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Abstract

We find a remarkable family of G2 structures defined on certain principal SO(3)-

bundles P± −→ M associated with any given oriented Riemannian 4-manifold M . Such

structures are always cocalibrated. The study starts with a recast of the Singer-Thorpe

equations of 4-dimensional geometry. These are applied to the Bryant-Salamon cons-

truction of complete G2-holonomy metrics on the vector bundle of self- or anti-self-dual

2-forms on M . We then discover new examples of that special holonomy on disk bundles

over H4 and H2
C, respectively, the real and complex hyperbolic space. Only in the end

we present the new G2 structures on principal bundles.
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Introduction

The group G2 of automorphisms of the octonions is equally characterised as the group of

invariants of a certain 3-form φ ∈ Λ3(R7)∗. This Lie subgroup of SO(7) gives rise to a 7-

dimensional special Riemannian geometry, whose basics are very well-known today. A G2

structure on a 7-manifold is given by a reduction of the manifold structure group to G2. It

is equivalently given by a certain 3-form over the manifold. Ever since a thorough study by

Bryant and Salamon came to light, in [7, 8, 19], the geometry of G2 structures has deserved

much attention and led to various deep insights and questions.

Let M be a 4-dimensional oriented Riemannian manifold. The present article finds a

new family of G2 structures associated to M . They are defined on the total spaces of two
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natural principal SO(3)-bundles P+ and P− −→M , abbreviated P±, of oriented orthonormal

coframe basis {e1, e2, e3} of self-dual and, respectively, anti-self-dual 2-forms on M .

The following gives immediately a particular case, say a preferred G2 structure within

the new family. Writing the connection 1-form ω ∈ Ω1
P±

(o(3)), induced from the Levi-Civita

connection of M on the vector bundle Λ2
±T
∗M , as

ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


then a G2 structure 3-form φ on P± is defined by:

φ = ω1 ∧ ω2 ∧ ω3 ∓ (e1 ∧ ω1 + e2 ∧ ω2 + e3 ∧ ω3) .

One may say that a basic knowledge of the theory up to Bianchi identity in 4-dimensional

geometry is most sufficient in order to prove φ is coclosed.

The family of G2 cocalibrated metrics explicitly found is a natural variation of the above

preferred structure. The abundance of these examples is consistent with an existence result on

spin manifolds and the h-principle of cocalibrated structures, proved in [9, Theorem 1.8]. It is

also important for the construction of Spin(7) metrics on P±× (−ε, ε), ε > 0, if one proceeds

with the ‘Hitchin flow’ technique. From another perspective, the cocalibration (P±, φ) is

quite surprising since it reveals a new kind of twistorial framework for the study of oriented

Riemannian 4-manifolds and, therefore, also a potential for new functor relations between 4-

and 7-dimensional geometry. More plainly, our result compares with the well-known theorem

which says that every cotangent bundle is a symplectic manifold.

We start our study with a recast of the theory of connections on principal coframe bundles

and the Singer-Thorpe decomposition of the curvature tensor of a Riemannian 4-manifolds.

We have given below a quite independent proof of this decomposition. These well-known

results are used along the later proofs of the main theorems.

We also present an introduction to fundamental notions and equations of G2 geometry.

Then we revisit the G2-holonomy metrics on X± = Λ2
±T
∗M , constructed by R. Bryant and

S. Salamon in [8, 19], somehow willing to honour their discovery of true G2-holonomy. We

compute the fundamental torsion equations of [6, 11] on X±, for M anti-self-dual, or self-dual

for the minus case, which are finally related by an elementary lemma about two 1-variable

dependent positive functions (throughout the paper we work in the smooth category). The

torsion forms entail many new unsolved questions. As our computations are also accomplished

for the bundle of self-dual 2-forms, we use results of C. LeBrun ([17, 18]) to deduce that to

every K3 surface with Calabi-Yau metric there corresponds a 2-parameter family of parallel

G2 structures on Λ2
+T
∗K3.

Our last chapter contains the general equations of the new G2 structures on the manifolds

P±. These structures are always cocalibrated. There remain non-vanishing torsion forms,

which we also find.

In particular, the family of cocalibrated structures on P− over S4 or CP2 may be chosen

to be nearly parallel, with arbitrarily chosen positive ‖dφ‖φ > 0.
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1 Riemannian 4-manifolds and G2 structures on 7-manifolds

1.1 Frame bundle and connection forms

We start by recalling some classical elements of differential and Riemannian geometry, which

may be seen in many references such as [14, 16]. Introducing notation, given a manifold Y

and a vector bundle E → Y , we let Ωp
Y (E) or Ωp(Y,E) represent the space of smooth sections

Γ(Y ; ΛpT ∗Y ⊗ E). Also, we let Ωp
Y = Ωp

Y (R).

Let M denote a smooth n-dimensional manifold and let F ∗M be the principal GL(n,R)-

bundle of coframes. A coframe e ∈ F ∗M is a linear isomorphism (e1, . . . , en) : TmM −→ Rn,

m ∈ M . The natural Lie group right-action (e, g) 7→ Rg(e) = e · g is defined by e · g =

(
∑

j g
1
j e
j , . . . ,

∑
j g

n
j e

j), for g ∈ GL(n,R).

Using the bundle projection π : F ∗M −→M we have a canonical Rn-valued 1-form θ on

F ∗M , the so-called soldering form. It gives a first example of a tautological form, as it is

defined by

θe = e ◦ π∗ . (1)

Now suppose the manifold is endowed with a linear connection, that is, a covariant deriva-

tive ∇ on the tangent bundle of M .

Given any local section s = (e1, . . . , en) : U → F ∗M on an open subset U ⊂ M , we then

have a matrix-valued 1-form ω induced by the covariant derivative: ∇ei =
∑

j e
j ⊗ ωij . In

obvious notation we may write this as s ωi· , with such matrix 1-form existing on U .

Now a natural extension d∇ of ∇ as a differential operator on the relevant space leads

us to the notion of the curvature tensor R∇ = (d∇)2 and, locally, to a curvature form ρik.

Respectively, a T ∗M -valued 2-form on M

R∇Z1,Z2
ei = ∇Z1∇Z2e

i −∇Z2∇Z1e
i −∇[Z1,Z2]e

i, ∀Z1, Z2 ∈ TM , (2)

and a Lie algebra gl(n,R)-valued 2-form on U

ρik = dωik +
∑
j

ωjk ∧ ω
i
j . (3)

Of course, (2) and (3) are related by R∇ei = sρi· and, differentiating again, gives a Bianchi

identity.

