing the number of cores and processors [9].

In recent years, a particular source of parallelism has become pervasive, in the guise of GPUs, able to
run thousands of parallel threads, and they have naturally drawn the attention of researchers in parallel
constraint solving.

Currently, most computers have a multicore CPU and some of them, specially the personal computers also
include a GPU that contains hundreds or even thousands of cores. For more processing power, accelerators
may be used, like the Intel Xeon Phi family of MICs, which are coprocessors that combine around 60 Intel
processor cores onto a single chip with dedicated RAM, connected to the system through PCI-express [21].

When massive processing power is required, supercomputers are built, like the fastest supercomputer in the
world, by June 2019, named Summit, which contains 27,648 Nvidia VoltaTM Tensor Core GPUs and 9,216
IBM Power 9 CPUs, achieving a total of 2,414,592 cores [38, 36].

5
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Nevertheless, although programming languages like the Nvidia CUDA and the OpenCL [22] have simplified
the programming effort of building software capable of running on GPUs, the peculiar architecture of these
devices must be taken into account to achieve good performances.

For example, the Nvidia Geforce GTX 980 is a GPU based on the Nvidia Maxwell architecture [47], which
contains 2,048 CUDA cores split by 16 multi-threaded Streaming Multiprocessors (SMs), as represented in
Figure 2.1. A CUDA core is similar to the CPUs cores, but with a smaller instruction set.

Figure 2.1: Architecture of Nvidia Geforce GTX 980 [47]

This GPU main components are:

• The PCIe 3.0, which connects the GPU to the CPU;

• The GigaThread engine, which transfers data between the CPU and the GPU and distributes the
threads among the SMs;
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• 16 SMs;

• All the SMs share the same level 2 cache;

• 4 Graphics Processing Clusters (GPC). Each one is a block of hardware components similar to a self
contained GPU [44];

• One raster engine for each GPC, responsible for functions like rasterization;

• 4 GB of GDDR5 global memory (RAM), accessible to all the SMs.

An SM of this architecture is detailed in Figure 2.2. Each SM manages its 128 CUDA cores, Load/Store
(LD/ST) units and Special Function Units (SFU), scheduling a top of 4 groups of 32 threads, called warps,
to them at a time.

Each SM includes:

• 128 CUDA cores;

• 32 LD/ST units that allow loading, storing and atomic instructions on memory access;

• 32 SFU responsible for fast calculation of 32 bits floating point instructions like square root, cosine
and sine;

• 4 Warp Schedulers and 8 Dispatch units that select a warp (set of 32 threads) and dispatch it to
the CUDA cores, the LD/ST units or the SFUs. Each Warp Scheduler is capable of dispatching two
instructions per warp every clock cycle;

• 96 KB of shared memory, which is available for all the CUDA cores;

• One polymorph engine responsible for specific functions like tessellation [44], and other components
for optimizing graphical calculations.

Each warp scheduler can issue two instructions at the same time, as for example, a mathematical operation
to a CUDA core and a load operation to a LD/ST unit. Each SM is capable of supporting up to 48 warps
at the same time, although it can only execute 4 warps at the same time, 1 per warp scheduler. This means
that the Nvidia Geforce GTX 980 is capable of running 2,048 threads simultaneously, which is a greater
level of parallelism when compared to CPUs.

However, the Nvidia GPUs have several other factors that influence the amount of threads that can be
executed simultaneously, as for example the amount of memory that each thread will require. The Nvidia
Geforce GTX 980 possesses 4 GB of global memory and only 96 KB of shared memory, which is much
faster and can be used explicitly for storage. These 96 KB are shared among the 32 threads that compose
a warp, which means that if the warp needs more than 96 KB not all of the 32 threads will be executed in
parallel.

GPUs work in a Single-Instruction Multiple-Threads (SIMT) parallelism model, which means that the 32
threads that compose a warp will only be executed simultaneously if they are executing the same instruction
at the same time [14]. If a thread is to execute an instruction different from the instructions of all the other
threads, it will be executed alone. As such, the number of threads that may be executed simultaneously,
is very dependent on the amount of possible divergent paths implemented in the code with conditional
instructions, like “if-else”, therefore, these must be avoided as much as possible.
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Figure 2.2: A Maxwell SM (SMM) from Nvidia Geforce GTX 980 [47]

The architecture of the AMD GPUs, like the Radeon 7970 HD [2], which is represented in Figure 2.3, is
much different when compared with the Nvidia GPUs, like the Geforce GTX 980.
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Figure 2.3: Architecture of AMD Radeon 7970 HD [2]

The AMD Radeon 7970 HD includes 32 Graphics Cores Next (GCN) compute units whose roles are similar
to the Nvidia SMs, and both GPUs connect to the CPU through PCIe 3.0 and all the GCNs/SMs share the
same level 2 cache. Figure 2.4 represents a GCN. Each GCN includes 4 Single-Instruction Multiple-Data
(SIMD) vector units, which can be compared to the Nvidia CUDA cores, but unlike CUDA cores, each
SIMD vector unit has its own registers and more resources available, which makes a SIMD vector unit
much more efficient than a CUDA core.

Each Nvidia GTX 980 warp consists in 32 threads, but the AMD Radeon 7970 HD wavefronts, which
correspond to the Nvidia warps, consist of 64 threads, which are executed by the SIMD vector units. By
comparing the Nvidia GTX 980 and the AMD Radeon 7970 HD, we may be led to think that the Nvidia
GPU is much faster than the AMD GPU, due to its 2048 CUDA cores, when compared with the 128 SIMD
(32×4) of the AMD GPU. However, the AMD SIMD vector units are more efficient than the CUDA cores,
as each one of them has more private resources than the NVIDIA CUDA cores.
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Figure 2.4: A GCN compute unit [2]

This section described the main hardware components of the Nvidia Geforce GTX 980 and of the AMD
Radeon 7970 HD, as Nvidia and AMD are the two main GPU vendors and two similar GPUs were used for
benchmarking purposes in this chapter and in Chapter 5.

The next section presents some results achieved with PHACT that exemplify the relations between GPUs
architecture and different CSPs, when trying to find the best implementation to speed up the process of
solving CSPs on GPUs. Section 2.2 demonstrates the level of parallelism provided by some GPUs and
compares it to the one made available by some CPUs.

2.1 Influence of GPUs memory types

When implementing software to run on GPUs, the types of memory that are used must be considered,
because the usage of shared memory may improve or worsen the software performance. For example,
using a single thread on an Nvidia Geforce GTX 980M to count all the solutions for the 12-queens problem,
PHACT took 36.4 s when using only global memory and 23.2 s when using also some of the shared memory.
However, the shared memory in the GPUs is usually very small (usually 32 KB or 64 KB) which means
that for problems that require much more memory, it may not be enough, even for the requirements of a
single thread.

PHACT memory requirements are greater than 64 KB, so it is not possible for it to solve CSPs using only
shared memory. Some tests were made loading some of the data to shared memory and the remaining to
global memory. Figure 2.5 presents the elapsed times of PHACT when solving the Costas Array 12 and
the 14-queens problems on three GPUs, using only global memory (identified as “G”), or global and shared
memory (identified as “GS”). The Costas Array problem consists in placing n dots on a n× n matrix such
that each row and column contain only one dot and all vectors between dots are distinct.

The limited size of the shared memory implies that its usage is only advantageous when it does not limit
the number of threads that can be executed simultaneously on an SM. When the amount of shared memory
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required limits the number of threads, the performance of the GPU may improve if only global memory is
used, because it allows to use more threads per SM, as presented in Figure 2.5.

The three GPUs used were an Nvidia Geforce 980M GTX, an Nvidia Tesla K20c and an AMD Tahiti GPU,
identified as Geforce, Tesla and Tahiti in Figure 2.5, respectively. On the three GPUs, solving the Costas
Array 12 problem with global and shared memory was faster than using only global memory up to a few
threads per SM. However, when the shared memory was not enough to run simultaneously all the threads,
the time began to increase.

Figure 2.5: Using only global memory (G), or global and shared memory (GS) on three GPUs

On the contrary, using only global memory allowed PHACT to decrease the elapsed time by increasing
the number of threads per SM, up to 128 threads, with some gaps on the Geforce. These gaps occur
immediately after increasing the number of warps (groups of 32 threads), which leads to running a warp
with 32 threads and another warp with the remaining ones, resulting in a performance decrease when the
second warp is running. With more than 16 threads per SM, PHACT was faster for solving the Costas
Array 12 problem when using only global memory.
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The 14-queens problem was represented as a CSP with 14 variables and 273 constraints and the Costas
Array 12 problem with 79 variables and 464 constraints, which makes the Costas Array a more complex
CSP. This complexity explains the fact that no results were obtained for the Costas Array problem when
using more than a certain number of threads per SM, as the shared memory size was not enough for the
requested number of threads when using global and shared memory. That limit was reached sooner on
Tahiti as its shared memory size is smaller than the one of Geforce and Tesla (32 KB against 49 KB).

As the 14-queens problem requires less shared memory, it allows PHACT to use more threads per SM
when using that type of memory. However, less memory accesses allows to decrease the difference between
elapsed times when using shared and global memory or only global memory, because although accesses to
the global memory are slower than the ones to the shared memory, their small number is not enough to
result in a greater variation of the elapsed times. That difference is only barely visible when using one or
two threads per SM. When increasing the number of threads, the elapsed times when using only global or
global and shared memory are almost the same. Only in Tesla and when using more than 122 threads, an
elapsed time increase is noticed when using shared memory, which may be due to the older architecture of
Tesla, Kepler [46], when comparing with the Geforce GTX 980 architecture, Maxwell [47].

However, even with Geforce, which was the fastest GPU of those three for solving the Costas Array 12 and
the 14-queens problems, if the dimension of the N-queens problem is increased, the gap between elapsed
times when using global and shared memory or only global memory becomes visible, as shown in Figure 2.6.

Figure 2.6: Using only global memory, or global and shared memory on Geforce for solving the N-queens
problem

The results presented in Figures 2.5 and 2.6 show that, at least for the three GPUs that were used for
solving these CSPs, using only global memory will allow to achieve greater performances. The reason for
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this behaviour may be due to the amount of shared memory being used leading to bank conflicts when
multiple threads need to access the shared memory. According to Nvidia [45], bank conflicts are very
expensive and may worsen the GPUs performance when using shared memory instead of global memory.

After several tests of this type, it was decided to not use shared memory in GPUs. However, the CPUs and
accelerators used for testing1 achieved better results when using shared memory, so by default, they will
use also shared memory. This may be due to the lower number of threads that these CPUs and accelerators
can execute simultaneously, which allow all of them to use the shared memory (32 KB) at the same time.

2.2 GPUs level of parallelism

Several tests were made to try to find the number of threads to use on a GPU that would lead to the
best performance of PHACT. Figure 2.7 presents the time needed for PHACT to find all the solutions for
several instances of the 10-queens problem. When using a GPU, two levels of parallelism must be defined,
the number of threads that will be executed on each SM, which is the same for all the SMs, and the total
number of threads that will be executed on the GPU, which must be a multiple of the number of threads
that will be executed on each SM.

Figure 2.7: Parallelism of an Nvidia Geforce 980M GTX

In Figure 2.7, the numbers near the lines indicate the range of threads per SM that yield that set of lines,
as each “step” is composed by as many lines as the range of those numbers. For example, the fine increase

1Intel Core i7-4870HQ, AMD Opteron 6376, Intel Xeon CPU E5-2640 v2, Intel Xeon E5-2690 v2 and Intel Many Integrated
Core 7120P.



14 CHAPTER 2. MASSIVELY PARALLEL DEVICES

from 2 to 3 s happens when the number of work-groups reaches 61 and between 113 and 128 threads are
executed on each SM. The work-groups represent the total number of threads divided by the number of
threads executed on each SM, which indicates the number of groups of threads that will be executed on
the SMs.

Each thread was counting all the solutions for a copy of a 10-queens problem, allowing all the threads to
execute the same code instructions at the same time, which is best suited to take advantage of the GPUs
parallelism. The tests ranged from a single thread solving one 10-queens problem, to 32,768 (256× 128)
threads, each one solving a 10-queens problem.

This chart shows, for example, that this GPU is capable of solving 7,424 (256 × 29) instances of the
10-queens problem taking almost the same time (about 2 s) as one thread solving a single instance of the
problem. The Nvidia GTX 980M possesses 12 SMs which means that it can execute a maximum of 1,536
(12× 128) threads simultaneously. However, each SM can support up to 48 warps, which means that up
to this number the data of the warps may be stored in the SM resources, making their intercalation much
faster. Nevertheless, those values will change according to the amount and type of resources (memory,
CUDA core, LD/ST unit, SFU, registers) required for each thread, which may explain the well defined
“steps” in Figure 2.7.

The values presented in this chart are only valid for the Nvidia Geforce 980M GTX and for solving copies
of a 10-queens problem. If a different GPU or CSP is used, the results will change. For example, an AMD
Tahiti GPU is capable of solving 11,264 instances of an 11-queens problem taking almost the same time
(10 s) as for solving one instance of the problem. The results are different due to the distinct hardware
specifications of the GPUs and to the memory requirements and complexity of the CSPs.

Normally, the more variables and constraints a CSP contains, the more divergent paths must be explored to
solve it, making it a more complex CSP. When solving a CSP with multiple threads, each thread will explore
one of those paths at a time, leading to most of the threads trying to execute different code instructions at
the same time, which greatly decreases the performance of the GPUs, going against their SIMT parallelism
model. Nevertheless, more recent GPUs are better prepared to minimize this problem and are improving
the usage of their parallelism to speed up this kind of problems.

For example, to count all the solutions for the 12-queens problem using a single thread, the Nvidia Geforce
980M GTX takes 38.7 s, but when using 32 threads on a single SM, it takes 11.6 s. An Nvidia Tesla K20c
takes 76.7 s to solve the same CSP with one thread and 28 s to solve it with 32 threads on the same SM.
This demonstrates that Geforce achieved an higher speedup than Tesla, 3.3 against 2.7, supporting the
statement that newer GPUs like the Geforce are more prepared to deal with threads executing different
code instructions.

Figure 2.8 presents the speedups obtained on an Nvidia Geforce 980M GTX, an Nvidia Tesla K20c and
on an AMD Tahiti GPU when increasing the number of work-groups with just one thread each, to find all
solutions for the Costas Array 12 and the 14-queens problems. The number placed in the chart, after each
GPU name, corresponds to the number of SMs each one contains.

In this chart we can observe that the number of work-groups that lead to the best performance depends
on the device and on the problem to solve. The speedups increase up to a certain number of work-groups
and then they stagnate, meaning that, even if we try to execute more threads on that device, it will not
change the time needed to solve the problem. Several tests were made to try to explain this behavior and
it was noted that the GPUs limit the number of work-groups that they can handle at the same time. For
example, from 4096 work-groups, the Geforce only executes the first 384 to solve the problem and only
after these have finished, does it execute the remaining 3,712. In the case of PHACT, this means that all
the work is done by the first 384 work-groups and the others will only check that all the work has already
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Figure 2.8: Speedups in GPUs when increasing the number of work-groups

been done, and exit.

The 384 value corresponds to the number of SMs (12) of this GPU multiplied by 32. In Tesla, 208 work-
groups, which are the work-groups that actually do some work, is equal to the 13 SMs multiplied by 16.
However, the Tahiti shares all the work between 384 work-groups, but there is no speedup when increasing
their number above 256 work-groups (32 SMs multiplied by 8), which may be explained by the different
hardware arrangement when comparing Nvidia and AMD GPUs.

GPUs can choose to pause the execution of a work-group and start executing another when the previous
one is waiting for resources [12]. This may mean that for CSPs that require much time to solve, if the
number of work-groups created is much higher than the number of SMs it may improve the probability
of there existing a work-group that has all the needed resources available. For that reason, by default,
PHACT will create 512 work-groups on any GPU to solve a problem.

GPUs allow two levels of parallelism, one related with the number of SMs as presented in Figure 2.8, and
another with the number of cores inside each SM as represented in Figure 2.5. The number of threads that
a GPU will run simultaneously on an SM is always equal to or less than the work-groups size (number of
threads in each work-group). This number is limited by each device architecture, but it will always consist
only of threads that will execute the same code instructions next [70]. As so, the number of threads that
will be executed simultaneously on an SM is dependent on the complexity of the code. More specifically,
on the different paths that a thread may follow in the code.

When using the number of work-groups and threads per work-group that yield the best elapsed times in
the previous tests and comparing those to the sequential times (one thread in one work-group), we can
observe that the GPUs achieve a considerable speedup, as represented in Figure 2.9.

When comparing those speedups with the ones achieved by CPUs and a MIC, the GPUs greater level of
parallelism is much evident. The tests on the CPUs were done with as much threads as their number of
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Figure 2.9: Maximum speedups in GPUs and CPUs when comparing with sequential times

cores, and in case of the MICs, 736 threads were used. The numbers next to the name of the device in the
chart represent the number of compute units detected by the OpenCL programming language, which in
case of GPUs, are the number of SMs, and in CPUs and MICs are equal to or greater than the number of
cores. The GPUs used for this comparison were an AMD Tahiti GPU, an Nvidia Geforce 980M GTX and
an Nvidia Tesla K20c. The CPUs were an Intel Core i7-4870HQ, an AMD Opteron 6376, an Intel Xeon
CPU E5-2640 v2 and an Intel Xeon E5-2690 v2. An Intel Many Integrated Core 7120P was also used.

2.3 Conclusion

The GPUs shared memory may speed up the execution of the code, but its small size does not allow it to
be used to solve more complex problems, or it can even worsen the performance of the GPU due to bank
conflicts. For that reason, by default, PHACT does not used shared memory when running on GPUs.

GPUs can execute thousands of threads simultaneously, but for that to be possible, the code to execute
must possess as little divergent paths, like “if-else” as possible. However, most of the constraint propagation
and backtracking algorithms possess many divergent paths, which make constraint solving a hard task for
GPUs, specially when the problems are composed by many constraints.

Nevertheless, it was found that when executing code with many divergent paths, if the number of threads is
increased above the number of threads that the GPU is capable of running simultaneously, the performance
of the GPU will improve. This happens because increasing the number of threads will also increase the
chance of existing more threads that will execute the same code instruction at the same time, meaning
that they can be executed simultaneously.
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By analysing this results and the ones of several other tests that were made to try to select the best default
values for the number of work-groups and work-items to use for each device, the following default values
were introduced in PHACT:

• CPU or accelerator - 1 work-group with 1 work-item per compute unit;

• GPU - 512 work-groups with 128 work-items each.

Nevertheless, those values are only used if the user does not want to use his own, by introducing them in
the execution command of PHACT.





3
State of the art

In the past decades, several constraint solvers and techniques to improve their performance were developed.
At the beginning, due to the absence of multithreading CPUs, only sequential solvers were developed, being
followed by distributed solvers implemented over networked machines. Later, the multithreading CPUs
allowed to speed up the solvers by distributing tasks among the parallel threads. Nowadays, even though
the most current GPUs allow unprecedented levels of parallelism on a single device, their capabilities are
yet to be tamed for constraint solving.

This chapter introduces some relevant works made in the past, relating to complete search, local or
incomplete search, and SAT on CPUs, GPUs and on multiple devices/machines simultaneously. As PHACT
is a complete solver, the first section presents this approach, describing most of the techniques used by other
authors. Sections 3.2 and 3.3 introduce some techniques used for incomplete search and SAT, respectively.

3.1 Complete search

In complete methods, finding solutions to a CSP is usually done by iterating two stages:

19
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• Labeling - Selecting and assigning a value to a variable. This value must belong to the variable
domain;

• Constraint propagation and consistency check - Propagates the assignment of a value to one variable
to the domains of other variables. This process aims to reduce the number of elements in those
domains and to check if any constraint is no longer satisfiable, which would mean that the set of
assigned values is not part of a CSP solution.

The order in which the selection of the variables to label and of the values to assign to them is done, may
influence greatly the time taken to solve a CSP. Thereby, several heuristics may be used to make those
selections. The most used for selecting the variable for labeling, are:

• Select the first unassigned variable that was introduced in the CSP model. Normally called “Left-
most”;

• Select the unassigned variable that has the fewest values left in its domain. Normally called “First-
fail”;

• Select the unassigned variable that is more constrained. Normally called “Fail-first”.

Unfortunately, the same heuristic may behave greatly on a CSP, but very poorly on a different CSP, so
the selection of the heuristic must be very well thought out, when possible. For example, to count all the
solutions for the 15-queens problem with a single thread on an I7 CPU, using the Leftmost (input order)
heuristic, PHACT needs 72 s, but when using First-fail it takes only 60 s. On the contrary, for the Costas
Array 12 problem, using First-fail, it needs 28 s, but when using Leftmost it needs only 16 s.

When labeling a variable, a value from its domain must also be selected. Several heuristics exist for making
this selection, being the most common the one that selects the minimum value. Other possible heuristics
are selecting the maximum value or the mid value. This selection also influences the performance of the
solver. For the Costas Array 12 problem, PHACT needs 15 s when selecting the maximum value, against
16 s when selecting the minimum value.

When the search is made in parallel, the influence of the heuristics may be attenuated. For example, for
counting all the solutions of the 15-queens problem with 8 threads, PHACT took 14 s against 12 s when
using, respectively the Leftmost and the First-fail heuristics. However, these results may vary depending
on the techniques used for distributing the work to all the threads, and each thread can even use different
heuristics.

The process of searching for a CSP solution may be represented in the form of a search tree and the
solution is usually searched through backtracking. Backtracking is used when, during the search, an
inconsistent state is reached, that is, when an assignment of a variable and/or subsequent propagations
cause a constraint to no longer being respected. In this case, all the changes made to the domains of the
variables after the last labeling are reverted, the last value assigned to the variable being labeled is removed
from its domain, and a new value is selected.

The search tree can be divided into multiple sub-trees which can be traversed in parallel, thereby taking
advantage of possible parallel architectures. The division is made by splitting the domains of variables into
disjoint domains. Figure 3.1 represents the division of a CSP with three variables (V 1, V 2 and V 3), each
one with the values 1 and 2 on their domain, into two sub-search trees.

The division of the search tree representing the problem can be done through different techniques, as
for example the one implemented in Parallel Complete Constraint Solver (PaCCS) which is a complete
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Figure 3.1: Example of a search-tree division into two disjoint sub-search trees

constraint solver developed by Pedro [53], that uses work stealing to distribute the work among multicore
CPUs on a distributed environment.

PaCCS implements work stealing by splitting the search space among multiple agents (workers) who steal a
new search space from their co-workers after finishing the previous one. Each worker was built as a search
engine that interleaves rule-based propagation and search.

According to Gent et al. [27], multi-agent search is a promising approach to parallelism usage in CSP
solving. This is done by using multiple agents to solve the same problem. Any of the agents is capable of
solving the problem independently, or a part of it. Also, the agents may be different and may communicate
between them.

The process of work stealing is transparent to the co-workers from which the work is stolen. According to
Pedro [53], work stealing is an highly parallelizable load-balancing technique that enables the full use of
the power of multiprocessor computers.

PaCCS was implemented for Unix, in the C programming language, with the objective of providing a
backend to an higher level language allowing constraint modeling constructs and the transparent usage
of multithreading CPUs, possibly in distributed environments. PaCCS uses Portable Operating System
Interface (POSIX) threads for easier memory sharing and the Message Passing Interface (MPI) standard
to distribute the search space through the workers and for transmitting other required messages.

The workers are grouped in teams, each one corresponding to an MPI process, and each worker and the
team controller is a POSIX thread of that process. The team controller is responsible for managing the
communication between the workers of that team and with the controllers of other teams.

The internal representation of the domains of the CSP variables is called the domain store and was imple-
mented as an array of domains in a contiguous region of memory. Each variable domain was implemented
with a fixed-size bitmap, allowing the use of two more fields containing the maximum and minimum values
of the domain. Next to each store is included information about the variable whose domain was divided to
yield this store. The CSP variables and constraints are stored in shared memory.

According to Pedro [53], the domain store contains all the dynamic information needed to define a search
space. As such, when a worker steals work from another worker (teammate or not), one store is the stolen
unit. Each worker maintains a pool of stores arranged as an array of stores indexed according to its age
and may split its current search space into multiple stores that may be stolen by other workers from the
same team or from a different one.

PaCCS is able to run on multiprocessing systems constituted by multiprocessors, networked computers or
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both. To achieve this level of distribution, PaCCS is based on a two level architecture:

• Lower level - It represents the teams. Each team is constituted by a group of tightly coupled workers
that share resources;

• Higher level - It consists in the coordination of the teams for solving the CSP.

Pedro [53] tested his implementation by solving the N-queens, Langford Numbers, Golomb Ruler and
Quadratic Assignment problems. The Langford Numbers problem consists in arranging m sets of integers
from 1 to n, such that between two consecutive occurrences of integer i there exist exactly i other numbers.
The Quadratic Assignment Problem consists in assigning a set of n facilities to a set of n locations, while
minimizing the sum of the distances between locations multiplied by the flow or weight of the facilities.

The results obtained by Pedro [53] showed that PaCCS is a very scalable parallel constraint solver which
achieved an almost linear performance for all the tested problems.

Chu et al. [18] implemented an adaptive work stealing algorithm that automatically executes different
work stealing techniques, according to the estimated solution density (estimated probability of containing
a solution) of each sub-tree.

According to Chu et al. [18], the efficiency of the branching heuristic that is used is directly related with the
efficiency of the achieved load balancing. These authors created an algorithm for estimating the sub-tree
solution density that defines the branching confidence of each node. The confidence of a node is the
estimated ratio of the solution density in the sub-trees derived from that node.

For estimating the solution density, Chu et al. attended to the following properties:

• The solution density between nearby sub-trees is highly correlated because many of the values are
shared between them;

• As the number of nodes from a sub-tree that are not the solution increases, the solution density of
that sub-tree and of the nearby sub-trees decreases.

Using these properties, Chu et al. [18] manage to assign a confidence value to each node while searching for
a solution. At the beginning of a search there are no confidence levels for any node. The initial confidence
value, ideally, could be developed by the problem modeler, as an expert on the problem to solve. If that is
not possible, those values could just be equal in every node, being updated as the search continues.

With a confidence value assigned to every node, Chu et al. [18] managed to develop a confidence-based
search algorithm with the following features:

• After a sub-tree is fully explored, the confidence value of all the nodes above it is updated;

• The number of threads exploring each branch is updated as the search advances;

• When a worker finishes its sub-tree and needs a new one, it “steals” it according to the following
rules:

– Always start searching for an unexplored node on the root of the search tree;
– Search for an unexplored node on the left branch if it has fewer working threads than the right

branch and taking into account their confidence value, or on the right branch otherwise;
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– If after going down the tree for a certain number of nodes (depth), no unexplored node is found,
steal the first unexplored node above that depth (even if it has a smaller confidence value);

– The maximum allowed depth value is dynamically changed to maintain a minimum sub-tree
size, so that work stealing does not occur more often then a predefined threshold to limit
communication costs.

• A master coordinates all the workers;

• A worker explores a sub-tree for a predefined restart time and after that time passes, it will return
the results of its exploration to the master, and steals a new sub-tree.

Chu et al. [18] implemented their confidence-based work stealing algorithm using Gecode [66]. Gecode is a
free software library developed to simplify the implementation of constraint-based systems and applications.
It is implemented in C++ and has bindings for Python, Prolog, Ruby, Java and other programming
languages. Gecode also uses work-stealing when doing parallel search.

Chu et al. tested their system with the Traveling Salesman, the Golomb Ruler, the Queen-Armies, the
N-queens, the Knights and the Perfect Square placement problems. The Traveling Salesman problem
consists in finding the shortest possible route that visits a group of cities. Each city can only be visited
once, except for the origin one, that must also be the one to return to at the end [17]. The Golomb Ruler
problem consists in defining a set of n marks on an imaginary ruler, such that the distance between each
pair of marks is unique between all pairs. The first and the last mark define the size of the ruler, and the
ruler should have the minimum size possible [53]. In the Queen-Armies problem two equal-sized armies of
queens must be placed on a chessboard, such that no queen from one army attacks a queen from the other
army, and the maximum number of queens must be placed [67]. The Knights problem consists in moving
a Knight on a chessboard such that he visits every square only once [52].

Those tests were run using eight threads on a Dell PowerEdge 6850 with four 3.0 GHz Dual Core Pro 7120
CPUs and 32 GB of memory. The used restart time was 5 s and the minimum allowed time between work
stealing for each thread was 0.5 s.

According to Chu et al. [18], even using biased initial confidence values was sufficient to obtain an almost
linear speedup, but if the initial confidence values were specifically assigned to try achieving the best results,
the outcome was even better. These authors also state that the developed system was capable of achieving
a speedup of about 7 using the 8 threads for all the tested problems, and that the communication costs
were almost imperceptible.

Besides work stealing, which needs as much communication and concurrency control between workers
and/or masters as the number of workers, some authors like Régin et al. [63], split the search-space only
at the beginning of the solving process.

Their technique, called EPS, consists in filing a queue of sub-search spaces that were not detected incon-
sistent by a solver during their generation, and distributing them among workers for exploration.

These authors implemented a master, responsible for generating these sub-search spaces, maintaining the
queue, and collecting results. The authors stated that the optimal number of sub-search spaces that would
lead to a best load-balancing between the workers ranged from 30 to 100 per worker. Each worker takes
a sub-search space for exploration. When a worker depletes that sub-search space, it will take another one
from the queue, until no work remains.

Régin et al. [63] tested their technique with the Gecode [66] and the OR-Tools [29] solvers, using 20
problems modeled in FlatZinc [49]. Each problem was split by their implementation and each worker was
a thread executing an instance of the solver, which explored a sub-search space at a time.
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These authors tested their implementation on a machine with 40 cores, achieving a geometric mean speedup
of 21.3 with OR-Tools and 13.8 with Gecode, when comparing with a sequential run. When using the 40
cores, their implementation with Gecode achieved a geometric mean speedup 1.8 times greater than Gecode
alone, which uses work stealing for load-balancing.

Schulte [64] implemented a distributed solver, using the Mozart OZ programming language [62], which
simplifies the usage of networked computers with search engines.

This author based his solver on one master and multiple workers, where the master is responsible for
initializing workers, collecting solutions, assist in finding work for workers and detecting termination. Each
worker explores the sub-trees, sends solutions to the master and shares work with the other workers. When
a worker finishes its sub-tree, it informs the master, which in turn will look for another worker with enough
work to share. This worker will then deliver a branch of its sub-tree to the master, and the master will give
it to the idle worker.

For benchmarking, the author used the Alpha, the 10-S-Queens, the Photo and the MT 10 problems.
The Alpha is an alphabetic puzzle that consists in assigning 26 variables (a, b, ..., z) with distinct values,
respecting 25 equations [65]. The 10-S-Queens is a problem identical to the 10-queens problem, but
modeled in a distinct way, allowing for a faster exploration [65]. In the Photo problem, a group of persons
wants to take a photo while keeping their preferences on the persons next to whom they want to be
placed in the photo [65]. The MT 10 is a 10 × 10 job-shop scheduling problem presented by Muth and
Thompson [42].

Schulte [64] tested his implementation on a distributed environment composed by two Intel Pentium II and
four Intel Celeron, and achieved speedups that ranged from 1.74 when using 2 workers (two Intel Pentium
II) to 5.21 when using 6 workers (all the machines).

The latest versions of the OR-Tools [29] solver used by Schulte [64] are already capable of using parallelism
to find one solution or near optimal solutions to a CSP. For that purpose it uses a portfolio of workers with
different strategies that try to solve the problem.

Using a similar strategy, namely a portfolio of workers, Prud’homme, Fages and Lorca [55] implemented
Choco which is also capable of finding one solution and near optimal solutions when solving optimization
problems.

Both OR-Tool and Choco were initially implemented without parallel capabilities, and are capable of
enumerating all the solutions of a problem if only one thread is used. Nevertheless, both solvers are under
improvement and in the future they may be able to do so also in parallel.

Xie et al. [72] developed a constraint based solver for massive parallel systems, such as the IBM BlueGene/L
and BlueGene/P, with 65,536 and 1,048,576 processors, respectively. Their parallel solver is based on the
C++ constraint programming based Watson Scheduling Library, developed at IBM.

Xie et al. implemented a load balancing technique based on dynamically partitioning the search space
among the available processors. This was done by dividing processors into masters and workers. The
master processors have a global view of the search tree and coordinate the workers by dividing the search
tree between them and keeping track of the branches that have been explored or are yet to be explored.
Each worker has only one master, but each master is able to coordinate multiple workers.

The workers request a sub-tree from their master and explore it. Each ramification on the search tree
corresponds to a constraint added to the tree. A sub-tree (or sub-problem) is passed to the workers as a
set of constraints, using the MPI standard.
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Each master keeps a representation, called the Job Tree, of the parts of the search tree that have been
explored, are being explored or are unexplored by the workers. The unexplored sub-trees are the ones that
the masters send to the workers that claim a new sub-problem.

When the solving process starts the search tree is divided between the masters in a static way. For load
balancing purposes, a number of possible branchings is evaluated before the search tree is divided. After
that division each master creates a Job Tree by exploring some part of his sub-tree. Then, if no solution
was found, it starts dispatching branches of its sub-tree to the workers that request them. When a worker,
while exploring its sub-tree, notes that it has become too large (more nodes then a predefined threshold),
it sends a branch of its sub-tree to its master, and keeps working on the part it did not send. Its master
expands its Job Tree with the new unexplored nodes.

After testing their implementation, Xie et al. [72] stated that they achieved almost linear scaling with
one master. But with multiple masters the results were far from linear scaling. Xie et al. state that
for achieving that kind of performance with multiple masters, a technique for dynamically allocating sub-
problems between masters must be developed.

While solving CSPs through parallelization has been a subject of research for decades, the usage of GPUs
for that purpose is a very recent area, and as such there are not many published reports of related works.

Campeotto et al. [15] developed NVIDIOSO, which is a complete CSP solver with CUDA for Nvidia GPUs.
The implementation of constraint propagation follows three main guidelines:

• The propagation and consistency check for each constraint is assigned to a block of threads;

• The domain of each variable is filtered by one thread;

• The constraints related with few variables are propagated in the CPU, while the remaining constraints
are filtered by the GPU. The division bound is dynamic to keep the load balanced between the host
(CPU) and the device (GPU).

For faster access, each CSP variable domain is represented as a bit-mask in a 32-bit unsigned variable, and
other three variables are also used for storing the domain bounds and the last event associated with that
domain. With this representation, negative numbers can be stored using offset values.

The events allow to classify the last action applied to that domain. For example, they may indicate that
an element was removed and this allows to apply the appropriate propagator. Each search tree node is
represented in a vector containing all the variables domains and the other three variables mentioned above,
allowing to take advantage of the GPU cache.

Data transfers between the host and the device are reduced to a minimum due to the low bandwidth
transfer rate. At each propagation, the domains of the variables that have not yet been assigned and
the events that occurred during the current exploration are copied to the GPU global memory. This data
transfer is made asynchronously, and only after the CPU has finished his sequential propagation both GPU
and CPU will be synchronized.

The simplest propagators are invoked by a single work-group, and the more complex ones are invoked by
more than one work-group. For this purpose, the constraints are divided between GPU and CPU, and the
GPU part is also divided into the ones that should be split between multiple work-groups and the ones that
should not.

Campeotto et al. [15] used the MiniZinc/FlatZinc constraint modeling language for generating the solver
input and implemented the propagators for FlatZinc constraints and other specific propagators.
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These authors obtained speedups of up to 6.61 for some synthetic problems, when comparing a sequential
execution on a CPU with the hybrid CPU/GPU version.

3.2 Incomplete search

Local search is an incomplete method for finding a solution for a CSP, and as such it does not guarantee
that a solution will be found, if one exists, but it is essential for solving hard combinatorial problems, where
a complete method would take too long.

Typically, local search starts with a candidate solution, that is, all the variables assigned with random
values, or selected by means of an heuristic. Then, applying specific heuristics it tries to improve that
possible solution by changing the assignments. The quality of the candidate solution in normally measured
through an evaluation function, which computes the degree of the violation of the constraints, or through
a cost set on a global variable.

To improve the candidate solution, the search moves to a local neighborhood by changing the value assigned
to one or more variables, repeatedly, until a termination condition is reached. The variables to reassign
between iterations are selected by specific heuristics, which are the core of the local search. For example,
the Iterative improvement or Hill-climbing method checks for variables that improve the quality of the
candidate solution and selects one of them to be reassigned. It can select, for example, the first one that
improves the candidate solution, or the one that most improves it, strategies known as First-Improvement
and Best-Improvement, respectively [61].

The main problem with Iterative Improvement is that it tends to stagnate in local minima of the evaluation
function. To minimize this problem, several approaches exist, as for example, to randomly select the
variables to reassign in some steps of the iterative process, which is called Random Iterative Improvement [4].
Another approach to avoid getting stuck in a local minimum is the usage of Tabu Search, which consists
in memorizing some of the previous neighborhoods that were visited, and avoiding visiting them during the
next predefined number of steps [16].

One possible way to improve the performance of local search is to adapt it to the incremental knowledge
about the search space obtained while the search is running. Caniou et al. [16] developed a parallel Adaptive
Search algorithm for solving CSPs, whose main steps are:

1. An heuristic function (also called “error function”) is defined for each constraint, which indicates how
much that constraint is violated;

2. To each variable is associated an error value that corresponds to the sum of the errors of the
constraints (how much the constraint is violated) in which it appears;

3. The variable with the highest error (called the “culprit”) is assigned the value from its domain that
will result in the littlest error with the next configuration (all variables assigned one value from the
respective domain).

Caniou et al. [16] used an Adaptive Search method, available for download at [20] as a freeware C-based
framework, combined with OpenMPI (Open Message Passing Interface) for parallelization. OpenMPI allows
for simple message passing in networked environments, providing the next main features [48]:

• Support for network heterogeneity, allowing the use of multiple types of devices, operating systems
and/or protocols;
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• Thread safety and concurrency control for safety and consistent resource sharing between threads;

• Network and process fault tolerance to avoid most of the system failures;

• Dynamic process spawning allowing the addition of processes to a running job.

To deal with local minima, these authors used Tabu Search to avoid returning to neighborhoods already
visited on a predefined number of previous steps.

For the parallelization, every available core receives a sequential fork of the Adaptive Search method, and
runs it for a predefined number of iterations. After that number of iterations a test is made to check if
there is any message indicating that a process has found a solution. If a solution has been found, the
execution is terminated. If during that amount of iterations, more that one process has found a solution,
the fastest one is selected.

Caniou et al. [16] used three benchmarks, namely the All Interval Series problem, the Perfect Square
Placement problem and the Magic Square problem. The All Interval Series problem can be explained as
defining a vector s = (s1, ..., sm), such that s is a permutation of Zn = {0, 1, ...,m− 1} and the interval
vector v = (|s2 − s1|, |s3 − s2|, ..., |sm − sm−1|) is a permutation of Zn − {0} = {1, 2, ...,m− 1} [3]. The
Perfect Square placement problem consists in placing n squares of different sizes inside a master square [39].
The Magic Square problem consists in filling a square grid with distinct integers, such that the sum of each
horizontal, vertical and diagonal line of integers is equal [32].

These authors achieved speedups of about 30 to 50, when using 64 and 256 cores respectively, when com-
pared with sequential resolutions, and remark that the speedups were more relevant on bigger benchmarks.

Arbelaez and Codognet [4] developed a constraint-based local search solver that runs an Adaptive Search
algorithm similar to the one created by Caniou et al. [16], on an Nvidia GPU. These authors implemented
parallelism in two levels to take advantage of the GPUs parallel capabilities:

• Multiple instances of the adaptive search algorithm are executed, one per block of threads;

• Inside each block of threads, parallel neighbourhood evaluation is implemented by selecting two
variables for evaluation. These variables may be randomly selected or the ones that minimize the
global error.

These authors evaluated their implementation with the Magic Square, the Number Partition and the Costas
Array Problems. The Number Partition problem consists in dividing a set of n numbers in two groups,
such that each group has the same cardinality and their sum and squared sum are also equal, respectively.

When comparing their results with a sequential CPU implementation, these authors achieved speedups of
up to 17 in the Magic Square and Number Partition problems, and of up to 3 in the Costas Array problem.

3.3 SAT

The SAT consists in deciding if a solution exists for a propositional formula. SAT is similar to a CSP where
the domain of all the variables contains only true and false, however, as in SAT all the variables are known
to have only these two possible values, the propagation of values through (boolean) constraint propagation
is normally much simpler, leading to greater performances. In SAT, two concepts are fundamental, the
literals that constitute the variables, and the clauses of the formula, each one including one or more literals.
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These problems may be solved through incomplete methods like local search, through complete methods
like the ones based on the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [19], and some hybrid
solutions also exist [35]. The DPLL is a backtracking algorithm improved for SAT with the addition of two
rules in each step:

• Unit Propagation - Unit Clauses, that is, literals appearing in clauses containing only one unassigned
literal, are set with the value needed for that clause to be true;

• Pure literal elimination - Remove all the clauses that contain a literal that has always the same value.

The application of these two rules can generate new states where the same rules can be reapplied, leading
to a faster propagation.

Palù et al. [51] developed a SAT solver in the C and CUDA programming languages, capable of using
simultaneously a CPU and a GPU. It splits the search space into multiple sub-search spaces that are
explored in parallel within CPU and GPU threads that execute the DPLL algorithm [19].

Initially, the CPU loads the problem and executes the DPLL algorithm for a short period. If, after that
execution, the number of uninstantiated variables does not surpass a predefined threshold (50 to 80,
according to the authors), the GPU will also be used. To reduce the amount of data transferred to the
GPU, all the literals set to false and all the clauses satisfied by the current partial assignment are ignored,
and only the remaining filtered version of the formula and the unassigned variables are passed to the GPU.

On the GPU, each thread will generate a sub-search space resulting from the assignment of a variable,
according to the enumeration of that thread on the GPU. Then, each thread will iteratively run the DPLL
algorithm, do propagation, labeling (splitting rule) and backtracking on that sub-search space. If the
formula is satisfied, the whole assignment is returned, if not, a flag meaning failure is passed to the CPU.

Palù et al. [51] tested their implementation on two machines. One with an Intel Xeon e5645 (12 cores)
and an Nvidia Tesla C2075 (448 cores), and another with an Intel I7 and an Nvidia GeForce GTX 560
(336 cores). All the SAT problems that were used, were retrieved from classical examples and related
competitions.

The authors stated that their implementation was several orders of magnitude slower than the cutting-edge
solvers, but it allowed to demonstrate that the GPUs can be used to achieve great speedups. These authors
achieved top speedups of 40 on the first machine and of 15 on the second machine when using the CPU
aided by the GPU, comparing with the CPU executions. These authors also pointed out that the tests
produced comparable results on the two machines, but using different parameters on the GPUs.

Menouer and Baarir [37] developed an hybrid partition method to try to improve the load balancing between
the parallel execution of multiple sequential instances of the Glucose SAT solver [5]. These authors start by
splitting the problem in 2n sub-problems, where n corresponds to the number of most frequent unassigned
variables that will be expanded. To calculate n, these authors use the formula n = ⌊log2 p⌋ , where p is
the number of cores that will be used.

The sub-problems are then inserted into a Global Priority Queue (GPQ) from where each core will retrieve
one for exploration. To improve the load-balancing between the cores, Menouer and Baarir [37] implemented
a dynamic partition technique that allows a core that depletes his sub-problem to signal that it is waiting
for more work. Then, the core that has the most unassigned variables on its sub-problem at the moment,
which is indicative of being the core with most work remaining, will split the sub-problem in two, placing
one half in the GPQ and proceeding with the exploration of the other half. After this, the waiting core will
pick the new sub-problem from the GPQ.
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Menouer and Baarir [37] executed their implementation with 27 SAT and 17 Unsatisfiable SAT (UNSAT)
problems retrieved from the SAT Competition 2015 [40] on an Intel Xeon X5650, capable of executing 12
threads simultaneously.

When using the hybrid partition technique with one sequential execution of Glucose per each of the 12
threads available, these authors achieved average speedups of 2.8 with the 17 UNSAT problems and of
16.7 with the 27 SAT problems when compared with the static partition method.

3.4 Conclusion

Several constraint solvers are already capable of using from 1 thread to multiple threads, or even many
multi-threaded CPUs on different machines to solve a CSP. These solvers use techniques like work-stealing
and work-sharing to distribute the work among all the threads. Some of them can even achieve almost
linear speedups when using more threads to solve a CSP. However, at the present date, there does not
seem to exist a constraint solver capable of using CPUs, GPUs and MICs to solve a constraint problem,
which is the gap PHACT tries to fill.





4
Solver architecture

PHACT is a complete solver, capable of finding a solution for a CSP if one exists. It is meant to be able
to use all the (parallel) processing power of the devices available on a system, such as CPUs, GPUs and
MICs, to speed up solving constraint problems. It splits the search space of a problem in multiple disjoint
sub-search spaces by partitioning the domains of the variables. Then, it distributes groups of sub-search
spaces to each one of the devices, where each thread will explore one sub-search space at a time.

The solver is composed of a master process which loads the CSP, collects information about the devices
that are available on the machine, such as the number of cores and the type of the device (CPU, GPU
or MIC), and calculates the number of sub-search spaces that will be created to distribute among those
devices.