More important here is the fact that the connection can be completely described over the

manifold F ∗M . Indeed, there exists a unique globally defined ω ∈ Ω1(F ∗M, gl(n,R)) such

that

∇s = s s∗ω, ∀s ∈ Ω0(U,F ∗M) , (4)
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and such that, for any fundamental vertical vector field Ve ∈ TF ∗M, e ∈ F ∗M ,

ω(Ve) = V
(
by definition, Ve =

d

dt

∣∣∣∣
0

e · exp(tV ), V ∈ gl(n,R)
)
. (5)

From this and the existence of time-dependent parallel sections we have that H = kerω is

complementary to the vertical tangent subbundle kerπ∗ ⊂ TF ∗M . It follows easily that

R∗gω = Ad (g−1)ω, ∀g ∈ GL(n,R). And, hence, that dRg(He) = He·g.

Let us recall the connection ∇ is given on the tangent bundle of M . Here we must

consider the torsion, defined by T∇ = d∇1. Letting s̆ = (e1, . . . , en) denote a frame dual to

the previous s, we may then define equivariantly an Rn-valued 2-form τ on F ∗M , vanishing

on vertical directions and such that T∇ = s̆ s∗τ t.

The connection 1-form of TM is −ωt, i.e. it satisfies ∇ei = −
∑

j ej ω
j
i or just ∇s̆ =

−s̆ s∗ωt, because simply one requires ∇1 = 0. The following are two fundamental equations

due to É. Cartan regarding the torsion and the curvature of any linear connection on the

principal bundle of coframes.

Proposition 1.1 (Cartan structural equations). We have

τ = dθ + θ ∧ ω , ρ = dω + ω ∧ ω . (6)

Proof. In order to readily establish the theory, we give the proof with as much detail as

possible. First the map s̆ s∗θt =
∑

j ejθ
js∗ =

∑
j eje

j = 1|U is the identity endomorphism of

TM . Then we have s̆ s∗τ t = d∇1|U = d∇(s̆ s∗θt) = s̆(−s∗ωt∧s∗θt+ds∗θt) = s̆ s∗(θ∧ω+dθ)t.

Let us see that for a vertical direction Ve, we have (dθ + θ ∧ ω)(Ve, ·) = 0. This is trivial if

the second entry is vertical too, so we consider a lift Ze·g = dRg(s∗(Z)) of Z ∈ TM , with s

a section passing by e, and compute:

[V,Z]e = lim
t→0

1

t
(dRexp(−tV )(Ze·exp(tV ))− Ze) = 0,

(dθ + θ ∧ ω)(Ve, Ze) = d(θ(Z))(Ve)− d(θ(V ))(Ze)− θ([V,Z])− ω(Ve)θ(Ze)

=
d

dt

∣∣∣∣
0

(θZ)e·exp(tV ) − V (e(Z)) =
d

dt

∣∣∣∣
0

e · exp(tV )(Z)− V (e(Z)) = 0.

Regarding the curvature equation in (6), with the above coframe we find R∇s = d∇(s s∗ω) =

s s∗(ω∧ω+dω) which by definition is R∇s = s s∗ρ, as in (3). Arguments such as the previous

yield ρ(V, ·) = 0, proving ρ is well-defined and equivariant. �

We recall that θ, ω, and hence τ and ρ, are global differential forms on F ∗M .

A connection is said to be reducible to a principal G-subbundle Q of F ∗M , where G is a

Lie subgroup of the general linear group, if kerω|Q ⊂ TQ.

The previous classical theory extends to any vector bundle X −→M which is associated

to a coframe principal G-bundle Q −→ M . This is, when it is given a representation σ :

G → GL(V ), where V is a vector space, so that we may write X = Q ×σ V . This means a

vector in X identifies with a pair (q, f) ∈ Q×V or any representative of its equivalence class,
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(qg, σ(g−1)f), for g ∈ G, the usual orbit of G. If s is a section of Q on an open set U ⊂ M

and f is any V -valued function on U , then f determines a unique G-equivariant function

f̂ : π|Q
−1(U) → V such that f = f̂ ◦ s; with equivariant meaning that σ(g−1)f̂(s) = f̂(sg),

∀g ∈ G. Reciprocally, any equivariant function on Q determines a section of X −→ M .

Finally, we covariant differentiate sections of X through the class-independent formula

∇Z(s, f) = (s, σ̂ · s∗ω(Z)f + df(Z)), ∀Z ∈ TM , (7)

where σ̂ : g −→ gl(V ) is the induced map from σ. To see this is well-defined on X it is

necessary to prove first (sg)∗ω = Ad (g−1)s∗ω + g−1dg, where g is any G-valued function

defined on the domain of s. However, we shall not really need this formula in what follows.

Now we suppose M is also an oriented Riemannian manifold with metric g = 〈 , 〉. Then

there is a canonical torsion-free metric connection, the Levi-Civita connection, and all the

above remains true on the principal SO(n)-bundle F ∗◦M of oriented orthonormal coframes.

Because ω defines a metric connection, the matrix of 1-forms ωij is skew-symmetric. Moreover,

any 1-form κ = tr (κ◦1) or 0-section of T ∗M satisfies 0 = d2κ = tr (R∇κ∧1) for a torsion-free

connection. This leads to the so-called first Bianchi identity

R∇eα,eβe
γ +R∇eβ ,eγe

α +R∇eγ ,eαe
β = 0 . (8)

1.2 Self-duality on Riemannian 4-manifolds

Recall that a star operator ∗ is defined on Λ2(R4)∗ by α∧∗β = 〈α, β〉vol. Since it depends on

the orientation of R4 and ∗2 = 1, we have ±1 eigenspaces Λ2
± of ∗ of equal dimension. The

representation of SO(4) on the space of 2-forms is reducible to each eigenspace and clearly

contains Z2 = {1,−1} in the kernel. Counting dimensions, we may introduce two compatible

complex structures on R4 to further deduce the identity SO(4) = SU(2) × SU(2) /Z2. We

thus find o(4) = o(3)⊕ o(3).

Now let M be a connected oriented Riemannian 4-manifold and let us continue with the

same notation as above. Then we have a star or Hodge operator ∗M on M which, moreover,

commutes with covariant differentiation. Hence we have parallel subbundles:

Λ2T ∗M = Λ2
+ ⊕ Λ2

− . (9)

A similar picture as the one from section 1.1 then follows for the principal SO(3)-bundles

P± −→ M of oriented and
√

2-orthonormal, i.e. orthogonal and norm
√

2, coframes of Λ2
±.

The group acting is SO(3) since the rank of Λ2
± is 3. By the last term oriented we just mean

some choice made of one of the two connected-components of the bundle of
√

2-orthonormal

coframes of each of those vector bundles associated to M .