After loading the CSP and collecting information about the devices available on the machine, PHACT uses
one thread of the CPU to try to simplify the CSP. This step of filtering tries to remove values from the CSP
variables that can not be part of any solution, and may also remove constraints that are already respected
with all the combinations of values from the variables that they constrain.

Then, for each device there will be one thread (communicator) responsible for communicating with that
device, and inside each device there will be a range of threads (search engines) that will perform labeling,
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constraint propagation and backtracking on one sub-search space at a time. The number of search engines
that will be created inside each device will depend on the number of cores and type of that device, and
may vary from 8 on a hyper-threaded Quad-core CPU to more than 50,000 on a GPU.

PHACT may be used to count all the solutions of a given CSP, to find just one solution or a best one (for
optimization problems).

4.1 Framework

PHACT provides its own interface for implementing CSPs, through a set of methods to create variables
and constraints, and the ability to define the search goal, that is, if the objective is optimization, counting
all the solutions or finding one solution. The solver is also capable of loading some of the MiniZinc and
FlatZinc models to allow it to process/solve CSPs already modeled in these constraint modeling languages.
MiniZinc is an high level constraint modeling language, that may be converted into FlatZinc which is
readable by many constraint solvers [43].

PHACT includes a FlatZinc interpreter which is based on the flex/bison interpreter distributed with
Gecode [66]. For loading MiniZinc models, it uses the “mzn2fzn” tool [49] that converts the MiniZinc
model to FlatZinc, which is then loaded by PHACT through its own FlatZinc interpreter.

The FlatZinc interpreter for PHACT is yet under development, but is already capable of recognizing most of
the FlatZinc specification predicates [7]. However, currently, PHACT only works with CSPs whose variables
domains are composed only by positive integers, and will not work with floats or negative values, nor with
sets. In some cases, the negative integers can be replaced with positive integers, by applying an offset to
the values. Boolean variables, at is, CSPs variables whose domains only contain 0 and 1, are treated as
integer variables.

The FlatZinc interpreter and PHACT are implemented in the C programming language, but the search
engines that run on the devices and the communication and control of these devices is implemented
through OpenCL C [41]. Currently, the most used programming languages for implementing constraint
solvers capable of using GPUs are CUDA from Nvidia and OpenCL from the Khronos Group [15, 14, 4, 51].
Although CUDA is only compatible with the Nvidia GPUs, OpenCL is compatible with most of the current
CPUs, GPUs and MICs from different vendors, including Nvidia [33].

OpenCL allows PHACT execution on multiple types of devices from different vendors and the capability of
being executed on Linux and on Microsoft Windows.

4.1.1 OpenCL

The OpenCL framework comprises a programming language based on the C99 standard and a set of
Application Programming Interfaces (APIs) to define and control compatible devices. Each device vendor
is responsible for building their own OpenCL compiler and drivers to allow their devices to execute software
implemented in the OpenCL programming language.

The OpenCL programming language extends the C99 standard with some features intended to facilitate
the implementation on heterogeneous parallel systems, and removes other features, as for example the
possibility of dynamic memory allocation.

Some OpenCL concepts must be introduced, in order to better understand the architecture of PHACT:



4.1. FRAMEWORK 33

• Compute unit One or more processing elements and their local memory. In Nvidia GPUs each SM
is a compute unit. AMD GPUs have their own components called Compute Units that match this
definition. For CPUs and MICs, the number of available compute units is normally equal to or higher
than the number of threads that the device can execute simultaneously [41];

• Host CPU where the application responsible for controlling and communicating with the devices is
run;

• Device A device compatible with the OpenCL framework. The OpenCL distinguishes the devices in
three types, CPUs, GPUs and accelerators like the Intel MIC;

• Kernel The code written in OpenCL that all the work-items inside a device will execute;

• Work-item An instance of the kernel (thread);

• Work-group Composed of one or more work-items that will be executed on the same compute unit,
in parallel. All work-groups for one kernel on one device have the same number of work-items.

OpenCL defines four types of memory (address spaces) that, if used properly according to the devices, may
improve the software performance. The four types of memory are:

• Global The device RAM. It is used for transferring data between the host and device and is accessible
to all the work-items of the device. It may be used for read and write operations;

• Local Depending on the devices, it may consist on cached Dynamic Random Access Memory
(DRAM) on CPUs, and on local memory in GPUs. It is faster than Global memory, but its size
is normally around 32 Kb to 48 Kb. It may be used for read and write operations, and is shared
among all the work-items of the same work-group;

• Constant A portion of RAM (about 64 Kb to 128 Kb) marked as read-only, that may be cached to
improve its performance. Is accessible to all the work-items of the respective device;

• Private Consists of the device architectural registers for the instruction set and is accessible to a
single work-item for read and write operations.

Local memory is very fast and may improve the software performance when used instead of global memory.
However, if its small size is not enough for the requirements of all the work-items of the same work-group,
it may worsen the performance instead of improving it, as demonstrated in Section 2.1.

These many types of memory add a new complexity level for programmers, and some choices must be
made. For example, local memory can be used for speeding up the kernel, but due to its small size, data
will normally be split among local and global memory. However, a data structure in one type of memory
cannot contain pointers to any data stored in a different type of memory. In constraint solving, if we decide
to store all the information about the variables in local memory, and the local memory size will not allow
to also store the constraints, we will need to store the constraints in a different type of memory. This will
influence all the code, because variables will not be able to have pointers to the constraints that constrain
them, and constraints will not be able to have pointers to the variables that they constrain.

PHACT is capable of using simultaneously all the four memory types. For that purpose, pointers between
data in different memory types were replaced by indexes of vectors as exemplified in Example 1.

Example 1 Replacing pointers between different memory types in OpenCL.
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• Variable V 5 is stored in position 5 of a vector of variables stored in local memory;

• Constraint C9 is stored in position 9 of a vector of constrains stored in constant memory;

• The constraint C9 constrains the variable V 5;

• C9 will have a field with the value 5, indicating that it constrains the variable stored in the fifth
position of the vector of variables;

• V 5 will have a field with the value 9, indicating that it is constrained by the constraint stored in the
ninth position of the vector of constraints.

Using indexes of vectors instead of pointers requires more code instructions than if pointers were used.
However, the speedup caused by using different types of memory is greater than the overhead caused by
the added code.

The usage of different types of memory also adds a new complexity when coding functions, as the same
function will not be able to receive the same arguments from different memory types. This will obligate the
programmer to implement the same function with a different name as many times as the combinations of
memory types of the arguments that will be used. Example 2 shows the implementation needed for using
the “same” function with an argument from local or global memory:

Example 2 Creation of the “same” function for arguments with different memory types.

i n t f u n c t i o n _ l ( __loca l i n t v a r i a b l e ) { . . . }
i n t f unc t i on_g ( __globa l i n t v a r i a b l e ) { . . . }

The absence of dynamic memory allocation in OpenCL forces the amount of memory that will be required
for running a kernel inside a device to be defined prior to running the kernel. Also, the amount of memory
can not be extended during the execution of the kernel, which means that it must be enough to fit the
maximum requirements, even if for the most of the CSPs, the full amount will never be used. This means
that PHACT will always be running in the worst case scenario in matters of memory requirements for the
devices.

When looking for one solution, or for the best one, the output of PHACT will have a solution, if one exists.
When counting all the solutions, the output will be the number of solutions that were found. However
these solutions will not be printed due to some OpenCL limitations. Namely, the OpenCL does not possess
concurrency control between devices which would lead to the output of the “printf” of the devices to be
mixed, making them unreadable. Also, some devices have a buffer where the contents to be printed are
stored during the execution of the kernel, and that content will be printed only when the kernel ends its
execution. However, for some devices that buffer has only 1 MB of size, which is not enough to store
all the solutions for some problems. Nevertheless, PHACT may try to print all the solutions if “-PRINT-
SOLUTIONS” is enabled as described in Appendix B, which is only available when using one thread per
device.

Although OpenCL 2.2 is already available, most of the existent devices, specially GPUs, are only compatible
with OpenCL up to version 1.2, which lead to the choice of using the 1.2 specification in PHACT. This
allows PHACT to be compatible with older and newer devices, but it does not allow it to take advantage
of the new features added with version 2.0. For example, OpenCL 2.0 introduces the generic address space
which removes the need of implementing the same function multiple times, as demonstrated in Example 2.
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OpenCL 2.0 also introduces the possibility of sharing pointers between the host and the device, allowing
them to share data while kernels are running and without explicit data transferring [34].

In the implementation of PHACT described here, the master process and the threads responsible for
communicating with the devices (one per device), run on the OpenCL host and the search engines run on
the devices. The OpenCL host may also be treated as a device, in which case it will be simultaneously
controlling and communicating with the devices and running search engines. Each search engine corresponds
to a work-item, and all work-items execute the same kernel code, which implements the search engine.

4.2 Search space splitting and work distribution

For distributing the work between the devices, PHACT splits the search space into multiple sub-search
spaces. Search-space splitting is done by the master process by partitioning the domains of one or more of
the variables of the problem, so that the resulting sub-search spaces partition the full search space.

Example 3 shows the result of splitting the search space of a CSP with three variables, V 1, V 2 and V 3,
all with domain {1, 2}, into 4 sub-search spaces, SS1, SS2, SS3 and SS4.

Example 3 Creation of 4 sub-search spaces with balanced domains

SS1 = {V 1 = {1}, V 2 = {1}, V 3 = {1, 2}}
SS2 = {V 1 = {1}, V 2 = {2}, V 3 = {1, 2}}
SS3 = {V 1 = {2}, V 2 = {1}, V 3 = {1, 2}}
SS4 = {V 1 = {2}, V 2 = {2}, V 3 = {1, 2}}

A more complex example is presented in Example 4 where the domain of V 1 is {1, 2, 3} and the remaining
variables have the same domain as in Example 3.

Example 4 Creation of 4 sub-search spaces with unbalanced domains

SS1 = {V 1 = {1, 2}, V 2 = {1}, V 3 = {1, 2}}
SS2 = {V 1 = {1, 2}, V 2 = {2}, V 3 = {1, 2}}
SS3 = {V 1 = {3}, V 2 = {1}, V 3 = {1, 2}}
SS4 = {V 1 = {3}, V 2 = {2}, V 3 = {1, 2}}

The number of sub-search spaces that will be created is limited to a maximum of 1,000,000 and depends
on the type and number of devices that will be used:

• 1 CPU - 5,000 sub-search spaces per compute unit;

• 1 GPU - 500,000 sub-search spaces;

• 1 accelerator - 250,000 sub-search spaces;

• 1 CPU and other devices - 5,000 sub-search spaces per each CPU compute unit;

• Multiple devices but no CPU - 500,000 sub-search spaces per device.
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When using one or more devices that are not CPUs, with a number of threads different from the default
one, the number of sub-search spaces to create is proportional to the amount of threads that will be used. A
GPU by default will use 512 work-groups and 128 work-items, which correspond to the creation of 500,000
sub-search spaces. For example, if the number of work-groups and work-items is specified to 256 and 32,
respectively, 62,500 sub-search spaces will be created (256× 32× 500, 000/(512× 128)).

When expanding the search space to create sub-search spaces, only the variables marked for labeling are
expanded. Thus, the total number of sub-search spaces that will be created depends on the number of
values on their domains, and if they are not enough, the number of sub-search spaces will be less than
desired. If they are enough, the number of sub-search spaces that will be created will always be equal to
or greater than the required amount, because the expansion of the sub-search tree is always done down to
the same depth level in all branches, as represented in Figure 4.1, to allow their faster generation in the
devices.

Figure 4.1: Expanding the search tree to the same depth level in all branches (right figure)

When expanding the search space to create the sub-search spaces, no constraint propagation is done, which
means that in some cases those sub-search spaces may be already inconsistent. For example, if the variables
V 1 and V 2 of Example 3, were constrained by a “not equal” constraint (V 1 ̸= V 2), the sub-search spaces
SS1 and SS2 are already inconsistent. That verification is ignored in the host, but done in the devices,
to greatly reduce the size of data transfer between the host and the devices, as it will be described in
Section 4.5.

Since each device will have multiple search engines running in parallel, the computed partition is organized
into blocks of contiguous sub-search spaces that will be handled by each device, one at a time. The number
of sub-search spaces that will compose each block will vary during the solving process and depends on the
performance of each device on exploring the previous blocks.

The communicator threads running on the host launch the execution of the search engines on the devices,
calculate the size of the blocks of sub-search spaces to hand to the respective device, and coordinate the
progress of the solving process as each device finishes exploring its assigned block. The coordination of the
devices consists in assessing the state of the search, distributing more blocks to the devices, signaling to all
the devices that they should stop (when a solution has been found and only one is wanted), or updating
the current bound (in optimization problems). In the end, the master process collects the results from all
the communicator threads and outputs it.

Depending on the device that is being controlled by the communicator threads and on the version of the
OpenCL drivers, on some occasions, the communicator thread will be using 100% of the CPU thread when
waiting for the device to finish solving the CSP. On these occasions, the CPU will be using one more thread



4.3. LOAD BALANCING BETWEEN DEVICES 37

than desired and that thread will not be available to solve the CSP when on of the devices to use for solving
it is also the host.

Figure 4.2 shows a diagram exemplifying the main components of PHACT and their interactions when
solving a CSP. Note that, in this example, only four blocks of threads get explored, which would mean that
those blocks constituted the full search space (when counting all the solutions). In reality, the number of
blocks that are dynamically created along the solving process may go up to a hundred, depending on the
number of devices that are used and their performance in solving the current CSP.

4.3 Load balancing between devices

An essential aspect to consider when parallelizing some task is the balancing of the work between the
parallel components. Creating sub-search spaces with balanced domains, when possible, is no guarantee
that the amount of work involved in exploring each of them is even similar. To compound the issue, we are
dealing with devices with differing characteristics and varying speeds, making it even harder to statically
determine an optimal, or even good, work distribution.

Achieving effective load balancing between devices with such different architectures as CPUs and GPUs is
a complex task [31]. When trying to implement dynamic load balancing, two important OpenCL (version
1.2) limitations arise, namely when a device is executing a kernel it is not possible for it to communicate
with other devices [26], and the execution of a kernel can not be paused or stopped. Hence, techniques
like work stealing [18, 54], which requires communication between threads, will not work with kernels that
run independently on different devices and load balancing between them must be done on the host side.

To better manage the distribution of work, the host could reduce the amount of work it sends to the
devices each time, by reducing the number of sub-search spaces in each block. This would make the
devices synchronize more frequently on the host and allow for a finer control over the behavior of the
solver. When working with GPUs, though, the number and the size of data transfers between the devices
and the host should be as small as possible, because these are very time consuming operations. So, a
balance must be struck between the workload of the devices and the amount of communication needed.

If only one device is to be used, that device will get a single block composed by all the sub-search spaces.
When using more than one device, PHACT implements a dynamic load balancing technique which adjusts
the size of the blocks of sub-search spaces to the performance of each device solving the current problem,
when compared to the performance of the other devices. It also uses different techniques if finding all the
solutions, only one solution or optimizing.

If more than one device d is to be used, the number of sub-search spaces that will compose the first block
that will be sent to each device is calculated according to the number of threads that each device is capable
of running simultaneously, its clock speed and the type of device. All this data can be retrieved with specific
calls to the OpenCL API which groups all the devices in three types - CPU, GPUs and accelerators (ACC)
like Intel MICs.

After retrieving the number of compute units, the clock speed and the type of device, PHACT assigns
each device a value ranging from 0 to 1, where the closer to 1, the faster the device is. The sum of the
calculated values is always 1, making it a relative speed between all the devices that will be used. Their
relative speed, s(d) is estimated through Equation (4.1):
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Figure 4.2: PHACT components and execution example
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s(d) =

f(d)×c(d)
n(d)

m∑
i=1

f(i)×c(i)
n(i)

(4.1)

In Equation (4.1), d is the device for whom s is being calculated, f is the maximum clock frequency of
the device cores, c is the number of compute units of the device, n is the number of times that a core of
device d is estimated to be slower than a CPU core and m is the total number of devices. The values of
n were obtained through empirical methods, but those values may be inaccurate for some combinations of
devices. The default values of n are 8 for GPUs and 4 for ACCs.

4.3.1 Finding all the solutions

When finding all the solutions, s is only used to calculate the size of the first three (small) blocks of
sub-search spaces that each device will explore at the beginning of the solving process. For that purpose,
s is multiplied by 25% of the number of sub-search spaces that were created.

By using s to calculate the size of those blocks, PHACT avoids sending a block that would take too long
to solve on a very slow device, which would lead to the other devices finishing to explore the remaining
blocks much earlier than it would take the slow device to explore those three first blocks.

For some CSPs, the first block of sub-search spaces created through the method exemplified in Examples 3
and 4 are trivially inconsistent and as so, they are explored very fast, resulting in the device that explored
them being incorrectly catalogued as a very fast device. That would lead to an oversized block being
assigned to that device in the next iteration, which could result in that device finishing to explore that
block much after the other devices deplete all the remaining sub-search spaces. To diminish the probability
of this problem occurring, instead of one small block, three small blocks are explored.

The second and third blocks will have the same number of sub-search spaces as the previous one, except
if the device took more than 1 s to explore it, in which case the next block will have half the size of the
previous one.

The first device to finish exploring those three blocks is probably the fastest device, so the next block will
be composed with twice the number of sub-search spaces of the previous one. But if that number is greater
than 20% of the remaining sub-search spaces, the next block will have the same size as the previous one.

When all the devices finish exploring those first three blocks, their rank, rank(d) is calculated according
to Equation (4.2), where m is the total number of devices. The value of the average time, avg(d) of a
device is the result of dividing the total time that the device was exploring sub-search spaces by the total
number of constraint propagators executions.

rank(d) =

1
avg(d)

m∑
i=1

1
avg(i)

, avg(i) > 0 (4.2)

Similar to s, the rank of a device consists in a value between 0 and 1, corresponding to the relative speed
of the device against all the devices that were used for solving a block of sub-search spaces. Faster devices
will get an higher rank than slower devices, and the sum of the ranks of all the devices will be 1. The
rank is then used to calculate the size of the next block of sub-search spaces to send to the device, by
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multiplying its value by a percentage of the number of sub-search spaces that are yet to be explored. That
percentage is different according to the type of device. It will be 0.8 for CPUs, 0.6 for accelerators and 0.3
for GPUs.

Those percentages differ between types of devices, because it was noted that the time needed for a GPU
to explore a block of sub-search spaces is much more affected by the work needed to explore it than CPUs
or accelerators. Thus, those percentages are intended to prevent slow devices from dominating the solving
process.

As search progresses, every time a device finishes exploring another block, its average time and rank are
updated. Table 4.1 exemplifies the usage of rank for calculating the number of sub-search spaces that will
compose the block which will be sent for each device as soon as each of them finishes its previous block.
This is repeated until a device is estimated to take less than 2 s to solve all the remaining sub-search spaces,
in which case that device will receive a last block with all the remaining sub-search spaces for exploration.

Table 4.1: Example of the calculation of blocks size when using three devices

Device
Average time

per propagation
(ms)

Rank
Remaining

sub-search spaces to
explore

Size of the next
block of sub-search

spaces
CPU 0.00125 0.793 1,233,482 782,555
GPU 0.01236 0.080 450,927 10,850
ACC 0.00782 0.127 440,077 33,472

Note that the values of the second and the third rows of the column “Remaining sub-search spaces to
explore” are the result of subtracting the value of the “Size of the next block of sub-search spaces” from
the previous row from the value of the “Remaining sub-search spaces to explore” also from the previous row,
as it would occur if these devices finished their previous blocks of sub-search spaces in that chronological
order.

4.3.2 Optimizing

When solving optimization problems, the best solution is required. To identify the best one, a value,
normally named cost, classifies each one of the solutions. When working with more than one device, each
time a better solution is found, the cost must be updated between the devices. However, with OpenCL,
when a device finds a better solution, it cannot update the cost that the other devices are currently using.
Also, with OpenCL we cannot pause or stop a device that is exploring a block of sub-search spaces to make
it update the cost. This means that even if a device finds a better solution and it updates its own cost,
the other devices will keep looking for solutions based on the cost they know, that may be worse than the
ones already found by the other devices.

Only when a device finishes exploring its block, it can communicate to the host the new better cost it has
found or update its own cost with the new one found by another device. This may lead to unnecessary
exploration efforts being done by the devices, until they finish their block and resynchronize with the host.
To reduce the unnecessary exploration efforts being done by the devices looking for solutions already worse
than the one found by another device, the size of each block of sub-search spaces is reduced to make
the devices synchronize more frequently with the host. However, by reducing the number of sub-search
spaces that compose each block, more blocks will have to be communicated from the host to the devices,
which leads to more time spent in communications between the host and the devices and initializing data



4.3. LOAD BALANCING BETWEEN DEVICES 41

structures on the devices.

Similar to when searching for all the solutions, the number of sub-search spaces that will compose the first
block that will be explored by each device is obtained by multiplying s by a percentage of the total number
of sub-search spaces that were created. But, to reduce the size of the first block, instead of 25%, only 1%
is used.

The number of sub-search spaces that will compose the next blocks will remain the same until each one
of the three previous blocks takes less than 2 s to explore, in which case the next block will have 20%
more sub-search spaces. This is done considering that when a better solution is found, the time needed to
explore the next sub-search spaces is normally reduced due to the propagation of the new cost. This allows
PHACT to dynamically adapt to the new work-load of each sub-search space.

Considering the three previous blocks instead of one or two, decreases the chances of increasing the size
of the next block due to an abnormal block that was too easily explored. However, if a block takes more
than 2 s to explore, the next block will have half the number of sub-search spaces, as similar sub-search
spaces that take longer to explore may be found in the next blocks, leading to an increased time needed
to explore them. This strategy is repeated until all the sub-search spaces have been explored.

4.3.3 Finding one solution

Similar to when solving optimization problems, the number of sub-search spaces that will compose the
first block that will be explored by each device is obtained by multiplying s by 1% of the total number of
sub-search spaces that were created.

Sending smaller blocks of sub-search spaces when searching for a single solution allows the devices to
synchronize more frequently with the host to check if any device has already found a solution. However,
that may increase the number of blocks that will be communicated to the devices, which for GPUs are very
time consuming operations.

Considering those two factors, PHACT tries to deliver to each device, blocks of sub-search spaces that take
about 2 s to solve, each. For that purpose, the host keeps a record of the average time each device needed
to solve one sub-search space, considering the time spent exploring blocks of sub-search spaces and the
total time taken to explore them.

The first blocks will have the same number of sub-search spaces until all the devices have explored at least
three blocks. This is done to better estimate the average time each device need to solve one sub-search
space, prior to using this value to calculate the number of sub-search spaces needed to occupy the respective
device for about 2 s.

After that, when a device finishes exploring a block without finding a solution and none of the other devices
has already found a solution, it will receive a new block with the number of sub-search spaces resultant
from dividing 2 s by the average time that the respective device needed to solve one sub-search space.
If the previous block of sub-search spaces took more than 4 s to solve, the next block will have half the
number of sub-search spaces.

This process is repeated until a device finds a solution and all the devices finish their current block of
sub-search spaces, or if the CSP in unsolvable, until all the sub-search spaces have been explored.
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4.4 Load balancing inside a device

Another challenge GPUs pose is that they achieve the best performance when running hundreds or even
thousands of threads simultaneously. But to use that level of parallelism, they must have enough resources
and work to keep that many threads busy. Otherwise, when a GPU receives a block with less sub-search
spaces than the number of threads that would allow it to achieve its best performance, the average time
needed to explore one sub-search space increases sharply.

For example the Nvidia GeForce GTX 980M takes about 1.1 s to find all the solutions for the 13-queens
problem when splitting the problem in 742,586 sub-search spaces, and 2.4 s when split in only 338 sub-
search spaces. This challenge is also valid for CPUs, but not so problematic due to their lesser degree of
parallelism when compared with the GPUs.

To overcome that challenge, sub-search spaces may be further divided inside a device, by applying a
multiplier factor m to the size of a block and turning a block of sub-search spaces into a block with m
times the original number of sub-search spaces. For example, applying a multiplier factor of 2 to SS1 of
Example 3 would result in the 2 sub-search spaces presented in Example 5.

Example 5 Result of applying a multiplier factor of 2 to the first sub-search spaces from Example 3.

SS1 = {V 1 = {1}, V 2 = {1}, V 3 = {1}}
SS2 = {V 1 = {1}, V 2 = {1}, V 3 = {2}}

Without this technique, to achieve a good occupancy rate when using more than one device to solve a
CSP, more sub-search spaces would need to be created. Increasing the number of sub-search spaces could
lead to a greater number of blocks of sub-search spaces and thus, to a decrease in performance due to
the increased communications between the host and the devices. More sub-search spaces may also lead to
more propagations needed to solve the same CSP, because the first variables whose domains are expanded
to create the sub-search spaces may be assigned with the same values in more than one sub-search space.
This means that the same propagations will be done in different sub-search spaces, what may not happen
if less sub-search spaces were created.

For example, propagating the values of V 1 and V 2 in the sub-search spaces SS1 and SS2 of Example 5
will have the same result as propagating V 1 and V 2 of only SS1 from Example 3, but twice the number
of propagations are needed for the sub-search spaces from Example 5.

Applying a multiplier factor inside the devices, when needed, allows the number of sub-search spaces that
is created in the host to remain the same as if only the CPU was to be used, despite the number of devices
that will be used. This also allows to decrease the overhead added to the CPU (host) when more devices
are used as the multiplier factor is only applied inside the devices that receive blocks of sub-search spaces
to explore that are very small. Blocks with a few sub-search spaces are only sent to devices whose rank is
very small, or at the end of the solving process, when the sub-search spaces yet to be explored are almost
depleted.

The value of the multiplier factor will be the one needed to match the number of sub-search spaces that the
respective device would receive if it was the only device being used. Those values are defined in Section 4.2.
When a device receives a block of sub-search spaces, it will also receive the value of the multiplier factor,
and each search engine will use that information to generate the next unexplored sub-search space from
that block, as it will be described in the next section, and explore it. All the search engines, that is,
the threads exploring sub-search spaces, will execute the same source code, independently of the device on
which they will be executed. It will do labeling, constraint propagation and backtracking on that sub-search
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space, until fully exploring it or finding a solution if only one is wanted. After depleting that sub-search
space, the search engine will generate a new one. This process is repeated by each search engine until all
the sub-search spaces of the block have been explored, or a solution is found if only one is wanted.

Unbalanced sub-search spaces may cause some search engines to finish their exploration work much before
the others. This is problematic when the sub-search spaces are depleted, which may cause a few search
engines to remain working on their last sub-search space while all the others have already finished. To try
to overcome this problem, PHACT implements a work-sharing technique that allows some search engines
to share some work with other search engines when the sub-search spaces are depleted. For that purpose,
a pool of sub-search spaces is created inside each device. It has the capacity needed for as many sub-
search spaces as the number of compute units of the CPU or accelerator, or the number of compute unites
multiplied by the number of work-items that compose each work-group for GPUs.

Each time a search engine labels a variable, and the pool of sub-search spaces for work-sharing is not
full yet, it does two labelings, the second of which will be copied to the pool of sub-search spaces for
work-sharing with the current domains of the remaining variables. This will be done by each search engine,
until the pool is full. When a search engine tries to collect a sub-search space from the block of sub-search
spaces and notes that the block is already depleted, it will try to get one from the pool of sub-search spaces
for work-sharing. Due to the heavy costs of using concurrency control to allow this technique, the pool
of sub-search spaces is only filled once. Although this technique allowed to achieve a finer load balancing
when terminating the block of sub-search spaces, the costs of using concurrency control decreased the
performance of PHACT, and as so it is disabled by default.

Work stealing techniques were also considered for load balancing inside the devices. However, due to
OpenCL limitations on concurrency control, this was an infeasible task. Namely, OpenCL (version 1.2)
lacks a feature to block threads from accessing a sub-search space while another thread is changing some of
the respective contents. In OpenCL, concurrency control can only be achieved through atomic operations
over one C variable at a time.

In some CPU devices, concurrency control over a sub-search space could be achieved by implementing a
semaphore with OpenCL atomic operations. However, after some testing it was noted that this algorithm
was not working in GPUs, as it was always leading to an infinite loop. During the tests in GPUs, it was
found that when an OpenCL thread blocked the access to a sub-search space data, that same thread was
never executed again, which was leading to the infinite loop. To achieve a better occupancy, GPUs try
to run at the same time the most threads that will execute the same code instruction in the next clock
cycle. Applying this algorithm to the semaphore that was implemented, led to the GPU executing only the
threads that were waiting to access the sub-search space data inside a loop, while the only thread that was
capable of unlocking the semaphore would never be executed again.

4.5 Communication

To reduce the amount of data that is transferred to each device, all of them will receive the full CSP, that
is, all the constraints, variables and their domains, at the beginning of the solving process. Afterwards,
when a device must be instructed to solve a new block of sub-search spaces, instead of sending all the
sub-search spaces to the device, only the information needed to create those sub-search spaces is sent.

If a device is to solve sub-search spaces SS2 and SS3 from Example 3, it will receive the information that
the tree must be expanded down to depth 2, that the values of the first variable are repeated 2 times and
the values of the second variable are repeated 1 time only (not repeated). With this information the device
will know that the values of the first variable are repeated 2 times, so the third sub-search space (SS3)
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will get the second value of that variable, and so on to the expansion depth. The values of the variables
that were not expanded are simply copied from the original CSP that was passed to the devices at the
beginning of the solving process.

This technique allows to greatly decrease the amount of data that is transferred from the host to the
devices. For example, when solving the 17-queens problem a 32-bit bitmap is used for the domain of
each of the 17 variables. If 200,000 sub-search spaces were to be created, that would lead to a search
tree expansion depth of 5. As such, at least these five levels would be created for each sub-search space
resulting in 1,000,000 bitmaps (200, 000×5) of 32-bits each (32,000,000 bits) that would have to be stored
in the host memory and transferred to the device memory.

Each time a work-item needs a new sub-search space to explore, it increases by one the number of the next
sub-search space that is yet to be explored on that device and creates the sub-search space corresponding to
that number before being increased. Then it will do labeling, propagation and backtracking until either all
the sub-search spaces of that block have been explored, when all the solutions must be found or optimizing,
or only one solution is wanted and one of the work-items on that device finds a solution.

4.6 Implementation details

OpenCL allows to compile the kernels at runtime at the cost of some delay, which in the tests that were
made, ranged from 0.2 s to 2 s, depending on the device for which it was compiled. However, this allows to
compile a kernel more adapted to the CSP that will be solved. For example, it allows to compile only the
propagators whose constraints are used in the CSP, which may lead to a great boost in the performance
of PHACT, as it was noted in the N-queens problem. When using the Nvidia Geforce GTX 980M to solve
the 12-queens problems while compiling only the propagators that are needed, PHACT took 4 s, but when
compiling all the propagators it took 11 s, which shows the potential of the runtime compilation of OpenCL.

When this thesis was written, PHACT had 35 constraints implemented and supported reification. In
PHACT, reification is implemented by adding a new boolean variable associated with the reified constraint,
and by implementing a reification tester and an opposite propagator. The reification tester verifies if the
constraint is already respected with all the values of the respective variables, which will set the boolean
variable to value true, or if, on the contrary, the constraint will never be respected with all the values of
the respective variables, in which case the boolean variable will be set to false.

If the boolean variable of reification is set to true, the normal propagator of the constraint is executed. On
the contrary, if the boolean variable is set to false, the opposite propagator will be executed. For example,
for the “not equal” constraint, the normal propagator will guarantee that the respective two variables are
never assigned with the same value. On the contrary, the opposite propagator will guarantee that the
respective two variables will be assigned with the same value.

The runtime compilation of PHACT allows it to enable and disable features inside the kernels without
the need of recompiling the entire code. PHACT uses this OpenCL feature to enable/disable Revision.
Revision is a technique implemented in PHACT that is applied after backtracking, that is, when a variable
assignment by labeling causes an inconsistency, if it has yet values to be assigned, then it will be propagated
with all these remaining values. In some cases, this allows to anticipate the removal of values from the
domains of variables, or even to discard that branch of the search tree due to its inconsistency. In these
cases, some propagations are only done once, which if revision was not used, might be done once per
remaining value in the domain of the variable selected for labeling. However, after some tests it was found
that most of the times this technique was greatly increasing the number of propagations done to solve a
CSP, and in the end that was worsening the performance of PHACT. For that reason, this technique is
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disabled by default.

This OpenCL feature is also used to compile only the heuristic that will be used for selecting the variable for
labeling and the heuristic to select the value to assign to that variable. Currently PHACT has implemented
three heuristics for selecting the variable to label:

• First fail - Select the variable with less values in its domain;

• Input order - Select the first variable introduced by the CSP model;

• Occurrence - Select the variable restricted by more constraints.

For selecting the value to assign to the variable for labeling, three heuristics are implemented:

• Maximum value - Select the greatest value from the variable domain;

• Minimum value - Select the smallest value from the variable domain;

• Split values - Splits the domain of the variable about the mean between the minimum and the
maximum value and selects the lower half.

PHACT represents the variable domains as 32-bit bitmaps, multiples of 64-bit bitmaps, or as (compact)
intervals. When using intervals, PHACT is slower than when using bitmaps, but intervals are meant to
be used instead of larger bitmaps on systems where the size of the RAM is an issue. The constraint
propagation when using intervals is much less efficient, as it can not remove values from the middle of the
domains because they are represented only by their minimum and maximum values.

The host will always use bitmaps, but when intervals are to be used, the bitmaps will be converted to
intervals before being sent to the devices, and converted back to bitmaps when received from the devices.
The kernels will be compiled, at runtime, to use bitmaps (of the needed size), or intervals. For that
purpose, all the functions for manipulating domains are implemented twice in the kernel, once for bitmaps
and another for intervals. New domain representations can be added by implementing those functions
accordingly and possibly an interface for translating the domains between the host and the devices.

With intervals, the domain of each CSP variable is represent as a 32-bit variable containing two 16-bit fields
(OpenCL cl_ushort2), the minimum value and the maximum value of the variable domain. By default, in
the host, the variables domains are represented as a 1024-bit bitmap, but this value may be changed before
compiling PHACT. Thanks to the OpenCL runtime compilation, each device will always use the minimum
size possible of bitmaps to store the variables domain, and it can even use intervals instead of bitmaps,
without the need of recompiling PHACT.

However, PHACT uses the same size of bitmaps for all the CSP variables, which for some CSPs may force
the allocation of more memory than the amount needed. For example, if most of a CSP variables are
boolean, and only a few others have 100 values on their domain, PHACT will allocate 128 bits per variable
for storing the values of its domain. Nevertheless, this allows for simpler bitmap operations, as all of them
will have the same size.

The main reason for storing all the domains of the CSP variables in bitmaps of the same size is that, as
stated in Section 4.1.1, OpenCL does not allow dynamic memory allocation inside a kernel. This forces
PHACT to allocate the maximum memory it may need for solving a CSP inside a device. As the kernels
are compiled at runtime, that amount is always calculated according to the current CSP requirements.
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However, as each work-item will be exploring one sub-search space at a time, each one will need enough
memory to store its own backtracking history.

In case of GPUs, which can execute thousands of work-items simultaneously, this may lead to large memory
requirements, and for CSPs with more variables and/or bigger variables domains, this can force PHACT
to reduce the number of work-items to fit the memory available. To reduce the memory requirements
of backtracking histories, PHACT considers that the backtracking history will never go deeper than the
number of variables marked for labeling in the CSP model. However, some MiniZinc/FlatZinc [7] models
do not define which variables will be subject to labeling, in which case PHACT will consider the ones
marked for output, or if none, it will consider all of them.

4.7 Conclusion

The techniques described in this chapter allow PHACT to use all the devices compatible with OpenCL to
solve a CSP. It splits the search space in multiple search spaces that are distributed among the devices in
blocks to reduce the number of communications between the host and the devices. The size of each block
is calculated according to the speed of the respective device when solving the previous blocks to try to
achieve a good load balancing between the devices.

The size of the data transfers between the devices and the host is reduced by replacing the blocks of
fully created sub-search spaces with a small data set containing the information needed for a device to
generate those sub-search spaces. Inside the devices, each search engine (thread) will do labeling, constraint
propagation and backtracking on a sub-search space at a time.

Due to the absence of dynamic memory allocation inside the kernels, each search engine will always have
allocated the maximum memory it may need to explore a sub-search space, which in case of GPUs, can limit
the number of search-engines it can run simultaneously. However, PHACT uses some OpenCL features to
improve its performance, as for example the runtime compilation. It allows PHACT to change the kernel
according to the CSP it will solve, for example, by compiling only the propagators of the constraints that
the CSP uses, and can even change the representation of the domains of the CSP variables between bitmaps
and intervals without the need of recompiling PHACT.



5
Experimental results

PHACT was evaluated on finding all the solutions for two CSPs, on optimizing six other CSPs and on
finding one solution for two CSPs. Table 5.1 presents some information about these CSPs, namely:

• CSP - the name and instance of the CSP that will be used in this Chapter;

• Number of variables - the number of variables in the FlatZinc model, after converting it from the
MiniZinc model;

• Maximum domain value - The maximum value of the CSP variables;

• Number of constraints - the number of constraints described in the FlatZinc model, after converting
it from the MiniZinc model;

• Types of constraints - the number of different FlatZinc Predicates [7] used in the FlatZinc model,
after converting it from the MiniZinc model;

• Objective - If the objective of the CSP is to count all the solutions (Count), to find only one solution
(One) or to find the best solution (Optimization).

47
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Table 5.1: Information about the CSPs used in experimental results

CSP
Number

of
variables

Maximum
domain
value

Number of
constraints

Types of
constraints Objective

bacp_2 1,970 100 2,028
5 Optimizationbacp_6 1,970 100 2,028

bacp_7 1,970 100 2,026
cryptanalysis_128_3_4 4,661 7 8,373

12 Countcryptanalysis_128_5_11 15,793 7 32,637
cryptanalysis_128_5_14 15,793 7 32,637
golomb_9 37 81 554

3 Optimizationgolomb_11 56 121 1,300
golomb_12 67 144 1,881
java_routing_6_3 752 258 1,093 8 Optimizationjava_routing_8_5 1,256 338 1,873
langford_3_9 783 27 2,178 3 Onelangford_3_18 3,024 254 8,730
m_queens_8 1,642 8 1,651

8 Optimizationm_queens_12 3,774 12 3,783
m_queens_13 4,346 13 4,355
market_split_s4_07 30 1 4

1 Onemarket_split_s5_01 40 1 5
market_split_s5_04 40 1 5
open_stacks_10_10 573 10 504

7 Optimizationopen_stacks_20_20_a 2,296 20 2,459
open_stacks_20_20_b 2,209 20 2,369
project_planning_13_7 2,499 169 3,063 13 Optimizationproject_planning_13_8 2,500 169 3,065
queens_15 15 15 315 1 Countqueens_17 17 17 408

All the CSPs were retrieved from the MiniZinc Benchmarks [49] and converted from MiniZinc to FlatZinc
using the “mzn2fzn” tool [49]. From these 10 CSPs, the bacp, the cryptanalysis, the java routing and the
project planning problems are categorized by the MiniZinc authors [50] as real problems and the remaining
ones as academic.

A brief description of each one of the 10 CSPs is now presented and a more complete definition of them
is contained in Appendix C.

• Bacp - The Balanced Academic Curriculum Problem (BACP) consists in achieving an academic
curriculum by assigning periods to courses while maintaining a balanced academic load and respecting
a set of administrative and academic rules [30];

• Cryptanalysis - Chosen Key Differential Cryptanalysis consists in the first step of a cryptanalysis
attack against block ciphers to test their level of confidentiality, integrity and signature by modeling
the Advanced Encryption Standard (AES) rules [28];

• Golomb ruler - Consists in placing a set of marks on an imaginary ruler, such that no two marks are
at the same distance as any other two marks, minimizing the total length of the ruler [8];
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• Java routing - May be defined as a routing problem in which multiple map locations must be visited,
while visiting some locations prior to others, respecting a predefined maximum time to visit each one,
and minimizing the total time required to visit all the locations [24];

• Langford - The Langford numbers problem consists in placing k sets of numbers ranging from 1 to
n such that the number m is placed m numbers after the previous one [11];

• M-queens - To solve this problem, the minimum number of queens must be placed in a chessboard
such that all the possible squares are covered, each one by a single queen [25];

• Market Split - This problem may be described as the allocation of retailers to one of two supplier
divisions of a company, such that each division controls a predefined amount of the distribution of
each product [1];

• Open Stacks - It consists in scheduling the construction of multiple products required to complete a
customer order, such that the usage of the limited space in the production area is optimized to fulfill
the most customer’s orders in the fastest time [13];

• Project planning - Planning the execution of a set of tasks with predecessors while minimizing the
total execution time [68];

• N-queens - The problem consists in placing n queens in a n×n chessboard, such that no queen attacks
another one [53].

These CSPs were generated from the MiniZinc files shown in Table C.1. However, as PHACT does not
yet possess all the heuristics for variable and value selection supported by the FlatZinc specification [7],
neither can it use different heuristics while solving one CSP, all the MiniZinc files were set to use only the
“input_order” and “indomain_min” heuristics.

When looking for CSPs to use for experimental results, the following aspects were considered:

• There should be a MiniZinc/FlatZinc model of the CSP to allow the usage of many CSPs available
on-line and their input to other solvers for comparisons with PHACT;

• Models should have variables whose domains are only composed by positive integers and without
sets, as PHACT does not work with variables whose domains are composed by negative values, floats
or sets;

• The models should only contain variables whose domains lie between 0 and 1023;

• The models should contain only constraints that are already implemented in PHACT and recognized
by its FlatZinc interpreter.

From Table 5.1 we can see that the ten CSPs used for benchmarking present many differing characteristics
among them, allowing for a more generalised analysis of the performance of PHACT. Namely, they possess
from 15 up to 15,793 variables with domains from 2 up to 338 values. These problems contain also from 4
up to 32,637 constraints, which in one problem correspond to 13 different propagators. As stated before,
the objective of the CSPs does also vary and can be counting all the solutions, optimizing or finding a
single solution. From these CSPs only the three Cryptanalysis instances are unsatisfiable, that is, they have
no solutions.

The benchmarks were executed on one, two and three devices and on five different machines running Linux
to evaluate the speedups when more devices are added to help the CPU. The five machines have the
following characteristics:
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M1 Machine with 32 GB of RAM and:

• Intel Core i7-4870HQ (8 compute units);
• Nvidia GeForce GTX 980M (12 compute units and 4 GB of RAM).

M2 Machine with 64 GB of RAM and:

• Two Intel Xeon CPU E5-2640 v2 (referred to as Xeon 1, 32 compute units);
• Two MICs (Xeon Phi coprocessors) 7120P (240 compute units and 16 GB of RAM each).

M3 Machine with 64 GB of RAM and:

• Two Intel Xeon E5-2690 v2 (referred to as Xeon 2, 40 compute units);
• Nvidia Tesla K20c (13 compute units and 5 GB of RAM).

M4 Machine with 128 GB of RAM and:

• Four AMD Opteron 6376 (64 compute units);
• Two AMD Tahitis (32 compute units and 3 GB of RAM each). These two devices are combined

in an AMD Radeon HD 7990, but are managed separately by OpenCL.

M5 Machine with 96 GB of RAM and:

• Two Intel Xeon Silver 4110 (referred to as Xeon 3, 32 compute units);
• Two Nvidia Titan V (40 compute units and 12 GB of RAM each).

All the tests were repeated five times, and the elapsed times presented in this chapter are the geometric
mean of these five runs and are shown in seconds. As the execution of some tests took longer than
expected, the ones that were running for more than twelve hours were stopped and no results are presented
for those five executions. For a better identification of the correspondence between the legend elements and
each data series (line) of the line charts presented in this section, the elements of the legend are ordered
according to the data series height on the rightmost end of the chart.

The results of these tests with GPUs, MICs and CPUs are presented and discussed in Sections 5.1, 5.2
and 5.3, respectively. Section 5.4 shows the results achieved when using more than one device to solve
the problems. PHACT performance was compared with those of Gecode 6.2.0 [66], Choco 4.0.4 [55] and
OR-Tools 7.2.6977 [29], whose results are presented in Section 5.5. The source code of PHACT is available
for download at [57].

The performance of the solver EPS developed by Régin et al. [63] was not compared with the one of
PHACT, as by following the instructions and running the installation script provided with the source code
of EPS [56] it was not possible to install the solver in any of the five machines used for benchmarking.
OR-Tools was also not used in M2 and M4 machines as it does not support the older versions of the
software libraries installed in them.

5.1 Results on GPUs

In this section the smaller instances of eight of the ten CSPs described above were used for testing the
speedups that could be achieved with four different GPUs. Only those eight instances of the problems were
used due to the long time that PHACT would take to solve other instances with a single GPU thread.
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Note that, for the GPU tests presented in this section, the number of work-items per work-group is always
set to 128, except when using a single thread. This number of work-items per work-groups is set by default
in PHACT, as explained in Section 2.2. This means that, for example, using 32,768 threads (work-items)
corresponds to using 256 work-groups with 128 work-items each.

The speedups obtained by PHACT when using the Geforce GPU when incrementing the number of threads,
are presented in Figure 5.1. The speedups are calculated by comparing the time that PHACT took to solve
the problems with each number of threads, against the time needed to solve the same problem with 1
thread. The respective times are presented in Table 5.2.