The spaces P± are nevertheless transformed by SO(4) under the right-action. Choosing

any oriented orthonormal coframe e = (e4, . . . , e7) ∈ F ∗◦M , we then have two new coframes

for the vector bundles of self-dual and anti-self-dual 2-forms, respectively1:

e1 = e1
± = e45 ± e67 , e2 = e2

± = e46 ∓ e57 , e3 = e3
± = e47 ± e56 . (10)

1These coframes will be useful later but in separate moments, hence we only introduce the + or − on the

ei, i = 1, 2, 3, or in other objects, when necessary. We adopt the common notation eαβ = eα ∧ eβ .
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This induced coframe (e1, e2, e3) in fact determines invariantly the above choice of P±, and

hence confirms that the Λ2
±T
∗M −→M are oriented vector bundles. Let us prove this on just

one space, say P+, for clarity. Any oriented coframe on M equals e · g, for some g ∈ SO(4),

and any
√

2-orthonormal oriented coframe of Λ2
+ is of the previous type, by linear algebra.

The orientation of ((e · g)1, (e · g)2, (e · g)3) = (e1 · g, e2 · g, e3 · g) = (e1, e2, e3) · g̃ is fixed by

g ∈ SO(4) since this group is connected and acts transitively. Then

p+ : F ∗◦M −→ P+ and p− : F ∗◦M −→ P− (11)

are equivariant maps defined by p±(e) = p±(e4, e5, e6, e7) := (e1, e2, e3). The kernel of

the group homomorphism g 7→ g̃ is a normal subgroup H, containing {1,−1}, such that

SO(4)/H = SO(3). We may say H ' SU(2). Hence the orientation is well-defined by the

choice in (10+).

The induced connections on P± are again denoted by an ω = ω± ∈ Ω1
P±

(o(3)), although

now given by ∇p = p p∗ω where p = p± ◦ s and s : U ⊂ M −→ F ∗◦M is any local section as

before and

ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 with


p∗ω1 = ω6

7 ± ω4
5

p∗ω2 = ω7
5 ∓ ω6

4

p∗ω3 = ω5
6 ± ω4

7

. (12)

The curvature tensor RΛ2
satisfies RΛ2

± p = p p∗ρ for a new 2-form also denoted by ρ ∈
Ω2
P±

(o(3)). Next we define the tautological form η = p±(θ4, . . . , θ7) as the push-forward by

p± of the soldering form components. This 2-form is abbreviated henceforth as η = (e1, e2, e3),

without risk of confusion. We find an important result, which holds on the manifold P± by

equivariance and follows consistently with all previous structure equations.

Proposition 1.2. On P± we have

dη = η ∧ ω (13)

and

0 = η ∧ (ω ∧ ω + dω) = η ∧ ρ (14)

where ρ is the curvature 2-form

ρ = dω + ω ∧ ω =

 0 −ρ3 ρ2

ρ3 0 −ρ1

−ρ2 ρ1 0

 with


ρ1 = ρ6

7 ± ρ4
5

ρ2 = ρ7
5 ∓ ρ6

4

ρ3 = ρ5
6 ± ρ4

7

. (15)

Proof. We find indeed RΛ2

± p = p p∗ρ and the formulae dω3 + ω1 ∧ ω2 = ρ5
6 ± ρ4

7, etc. �

Let us recreate the celebrated representation theory of the Riemannian curvature tensor,

which is due to Singer and Thorpe, cf. [3].

One can prove that the curvature tensor R∇ of the Riemannian 4-manifoldM is symmetric

when it is seen as a section of S2(Λ2T ∗M), by the identity in (14).
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Let {e4, e5, e6, e7} be a dual frame of the above. One defines a map R : Λ2 −→ Λ2 by

〈R(eα ∧ eβ), eγ ∧ eδ〉 = −〈R∇(eα, eβ)eγ , eδ〉 = R∇αβγδ . (16)

Then there are invariantly defined maps A,B,B∗, C respecting the decomposition (9), i.e.

such that

R =

[
A B

B∗ C

]
. (17)

Lemma 1.1 (Singer-Thorpe). The map R is symmetric, B corresponds to the traceless part

of the Ricci tensor Ric =
∑7

α=4〈R( , eα)eα, 〉 and trA = trC = 1
4trgRic = 1

4ScalM .

Proof. By all definitions, notice

R∇αβγδ = 〈R(eα ∧ eβ), eγ ∧ eδ〉 = −〈R∇eα,eβeγ , eδ〉 = −〈R∇eα,eβe
γ , eδ〉 = ρδγ(eα, eβ) .

Using the frame e1
+, e

2
+, . . . , e

3
−, we may clearly write ρi+ =

∑3
j=1 ã

i
je
j
+ +

˜̃
bije

j
− for some scalar

functions ãij ,
˜̃
bij . On the other hand, we have Rei+ =

∑
j

1
2Rije

j
+ + 1

2Rij̄e
j
− where Rij follows

linearly from (16). With the dual frame p±(e4, . . . , e7) = (e±,1, e±,2, e±,3) we then have

ei±(e±,j) = 2δij , e
i
±(e∓,j) = 0, ∀i, j = 1, 2, 3, and computations with (3), (15) yield

ãij =
1

2
ρi+(e+,j) = −1

2
Rij ˜̃

bij =
1

2
ρi+(e−,j) = −1

2
Rij̄ . (18)

In particular −ã is the matrix of A and −˜̃
b is the matrix of B∗. Also ρi− =

∑3
j=1 b̃

i
je
j
+ + c̃ije

j
−,

for some coefficients, and the same holds for Rei− =
∑

j
1
2Rīje

j
+ + 1

2Rīj̄e
j
−. Again one shows

c̃ij = +1
2Rīj̄ and the three identities 2b̃ij = ρi−(e+,j) = Rīj = −2

˜̃
bij which yield Rīj = Rij̄ . By

(14) it is immediate that a and c are symmetric. For instance, on the self-dual part, we find

0 = e2∧ρ3−e3∧ρ2 = +2(ã3
2− ã2

3)e4567. This implies the whole symmetry of R. In particular

B∗ is the adjoint of B. Recurring to the first Bianchi identity (8), further computations on

the above coefficients yield the relations with the tensor Ric . �

Henceforth the curvature of the vector bundle of self-dual 2-forms encodes half of the

Riemannian curvature tensor of M . A few lines of computation will show that M is Einstein,

i.e. the Ricci tensor is a multiple of the metric tensor, if and only if B = 0. In other words,

M is Einstein if and only if ∗R = R∗. If this is the case, then clearly orthogonal planes in

TM have the same sectional curvature. And reciprocally.

The invariant theory of SO(4) lets us define the tensors W+ = A − 1
3trA and W− =

C− 1
3trC, which are called the self-dual and anti-self-dual Weyl tensors of M . The so-called

Weyl tensor W = W+ + W− is conformally invariant, since that is certainly the case with

the star operator and each W± component does preserve the Λ2
±.