Table 5.2: Seconds needed for PHACT to solve the problems with different numbers of threads on the
Geforce

CSP Number of Threads
1 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768

Bacp_2 1,936.37 18.36 18.24 12.45 9.69 11.93 14.61 13.13 12.16 10.29
Cryptanalysis_128_3_4 7.76 5.04 4.75 4.19 4.11 3.88 3.61 3.85 5.39 6.88
Golomb_9 96.45 54.53 31.85 25.64 18.76 16.12 10.80 6.63 4.70 4.69
Langford_3_9 0.84 1.05 0.83 0.78 0.76 0.90 0.75 1.12 1.43 1.98
M_queens_8 9.64 8.72 8.27 7.57 5.93 5.69 5.56 5.68 5.85 5.43
Market_split_s4_07 3,192.48 81.67 37.47 19.56 10.60 6.43 4.30 3.79 4.19 5.42
Open_stacks_10_10 5.18 1.53 1.16 1.05 0.94 1.13 0.92 0.90 1.40 1.47
Queens_15 15,405.14 417.05 212.59 105.82 55.46 30.18 18.07 11.15 9.62 9.32

From all the CSPs used for testing, the N-queens is the simplest one, when attending to the type of
constraints used. This problem is modelled only with “not equal” constraints, which state that a variable
x must be assigned with a value different from the value assigned to a variable y, which leads to a very
simple propagator.

As mentioned in Section 2.2, GPUs are mainly prepared to execute the same code instruction over many
cores at the same time. This means that the more divergent paths the source code has the less efficiently
the GPU will behave. When using a GPU to solve a CSP whose source code will only contain a few
divergent paths, the GPU will be capable of using most of its parallel capabilities. This was the case when
solving the Queens_15 problem, which is also visible in Figures 5.2 and 5.4.

The Queens_15 problem allowed the three GPUs to achieve speedups over 600, when comparing to them
solving the same problem with a single thread, which shows the extreme parallel capabilities of these devices.
To solve the Queens_15 problem with one thread, the Geforce GPU took 15,415.14 s, that were reduced
to 9.32 s when using 256 work-groups with 128 work-items each, totalling 32,768 threads, achieving a
speedup above 1,600.

Besides being one of the simplest problems used for these benchmarks, the Queens_15 was also the one
that took more time to solve (to count all the solutions) with a single thread, which leaves more room
for a speedup when increasing the number of threads. That is also consistent with the speedups obtained
when using 32,768 threads to solve the Market_split_s4_07 and the Bacp_2 problems, which were the
next two problems that took longer to solve sequentially (with a single thread).

On the contrary, the Langford_3_9 is solved very fast sequentially, which leaves no room for improvement
when using more threads. From the 0.84 s needed to solve the problem, only 313 ms were used in the
solving process, and the remaining time was used to load the model and to initialize the device. In fact,
apart from when using 256, 512, 1,024 and 4,096 threads which allowed a very small speedup, with the
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Figure 5.1: Speedups achieved with PHACT when increasing the number of threads on the Geforce GPU

remaining numbers of threads the time took to solve the problem increased. This may be due to the
increased time needed to initialize all the threads and the respective resources, along with the increased
number of sub-search spaces not compensating the actual work done in parallel by the threads.

Besides the Langford instance, the Cryptanalysis, the M_queens and the Open_stacks that were used in
this section are also solved in a few seconds sequentially, which resulted in small speedups when increasing
the number of threads to solve them. However, these instances were selected because all the other instances
that were tested were either solved even faster or would take too long to solve sequentially.

The most accentuated increases and decreases in the speedups represented in Figures 5.1, 5.2, 5.3
and 5.4 are consistent with changes in the number of sub-search spaces that are created for that particular
combination of work-groups and work-items, which may increase or decrease the number of propagations
needed to solve the problem, as shown in Table 5.5. These accentuated increases and decreases are most
visible for the Bacp_2 and the Langford_3_9 problems in the Geforce, the Tesla and the Tahiti GPUs.
In the Titan GPU this result is much more attenuated for the Langford_3_9 problem, which may be due
to the more recent architecture of this device making it more capable of balancing the distribution of the
work among its hardware components.

One of the biggest obstacles when using backtracking techniques are the memory requirements to store all
the previous states of the search space. This is the main bottleneck when running PHACT on a GPU, as
they can run thousands of threads simultaneously and all of them need to store the previous states of their
own search space.
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Figure 5.2: Speedups achieved with PHACT when increasing the number of threads on the Tesla GPU

Even with the smaller instances of the CSPs presented in this section, the memory requirements of PHACT
to solve some of them did not allow the GPUs to use 32,768 threads. Instead, PHACT used as many
threads as the RAM of the GPU allowed. When solving the problems in the Geforce, the Golomb_9, the
Market_split_s4_07, the Open_stacks_10_10 and the Queens_15 problems allowed to use the 32,768
threads, but the Bacp_2, the Cryptanalysis_128_3_4, the Langford_3_9 and the M_queens_8 problems
did not. They only allowed to use 756, 1,134, 32,640 and 10,368 threads, respectively.

Although for some problems the GPUs did not have enough memory to execute the 32,768 threads, the
number of threads that they allowed are arranged in different numbers of work-groups when trying to use
more threads. For example, the Bacp_2 problem did not allow to use more than 756 threads, however that
number is only surpassed when trying to use 1,024 threads, which corresponds to 8 work-groups with 128
work-items each. After surpassing the number of threads that can be used on a device, PHACT reduces
the number of work-groups and/or work-items to fit the memory. But that process can result in a different
number of work-groups and consequently in a different number of work-items per work-group, according
to the required amount of each.

These different combinations of work-items per work-group for the same number of threads result in a
different usage of the GPU resources, like the shared memory which is shared among all the work-items of
the same work-group. That resulted in the different performances of the GPU when solving, for example,
the Bacp_2 with the maximum allowed number of threads, which can be seen in Figure 5.1, after surpassing
the 756 threads.
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Even when using a GPU from a different vendor, an AMD instead of a Nvidia, the results where very
similar. Figure 5.3 shows the speedups of a Tahiti when solving seven of the eight problems. There are no
results for the Queens_15 problem, as solving this problem with one thread on this GPU exceeded the 12
hour limit.

Figure 5.3: Speedups achieved with PHACT when increasing the number of threads on the Tahiti 1 GPU

5.1.1 Conclusion

In this section, four different GPUs were used to test the performance of PHACT while solving 8 CSPs.
These GPUs allowed PHACT to achieve speedups greater than 1,600 when comparing to the same problem
being solved with a single GPU thread, which shows the adaptability of PHACT to take advantage of
massively parallel devices to speed up the solving process of constraint problems.

5.2 Results on MICs

In this section, the performance of PHACT was tested on a MIC while solving the same eight problems that
were solved using the three GPUs in the previous section, and the smaller instances of the java_routing
and of the project_planning problems.

The Intel MIC allows a greater level of parallelism than the CPUs, but smaller when compared to GPUs.
However, its cores are faster than the ones of the GPUs and possess a bigger instruction set, which allows
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Figure 5.4: Speedups achieved with PHACT when increasing the number of threads on the Titan 1 GPU

them to solve each problem faster than the GPUs when using the same number of threads. This allowed
to benchmark PHACT on the MIC with ten CSPs, instead of only the eight used with the GPUs in the
previous section, without the problem of them taking too long to solve.

Figure 5.5 shows the speedups against the sequential run, achieved with PHACT when solving the ten
problems while increasing the number of threads in a MIC. The elapsed times used for constructing the
chart are shown in Table 5.3.

The best speedups were also achieved when solving the Queens_15 problem, and the worst speedups were
achieved with the same problems as when using GPUs, namely, the M_queens_8, the Langford_3_9, the
Open_stacks_10_10 and the Cryptanalysis_128_3_4 problems, which shows that these four problems are
the hardest to solve of this set of ten.

5.2.1 Conclusion

The expected level of parallelism when using MICs is situated between the one of most CPUs and GPUs,
as they possess more cores than most of the CPUs, but much less cores than most of the GPUs. As such,
the results that were achieved are in accord with what was expected.
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Table 5.3: Seconds needed for PHACT to solve the problems with different numbers of threads on a MIC

CSP Number of Threads
1 2 4 8 16 32 64 128 240

Bacp_2 131,12 65,93 38,11 21,23 14,56 10,48 9,42 9,17 9,55
Cryptanalysis_128_3_4 7,66 7,75 7,82 7,51 7,72 7,75 7,76 7,83 8,97
Golomb_9 13,66 13,23 9,60 9,49 8,13 7,70 7,65 7,33 7,50
Java_routing_6_3 547,87 275,49 141,65 77,00 43,04 26,38 18,07 15,32 16,19
Langford_3_9 4,47 4,40 4,18 4,26 4,39 4,27 4,27 4,35 4,33
M_queens_8 5,87 5,91 5,65 5,72 5,69 5,58 5,71 5,73 5,77
Market_split_s4_07 218,16 134,01 74,67 47,64 26,15 16,90 11,35 8,90 7,77
Open_stacks_10_10 5,48 5,65 5,58 5,40 5,47 5,50 5,29 5,61 5,56
Project_planning_13_7 6286,65 3067,63 1528,27 789,66 457,62 380,50 347,33 204,10 207,30
Queens_15 890,89 442,62 224,87 121,44 66,25 36,08 22,06 15,19 13,69

Figure 5.5: Speedups achieved with PHACT when using an increasing number of threads on a MIC

5.3 Results on CPUs

The capabilities of PHACT to use the parallel processing power of multi-threading CPUs were tested with
10 different CSPs on the five CPUs presented in the beginning of this chapter.

Figure 5.6 presents the speedups achieved when solving the CSPs on the I7 CPU, using 1, 2, 4 and 8 threads,
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corresponding to the elapsed times from Table 5.4. The speedups were calculated when comparing the run
times against the one obtained when using only one thread.

Table 5.4: Seconds that PHACT took to solve each CSP when using from 1 to 8 threads on I7

CSP Number of threads
1 2 4 8

Bacp_7 133.13 66.32 47.38 35.87
Cryptanalysis_128_5_11 95.73 54.36 38.58 30.98
Golomb_11 115.69 63.76 40.45 36.59
Java_routing_6_3 43.42 23.34 14.51 11.51
Langford_3_18 79.24 64.98 38.02 56.15
M_queens_12 102.48 58.55 63.77 61.81
Market_split_s5_04 65.28 39.04 25.77 18.09
Open_stacks_20_20_a 92.90 47.43 29.21 23.77
Project_planning_13_7 286.72 141.85 86.03 62.64
Queens_15 68.87 43.60 23.35 15.66

Figure 5.6: Speedups achieved with PHACT when using from 1 to 8 threads on I7

When using only one thread to solve a CSP, PHACT does not split the CSP in sub-search spaces, but
when using more than one thread, by default, it creates at least 5,000 sub-search spaces per CPU thread
(Section 4.2). For some CSPs, some of the sub-search spaces that are created are already inconsistent.
As each sub-search space is independently checked for inconsistency, that verification may imply a lot of
repeated constraint propagation between threads when the inconsistency is located higher in the search
tree, or each variable is very constrained.

Table 5.5 presents the number of sub-search spaces that were created for each CSP, when using the I7
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CPU with 8 threads. It also compares the number of propagations needed to solve each CSP with these
sub-search spaces and when using a single thread and consequently one search space. The number of
propagations is the number of times any constraint propagator was executed after a change of the domain
of any variable constrained by some constraint.

Table 5.5: Number of propagations when using the I7 CPU

CSP

Propagations to
explore the CSP
(1 search space)

with 1 CPU
thread

8 CPU threads
Number of
sub-search

spaces
created

Propagations
to explore all

sub-search
spaces

Percentage of
propagations

against 1
CPU thread

Bacp_7.fzn 597,009,177 65,536 642,077,128 107.55%
Cryptanalysis_128_5_11.fzn 1,186,394,856 46,875 1,245,526,916 104.98%
Golomb_11.fzn 4,181,239,768 49,284 4,288,844,713 102.57%
java_routing_6_3.fzn 641,242,225 41,472 661,756,797 103.20%
Langford_3_18.fzn 1,811,275,857 40,000 5,978,654,537 330.08%
M_queens_12.fzn 1,348,496,724 65,536 1,348,043,046 99.97%
Market_split_s5_04.fzn 268,813,632 65,536 268,280,306 99.80%
Open_stacks_20_20_a.fzn 2,155,561,602 40,000 2,182,324,092 101.24%
Project_planning_13_7.fzn 2,733,271,361 40,960 2,702,642,780 98.88%
Queens_15.fzn 5,629,019,972 40,500 5,630,564,494 100.03%

Note that the values shown in the column “percentage of propagations against 1 CPU thread” were retrieved
from a single run and may be different when using another number of threads and/or sub-search spaces.

Apart from when counting all the solutions, which was the case for the Cryptanalysis_128_5_11 and for the
Queens_15 problems, these values may even change when repeating the same executions with 8 threads, as
the ones used for gathering data for this table. They may change because when using multiple threads for
searching for one solution for a CSP or optimizing it, different results may be achieved as different resources
and execution times may be applied by the Operating System to each one of the threads. That may lead
to some sub-search spaces being explored prior to others, which may even result in different solutions to
be found for a problem, when looking for one solution or optimizing it.

As shown in Table 5.5, the Langford_3_18 was the CSP for which the number of propagations increased
more when creating more sub-search spaces. The objective for all the instances of the Langford Numbers
problem that were used for benchmarking in this thesis was to find a single solution.

After analysing the sub-search spaces that were created when using 4 and 8 threads to find one solution for
the Langford_3_18, it was found that the solution was the same. It was located in the sub-search space
number 1,632 when using 8 threads (and 40,000 sub-search spaces) and in the sub-search space number
816 when using 4 threads (and 20,000 sub-search spaces). However, some of the sub-search spaces prior
to the ones where the solution was found required a lot of propagations to fully explore. For example, the
thread that picked the first sub-search space did not finish to explore all of it before another thread found
the solution, when using both 4 threads or 8.

It was also noted that, when using 4 threads, PHACT explored 1,225 sub-search spaces before finding the
solution, but when using 8 threads it explored 5,714, which explains the large increase in the number of
propagations from when using 4 threads. When using 8 threads, the one that found the solution only
explored 245 sub-search spaces, but when using 4 it explored 329, which can only be explained by the
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unbalanced sub-search spaces into which this CSP was divided. This means that the thread that found the
solution when using 8 threads explored harder sub-search spaces than the one when using only 4 threads,
before finding the solution. This resulted in the slowdown visible in Figure 5.6 when passing from 4 to 8
threads to solve the Langford_3_18 problem.

When solving the M_queens_12, PHACT only increased its speedup when using up to 2 threads. With
more than 2 threads the time needed to solve the problem did not change much. The reason for this
behaviour was that, for example, when using 8 threads, 7 of them finished their work before 22 s have
passed, and the remaining thread kept working on the same sub-search space for about more 39 s. Once
again, like with the Langford_3_18 problem, the cause were the unbalanced sub-search spaces that were
created.

For the remaining CSPs, the speedup has always increased when increasing the number of threads to solve
the problem, which was the expected result. The best speedup obtained was of about 4.6 when using 8
threads to solve the Project_planning_13_7 problem. Due to the memory requirements of PHACT to
solve this problem, it was not solved on GPUs because it would be solved with only a few threads which
would take too long to finish. However, the Queens_15, which was also solved on GPUs as presented in
Section 5.1, where it allowed the GPUs to achieve the best speedup, was also the problem for which the
best speedup was achieved on the I7 CPU, from the problems that were solved on both GPUs and CPUs.

Figure 5.7: Speedups achieved with PHACT when using from 1 to 32 threads on Xeon 1

When solving the same CSPs on Xeon 1, with up to 8 threads, the results were not very different from when
solved on I7. However, after the eight threads some changes occurred, as shown in Figure 5.7. The greater
change was in the speedup achieved when solving the Langford_3_18 problem which went from about
1.2 when using 8 threads to 14 when using 16 threads. Once again, this was due to the very unbalanced
sub-search spaces that were created, which when using 16 threads were explored by a different thread than
the one that found the solution.

The behaviour of PHACT when solving the remaining problems on Xeon 1 was similar to when the I7 was
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used, with all the problems achieving better speedups when increasing the number of threads, except for
the Langford_3_18 and the M_Queens_12, for the same reasons as described before. But with this CPU
the best speedup went up to about 14.

Figure 5.8 presents the speedups achieved when solving the same CSPs on Xeon 3, which is also capable
of running 32 threads simultaneously. In this CPU, the maximum speedup obtained was also of about 14
when using 16 threads to solve the Langford_3_18 problem. However from 16 to 32 threads, the decrease
in performance to solve this problem was more accentuated on Xeon 3 than on Xeon 2. This may be due
to the differences in the architecture of both CPUs, from which Xeon 3 is more recent than Xeon 1 and
possess an higher clock frequency.

Figure 5.8: Speedups achieved with PHACT when using from 1 to 32 threads on Xeon 3

The faster architecture of Xeon 3 allowed it to solve all the problems faster when using one thread. For
example, Xeon 1 took 457 s to solve the Project_planning_13_7 problem and Xeon 3 took 210 s, which
leaves less space for speeding up the solving process when using more threads. This may explain why most
of the speedups achieved by Xeon 3 where lesser than the ones obtained by Xeon 1.

Figure 5.9 shows the speedups achieved when using Xeon 2 to solve the same CSPs, when using from 1 to
40 threads.

In this chart it is observable that as the number of threads increases so does the spread of speedups between
the problems and that the speedup tended to increase less as the number of threads was augmented. This
may be due to the fact that by adding more threads to help solving the problems, it also adds more sub-
search spaces to explore and more synchronization between the threads. This increase in synchronization
and in repeated work due to the added number of sub-search spaces may end up by deteriorating the
speedups.

However, once again, the Langford_3_18 problem was the exception, as it achieved a speedup boost when
increasing the number of threads from 32 to 40, which made this problem the one for which the best
speedup was achieved on the Xeon 2, namely of about 15.
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Figure 5.9: Speedups achieved with PHACT when using from 1 to 40 threads on Xeon 2

The speedups when solving the same CSPs, but using a CPU capable of running 64 threads simultaneously,
are represented in Figure 5.10, and the respective elapsed times are shown in Table 5.6.

Table 5.6: Time in seconds that PHACT took to solve each CSP when using from 1 to 64 threads on
Opteron

CSP Number of threads
1 2 4 8 16 32 64

Bacp_7 472.10 356.18 203.37 125.98 54.62 26.82 14.65
Cryptanalysis_128_5_11 237.84 177.41 101.84 63.54 41.78 27.78 20.91
Golomb_11 207.34 132.23 81.84 50.60 27.60 16.50 10.21
Java_routing_6_3 89.72 64.29 36.65 22.93 14.03 9.51 7.67
Langford_3_18 371.31 495.57 260.38 295.54 25.81 26.27 14.38
M_queens_12 311.62 239.08 203.73 192.88 187.66 185.87 167.22
Market_split_s5_04 142.54 97.09 58.00 35.65 24.14 22.70 22.69
Open_stacks_20_20_a 334.99 240.71 131.46 76.10 40.70 22.85 14.15
Project_planning_13_7 1,284.39 1,016.73 535.70 301.46 177.80 97.22 58.71
Queens_15 124.04 78.99 44.04 26.58 15.04 8.83 5.75

The clock speed of the Opteron CPU is the smallest of the five CPUs used for experimentation, which
resulted in it being the slowest CPU to solve each problem with 1 thread. However, when using all the 64
threads it was the fastest CPU to solve most of the problems. The exception was the Market_split_s5_04
problem, for which the Xeon 1 and Xeon 2 achieved greater speedups.

The time that PHACT took to solve the Market_split_s5_04 in the I7 and in the Opteron was almost the
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Figure 5.10: Speedups achieved with PHACT when using from 1 to 64 threads on Opteron

same, 18.9 s against 22.69 s, respectively. That may be explained by the fact that for this problem only one
solution was required and this problem has only one solution. Which means that the time needed to solve
the problem will depend on the time required to explore the sub-search space that contains the solution
together with the time that the same thread that found the solution has spent exploring other sub-search
spaces. For this problem, that time was similar in the I7 and in the Opteron CPUs.

When using the Opteron CPU, the differences between speedups achieved for each CSP are more evident,
ranging from about 2 up to 32. In this CPU, the best speedup was obtained when solving the Bacp_7
problem, which was in the top 2 on four of the five CPUs used.

5.3.1 Conclusion

In this section, ten CSPs were solved using three CPUs with different parallel capabilities. It was noted that
PHACT was capable of achieving a good speedup on all the CPUs and for most of the problems. Also, as
expected, the speedups increased as the number of threads also increased for all the problems, except for
the M_Queens_12 and the Langford_3_18 problems due to unbalanced sub-search spaces.

5.4 Results on multiple devices

PHACT allows using more than one device at the same time to solve a CSP. In this section, various
combinations of devices were used to solve some of the CSPs also used in the previous sections.

Table 5.7 shows the elapsed times obtained with PHACT when using 1 thread on the I7 CPU, the Geforce
GPU, and both simultaneously to solve 10 problems. Figure 5.11 presents the speedups achieved with
PHACT when comparing the elapsed times while using the Geforce GPU against 1 thread on the I7 CPU,
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or both against 1 thread on the I7 CPU.

Table 5.7: Seconds that PHACT took to solve each CSP when using 1 thread on the I7 CPU, the Geforce
GPU or both, on M1

CSP 1 thread on I7 Geforce 1 thread on I7
and Geforce

Bacp_7 133.13 83.68 197.18
Cryptanalysis_128_5_11 95.73 280.37 90.45
Golomb_11 115.69 424.71 136.62
Java_routing_6_3 43.42 65.74 45.36
Langford_3_18 79.24 184.48 145.78
M_queens_12 102.48 9,665.12 2,858.59
Market_split_s5_04 65.28 18.92 22.77
Open_stacks_20_20_a 92.90 201.86 93.21
Project_planning_13_7 286.72 1,565.27 357.28
Queens_15 68.87 9.39 13.65

Figure 5.11: Speedups achieved with PHACT when comparing the elapsed times achieved with the Geforce
GPU against 1 thread of the I7 CPU, and both against 1 thread of the I7 CPU, on M1

Using the Geforce GPU alone allowed to achieve speedups for only 3 of the 10 CSPs, achieving the best
speedup (7.3) for the Queens_15 problem, and the worst speedup for the M_queens_12 problem (0.01).

GPUs are more inefficient when dealing with synchronization between threads, as for example, when using
atomic operations to change the value of the cost to optimize when solving optimization problems. This
can help to explain the motive of the bad performance of the Geforce GPU when solving these type of
problems.
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However, the greater bottleneck when using PHACT on this GPU to solve these problems was the size of
the Geforce RAM. From these 10 CSPs, only the Golomb_11, the Market_split_s5_04 and the Queens_15
were executed with the default number of threads (65,536). The least number of threads used was 128 for
the Cryptanalysis_128_5_11.

The number of divergent paths of the code used for solving the CSPs is also much related with the
performance of PHACT when using GPUs to solve these CSPs. Although GPUs possess a much greater
number of cores than CPUs, the CPU hardware is much better prepared for dealing with divergent paths
in the source code than GPUs.

From the 10 CSPs, the Queens_15 is the simpler problem, with 15 variables, each one with only 15 values
on its domain and only a small number of “not equal” constraints, as presented in Table 5.1. That simplicity
makes the Queens_15 the problem with less divergent paths in the source code. The simplicity, the non
existent atomic operations, as the objective of this problem was to count all the solutions, and the usage
of 65,536 threads allowed the GPU to achieve a speedup of 7.3 when compared with a single thread on
the I7 CPU.

On the contrary, the M_queens_12 is much more complex and only allowed to use 1,638 threads. Together
with the unbalanced sub-search spaces which when explored in a GPU are much more problematic due to
the slower cores which are also much less prepared for divergent paths, made the M_queens_12 take much
longer to be solved on the Geforce GPU than on a single thread on the I7 CPU.

If the CSPs are solved by 1 thread on the I7 CPU and the Geforce GPU at the same time, new problems
arise. To use more than one device simultaneously, PHACT needs to manage the synchronization between
all the devices on the host side, as described in Chapter 4. For that, each device will receive many blocks of
sub-search spaces to explore, one at a time, and only then it synchronizes with the host. When optimizing
a problem, only then the best current cost is shared among devices, which may lead to devices searching
for solutions that are already worse than others already found by other devices. When searching for one
solution, the problem is similar, as a device may have already found a solution and finished, but the other
device will only terminate when it depletes its current block of sub-search spaces.

These are the reasons why only for the Cryptanalysis_128_5_11, the Market_split_s5_04 and the Queens-
_15 the Geforce along with 1 thread on the I7 achieved a better performance than 1 thread on the I7 alone.
However, for most of the CSPs, the speedup when using both devices was better than when using only the
Geforce GPU. The exceptions were the Bacp_7, the Market_split_s5_04 and the Queens_15, for which
the Geforce alone was faster than 1 thread of the I7 CPU.

When comparing the speedups of the Tesla GPU against a single thread of the Xeon 2 CPU and of both
devices against a single thread of the Xeon 2 CPU in Figure 5.12, the results were similar with the ones of
Figure 5.11, except that the speedups were smaller as the Tesla GPU is slower than the Geforce GPU. That
difference in speed explain why in this case, 1 thread on Xeon 2 along with the Tesla achieved a greater
speedup than the Tesla alone to solve the Queens_15 problem.

Using the Tesla GPU to help 1 thread of the Xeon 2 allowed to obtain a speedup only when solving
the Market_split_s5_04 and the Queens_15 problems, when comparing with solving the problems with 1
thread on Xeon 2 alone.

Table 5.8 presents the times needed by PHACT to solve six CSPs when using 1 thread on the Opteron
CPU, 1 Tahiti or 2 Tahitis, and combinations of the 3 devices of the M4 machine. The respective speedups
are presented in Figure 5.13. For most of the problems, the Tahiti GPUs were slower than the other three
GPUs used for testing PHACT. This resulted in not obtaining results with the Tahiti to four of the ten
CSPs solved with the other GPUs, due to them taking more than twelve hours to solve.
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Figure 5.12: Speedups achieved with PHACT when comparing the elapsed times achieved with the Tesla
GPU against 1 thread of the Xeon 2 CPU and both against 1 thread of the Xeon 2 CPU, on M3

Table 5.8: Seconds that PHACT took to solve each CSP when using combinations of the devices on M4

CSP 1 Opteron
thread

1 Tahiti 2 Tahitis
1 Opteron
thread and

1 Tahiti

1 Opteron
thread and
2 Tahitis

Cryptanalysis_128_5_11 237.84 694.09 411.29 290.69 282.35
Golomb_11 207.34 829.38 229.69 171.81 157.93
Java_routing_6_3 89.72 417.98 533.29 251.72 493.78
Market_split_s5_04 142.54 2,052.51 34.95 45.90 33.81
Open_stacks_20_20_a 334.99 431.40 484.25 306.49 299.58
Queens_15 124.04 21.85 17.44 22.98 17.14

When compared with 1 thread on Opteron, 1 Tahiti GPU allowed to obtain a speedup only when solving
the Queens_15 problem, which as stated before, is the problem for which the GPUs achieved the greater
speedups. For the remaining problems, most of the results were different among them, and speedups were
only achieved when using 1 or 2 Tahitis along with 1 thread on the Opteron CPU. The exception was when
solving the Market_split_s5_04, for which a speedup was also obtained when using 2 Tahitis. This means
that the usage of more devices allowed to start exploring a sub-search space containing a solution, faster
than a single device alone.

Table 5.9 presents the times needed by PHACT to solve ten CSPs when using 1 thread on the Xeon 3,
1 Titan or 2 Titans, and combinations of the 3 devices of the M5 machine. The respective speedups are
presented in Figure 5.14.

The M5 machine possess the most recent and fastest GPUs of the five machines, and as such better
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Figure 5.13: Speedups achieved with PHACT when comparing the elapsed times achieved with combinations
of the devices on M4

Table 5.9: Seconds that PHACT took to solve each CSP when using combinations of the devices on M5

CSP 1 Xeon 3
thread

1 Titan 2 Titans
1 Xeon 3

thread and
1 Titan

1 Xeon 3
thread and

2 Titans
Bacp_7 109.64 29,52 694,37 397,74 551,12
Cryptanalysis_128_5_11 91.46 109,51 80,11 84,58 76,57
Golomb_11 127.91 85,75 34,81 42,80 31,09
Java_routing_6_3 42.26 13,08 26,46 25,71 22,33
Langford_3_18 91.93 59,44 757,73 266,19 280,04
M_queens_12 102.25 3474,46 3400,31 104,99 105,80
Market_split_s5_04 66.06 48,25 14,58 20,30 15,27
Open_stacks_20_20_a 85.97 67,00 117,07 94,13 86,77
Project_planning_13_7 210.27 923,78 1288,15 540,78 1563,70
Queens_15 84.20 7,10 5,62 6,47 5,75

speedups were expected. This was the case, as speedups were achieved with all the combinations of
devices for four of the problems, and for seven problems when using 1 Titan. The best speedup was
obtained when using the 2 Titans to solve the Queens_15 problem, for which they were about 15 times
faster than 1 thread on the Xeon 3 CPU.

Figure 5.15 presents the speedups achieved by PHACT when comparing the elapsed times on solving



5.4. RESULTS ON MULTIPLE DEVICES 67

Figure 5.14: Speedups achieved with PHACT when comparing the elapsed times achieved with combinations
of the devices on M5

10 CSPs with different combinations of the devices on M2. The respective elapsed times are shown in
Table 5.10.

Table 5.10: Seconds that PHACT took to solve each CSP when using combinations of the devices on M2

CSP 1 Xeon 1
thread

1 MIC 2 MICs
1 Xeon 1

thread and
1 MIC

1 Xeon 1
thread and

2 MICs
Bacp_7 203.65 14.32 89.57 96.77 69.88
Cryptanalysis_128_5_11 146.64 37.46 74.28 58.20 57.20
Golomb_11 182.52 40.67 34.55 39.03 36.52
Java_routing_6_3 71.18 16.22 44.36 41.27 37.06
Langford_3_18 127.01 34.48 15.01 135.82 137.11
M_queens_12 160.57 828.61 234.88 99.64 97.38
Market_split_s5_04 114.64 20.81 17.30 23.24 17.98
Open_stacks_20_20_a 144.03 23.91 88.82 68.76 61.01
Project_planning_13_7 456.94 217.85 384.40 597.51 1,166.54
Queens_15 110.81 13.88 12.95 13.81 13.29
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Figure 5.15: Speedups achieved with PHACT when comparing the elapsed times achieved with combinations
of the devices on M2

The elapsed times when using one or two MICs against a single thread on the Xeon 1 CPU generated many
different speedups. The speedups ranged from 0.2 when comparing the time needed by PHACT to solve
the M_queens_12 problem with 1 MIC against 1 thread on the Xeon 1 CPU, up to 14.2 when making the
same comparison, but for solving the Bacp_7 problem.

The Intel MICs hardware is much more similar to the one of the CPUs than to the one of the GPUs,
which made PHACT achieve better results than the ones achieved with GPUs. One major difference is the
number of threads that these devices need to execute simultaneously to achieve their best performance,
namely about 240 threads. Unlike to the three GPUs used for testing PHACT, the MICs RAM (16 GB) is
more than enough to fulfill all PHACT memory requirements to solve these 10 CSPs.

When looking at the chart, the greater difference in speedups achieved for a single problem occurred when
solving the Bacp_7 problem. The only possible explanation for this difference in speedups is that the
combination of the number of sub-search spaces generated to use 1 MIC with the number of threads used
by the device, allowed a thread to pick the sub-search spaces that contained the best solution very early
in the solving process. The same may have happened when solving the Open_Stacks_20_20_a. When
dealing with the much unbalanced sub-search spaces of the Langford_3_18 problem, the best combination
of numbers of threads and generated sub-search spaces favoured the usage of 2 MICs.

In the previous tables and charts of this section, the elapsed times were compared against a single thread
on each machine CPU. The following tables and charts present the elapsed times and speedups achieved
by PHACT when solving bigger instances of the same CSPs, but using all the processing power of all the
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devices on each machine. Only the instance of the Langford problem is the same, as bigger instances would
take too long to solve. Solving some problems in the five machines would take longer than twelve hours,
so the respective results are not presented.

Even when using all the cores of the I7, of the Xeon 2, of the Opteron or of the Xeon 3 CPU, for some
CSPs, the GPUs on the same machine, the Geforce, the Tesla, the Tahitis or the Titans, respectively allow
to gain some speedup, as presented in Figures 5.16, 5.17, 5.18 and 5.19. The elapsed times used for
calculating the speedups presented in Figure 5.16 are shown in Table 5.11.

Table 5.11: Seconds that PHACT took to solve each CSP on M1, when using the I7, or the I7 and the
Geforce

CSP I7 I7 and
Geforce

Bacp_6 273.65 1,600.40
Cryptanalysis_128_5_14 212.53 270.91
Golomb_12 390.20 1,777.32
Langford_3_18 56.64 125.92
Market_split_s5_01 234.41 124.02
Open_stacks_20_20_b 193.29 224.39
Project_planning_13_8 51.74 5,353.03
Queens_17 732.13 319.22

Figure 5.16: Speedups achieved with PHACT when using the Geforce GPU along with the I7 CPU on M1

However, when using such different devices as CPUs and GPUs simultaneously to solve the same CSP,
multiple challenges arise, as described in Section 4.3. Mainly, more sub-search spaces are created, leading
to more repeated propagations needed to explore all of them and some CPU resources are occupied while
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Figure 5.17: Speedups achieved with PHACT when using the Tesla GPU along with the Xeon 2 CPU on
M3

Figure 5.18: Speedups achieved with PHACT when using one and two Tahiti GPUs along with the Opteron
CPU on M4

configuring, initializing and communicating with the other devices, instead of being used to solve the CSP.
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Figure 5.19: Speedups achieved with PHACT when using one and two Titan GPUs along with the Xeon 3
CPU on M5

This lead to the GPUs being unable to speed up the solving process of most of the problems when
comparing with the time taken to solve them with all the CPU cores alone. Nevertheless, the Geforce
allowed to speedup the solving process for two of the ten problems, achieving a top speedup of 2.3 with the
Queens_17 problem. The Tesla and the Tahitis GPUs were also capable of speeding up the solving process
for the same two problems. This means that, the work done by this three GPUs did not compensate the
time spent by the respective CPU in controlling them, for most of the CSPs.

As expected, the Titan GPUs allowed the best speedups, achieving a speedup for five of the ten problems.
This GPUs were the only ones capable of helping the respective CPU to solve all the 10 problems in less
than twelve hours. The best speedup was achieved when solving the Queens_17 problem, being about 4.3
times faster than the Xeon 3 alone when using both GPUs to help.

When using one or both MICs to speedup the solving process of the Xeon 1 with all its threads, PHACT
achieved speedups for seven of the ten problems, as presented in Figure 5.20.

PHACT creates blocks with less sub-search spaces when using more devices, to make them synchronize
more frequently, and even fewer when solving optimization problems or looking for a single solution. That
allows PHACT to minimize unnecessary work done while looking for a solution worse than another solution
already found by another device, or when instead of optimizing, only one solution is to be found and another
device has already found one.

However, that also increases the number of blocks that will be communicated to the devices and these
communications consume time, which will negatively impact of the performance of PHACT. For example,
when solving the Java_routing_8_5 problem, more than 200 blocks were communicated from the host to
the devices.

For the Project_planning_13_8 problem another trouble emerged, namely, its unbalanced sub-search spaces
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Figure 5.20: Speedups achieved with PHACT when using MIC 1 and MIC 2 accelerators along with the
Xeon 1 CPU on M2

caused the MIC 2 to finish its work much after the other MIC and the Xeon 1. Before receiving the last
block of sub-search spaces, the MIC 2 needed an average time to solve each sub-search space of about
3.6 ms, which lead the host to deliver to it a block with 321 sub-search spaces, a size similar to the one
before, which took about 1.1 s to solve. However, this last block took 206 s to solve which made this
device finish about 155 s after the other devices.

5.4.1 Conclusion

When using more than one device to solve a problem, the greater difficulty is to achieve a good load
balancing between the devices while limiting the number and size of communications between them. That
difficulty is even greater when dealing with devices with such different architectures as CPUs and GPUs.
GPUs are also less prepared to deal with the divergent paths of the source code needed to solve the problems
with a greater number and more complex constraints. That along with the limitations on the maximum
number of threads that can be used to solve a problem, due to their RAM size, makes GPUs much less
prepared to solve bigger and more complex CSPs than the CPUs.

However, PHACT was capable of achieving top speedups of about 13 and 14 when using one and two
GPUs to help a single CPU core, respectively. The usage of one and two MICs to help a single CPU thread
allowed to obtain top speedups of about 8. When using all the processing power of the CPUs, one GPU
allowed to achieve a top speedup of about 2.7 and two GPUs of about 4.3, both against a 32 threads CPU.
One MIC and two MICs allowed a top speedup of about 1.8 and 2.4, respectively, against a CPU with 32
cores.
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5.5 Comparison with the state of the art

For comparing the speedups achieved by PHACT when using multithreaded CPUs, with the state of the
art, Gecode [66], Choco [55] and OR-Tools [29] were selected. Gecode is one of the most used solvers for
performance comparisons [63, 53, 15]. As such, it may also serve as a bridge to compare relative speedups
with other solvers. The Choco and the OR-Tools use portfolio search strategies to allow a multithreaded
resolution of a CSP and Gecode uses work-stealing techniques.

The tests that were presented in Section 5.3, were repeated with Gecode, Choco and the OR-Tools solvers
and are presented in this section, along with a comparison of elapsed times and speedups between them.

Table 5.12 shows the time that each solver needed to solve each one of the CSPs with a different number
of threads when using the Xeon 2 of the machine M3. This elapsed times were used to build Figure 5.24
and the problems were the ones also solved on each machine to produce Figures 5.21, 5.22, 5.23, 5.24
and 5.25.
Table 5.12: Seconds needed for each solver to solve the problems with different number of threads on Xeon
2

Threads Solver Bacp_7
Crypt-
analysis

128_5_11
Golomb

11

Java
routing

6_3

Langford
3_18

M
queens

12

Market
split

s5_04

Open
stacks

20_20_a

Project
planning

13_7
Queens

15

1

PHACT 137.72 101.76 121.49 45.77 86.49 110.89 78.17 95.60 305.30 76.61
Gecode 158.31 850.38 353.77 60.79 59.46 208.80 68.58 576.41 490.74 164.66
Choco 346.03 789.78 375.43 113.99 104.00 326.85 104.31 598.96 869.76 100.32

OR-Tools 0.48 36.94 1,304.47 8.37 38.13 30.25 150.71 13.55 2.48 5,212.78

2

PHACT 77.16 57.14 81.13 26.86 74.16 65.98 54.85 58.97 156.36 48.33
Gecode 82.54 509.32 186.45 42.06 36.57 121.26 93.49 437.15 296.14 152.45
Choco 0.93 150.81 1,486.59 2.03 5.29 572.54 4,216.97 100.02

OR-Tools 0.26 841.50 6.72 2.10 30.00 150.82 13.66 2.14

4

PHACT 49.17 35.67 49.14 18.06 40.02 66.32 37.45 32.89 94.74 32.07
Gecode 27.12 362.08 102.34 29.98 21.74 78.50 74.04 419.22 179.54 127.41
Choco 1.26 145.23 1,503.61 2.52 5.34 89.49 909.93 117.45

OR-Tools 0.23 730.07 4.82 0.82 30.68 155.27 13.98 1.97

8

PHACT 34.36 25.43 44.63 12.62 44.58 65.78 23.26 21.72 51.95 17.97
Gecode 28.29 206.68 61.22 30.20 8.33 38.78 148.64 542.56 191.88 127.16
Choco 1.57 141.38 1,518.42 2.87 4.03 211.87 1,031.34 109.30

OR-Tools 0.22 778.13 4.79 0.80 28.77 164.18 14.69 1.97

16

PHACT 17.53 18.83 25.46 10.07 7.38 66.40 16.07 15.27 41.73 11.09
Gecode 13.22 176.44 37.46 32.92 3.72 20.33 211.62 11.62 138.12 133.46
Choco 2.02 142.15 1,832.61 3.70 4.69 447.85 1,039.62 107.62

OR-Tools 0.23 867.00 4.80 0.86 31.10 165.52 16.02 1.98

32

PHACT 11.46 15.00 19.31 8.34 6.99 65.02 10.38 10.58 26.52 8.23
Gecode 18.21 172.42 27.83 38.46 3.40 13.69 283.50 557.87 109.45 140.50
Choco 3.40 224.64 2,246.25 5.94 9.67 489.58 1,447.13 184.60

OR-Tools 0.23 1,608.44 6.01 0.82 36.43 233.47 24.71 2.01

40

PHACT 10.55 14.24 17.71 8.07 5.76 64.56 9.75 10.58 25.49 7.21
Gecode 17.46 178.01 27.09 39.43 4.08 12.94 235.64 90.61 126.91 143.70
Choco 4.17 229.40 2,689.61 7.25 15.44 645.44 1,721.67 209.69

OR-Tools 0.21 1,997.60 6.28 0.88 48.01 273.27 30.14 2.17

Those figures present the speedups achieved by PHACT when comparing its elapsed times against the
execution of the other three solvers on the M1, M2, M3, M4 and M5 CPUs, respectively. Each bar in the
charts represents the geometric mean of the speedups achieved for the ten CSPs for a given number of
threads.

The OR-Tools and the Choco solvers do not allow the search for all the solutions of a CSP while us-
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Figure 5.21: Average speedups achieved with PHACT against Gecode, Choco and OR-Tools when using
from 1 to 8 threads on I7

Figure 5.22: Average speedups achieved with PHACT against Gecode, and Choco when using from 1 to
32 threads on Xeon 1

ing more than one thread. As such, there are no values presented for counting all the solution for the
Cryptanalysis_128_5_11 and the Queens_15 problems for these two solvers when using more than one



5.5. COMPARISON WITH THE STATE OF THE ART 75

Figure 5.23: Average speedups achieved with PHACT against Gecode, Choco and OR-Tools when using
from 1 to 32 threads on Xeon 3

Figure 5.24: Average speedups achieved with PHACT against Gecode, Choco and OR-Tools when using
from 1 to 40 threads on Xeon 2
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Figure 5.25: Average speedups achieved with PHACT against Gecode and Choco when using from 1 to 64
threads on Opteron

thread.

From the five charts in Figures 5.21, 5.22, 5.23, 5.24 and 5.25 it is visible that, in average, PHACT achieve
greater speedups than Gecode with all the number of threads on the five machines. However, looking at
the elapsed times presented in Table 5.12, we can see that Gecode was faster in some cases, namely when
solving the Bacp_7, the Langford_3_18 and the Market_split_s5_04 with fewer threads. When using
only one thread, this can only be due to Gecode using more efficient propagators to solve these problems,
or by a more efficient simplification of the model prior to exploring it, which may avoid some work during
the exploration process.

However, when using more threads, PHACT was faster in all the problems, except when solving the
Langford_3_18 and the M_queens_12 problems. When solving the Langford_3_18, the difference in
time between the solvers corresponds to the time that PHACT needs to find, configure and initialize the
OpenCL devices, even when running only on the CPU. For the M_queens_12, Gecode was faster than
PHACT when using more than 4 threads, which shows that, for this problem the work stealing technique
was more efficient.

When comparing the times for solving the problems with a single thread against the CHOCO solver, PHACT
was faster than it for all the problems. When using more threads, the elapsed times diverge greatly between
problems and number of threads used. This is due to the techniques used by Choco to use multithreading
CPUs to solve a problem. It uses a portfolio of workers where each worker (thread) will use a different
strategy to try to find a near optimal solution, when optimizing, or a solution when just looking for one.
However, this strategy does not guarantee that the best solution will be found when optimizing a problem,
and although for some problems it seems to be efficient, for other problems it takes too long to find a near
optimal solution.

The OR-Tools uses a similar strategy to the one used by Choco, but its results are in most cases, better
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than the ones achieved by Choco. Even when using a single thread to solve some problems, the OR-Tools
is much faster than the other three solvers, as for example, when solving the Bacp_7 problem. However,
for some other CSPs, it is much slower, as for example, when solving the Queens_15 problem.

Figures 5.21, 5.22, 5.23, 5.24 and 5.25 allow to check the average speedup of PHACT against the other
three solvers when solving the ten CSPs on the five machines. From there we can also see that Choco
achieved a greater performance than PHACT in some cases. However, just like when using the OR-Tools
solver, when optimizing with more than one thread, the solution found is only near optimal. In average,
OR-Tools was faster with all the different number of threads used. OR-Tools was not used in M2 and M4
machines as it does not support the older versions of the software libraries installed in them.

The Table 5.13 presents the time that each solver took to solve bigger instances of the same problems
as before, but when using all the threads of the Xeon 2 CPU. The respective speedups are represented in
Figure 5.26.

Table 5.13: Seconds needed for different solvers to solve problems on the Xeon 2

CSP PHACT Gecode Choco OR-Tools
Bacp_6 75.63 544.61 4.10 0.25
Cryptanalysis_128_5_14 53.55 1,951.26
Golomb_12 172.00 299.08 2,289.25 27,479.99
Java_routing_8_5 231.30 2,914.79 21.58
Langford_3_18 5.57 3.08 7.02 0.89
M_queens_13 360.15 72.41 8.72 51.04
Market_split_s5_01 131.53 3,139.55 6,034.04 2,066.21
Open_stacks_20_20_b 54.40 637.39 14,652.00 22.86
Project_planning_13_8 21.09 123.20 218.67 1.85
Queens_17 190.68 6,234.38

From Table 5.13 we can see that, although each problem took more time to solve, in most cases the
comparison between solvers remains similar to the one in Table 5.12, where smaller instances of the same
problems were solved.