The Riemannian manifold M is self-dual if W = W+ and anti-self-dual if W = W−.

Clearly the former condition reads also as (s = 1
12ScalM = 1

3trA = 1
3trC):

(SD) W− = 0 ⇐⇒ ∀m ∈M, ∃s ∈ R : ρi− = sei− +
3∑
j=1

b̃ije
j
+, ∀i , (19)

whereas the latter corresponds with ρi+ = −sei+ + . . .. In any dimension, if M is Einstein,

then s is known to be a constant.
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1.3 G2 structures

G2 structures are well-known today and amount to 3-forms of special kind on a 7-dimensional

manifold. One way to describe them is precisely within the above setting of distinguished 2-

forms. Let us continue with the notation for self-duality from (10), but now on some oriented

Euclidean 4-space, say a horizontal direction, which we complement with a 3-dimensional

Euclidean space given by an orthonormal coframe, i.e. a set of three independent linear

forms f1, f2, f3, for the vertical direction. Of course, we obtain a corresponding metric

g = gV + gH in 7 dimensions. Then a linear G2 structure is defined on the direct sum vector

space, just as in [8, 19], by

φ = λ3f123 ∓ λµ2(f1 ∧ e1 + f2 ∧ e2 + f3 ∧ e3) . (20)

In the above we continue to abbreviate ei = ei±. The coefficients λ3, λµ2 appearing are

dependent on real scalars λ, µ. A study of 3-forms of special type gives that the group of

automorphisms of φ, G2, is a simply-connected, compact, simple, 14 dimensional Lie subgroup

of SO(7), with such special orthogonal group referring to some new metric gφ (cf. [6]). An

orientation form o = Volg = f123e4567 may be fixed once and for all, because the φ induced

orientation is invariant by continuity on λ, µ in some open interval. The metric gφ is given,

for some m ∈ R yet to be determined, and for any vectors u, v, by the well-known identity

uyφ ∧ vyφ ∧ φ = ±6〈u, v〉φmo . (21)

In the case of (20), after some lengthy but straightforward computations with the dual frame,

we find the following result.

Lemma 1.2. The frame f1, f2, f3, e4, e5, e6, e7 is orthogonal and satisfies 〈eα, eα〉φ = λ3µ6

m

and 〈fi, fi〉φ = λ5µ4

m .

Indeed the definitions induce a unique metric irrespective of ±. Now it follows that

m2 =
1

‖f123e4···7‖2φ
=
λ15µ12

m3

λ12µ24

m4

and hence the value of m = λ3µ4. Also the metric and canonical volume form are:

gφ = λ2gV + µ2gH , Volgφ = mo = λ3µ4Volg . (22)

The orientations o and mo agree if and only if λ > 0. We fix µ > 0 for convenience. Finally

the star operator ∗φ for gφ gives φ = λ3f123 ∓ λµ2(f1 ∧ e1 + f2 ∧ e2 + f3 ∧ e3)

ψ := ∗φφ = µ4e4567 − λ2µ2(e1 ∧ f23 + e2 ∧ f31 + e3 ∧ f12)
. (23)

Since the compatibility between the 3- and 4-dimensional subspace orientations is quite

arbitrary, we comment on a further detail. It is quite natural that one starts with his own

choice of a frame of self-dual 2-forms. For instance, say we pick e1, e2,−e3 (or any other
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non-orientation preserving transformation in Λ2
+). Then we may reverse the signs of f3 and

λ in order to have the same orientation, mo, but the metric induced from the new 3-form

(20) will be of signature (3,−4), a so-called G̃2 metric, where the automorphisms Lie group

is now the non-compact dual of G2. In order to have a positive definite metric we would have

to start by reversing the sign in the present −λµ2 coefficient in (20). For example, without

further ado, we see the G2 structure f123 +f1e1
+ +f2e2

+−f3e3
+ is used in celebrated references

such as [6, 7, 12, 13, 15].

A G2 structure on a 7-dimensional manifold X is given by a smooth 3-form φ ∈ Ω3
X of

the form (20) in some given coframe f1, . . . , e7. Then there is an induced metric gφ and

compatible orientation on X, as we have seen fibre-wise and for similar reasons the same

must hold globally. The structure is furthermore reducing the holonomy of the Levi-Civita

connection ∇ of this metric to G2 if and only if ∇φ = 0. That is, any endomorphism of

TxX induced by parallel displacement over a contractible loop around x lies in the Lie group.

Such a structure is called parallel or 1-flat. A theorem of Fernández and Gray asserts this is

equivalent to φ being harmonic, cf. [11, Theorem 5.2].

The classification of G2 structures is further developed in [11] and [7]. It depends on

four forms τi ∈ Ωi
X for i = 0, 1, 2, 3, which appear fibre-wise in ΛiT ∗X as G2-modules Wi

of dimensions, respectively, 1, 7, 14, 27. While the first two representation spaces W0,W1

are obvious, the third one is W2 = g2 = {τ2 : τ2 ∧ φ = ∓ ∗φ τ2} and the fourth one is

W3 = {τ3 : τ3 ∧ φ = τ3 ∧ ψ = 0}. The forms indeed exist and appear in (recall ψ = ∗φφ)dφ = τ0 ∗φ φ+ 3
4τ1 ∧ φ+ ∗φτ3

dψ = τ1 ∧ ψ + τ2 ∧ φ
. (24)

Equations dφ = 0 and d ∗φ φ = 0, respectively, are those of a calibrated and cocalibrated

G2 structure. As said above, having both conditions is the same as ∇φ = 0. Like many

authors we also reserve the name G2-manifold for the parallel case. If dφ = τ0 ψ with τ0 6= 0

a constant, then we have a pure type W0 or nearly parallel structure, cf. [1]. For each i, the

structures are called of pure type Wi if the only non-zero component is τi. Pure type W1 is

the same as locally conformally parallel, since τ1 must be closed, i.e. locally exact.

2 The Bryant-Salamon G2 manifolds

2.1 Structure equations for X+ and X−

This section is based on the famous construction of G2 structures found in [19, 20, 8]. We

give a new description of their fundamental equations and, moreover, we find the respective

torsion forms, in Theorem 2.1 below.

The manifolds X± = Λ2
±T
∗M = P± ×SO(3) R3, where the representation is the canonical

one, are natural vector bundles associated to a given oriented Riemannian 4-manifold M .