Figure 5.26 shows that PHACT was faster than Gecode for eight of the ten problems. For the Lang-
ford_3_18 and the M-queens_13, PHACT generates very unbalanced sub-search spaces which results in
some of the threads finishing their work much before the others, resulting in a decrease of teh performance
of PHACT. For this situations, the work-stealing techniques like the ones used by Gecode become more
efficient, as they may share the remaining work among all the threads.

As for Choco and the OR-Tools solvers, they are unable to find all the solutions, and as such no result is pre-
sented for solving the Cryptanalysis_128_5_14 and the Queens_17 problems. For the Java_routing_8_5
problem no result is presented for Choco, as after 12 hours it was yet trying to solve the problem, and it
was terminated.

PHACT was faster than Choco and the OR-Tools solvers when finding one solution for Market_split_s5_01
problem, as this problem contains only a single solution, which is problematic for portfolio search, when
none of the used heuristics allow to find the solution faster.

For some of the optimization problems, Choco and OR-Tools were faster than PHACT, however, the
solutions found by these two solvers may not be the best one and PHACT guarantees that the solution it
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Figure 5.26: Speedups of PHACT against Gecode, Choco and OR-Tools when solving ten problems on the
Xeon 2 with 40 threads

finds is one of the best, as many solutions can exist with the same cost.

Figure 5.27 presents the geometric mean speedups achieved by PHACT against the other three solvers,
when solving the same problems shown in Table 5.13, but using only the CPU, or all the devices on each
machine. Note that, when trying to solve some of the problems in some machines or devices, PHACT
and Choco took longer than twelve hours, and as such, these results were not considered when building
the chart of this figure. Namely, the results for the Java_routing_8_5 and the M_Queens_13 problems
when running PHACT on all the devices of M1 and the results for the Bacp_6, the Java_routing_8_5,
the Langford_3_18, the M_Queens_13 and the Project_planning_13_8 problems when running PHACT
on all the devices of M4. For the same motive, the Java_routing_8_5 problem was not solved by Choco
in any of the five machines.

PHACT achieved an average top speedup of about 11.9 when using 64 threads on the Opteron, comparing
against Gecode. Comparing with Choco, it achieved better speedups in more than half of the situations.
In average, the OR-Tools was faster than the other three solvers on the machines where it was executed.

When using all the devices on each machine (M1, M2, M3, M4 and M5), PHACT achieved speedups in
the same executions as when using only the CPU on the machine, but in a lesser degree. This was mainly
due to the problems used for this benchmark being the most complex used in all the tests presented in
this thesis, which makes them very hard to solve in GPUs due to their hardware limitations. The exception
was when using all the devices on the M4 machine. In this case, the OpenCL compiler presented a strange
behavior, as although the kernel for each device is compiled by different threads, they seemed to have been
compiled sequentially, and to take much longer to compile it for the Tahitis than for the other devices.

For example, when solving the Cryptanalysis_128_5_14 problem, compiling the kernel for the Opteron
took about 1 s, for the first Tahiti took about 23 s and for the other Tahiti took about 46 s. This means
that only after 46 s all the devices were actually solving the problem that Gecode took 27 s to solve. For
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Figure 5.27: Speedups of PHACT against Gecode, Choco and OR-Tools on different devices

the same problem, the compilation of the kernel for the three devices of M5 took less than 0.2 s.

When using all the devices of M4, only five of the ten problems were solved in less than 12 hours. However,
these five problems allowed PHACT to achieve a greater speedup when using all the devices, than when
using only the Opteron CPU.

5.6 Conclusion

In this chapter one or two GPUs and one or two MICs were used to help a CPU solving some problems.
When comparing the time taken for one or two devices to solve the problems against a single CPU thread
it was possible to achieve speedups for most of the problems, achieving speedups of up to 15 with two
GPUs and up to 14 with a single MIC. When comparing the elapsed times of each CPU with all its cores,
against the same CPU aided by one or two devices, the speedups were much reduced or even inexistent.
However, PHACT achieved speedups of up to 4.3 with two GPUs and up to 2.4 with two MICs.

To the present date, it appears that it does not exist any constraint solver capable of using MICs or GPUs,
so it is not possible to compare the performance of PHACT against other constraint solvers when using
these devices. In Chapter 3 the NVIDIOSO solver was presented. According to Campeotto et al. [15], this
solver is capable of using an Nvidia GPU together with a CPU to solve CSPs, however that solver was
discontinued, and no source code is available which would allow to compare it against PHACT.

Nevertheless, a different branch of PHACT was implemented with load balancing techniques between
devices similar to the ones described in Campeotto et al. [15]. However, due to the number and size of
data transfers needed between the devices and the host, which are very time consuming operations, that
branch was rapidly abandoned.

The current major week points of PHACT are related with OpenCL limitations and although some of them
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have already been removed in newer versions of this framework, most of the devices are not yet compatible
with them. The biggest problem is the lack of synchronization between devices, which would be much
helpful to improve the load balancing between them. Although the load balancing techniques implemented
in PHACT try to achieve a good load balancing between the devices, when running on devices with very
different speeds to solve the same problem, and the sub-search spaces generated for that problem are very
unbalanced, these techniques are not effective to achieve a good load balancing.

To mitigate the cases where a very slow device finishes its work much later than the other devices, or even
to control the time that each device would be without communicating with the host, a timer could be used
on each device. That timer would allow the device to decide to stop working and to communicate with the
host. However, OpenCL does not posses such a timer in the devices.

Nevertheless, newer GPUs are improving their performance to handle more complex problems and some of
them are already compatible with OpenCL 2.0, which may help to improve the load balancing techniques
implemented in PHACT.



6
Conclusions and future work

At the beginning, the objective of this project was to develop a new constraint solver capable of using GPUs
to speedups the solving process of constraint problems. However, rapidly it was found that it would not be
an easy task due to the dynamic nature of constraint solving going against the architectural characteristics
of GPUs.

At the same time, it was found that the only programming language capable of working with both AMD
and Nvidia GPUs, OpenCL, was also capable of working with most GPUs, CPUs and MICs, which lead
to the development of PHACT, which, at the current date seems to be the only existent constraint solver
capable of using all these devices at the same time to solve a constraint problem.

Several tests were made on GPUs to check out their capabilities when solving constraint problems using
the backtracking paradigm. In the end, it was found that although their shared memory is very fast, for
most of the CSPs, its size is not enough to be used for practical speedups gains. When considering their
dual parallelism capabilities (work-groups and work-items), it was found that for most of the CSPs that
were used, the best combination is using 512 work-groups with 128 work-items, each. However, for bigger
problems, those numbers needed to be reduced for them to fit in the GPU memory.
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One of the biggest challenges when using several devices to solve the same constraint problem, is the need
for their synchronization, which when using OpenCL can only be done on the host side. This implies that
the only method to check on the other devices progress is for each device to stop the solving process and
to communicate with the host. These communications are very time consuming, and a balance was made
between their frequency and the amount of work needed to be done.

For that purpose, the search space is split in multiple sub-search spaces that are distributed to the devices
in blocks with different amounts ou sub-search spaces, depending on the performance of each device when
solving the current CSPs. That process is dynamic and the size of each block will vary along the solving
process of the CSP, and is also different when optimizing, finding one solutions, or counting all the solutions.

To reduce the number and size of data transfers between the host and the devices, the full CSP is only
passed once to each device, at the beginning of the solving process, and after that, each block of sub-search
spaces is represented only by a numeric identifier of the first and last sub-search space to solve.

PHACT was tested when solving ten different CSPs, for two or three different sizes of each. When comparing
with the state of the art solver, Gecode, which uses work stealing techniques, PHACT was faster in most of
the sequential tests, and in most of the parallel executions, being capable of better harnessing the parallel
processing power of multi-threaded CPUs. When comparing parallel executions in a CPU with 64 cores,
PHACT achieved an average speedup of more than 11 when compared to Gecode. The obtained results
seems to indicate that the search space splitting techniques implemented in PHACT achieve better results
than the work stealing techniques used by Gecode for load balancing when using many threads.

The performance of PHACT was also compared with the ones of Choco and the OR-Tools solvers. However,
these two solvers do not guarantee that a best solution will be found when optimizing a problem, neither
can count all the solutions when using multiple threads. Nevertheless, in average, PHACT was faster
than Choco in more than half of the problems, but the OR-Tools was faster than PHACT in most of the
problems.

To the current date, it seems that it does not exist any constraint solver capable of using GPUs or MICs,
so PHACT capabilities to use these devices were not compared with any state of the art solver. However,
using a GPU instead of a single CPU thread allowed to achieved a top speedup of 12, although for some
more complex problems and when optimizing, no speedups were achieved. Nevertheless, even when using
all the threads of a CPU, if aided by two GPUs, speedups of up to 4.3 were obtained, and of up to 2.4
when helped by two MICs.

In overall, PHACT is capable of using any device compatible with OpenCL to solve a CSP, and most of
its current limitations are due to the small size of the RAM of the GPUs, and to their inefficiency to deal
with divergent paths, which is inherent to constraint propagation and backtracking. However, every new
generation of GPUs makes them more comparable to CPUs and brings much more resources, such as RAM.
PHACT is ready to use these new devices, and its load balancing techniques are easy to adjust, if needed.

6.1 Future work

PHACT can load CSP models using its own C interface or the MiniZinc/FlatZinc language and, at the
current date it has 38 constraints implemented, each one including a reified version. The FlatZinc interpreter
is yet under development, and it will be improved and extended to allow the input of more CSP models,
and if needed, new constraints may also be added to PHACT.

All the load balancing techniques implemented in PHACT are achieving relatively good results, except when
using devices with major differences in performance when solving the most complex CSPs. This point needs
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to be further analysed and improved in the future.

Although PHACT uses the OpenCL programming language version 1.2 to allow the usage of most of the
existent devices, a new version 2.x already exists and is already compatible with some devices. This new
version of OpenCL introduces some key features that would be much useful in PHACT, namely new atomic
operations that allow a device to communicate with the host without stopping its execution, and pointer
sharing between the host and the devices. Those two features may greatly improve PHACT performance
by reducing the costs for synchronization between the host and the device while making it much more
frequently.

Another point of interest, consists in adding distributed capabilities for PHACT, whose current load bal-
ancing techniques between devices could now be applied between machines.





A
Implementing a CSP in PHACT

Besides loading a MiniZinc/FlatZinc model of a CSP, PHACT can solve a problem modeled with its own C
programming language interface. Several examples of CSPs modeled in C for PHACT are distributed with
the PHACT source code in the “csps” folder, and a new one can be implemented in the “csps/CSP.c” file.

To add a new CSP variable to the C model, three functions can be used :
// v a l − v a l u e to a s s i g n to the v a r i a b l e
unsigned i n t v_new_val ( unsigned i n t v a l ) ;

// v a l s − v e c t o r w i th a l l the domain v a l u e s
// n_va l s − number o f v a l u e s i n the domain o f the v a r i a b l e
// t o _ l a b e l − t r u e i f t h i s v a r i a b l e shou ld be l a b e l e d
unsigned i n t v_new_vals ( unsigned i n t ∗ va l s , unsigned i n t n_vals , boo l

t o_ l a b e l ) ;

// min − minimum v a l u e o f the domain
// max − maximum v a l u e o f the domain
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// t o _ l a b e l − t r u e i f t h i s v a r i a b l e shou ld be l a b e l e d
unsigned i n t v_new_range ( unsigned i n t min , unsigned i n t max , boo l

t o_ l a b e l ) ;

Each function to create the CSP variables returns a unique identifier that will be used to associate the
variables with the constraints and to output its value after solving the CSP.

At the time when this thesis was written, PHACT had 38 constraints implemented, each one with two
functions, one for the reified version, and another one without reification. The name of the reified function
of each constraint is the same as the one without reification, but with “_reif” added to its end. A new
argument indicating the identifier of the reification variable is also added to the end of the list of arguments.
For example, the “not equal” has the next two functions:
c_ne ( unsigned i n t x_id , unsigned i n t y_id ) ;
c_ne_re i f ( unsigned i n t x_id , unsigned i n t y_id , i n t r e i f _ v_ i d ) ;

The calls to the 38 constraints are listed bellow, where:

• x_id, y_id, z_id or var_to_opt_id - identifier of the respective variable;

• X_ids or Y_ids - array with the identifiers of the variables returned on their creation;

• n_vs - number of identifiers of variables in the X_ids or Y_ids array;

• n, k, c - integer value;

• K - array with integer values;

• n_consts - number of integer values in the K array;

• S_ids - array with the identifier of the variables of all the sets, ordered by set;

• n_sets - number of sets in the S_ids array;

• N_vs - number of variables in each set, ordered by set.

// A l l v a r i a b l e s i n X_ids [ n_vs ] must be a s s i g n e d a d i f f e r e n t v a l u e
c _ a l l _ d i f f e r e n t ( unsigned i n t ∗ X_ids , unsigned i n t n_vs ) ;

// At l e a s t m o f the v a r i a b l e s i n X_ids [ n_vs ] must be a s s i g n e d v a l u e k
c_a t_ l ea s t ( unsigned i n t m, unsigned i n t ∗ X_ids , unsigned i n t n_vs ,

unsigned i n t k ) ;

// Any two s e t s S_ids [ N_vs ] from n_set s s e t s can on l y have 1 v a r i a b l e
a s s i g n e d wi th the same v a l u e

c_at_most_one ( unsigned i n t ∗ S_ids , i n t ∗ N_vs , unsigned i n t n_set s ) ;

// At most m o f the v a r i a b l e s i n X_ids [ n_vs ] must be a s s i g n e d v a l u e k
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c_at_most ( unsigned i n t m, unsigned i n t ∗ X_ids , unsigned i n t n_vs ,
unsigned i n t k ) ;

// The l o g i c a l AND between the v a r i a b l e s i n X_ids [ n_vs ] must be a s s i g n e d
the same v a l u e as y_id

c_bool_and ( unsigned i n t ∗ X_ids , unsigned i n t n_vs , unsigned i n t y_id ) ;

// The v a r i a b l e x_id must be a s s i g n e d 1 or the v a r i a b l e y_id must be
a s s i g n e d 0

c_boo l_c lause ( unsigned i n t x_id , unsigned i n t y_id ) ;

// The l o g i c a l OR between the v a r i a b l e s i n X_ids [ n_vs ] must be a s s i g n e d
the same v a l u e as y_id

c_bool_or ( unsigned i n t ∗ X_ids , unsigned i n t n_vs , unsigned i n t y_id ) ;

// The boo l ean v a r i a b l e x_id must be a s s i g n e d the same v a l u e as the
v a r i a b l e y_id

c_boo l 2 i n t ( unsigned i n t x_id , unsigned i n t y_id ) ;

// The v a r i a b l e z_id must be a s s i g n e d v a l u e K[ y_id ] from K[ n_consts ]
c_e lement_int_var ( i n t ∗ K, unsigned i n t n_consts , unsigned i n t y_id ,

unsigned i n t z_id ) ;

// The v a r i a b l e z_id must be a s s i g n e d the same v a l u e as v a r i a b l e
X_ids [ y_id ] from X_ids [ n_vs ]

c_element_var ( unsigned i n t ∗ X_ids , unsigned i n t n_vs , unsigned i n t y_id ,
unsigned i n t z_id ) ;

// The v a r i a b l e X_ids [ y_id ] from X_ids [ n_vs ] must be a s s i g n e d v a l u e k
c_element ( unsigned i n t ∗ X_ids , unsigned i n t n_vs , unsigned i n t y_id ,

unsigned i n t k ) ;

// The v a r i a b l e x_id must be a s s i g n e d the same v a l u e as v a r i a b l e y_id
c_eq_var ( unsigned i n t x_id , unsigned i n t y_id ) ;

// The v a r i a b l e x_id must be a s s i g n e d v a l u e k
c_eq ( unsigned i n t x_id , unsigned i n t k ) ;

// The v a l u e a s s i g n e d to v a r i a b l e y_id must be the number o f v a r i a b l e s
i n X_ids [ n_vs ] a s s i g n e d wi th v a l u e c

c_exac t l y_va r ( unsigned i n t ∗ X_ids , unsigned i n t n_vs , unsigned i n t c ,
unsigned i n t y_id ) ;

// E x a c t l y c v a r i a b l e s from X_ids [ n_vs ] must be a s s i g n e d v a l u e k
c_exa c t l y ( unsigned i n t ∗ X_ids , unsigned i n t n_vs , unsigned i n t c ,

unsigned i n t k ) ;

// Expands to m u l t i p l e ”c_ne” c o n s t r a i n t s
c_ f a k e_ a l l _ d i f f e r e n t ( unsigned i n t ∗ X_ids , unsigned i n t n_vs ) ;
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// The v a l u e a s s i g n e d to v a r i a b l e x_id must be g r e a t e r than or equa l to
the v a l u e a s s i g n e d to v a r i a b l e y_id

c_ge ( unsigned i n t x_id , unsigned i n t y_id ) ;

// The v a l u e a s s i g n e d to v a r i a b l e x_id must be g r e a t e r than the v a l u e
a s s i g n e d to v a r i a b l e y_id

c_gt ( unsigned i n t x_id , unsigned i n t y_id ) ;

// The v a l u e a s s i g n e d to v a r i a b l e x_id must be l e s s than or equa l to the
v a l u e a s s i g n e d to v a r i a b l e y_id

c_ le ( unsigned i n t x_id , unsigned i n t y_id ) ;

// The i n t e r n a l p roduc t o f the v a l u e s K[ n ] w i th the v a r i a b l e s Y_ids [ n ]
must be l e s s than the v a l u e c

c_ l i n e a r _ l t ( i n t ∗ K, unsigned i n t ∗ Y_ids , unsigned i n t n , i n t c ) ;

// The i n t e r n a l p roduc t o f the v a l u e s K[ n ] w i th the v a r i a b l e s Y_ids [ n ]
must be d i f f e r e n t than the v a l u e c

c_ l i n ea r_ne ( i n t ∗ K, unsigned i n t ∗ Y_ids , unsigned i n t n , i n t c ) ;

// The i n t e r n a l p roduc t o f the v a l u e s K[ n ] w i th the v a r i a b l e s Y_ids [ n ]
must be the v a l u e a s s i g n e d to the v a r i a b l e z_id

c_ l i n e a r_va r ( i n t ∗ K, unsigned i n t ∗ Y_ids , unsigned i n t n , unsigned i n t
z_id ) ;

// The i n t e r n a l p roduc t o f the v a l u e s K[ n ] w i th the v a r i a b l e s Y_ids [ n ]
must be the v a l u e c

c_ l i n e a r ( i n t ∗ K, unsigned i n t ∗ Y_ids , unsigned i n t n , i n t c ) ;

// The v a l u e a s s i g n e d to v a r i a b l e x_id must be l e s s than the v a l u e
a s s i g n e d to v a r i a b l e y_id

c_ l t ( unsigned i n t x_id , unsigned i n t y_id ) ;

// The v a r i a b l e z_id must be a s s i g n e d wi th the b i g g e s t v a l u e between the
ones a s s i g n e d to the v a r i a b l e s x_id and y_id

c_max( unsigned i n t x_id , unsigned i n t y_id , unsigned i n t z_id ) ;

// As s i gn the b i g g e s t v a l u e to var_to_opt_id
c_maximize ( unsigned i n t var_to_opt_id ) ;

// The v a r i a b l e z_id must be a s s i g n e d wi th the s m a l l e s t v a l u e between
the ones a s s i g n e d to the v a r i a b l e s x_id and y_id

c_min ( unsigned i n t x_id , unsigned i n t y_id , unsigned i n t z_id ) ;

// As s i gn the s m a l l e s t v a l u e to var_to_opt_id
c_minimize ( unsigned i n t var_to_opt_id ) ;

// The v a l u e a s s i g n e d to the v a r i a b l e x_id minus the v a l u e a s s i g n e d to
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v a r i a b l e y_id must be v a l u e k
c_minus_eq ( unsigned i n t x_id , unsigned i n t y_id , i n t k ) ;

// The v a l u e a s s i g n e d to the v a r i a b l e x_id minus the v a l u e a s s i g n e d to
v a r i a b l e y_id must be d i f f e r e n t than v a l u e k

c_minus_ne ( unsigned i n t x_id , unsigned i n t y_id , unsigned i n t k ) ;

// The v a l u e s a s s i g n e d to the v a r i a b l e s x_id and y_id must be d i f f e r e n t
c_ne ( unsigned i n t x_id , unsigned i n t y_id ) ;

// The i n t e r n a l p roduc t o f the v a r i a b l e s X_ids [ n_vs ] w i th the v a r i a b l e s
Y_ids [ n_vs ] must be v a l u e k

c_sum_prod ( unsigned i n t ∗ X_ids , unsigned i n t ∗ Y_ids , unsigned i n t n_vs ,
unsigned i n t k ) ;

// The sum o f the v a l u e s a s s i g n e d to the v a r i a b l e s X_ids [ n_vs ] must be
equa l to the v a l u e a s s i g n e d to v a r i a b l e y_id

c_sum_var ( unsigned i n t ∗ X_ids , unsigned i n t n_vs , unsigned i n t y_id ) ;

// The sum o f the v a l u e s a s s i g n e d to the v a r i a b l e s X_ids [ n_vs ] must be
equa l to the v a l u e k

c_sum( unsigned i n t ∗ X_ids , unsigned i n t n_vs , unsigned i n t k ) ;

// The v a l u e a s s i g n e d to v a r i a b l e x_id must be equa l to the v a l u e
a s s i g n e d to v a r i a b l e y_id minus the v a l u e a s s i g n e d to v a r i a b l e z_id

c_var_eq_minus ( unsigned i n t x_id , unsigned i n t y_id , unsigned i n t z_id ) ;

// The v a l u e a s s i g n e d to v a r i a b l e x_id must be equa l to the modulo o f
the v a l u e a s s i g n e d to v a r i a b l e y_id minus the v a l u e a s s i g n e d to
v a r i a b l e z_id

c_var_eq_minus_abs ( unsigned i n t x_id , unsigned i n t y_id , unsigned i n t
z_id ) ;

// The v a r i a b l e x_id must be a s s i g n e d wi th the v a l u e a s s i g n e d to the
v a r i a b l e y_id added to the v a l u e a s s i g n e d to v a r i a b l e z_id

c_var_eq_plus ( unsigned i n t x_id , unsigned i n t y_id , unsigned i n t z_id ) ;

// The v a r i a b l e x_id must be a s s i g n e d wi th the v a l u e a s s i g n e d to the
v a r i a b l e y_id m u l t i p l i e d by the v a l u e a s s i g n e d to v a r i a b l e z_id

c_var_eq_times ( unsigned i n t x_id , unsigned i n t y_id , unsigned i n t z_id ) ;

After using the functions above to create the CSP variables and constraints, the function “solve_CSP()”
will begin the solving process. This function will return the number of solutions that were found, or 1 if
optimizing and a best solution was found or if only one solution is wanted and one solution was found.

After compiling PHACT1, which will compile the “csps/CSP.c” file, the CSP may be solved to count all the
solutions, to find one solution or for optimization, according to the command line arguments introduced

1Compilation instructions for PHACT are described in Appendix B.
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when executing PHACT. In the “csps/CSP.c” file, three flags may be used to detect with which purpose
the problem is being solved:

• OPTIMIZING - true if optimizing;

• FINDING_ONE_SOLUTION - true if looking for a single solutions;

• COUNTING_SOLUTIONS - true if counting all the solutions.

These flags may be used to implemented different outputs for the solver when solving the “csps/CSP.c”
problem, according to the solving objective. To output the value of the CSP variables, three function may
be used:

// output the o f f s e t v a l u e added to the v a l u e a s s i g n e d to the v a r i a b l e
whose i d e n t i f i e r i s v_id

v_p r i n t_ s i n g l e_ v a l ( unsigned i n t v_id , unsigned i n t o f f s e t ) ;

// output the o f f s e t v a l u e added to the v a l u e a s s i g n e d to the v a r i a b l e s
whose i d e n t i f i e r s a r e i n the vs_ id a r r a y

// n_vs_id i s the number o f v a r i a b l e s t ha t a r e i n the vs_ id a r r a y
v s_p r i n t_ s i n g l e_ v a l ( unsigned i n t ∗ vs_id , unsigned i n t n_vs_id , unsigned

i n t o f f s e t ) ;

// when op t im i z i ng , t h i s w i l l output the o f f s e t v a l u e added to the v a l u e
a s s i g n e d to the v a r i a b l e r e p r e s e n t i n g the c o s t to o p t i m i z e

v_p r i n t_co s t ( unsigned i n t o f f s e t ) ;

After implementing the CSP in “csps/CSP.c” and recompiling PHACT, it may be executed using the
command line arguments presented in Appendix B.



B
Compiling and executing PHACT

PHACT can use all the devices compatible with OpenCL on a machine to solve the CSP modeled in the
FlatZinc file “CSP.fzn” just by executing the command “./PHACT CSP.fzn”. With that command, PHACT
will solve that CSP using the default number of sub-search spaces for load-balancing, presented in Section
4.2, and the default number of work-groups and work-items per device, as shown in Section 2.3.

As described in the “readme.txt” file distributed with PHACT source code, also in the Appendix B and shown
when executing the command “./PHACT -H”, PHACT allows to override some of its default parameters
with the introduction of command line arguments. Besides the command line arguments, some compilation
options are also available by changing some values of variables defined in the “src/config.h” file of PHACT
source code.

PHACT is compiled with several default values that influence key components of its execution. The default
values are the ones that yield the best average results for the set of benchmarks that were made during
PHACT development. Nevertheless, those values may be changed through some variables defined in the
“src/config.h” file of PHACT source code, and are identified and described in the following items:

• PRE_FILTER - Set to 1 to enable pre-filtering previous to starting exploration, or to 0 to disable it.
Enabled by default;
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• SS_MULTIPLIER - Set to 1 to enable a sub-search space multiplier that may be applied to increase
the number of sub-search spaces inside each device when blocks are small, or to 0 to disable it.
Enabled by default;

• USE_BOOLEAN_VS - Set to 1 to distinguish boolean variables in the CSP, or to 0 to make no
distinction. Enabled by default;

• USE_CS_IGNORE - Set to 1 to ignore a constraint when it is fixed or its propagator is unable to
propagate more, or to 0 to disable this feature; Available only when using bitmap domains (not for
intervals representation). Enabled by default;

• SHARED_SS - Set to 1 to enable work-sharing inside each device, or to 0 to disable it. Disabled by
default;

• USE_MORE_BUFFERS - Set to 0 to use only one buffer for backtracking, or to 1 to use more
buffers. For some devices, more buffers will allow to use more threads. Enabled by default;

• define USE_MORE_BUFFERS_P - Value to multiply by the maximum buffer size allowed by OpenCL
to use on each one of the backtracking buffers. The default is 0.8;

• If any of the following options is enabled, it will be used when no labeling heuristic is defined by the
CSP model:

– SORT_BY_LABEL - Set to 1 to sort variables by the ones that may be labeled. Selected by
default;

– SORT_BY_LABEL_LESS_VALS - Set to 1 to sort variables by the ones that may be labeled
and that have less values on their domains;

– SORT_BY_LABEL_MORE_VALS - Set to 1 to sort variables by the ones that may be labeled
and that have more values on their domains;

– SORT_BY_MOST_USED_CONSTR - Set to 1 to sort constraints on each variable by the
constraint that is more common on the CSP.

• USE_LOCAL_MEM - Set to 0 if devices should use only global memory, to 1 if they should use also
local memory, or to 2 to decide by default (use only in CPUs and accelerators). Set to 2 by default;

• PRE_LABELING (or Revision) - Set to 0, 1 or 2. 1 to propagate the last labeled variable with all
the remaining values before backtracking it, 0 to not, and 2 to use if any propagator is capable of
propagating variables with more than one value in its domain. Disabled by default;

• COMPILE_FZN - Set to 0 if the FlatZinc/MiniZinc interpreter is not needed or mzn2fzn, flex or
bison are not available, or to 1 to enable the FlatZinc/MiniZinc interpreter. Enabled by default;

• load balancing parameters:

– GPU_DEFAULT_N_WG - Default number of work-groups to create for a GPU. The default
value is 512;

– GPU_DEFAULT_N_WI - Default number of work-items per work-group to create for a GPU.
The default value is 128;

– GPU_CUTOFF - Approximated number of times that a GPU core (SM) is slower than a CPU
core. The default value is 8;

– ACC_CUTOFF - Approximated number of times that a ACC core is slower than a CPU core.
The default value is 4;
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– CNT_INIT_PERC - Value to multiply by the total number of Search Spaces (SS) created for
calculation of the size of the first block to be sent to each device when counting all the solutions.
The default value is 0.25;

– OPT_ONE_INIT_PERC - Value to multiply by the total number of SS created for calculation
of the size of the first block to be sent to each device when optimizing or finding the first
solution. The default value is 0.01;

– MAX_SS - Maximum number of SS to create. The default value is 1,000,000;
– SS_GPU - Number of SS to create if only one GPU is to be used. The default value is 500,000;
– SS_ACC - Number of SS to create if only one ACC is to be used. The default value is 250,000;
– SS_CPU - Number of SS to create per compute unit, if only one CPU is to be used. The

default value is 5,000;
– N_FIRST_BLOCKS - Number of blocks explored before calculating rank. The default value is

3;
– MS_HALF_FIRST_BLOCKS - Minimum milliseconds taken to solve the previous block (of the

N_FIRST_BLOCKS - 1) to reduce the size of the next block to half. The default value is
1,000;

– MS_TAKE_ALL - Milliseconds estimated for a device to solve all the remaining sub-search
spaces, to make it take all of them in the next block. The default value is 2,000;

– PERCENT_REM_SS_DOUBLE - Value to multiply by the remaining SS to be considered for
the calculation of the size of the next block for the device that finished the N_FIRST_BLOCKS
first. The default value is 0.2;

– PERCENT_REM_SS_RANK_GPU - Value to multiply by the remaining SS to be considered
for the calculation of the size of the next block with RANK for GPUs. The default value is 0.3;

– PERCENT_REM_SS_RANK_CPU - Value to multiply by the remaining SS to be considered
for the calculation of the size of the next block with RANK for CPUs. The default value is 0.8;

– PERCENT_REM_SS_RANK_ACC - Value to multiply by the remaining SS to be considered
for the calculation of the size of the next block with RANK for ACCs. The default value is 0.6;

– FAST_BLOCKS_MS_OPT - Time taken to solve a block during optimization to be considered
exceptionally easy to explore. The default is 2,000;

– FAST_BLOCKS_MS_ONE - Time taken to solve a block when looking for one solution to be
considered exceptionally easy to explore. The default is 2,000;

– N_FAST_BLOCKS_OPT - Number of blocks in a row that took less than EMPTY_BLOCKS_-
MS_OPT s to solve (each), to double the size of the next block. The default is 3;

– PERCENT_BLOCKS_ADD - Value to multiply by the last block to add to the next block when
the previous N_EMPTY_BLOCKS_OPT were EMPTY_BLOCKS_MS_OPT. The default is
0.2;

– N_EMPTY_BLOCKS - Number of blocks with zero SS that a device would receive to be
terminated. The default is 1;

– TIMES_USED_TRESHOLD - Number of times that a device must be used in order to double
the number of sub-search spaces on the next block, when optimizing or finding one solution
until SS_REM_PERC_TRESHOLD. The default is 10;

– SS_REM_PERC_TRESHOLD - Lower limit of SSs that remains to be explored, to stop doubling
the size of the next block when TIMES_USED_TRESHOLD, when optimizing or finding one
solution. The default is 0.3 of the total SS that were created.
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To compile PHACT, one of the following commands must be executed in folder “PHACT/Debug”:

• make all - To solve CSPs with variables whose domains have values between 0 and 1023;

• make all CFLAGS=”-D BITS=n” - To solve CSPs with variables whose domains have values between
0 and n−1. When recompiling the Solver to change CL_BITS value, please run “make clean” before;

• make all CFLAGS=”-D COMPILE_FZN=0” - Required when the programs mzn2fzn, flex or bison
are not available. MiniZinc and FlatZinc interpreter will not be available.

To execute PHACT, multiple command line arguments are available as described in the “readme.txt” file
distributed with PHACT source code and shown when executing the command “./PHACT -H”:

• -D [GPU|CPU|ACC][:n][/[wg]/[wi]] - Select the device/s to use. Examples:

– -D CPU:1/64/1 -D GPU:2 -D ACC//1 - Use first CPU with 64 work-groups and 1 work-item
per work-group, second GPU with the default number of work-groups and of work-items, and
all accelerators with default number of work-groups and one work-item per work-group;

– -D CPU -D GPU - Use all GPUs and all CPUs with default number of work-groups and work-
items;

– If no -D argument is introduced, all the devices compatible with OpenCL will be used.

• -E [QUEENS | COSTAS | GOLOMB | SUDOKU | ALL-DIFF | QAP | LANGFORD | STEINER |
LATIN | ALL-INTERVAL | MARKET-SPLIT | SCHURS] - Select one of the sample CSPs implemented
through the interface of PHACT;

• -FZN /home/user/csp.fzn - Solve the FlatZinc model in the file “/home/user/csp.fzn”. If only the
mame of the file is given, it will be searched for in src/csps/csp.fzn. flex and bison programs are
required;

• -MZN /home/user/csp.mzn /home/user/csp.dzn - Solve the MiniZinc model in the files “/home-
/user/csp.mzn” and “/home/user/csp.dzn”. If only the name of the files is given, they will be
searched in src/csps/csp.Xzn. Mzn2fzn, flex and bison programs are required;

• -MZN /home/user/csp.mzn /home/user/csp.dzn -MZN2FZN-ONLY - Only converts the MZN file
in “/home/user/csp.mzn” and “/home/user/csp.dzn” to the FZN file “/home/user/csp.fzn”. If only
the name of the file is given, it will be searched for in src/csps/csp.Xzn. Mzn2fzn program is required;

• (int) - CSP dimension. “(int)” should be replaced by each dimension of the CSP to solve. Not used
when solving a MiniZinc or FlatZinc model;

• [-COUNT | -ONE | -OPT] - Select what must be done with the CSP. When solving FlatZinc models,
it overrides the model selection:

– -COUNT - Count all the solutions;
– -ONE - Find one solution. Default for CSPs modeled with PHACT C interface;
– -OPT - Do optimization.

• -INTERVALS - Use interval representation for domains, instead of bitmaps.
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• -N-SS n - Number of sub-search spaces to create. “n” should be replaced by the number of sub-search
spaces to create. If not present, the default number of sub-search spaces will be created;

• [-FIRST-FAIL | -INPUT-ORDER | -OCCURRENCE | -MAX-REGRET | -SMALLEST] - Method to
select the variable to label:

– -FIRST-FAIL - Select the variable to label that has less values in its domain;
– -INPUT-ORDER - Select the variable to label by the order in which they were created. Default;
– -OCCURRENCE - Select the variable to label that is more constrained;
– -MAX-REGRET - Select the variable to label that has the largest difference between the two

smallest values;
– -SMALLEST - Select the variable to label that has the smallest value in its domains.

• [-MIN-VALUE | -MAX-VALUE | -SPLIT-VALUES] - Method to select the value to assign to the
variable for labeling:

– -MIN-VALUE - Select the minimum value to assign. Default;
– -MAX-VALUE - Select the maximum value to assign;
– -SPLIT-VALUES - Splits the domain about half and tries the first half.

• -STATS - Print statistics about the solving process:

– Total time - Time elapsed between the launch of PHACT and its termination;
– Solve time - Time elapsed executing search engines;
– Solutions - Number of solutions found;
– Search spaces - Number of disjoint sub-search spaces obtained from splitting the main search-

space;
– Variables - Number of CSP variables;
– Boolean variables - Number of CSP variables that are boolean;
– Domains range - The minimum and maximum values of any CSP variable;
– Constraints - Number of CSP constraints;
– Boolean constraints - Number of CSP constraints whose constrained variables are all boolean;
– Constraint types - Number and name of the different types of constraints used in the CSP;
– Variables to label - Number of CSP variables that can be labeled;
– Maximum depth - Maximum expansion depth of the search tree, for labeling;
– Labels - Number of variable labelings;
– Nodes explored - Number of nodes that were explored;
– Nodes failed - Number of nodes that were detected as inconsistent;
– Backtracks - Number of backtrackings done;
– Prunings - Approximated number of prunings;
– Propagations - Number of times a constraint propagator was executed.

• -PRINT-SOLUTIONS - Try to print all the solutions. Only available when using only one thread per
device, and depending on the device and on the number of solutions of the CSP, only some solutions
may be printed;
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• -PRINT-CSP - Before starting the exploration, prints all the variables with their domains, the con-
straints and the relation between them;

• -V - Print more information and timings about what is being done by each device;

• -H - Displays all the command line arguments accepted by PHACT.

The OpenCL drivers implemented by some vendors for their devices will try to vectorize the kernel. When
using PHACT in some devices, that may result in crashing the OpenCL compiler, or in a poor perfor-
mance of the solver. For that motive, it is recommended to disable this OpenCL feature by running
“CL_CONFIG_USE_VECTORIZER=false” before executing PHACT.

Some execution examples are:

• For counting the number of solutions of the Costas Array 10 problem using all the devices compatible
with OpenCL on the running machine, execute the following command on folder ”PHACT/Debug”:
./PHACT -E COSTAS 10 -COUNT

• For finding one solution for the 30-queens problem using all the GPUs compatible with OpenCL on
the running machine, execute the following command on folder ”PHACT/Debug”:
./PHACT -E QUEENS 30 -D GPU

• For finding one solution for a new CSP modeled in the file ”/src/csps/CSP.c” and using the CPU on
the running machine, after recompiling PHACT,execute the following command on folder ”PHAC-
T/Debug”:
./PHACT -D CPU

• For solving the CSP modeled in the FlatZinc file ”PHACT/Debug/src/csps/CSP.fzn” file using all
the GPUs compatible with OpenCL on the running machine, execute the following command on
folder ”PHACT/Debug”:
./PHACT CSP.fzn -D GPU

• For solving the CSP modeled in the MiniZinc files ”PHACT/Debug/src/csps/CSP.mzn” and ”PHAC-
T/Debug/src/csps/CSP.dzn” files using all the devices compatible with OpenCL on the running
machine, execute the following command on folder ”PHACT/Debug”:
./PHACT -MZN CSP.mzn CSP.dzn



C
Constraint satisfaction problems used

for benchmarking

For benchmarking PHACT and comparing its results against other solvers, some CSPs were used. All the
CSPs were retrieved from the MiniZinc Benchmarks [49]. Table C.1 shows the name of the “mzn” file
and the name or content of the “dzn” file from where the FlatZinc model was created. The asterisk that
follows the name of some “dzn” files indicate that the respective file was not retrieved from the MiniZinc
Benchmarks [49], and that its contents are the text located in the same table cell. For example, the content
of the “n8.dzn” file is “n = 8;”.

The following definitions describe each one of the CSPs that were used in Chapter 5:

Definition 2. Balanced academic curriculum problem (BACP) - Identified in this thesis as “bacp”. “The
BACP is to design a balanced academic curriculum by assigning periods to courses in a way that the
academic load of each period is balanced, i.e., as similar as possible. The curriculum must obey the
following administrative and academic regulations:
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Table C.1: Source of the CSPs models and data files

CSP “mzn” file data file
bacp_2 bacp-2.mzn curriculum.mzn.model
bacp_6 bacp-6.mzn curriculum.mzn.model
bacp_7 bacp-7.mzn curriculum.mzn.model

cryptanalysis_128_3_4
step1_aes.mzn

kb128_n3_obj4.dzn
cryptanalysis_128_5_11 kb128_n5_obj11.dzn
cryptanalysis_128_5_14 kb128_n5_obj14.dzn

golomb_9
golomb.mzn

09.dzn
golomb_11 11.dzn
golomb_12 12.dzn

java_routing_6_3 trip_6_3.mzn
java_routing_8_5 trip_8_5.mzn

langford_3_9 langford.mzn l_3_9.dzn
langford_3_18 l_3_18.dzn
m_queens_8

mqueens2.mzn
n = 8; (n8.dzn*)

m_queens_12 n12.dzn
m_queens_13 n13.dzn

market_split_s4_07
market_split.mzn

s4_07.dzn
market_split_s5_01 s5_01.dzn
market_split_s5_04 s5_04.dzn
open_stacks_10_10

open_stacks_01.mzn
problem_10_10_1.dzn

open_stacks_20_20_a problem_20_20_1.dzn
open_stacks_20_20_b ShawInstances_1.dzn
project_planning_13_7 ProjectPlannertest_13_7.mzn
project_planning_13_8 ProjectPlannertest_13_8.mzn

queens_15 queens.mzn n = 15; (queens_15.dzn*)
queens_17 n = 17; (queens_17.dzn*)

• Academic curriculum: an academic curriculum is defined by a set of courses and a set of prerequisite
relationships among them.

• Number of periods: courses must be assigned within a maximum number of academic periods.

• Academic load: each course has associated a number of credits or units that represent the academic
effort required to successfully follow it.

• Prerequisites: some courses can have other courses as prerequisites.

• Minimum academic load: a minimum number of academic credits per period is required to consider
a student as full time.

• Maximum academic load: a maximum number of academic credits per period is allowed in order to
avoid overload.

• Minimum number of courses: a minimum number of courses per period is required to consider a
student as full time.
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• Maximum number of courses: a maximum number of courses per period is allowed in order to avoid
overload.

The goal is to assign a period to every course in a way that the minimum and maximum academic load
for each period, the minimum and maximum number of courses for each period, and the prerequisite
relationships are satisfied. An optimal balanced curriculum minimises the maximum academic load for all
periods.” [30].

Definition 3. Chosen Key Differential Cryptanalysis - Identified in this thesis as “cryptanalysis”. This
problem consists in the first step of a cryptanalysis attack against block ciphers to test their level of
confidentiality, integrity and signature. In this step the bytes are abstracted by binary values and the CSP
model consists in the implementation of the AES rules [28].

Definition 4. Golomb ruler - “These problems are said to have many practical applications including sensor
placements for x-ray crystallography and radio astronomy. A Golomb ruler may be defined as a set of m
integers 0 = a1 < a2 < ... < am such that the m(m−1)/2 differences aj − ai, 1 <= i < j <= m are
distinct. Such a ruler is said to contain m marks and is of length am. The objective is to find optimal
(minimum length) or near optimal rulers. Note that a symmetry can be removed by adding the constraint
that a2−a1 < am−am−1, the first difference is less than the last. There is no requirement that a Golomb
ruler measures all distances up to its length - the only requirement is that each distance is only measured
in one way. However, if a ruler does measure all distances, it is classified as a perfect Golomb ruler.” [8].

Definition 5. Java routing - The problem is categorized by the MiniZinc authors [50] as a real life case, but
in its description is only described as “automatically generated from a problem description in Java” [24].
From the model, it may be understood as a routing problem in which multiple map locations must be
visited, while visiting some locations prior to others. Each map location must also be visited in a predefined
time and the time needed to visit all the locations must be minimized.

Definition 6. Langford - “Arrange k sets of numbers 1 to n so that each appearance of the number m is
m numbers on from the last. For example, the L(3, 9) problem is to arrange 3 sets of the numbers 1 to 9
so that the first two 1’s and the second two 1’s appear one number apart, the first two 2’s and the second
two 2’s appear two numbers apart, etc.” [11].

Definition 7. M-queens - It consists in an optimization problem for which a minimum number of queens
must be placed on a chessboard, such that all the paths are covered, each one by a single queen [25].

Definition 8. Market Split - “A company with two divisions supplies retailers with several products. The
goal is to allocate each retailer to one of the divisions such that division 1 controls 100ci%, 0 ≤ ci ≤ 1,
of the market for product i, and division 2 controls (100 − 100ci)%. There are n retailers and m ≤ n
products. Let aij be the demand of retailer j for product i, and let di be determined as ⌊cid′i⌋, where d′i
is the total amount of product i that is supplied to the retailers. The decision variable xj takes value 1
if retailer j is allocated to division 1 and 0 otherwise. The question is: ‘there exist an allocation of the
retailers to the divisions such that the desired market split is obtained?’” [1].

Definition 9. Open Stacks - “This scheduling problem involves a set of products and a set of customer’s
orders. Each order requires a specific subset of the products to be completed and sent to the customer.
Once an order is started (i.e. its first product is being made) a stack is created for that order. At that
time, the order is said to be open. When all products that an order requires have been produced, the
stack/order is closed. Because of limited space in the production area, the maximum number of stacks
that are used simultaneously, i.e. the number of customer orders that are in simultaneous production,
should be minimized. Therefore, a solution for the MOSP is a total ordering of the products describing the
production sequence that minimizes the set of simultaneously opened stacks.” [13].
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Definition 10. Project planning - Categorized by the MiniZinc authors [50] as a real life case, in its
description is only described as “automatically generated from a problem description in Java” [68]. It may
be understood as a scheduling problem for which a set of tasks with predecessors must be appointed while
minimizing the amount of time required to execute all the tasks.

Definition 11. N-queens - The problem consists in placing n queens in a n×n chessboard, such that no
queen attacks another one [53].
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