Such manifolds carry many rich G2 structures. We shall treat the ± cases simultaneously,

occasionally forgetting the subscript notation. This shall be the case of the 3-form φ, over

X±, which is defined as follows assuming much of the notation from previous sections.
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A point x ∈ X± may be written as x = pat, where p = (e1, e2, e3) constitutes a coframe

of self- or anti-self-dual forms and a = (a1, a2, a3) is a vector of R3. Then the 2-form η from

Proposition 1.2 induces another tautological 2-form, ηat, well-defined on X±. As well as the

scalar function r =
1

2
‖ηat‖2

M
= aat. By (13), we have

d(ηat) = η ∧ (ωat + dat) = η ∧ f t (25)

where

f = da+ aωt = da− aω . (26)

Using either this identity or the pullback connection to X± from ∇ on M , we find

dr = 2fat . (27)

Remark. With the intent of easing the reading and no fear of inducing much confusion,

from now on we abbreviate notation by dropping the wedge product symbol.

Next we introduce a diligent tool to deal with several computations. Consider the linear map

which sends α ∈ Ωk(R3), k ≥ 0, to the o(3)-valued k-form α̌ exactly in the shape of the

matrix ω = (ω1, ω2, ω3)∨ in (12). This is,

if α = (α1, α2, α3), then α̌ = α∨ =

 0 −α3 α2

α3 0 −α1

−α2 α1 0

 . (28)

In coherence with our notation we also2 have ρ = ρ̌. We let ·∧ denote the left inverse map,

defined for any matrix A by A∧ = (a32,−a31, a21). We have (A∧)∨ = A if and only if A lies

in the orthogonal Lie algebra. The following identities are trivial to check:

(α̌δ̌)∧ = (α1δ2,−α1δ3, α2δ3) and (αδ̌)∨ = α̌δ̌ − (−1)degαdeg δ δ̌α̌ . (29)

Returning to our G2 matter, the components f = (f1, f2, f3) give us the required base of

1-forms with which one defines a structure φ in the same fashion as (20). We define β = f123

and vol = e4567 since in fact this is the pullback to X± of the volume form of M . Henceforth

φ = λ3f123∓λµ2ηf t = λ3β∓λµ2d(ηat) where λ, µ are scalar functions on X±, cf. (23). Also

ψ = µ4vol − λ2µ2ηht where the 2-form h is defined by h = (f̌ f̌)∧ = (f23, f31, f12); notice

ȟ = −f tf = f̌2 = 1
2(ff̌)∨.

Proposition 2.1. We havedφ = dλ3 β + λ3hρat ∓ d(λµ2)ηf t

dψ = dµ4 vol− d(λ2µ2)ηht + λ2µ2ηf̌ρat
. (30)

2We keep the notation for ω and ρ, the only two exceptions, everywhere referring the matrices defined

earlier.
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Proof. It is easy to see that df = −fω−aρ. Applying (29) several times, we find fωf̌ = −hω
and thence

dh = (df̌ f̌ − f̌df̌)∧ = (df)f̌ = −fωf̌ − aρf̌ = hω − aρf̌ . (31)

Since β = 1
3hf

t, we have (in fact hωf t = 0)

dβ =
1

3
(dh f t + hdf t) =

1

3
(hωf t − aρf̌f t − hωf t + hρat) = hρat (32)

and

d(ηht) = −ηf̌ρat . (33)

Since ηf t is exact, (25), the result follows. �

For the solution of several G2 equations we follow [8, 19] and consider λ, µ as functions

of the half square-radius r.

Proposition 2.2. Let us consider the spaces X± = Λ2
±T
∗M with the generic Bryant-Salamon

G2 structure φ and assume λ and µ are only dependent of r. We have that dφ = 0 implies

the metric of M is Einstein.

Proof. The assumption on a function ζ on X± of being dependent only of r and (27) imply

that dζ = 2∂ζ∂rfa
t. The first line of (30) thus becomes dφ = λ3hρat∓2∂(λµ2)

∂r fatηf t. It is now

enough to see the case of self-duality, hence with ρ = ρ+. Recall we have seen the Einstein

condition is fulfilled with ρ+ having no anti-self-dual terms, i.e. the vanishing of the
˜̃
bij terms

in (18). If φ is closed, then indeed we must have B = 0. �

In the following we find the torsion forms introduced in (24).

Theorem 2.1. Consider the spaces X± = Λ2
±T
∗M with the generic Bryant-Salamon G2

structure φ and assume λ and µ are only dependent of r. Assume also that M is anti-self-

dual in the case of X+ or self-dual in the case of X−. We thus have ρ = ∓sη̌ + ρB , as in

equation (19), where ρB is the Einstein component, which interchanges self- with anti-self-

duality depending of which case. Then we have:

i) τ0 = 0

ii) τ1 = 2
3λ2µ4

(∂(λ2µ4)
∂r − sλ4µ2

)
dr

iii) τ2 = ∓
(
∂
∂r (µ

2

λ2
)− 2s

)(
4λ3

3µ2
hat ± 2λ

3 ηa
t
)

iv) τ3 = ∓λ2fρBa
t and, in particular, τ3 = 0 if and only if M is Einstein.

Proof. i) Since the wedge of 4-forms with φ is equivariant, we find an invariant kernel of such

map and then deduce 7τ0Volgφ = (dφ)φ. Suppose by hypothesis that d(λµ2) = Sfat = 1
2Sdr.

Finally,

(dφ)φ = (λ3hρat ± Sηf tfat)(λ3β ∓ λµ2ηf t)

= sλ4µ2hη̌atηf t − Sλµ2ηf tfatηf t

= 0
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because ρBη = 0, ηf thη̌ = βηη̌ = 0, ηηt = ±6vol, ηtη = ±2vol.13 and then fηtηf tf =

±2volff tf = 0.

ii) As above, we define three functions S, T, U simply by d(λµ2) = Sfat, d(λ2µ2) = Tfat

and d(µ4) = Ufat. Note also the identity fη̌ + ηf̌ = 0, which is easy to check and implies

ηf̌ η̌ = −fη̌2 = ±4fvol. Below we will also need f tf = −ȟ. We have then, by (30),

∗φdψ = ∗φ
(
(Uvol− Tηht)fat ∓ λ2µ2ηf̌sη̌at

)
= ∗φ

(
(U − 4sλ2µ2)volfat − Tβηat

)
=

λ

µ4
(U − 4sλ2µ2)hat ∓ 1

λ3
Tηat .

Now, it is known that τ1 = 1
3 ∗φ

(
(∗φdψ)ψ

)
(cf. [11, 13]). Hence, since hht = 0 and ηht = hηt

is a 4-form,

τ1 =
1

3
∗φ
(( λ

µ4
(U − 4sλ2µ2)hat ∓ T

λ3
ηat
)(
µ4vol− λ2µ2ηht

))
=

1

3
∗φ
(
λ(U − 4sλ2µ2)hvolat ± Tµ2

λ
hηtηat

)
=

1

3λ
∗φ (λ2U − 4sλ4µ2 + 2Tµ2)hvolat

=
λ

3λ3µ4
(λ2U − 4sλ4µ2 + 2µ2T )fat .

Since (λ2U + 2µ2T )fat = λ2d(µ4) + 2µ2d(λ2µ2) = 2d(λ2µ4), the result follows.

iii) The easiest way to find τ2, lying in the g2 representation module, seems to be by using the

formula we have just proved. Recalling (24) and the previous formula for dψ and checking

htf = β.13, we have

∓ ∗φ τ2 = dψ − τ1ψ

= (U − 4sλ2µ2)volfat − Tβηat − 1

3λ2
(λ2U − 4sλ4µ2 + 2µ2T )fatvol+

+
1

3µ2
(λ2U − 4sλ4µ2 + 2µ2T )fatηht

=
1

3λ2

(
3λ2U − 12sλ4µ2 − λ2U + 4sλ4µ2 − 2µ2T

)
volfat+

− Tβηat +
1

3µ2
(λ2U − 4sλ4µ2 + 2µ2T )ηhtfat

=
1

3λ2

(
2λ2U − 8sλ4µ2 − 2µ2T

)
volfat +

1

3µ2
(λ2U − 4sλ4µ2 − µ2T )ηβat

= (λ2U − µ2T − 4sλ4µ2)(
1

3µ2
ηβ +

2

3λ2
volf)at .
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Hence

τ2 = ∓(λ2U − µ2T − 4sλ4µ2)
(
± 1

3µ2λ3
η +

2

3λµ4
h
)
at

= ∓(
λ2

µ2
U − T − 4sλ4)

(
± 1

3λ3
η +

2

3λµ2
h
)
at

= ∓(2
λ2

µ2

∂µ4

∂r
− 2

∂λ2µ2

∂r
− 4sλ4)

( 2

3λµ2
h± 1

3λ3
η
)
at

= ∓
( ∂
∂r

(
µ2

λ2
)− 2s

)(4λ3

3µ2
hat ± 2

3
ληat

)
.

iv) Finally, from the formulae above for dφ and τ1, we find

τ3 = ∗φ
(
dφ+

3

4
φτ1

)
= ∗φ

(
λ3hρat ± Sηf tfat +

1

4λ2µ4
(∓λµ2ηf t)(λ2U − 4sλ4µ2 + 2µ2T )fat

)
=

1

4λµ2
∗φ
(
4λ4µ2hρ∓ 4Sλµ2ηȟ± (λ2U − 4sλ4µ2 + 2µ2T )ηȟ

)
at

=
1

4λµ2

(
4λ4µ2 ∗φ (∓shη̌ + hρB )− 4Sµ2ηf̌ +

1

λ
(λ2U − 4sλ4µ2 + 2µ2T )ηf̌

)
at

=
1

4λµ2

(
−4sλ3µ2(fη̌ + ηf̌)∓ 4λ3µ2fρB +

1

λ
(λ2U + 2µ2T − 4λµ2S)ηf̌

)
at

= ∓λ2fρBa
t .

Indeed, fη̌ + ηf̌ = 0 and

(λ2U + 2µ2T − 4λµ2S)fat = 2d(λ2µ4)− 4λµ2d(λµ2) = 0 .

So the formula is much simplified. �

We remark that hat is also a global 2-form, just as the 2-form ηat.

2.2 New examples of G2 manifolds

With the above theorem we can construct new examples of G2 structures of eight different

and unusual classes. Regarding pure Wi, i = 1, 2, 3, and other relevant types, we have further

observations.

One writes, in general,

τ1 =
2

3

(
d log(λ2µ4)− sλ

2

µ2
dr
)
. (34)

In the conditions of Theorem 2.1, we can indeed find some examples of non-trivial pure type

W1 structures, i.e. locally conformally parallel. However, if 12s = ScalM < 0, then the

structure is only locally conformally parallel, not globally, and in general the induced metric

gφ is not complete nor defined on the whole space. Note that s is constant since τ3 = 0.

Indeed τ2 = 0 has a solution: λ =constant and µ2 = λ2(2sr + c1), where c1 is another

constant.
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Regarding pure type W2 structures, the equation τ1 = 0 does not yield so easily. Taking

λ constant, leads to a complete solution if and only if ScalM ≥ 0, giving an answer to the

problem. Taking µ a constant, leads to another solution but hardly with the metric gφ

complete.

We notice that τ1 and τ2 are closely related, by the following simple lemma which is just

calculus in the variable r.

Lemma 2.1. With λ, µ > 0, any two of the following conditions imply the third:

λµ = c0 a constant , τ1 = 0 , τ2 = 0 . (35)

In order to achieve pure type W3 or even G2-holonomy, one thus assumes (35); equiva-

lently, one assumes the system of equations λµ = c0 and ∂rµ
2−sλ2 = 0. The unique solution

is (with c1 another constant):

(µ(r))2 = (2c2
0sr + c1)

1
2 , (λ(r))2 = c2

0(2c2
0sr + c1)−

1
2 . (36)

The only existing compact self-dual Einstein 4-manifolds with s > 0, result due to Hitchin,

were pointed out in the original construction of what we have denoted by X−. The following

is well-known.

Theorem 2.2 (Bryant-Salamon, [8, 19]). For M = S4 or M = CP2 with standard metrics,

the spaces Λ2
−T
∗M have a complete metric with holonomy G2.

We recall that self-dual (SD) scalar-flat 4-manifolds also give rise to interesting complete

G2 structures on X− by the same method. Raising questions similar to the above for the

G2 structure on anti-self-dual (ASD) metrics, thus pretending that orientation would precede

other requirements, we proceed with the study on X+.

Let us resume with the ScalM = 0 condition. The spin compact scalar-flat Kähler surfaces

were classified in [17, Proposition 3] and consist of the Calabi-Yau surfaces, the flat torus

modulo a finite group, here denoted M0, and the CP1-bundles over a Riemann surface of

genus > 1 with the local product metric, here M1.

Theorem 2.3. i) Let M be any complete scalar-flat Kähler surface, with the compatible

orientation. Then the associated G2 structure φ on the manifold X+ is cocalibrated,

i.e. dψ = 0, if and only if λ, µ are constant. In this case, φ is of pure type W3 and gφ

is complete.

ii) The three classes of manifolds Λ2
+T
∗K3, where K3 denotes any of the homonymous

surfaces, Λ2
±T
∗M0, all admit complete parallel G2 structures.

iii) Λ2
+T
∗M1 is of pure type W3 and not parallel.

iv) Both classes of manifolds M2,k = kCP2
, with k ≥ 6 (a k-many connected sum of

conjugate-oriented CP2s) and manifolds M3,k = CP2#kCP2
, with k ≥ 14, all with the

scalar-flat ASD metrics described in [18, Theorem A], admit complete G2 structures on

Λ2
+T
∗Mi,k (i = 2, 3) which are of pure type W3 and not parallel.
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Proof. i) It is well-known that a Kähler surface is scalar-flat if and only if it is anti-self-dual

([10]), a local result. We may thus apply Theorem 2.1 above to get the first part. Since we

have s = 0, it is indeed λ and µ constant by (36), and reciprocally. Completeness follows

by completeness of the totally geodesic fibres, by completeness of the base manifold and

the Hopf-Rinow Theorem on local product metrics (cf. [2] for details and [8] for a similar

argument, which also appears below).

ii) The only spin compact cases in i) are M0 and the K3 surfaces with Calabi-Yau metric

([17]). Since the latter and M0 are actually Einstein, all torsion tensors in Theorem 2.1

vanish.

iii) Fibre and base of M1 have opposite sectional curvature, but M1 is not Einstein, so τ3 6= 0.

iv) In [18] it is shown that the metrics considered are not Einstein, so τ3 6= 0; again taking

λ, µ constant solves equations τi = 0 for i = 1, 2. �

The classification of compact simply-connected 4-manifolds with scalar-flat ASD metric

consists of the K3 surfaces and the two classes M2,k and M3,k — the statement of LeBrun.

Bear in mind that we have been considering classes of metrics up to orientation-preserving

isometric diffeomorphism.

Determining the holonomy subgroups of G2 for the manifolds Λ2
+T
∗K3, which confirms

to be SU(2), is a simple task also accomplished in [2]. Of course, this finding of a G2 is stated

for the sake of completion. The same is true for the flat class M0 in ii) of trivial holonomy.

The next result, partly stated in [8], is a mirror of the Bryant-Salamon Theorem 2.2, but

its proof is not. First recall the complex hyperbolic space H2
C = SU(2, 1)/U(2), which is a

ball in C2. From [5] we know that it is Einstein and self-dual for the canonical orientation.

Let r0 ∈ R+ and

Dr0,±M = {x ∈ X± : 1
2‖x‖

2
M
< r0} ⊂ Λ2

±T
∗M . (37)

Theorem 2.4. For any given r0 > 0, the real hyperbolic space H4 = SO(4, 1)/SO(4) and

the complex hyperbolic space H2
C, both endowed with standard metrics, are such that the disk

bundle manifolds Dr0,±H4 and Dr0,−H2
C admit a non-complete metric with holonomy equal

to G2.

Proof. First, one considers of course (36) and hence may assume c0 = 1. Hence λ(r) = (2sr+

c1)−
1
4 and µ(r) = (2sr+c1)

1
4 with constant s < 0; we recall the 3-form is φ = λ3β−λµ2ηf t and

the metric is gφ = λ2gV +µ2gH for both of the base spaces. Since we must have 2sr+ c1 > 0,

we see that c1 = −2sr0 and we are left to play with the disk bundles. From [5] we know

that H2
C is Einstein and self-dual for the canonical orientation. The non-completeness of the

metric is seen by the length of a radius in the disk fibres. Indeed, taking x0 ∈ X± with
√

2

norm for the metric on M and the curve γ(t) = tx0, t ∈ [0,
√
r0[, we have rγt = t2 and∫ √r0

0
‖x0‖φ dt =

∫ √r0
0

λ dt =
1

(−2s)
1
4

∫ √r0
0

dt

(r0 − t2)
1
4

∼
∫ √r0

0

dt

(
√
r0 − t)

1
4

< +∞ .

As the fibres are totally geodesic and spherically symmetric, a fibre geodesic exists but it

cannot be extended indefinitely. Finally, the holonomy equal to G2 follows by a main result

which is Theorem 3.1 in [2]. �
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We remark the vertical radial geodesics, for s = −1, written γ(t) = ε(t)x0 ∈ Dr0,±M, t ∈
R, with ‖x0‖2M = 2, must have the following equation, cf. [2]:

2ε̈(r0 − ε2) + 3ε̇2ε = 0 . (38)

We note the incompleteness of the metric is in sharp contrast with the elliptic geometry

case. The end of the above proof is accomplished with a general technique, found in [2],

developed with the purpose of computing holonomy on vector bundles with spherically sym-

metric metrics. This procedure also gives a new proof of the s > 0 case, i.e. the case of the

Bryant-Salamon manifold.

Remark. It is interesting to see why, after all, the mirror proof of the result about the

holonomy group for the two base manifolds with constant s > 0 does not work for the other

two cases with constant s < 0. To guarantee the holonomy subgroup of G2 is the whole group,

[8] applies a general criterion which says it is sufficient that there do not exist non-trivial

parallel 1-forms on the given G2 parallel manifold. Following the article, we must first prove

our manifolds Λ2
+ are not diffeomorphic to R7. That is true for the real hyperbolic base, a

pseudo-sphere, since π3(H4) 6= 0. But false for the complex hyperbolic ball H2
C (contrary

to the CP2 case). Also the proof continues with representation theory of the G-module P
of ∇gφ-parallel 1-form fields, where G is the isometry group of the base manifold. P is a

vector space which is, in the real case, and should be, in the complex case, of dim < 7. The

isometries preserve gφ by construction, hence G acts on P. For our hyperbolic base spaces,

G = SO(4, 1) and U(2, 1), cf. [5], which of which are the respective mirrors of the elliptic

G = SO(5) and SU(3). We also note the orthogonal to P is not finite dimensional in Ω1
Λ2
+

so

we cannot easily argue with it. A few arguments which the reader may check, valid for all

cases, tell us that the G action must have irreducible components of dim 0, 3 or 4. In both

elliptic cases, that is impossible and further-on implies that P = 0. But in the real hyperbolic

case there do exist representations of SO(4, 1) in dimension 4, cf. [4].

3 G2 structures on the frame bundle P±

Given the oriented Riemannian 4-manifold M from previous sections, we consider another

fibre bundle, this time compact, with 3-dimensional fibres and canonical 2-forms. The princi-

pal SO(3)-bundle P± = P±M of oriented norm
√

2 orthogonal frames of Λ2
±T
∗M , introduced

in section 1.2, may be endowed with a family of natural G2 structures.

We continue to denote by η = (e1, e2, e3) the tautological 2-form field and by ω, ρ the,

respectively, connection 1-form and curvature 2-form fields of o(3) matrices, all three globally

defined on the total space P±M . They are related by dη = ηω and ρ = dω + ωω and hence

also by ηρ = 0, cf. Proposition 1.2. One might recall these equations arise equivariantly from

the frame bundle of the cotangent bundle of M and its sections, which we now disregard.

Indeed ω is a connection 1-form and has the same value for every coframe of M which induces

a given self-dual or anti-self-dual 2-forms coframe.
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Using the methods introduced in (28), we now define

f = (ω1, ω2, ω3) ρ̂ = (ρ1, ρ2, ρ3)

β = ω123 .
(39)

The following identities are easy to deduce:

1

2
fω = (ω23, ω31, ω12) = (ωω)∧ ρ̂ = df +

1

2
fω

ωρ̂t = −ρf t β =
1

6
fωf t ωf tf = 2β13 = f tfω

ηωf t = fωηt ωωf t = 0

(40)

and

− fρf t = fωρ̂t = ρ̂ωf t = 2(ρ1ω23 + ρ2ω31 + ρ3ω12) . (41)

It is convenient to see further, the also purely algebraic relations:

fρf tηf t = −2(ρ1ω23 + ρ2ω31 + ρ3ω12)(e1ω1 + e2ω2 + e3ω3) = −2βρ̂ηt = −2βηρ̂t

ηωf tηf t = fωηtηf t = ±2volfωf t = ±12βvol

ηf tηf t = 0 ηρ̂tηf t = fηtηρ̂t = ±2volfρ̂t .

(42)

Finally, the announced G2 structures are given by φ = λ3β ∓ λµ2ηf t

ψ = ∗φφ = µ4vol− λ2µ2

2 ηωf t
(43)

with positive scalar functions λ, µ ∈ Ω0
P±

. Again recalling ηρ = 0, let us differentiate the

components and then the forms φ and ψ:

dβ =
1

6
(ρ̂ωf t − fρf t + fωρ̂t) = −1

2
fρf t

d(ηf t) = ηωf t − 1

2
ηωf t + ηρ̂t = η(

1

2
ωf t + ρ̂t)

d(ηωf t) = η(ωωf t + ρf t − ωωf t − ωρ̂t +
1

2
ωωf t) = −ηωρ̂t = ηρf t = 0

dφ = dλ3 β − λ3

2
fρf t ∓ d(λµ2) ηf t ∓ λµ2η(

1

2
ωf t + ρ̂t)

dψ = dµ4 vol− 1

2
d(λ2µ2) ηωf t .

(44)

Now we look for the torsion tensors.

Proposition 3.1. Let s = ScalM
12 be the scalar curvature function. We then have:

τ0 = ± 6

7λµ2
(µ2 + 2sλ2) . (45)
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Proof. Recalling the equations for ρ in (17), we note the remarkable equation ηρ̂t = −6svol.

With the dimensions of the vertical and horizontal 1-form subspaces in mind, we find

7τ0Volφ = φdφ

= ∓ λ4µ2βηρ̂t ± λ4µ2

2
fρf tηf t +

1

2
λ2µ4ηωf tηf t

= ∓ λ4µ2β(ηρ̂t + ρ̂ηt)± 6λ2µ4βvol

= ± 6λ2µ2(2sλ2 + µ2)βvol

and the result follows. �

Computations have shown that it is wise to fix µ and λ as constants; otherwise they

considerably weigh on the equations and do not seem to lead to any remarkable proposition.

In this setting we write a theorem, whose final statement is obtained as usual from τ3 =

∗φdφ− τ0φ.

Theorem 3.1. For any oriented Riemannian 4-manifold M , the spaces P± admit a family

of G2 structures defined by the above and the canonical 3-form φ = λ3β ∓ λµ2ηf t. Then we

have that ψ = ∗φφ = µ4vol − λ2µ2

2 ηωf t. For any positive constants λ, µ, such G2 structures

are always cocalibrated (τ1 = τ2 = 0) and non-calibrated. Moreover

τ3 = λ2(∗M ρ̂)f t +
1

7

(
(12sλ2 − µ2)ηf t ± (30s

λ4

µ2
− 6λ2)β

)
. (46)

We remark it is quite demanding to check that φτ3 = 0 and ψτ3 = 0, as the theory

predicts. For the first, one is confronted with the appearance of a 6-form fηt(∗M ρ̂)f t, which

vanishes. Indeed, between the two f we find a symmetric matrix ηtρ̂, essentially the map A

or C from (17), which one may hence diagonalise. Also checking that ψτ3 = 0 asks for the

deduction of an auxiliary result, in which Lemma 1.1 and its proof are recalled:

ηωf t(∗M ρ̂)f t = ±ρ̂f tηωf t = ±ρ̂f tfωηt = ±ρ̂ηt2β = 4(∓tr
{
A
C

}
)volβ = ∓12sβvol. (47)

Then one may proceed to verify ψτ3 = 0, with deserved satisfaction.

Recall that M is anti-self-dual (respectively, self-dual) and Einstein if in referring to P+

(respectively, P−) we have ρ̂ = −sη (respectively, ρ̂ = sη).

Corollary 3.1. The G2 structure φ is of pure type W3 if and only if M has constant scalar

curvature and µ, λ satisfy ScalM = −6µ2

λ2
. In this case, τ3 6= 0 since

τ3 = λ2(∗M ρ̂)f t − µ2ηf t ∓ 3λ2β . (48)

If moreover M is also ASD (SD) and Einstein, then τ3 = ± 1
2λ(φ− 7λ3β).

Now the vanishing of τ3 implies those curvature restrictions on duality and the Ricci

tensor. The reader may deduce the following corollary.

Corollary 3.2 (cf. [21]). The structures (P−, φ) for M = S4 or CP2, such that s = µ2

5λ2
, are

nearly parallel. Moreover, dφ = − 6
5λψ.
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It is not clear3 to the author which nearly parallel structures from the classification in

[21, Tables 1,2,3] are newly represented by P−S
4 and P−CP2.

Clearly the two spaces admit G2 structures such that ‖dφ‖φ may be made arbitrarily

small or arbitrarily large, but this is a general feature of nearly parallel structures. Also,

again the last result shows a symmetry breaking between P+ and P−, i.e. between positive

and negative scalar curvature.

The principal SO(3)-bundle connection 1-form ω is globally defined, so we could well

define a G2 structure with f given by any other permutation of ω1, ω2, ω3. How ever this

may be done it does not lead to any remarkable results, since then the basic equations have

proved to become quite twisted.

We have proved above that cocalibrated G2 structures are quite abundant, in coherence

with [9, Theorem 1.8]. Regarding 4-dimensional geometry, they appear naturally as, for

instance, the celebrated symplectic cotangent bundle of every given manifold. Hence there is

true motivation for exploring G2 with a new natural Hamiltonian theory for 4-manifolds.
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